
Replies to the Reviewer#2 

 

Thank the reviewer for the valuable comments and suggestions, which benefit 

significantly the improvements of the paper. We address your suggestions point-by-point 

below and modify our manuscript presentation throughout. In this reply, the comments of 

the referee are marked in black or red colors, and our replies in blue color.  

 

Comments on the manuscript entitled 

Quadratic Magnetic Gradients from 7-SC and 9-SC Constellations 

submitted by Chao Shen, Gang Zeng, and Rungployphan Kieokaew. 

General comments 

The manuscript is concerned with a novel method to estimate the first and 

second spatial derivatives of stationary magnetic structures from multi-point 

measurements in constellations consisting of N spacecraft where N=7 

(Plasma Observatory) or N=9 (HelioSwarm). In addition to the set of 3N 

simultaneous magnetic field measurements, also discrete representations of 

the 3N first time derivatives are utilised in the method, amounting to an 

effective number of 6N input data that are used for estimating the 33 model 

parameters (30 parameters in the second-order Taylor expansion, and 3 

parameters for the velocity of the stationary structure). The paper presents 

the model equations and an iterative algorithm for estimating the 



parameters. The method is demonstrated using two magnetic field models. 

Deviations of the model predictions from their analytical counterparts are 

discussed. 

While the study presented here can be considered a proof of concept that 

introduces the general framework and demonstrates the processing flow of 

the proposed method, a number of open issues and limitations need to be 

addressed and critically discussed, e.g., the concept of stationarity in the 

context of magnetohydrodynamics, the different types of errors, and the 

numerical stability of the inversion/reconstruction method. 

 

Stationarity in the context of magnetohydrodynamics: 

 

The method utilises discrete time derivative measurements through 

advection-type equations (3): =
t
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V B . In magnetohydrodynamics, 

however, the local time derivative of the magnetic field B  is connected to 

the velocity V  through Faraday's law and an appropriate Ohm's law, which 

in the ideal case (collision-free plasmas in geospace and the heliosphere) 

equates the local time derivative with the curl of the cross product of velocity 

and magnetic field: ( )=
t
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V B  (hydromagnetic theorem), implying the 

invariance of magnetic flux through a surface transported with the plasma 

flow. The authors are asked to explain in which sense their notion of 



stationarity differs from the canonical interpretation (frozen-in magnetic flux) 

in space plasma physics. 

 

Reply： 

Thanks to the referee, who raised an interesting question we had not expected. 

For the ideal MHD fields, the following magnetic convection equation is valid 
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Where u


 is the bulk velocity of the MHD plasmas. 

As presented in the text of manuscript, another relationship as below is valid: 
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Where v


 is the apparent velocity of the magnetic structure. 

u


 and v


 are possibly the same. However, for some situations, u


and v


 are 

different. For example, when we observe the shock wave front at the shock frame, we 

see that the shock is at rest with zero apparent velocity, while the upstream and 

downstream plasmas are moving at their bulk velocities.  

For some cases, it is possible that vu


= , e.g., in magnetic clouds. We may check 

this kind of situation when vu


= . Combining the two Eqs. (2) and (3) reducing to 
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 (4) 

which limits the fluid velocity. 

Furthermore, if the MHD plasma is incompressible, then 

   0= v


 (5) 

so that, 



 0)( = vB


 (6) 

which means the velocity of the plasma is constant along the magnetic field lines. 

The only situation we could expect to satisfy both Eqs. (5) and (6) is 

 antv const=


 (7) 

everywhere. This implies that the MHD fluids are in an equilibrium state. Therefore, 

it is most likely that u


 cannot be equal to v


 globally except that the MHD plasmas 

are at equilibrium. 

It can be emphasized that the Eq. (3) is valid for various space plasmas, not 

limited to MHD plasma. The constraints to the Eq. (3) are that the plasmas are highly 

conductive and have a very low velocity ( 1/ cv , where c is the speed of light in 

vacuum), and the physical processes are slowly evolving at low frequencies. 

 

Discretisation errors: 

 

As pointed out by the authors in lines 223-227, the separation of spacecraft in 

the array introduces up to three different spatial discretisation scales. It 

should be added that a fourth spatial scale comes into play through the finite 

difference representation of local time derivatives, namely, the product of the 

intrinsic time scale (time resolution) with the velocity of the magnetic 

structure in the spacecraft frame. 

Reply： 

Commonly the separation of the spacecraft in one constellation is several 100km 

to several 1000km. For the time dimension, the time resolution of the magnetic 

measurement t  is about 0.01 sec, i.e. sec01.0=t .Considering that the magnetic 

structure is moving at a velocity V<500 km/s, the spatial resolution along the motion 

direction is about kmtv 5 ,which is much less than the S/C seperation. Therefore, 

it can be excepted that the error brought will be much less. 

 



Iteration errors: 

 

When in Section 3 the convergence properties of the iterative method are 

discussed, a particular type of error considered there is the mismatch of the 

actual limit of the procedure and the approximation reached after a finite 

number of iterations. This error may be termed iteration error. It is not 

associated with the finite resolution of the spacecraft array or the time series 

and thus needs to be considered separately. 

Reply： 

In this research, we have used an iteration procedure to solve the problem. The 

transformation relationship (3) is used as the constraints. It is noted that both the two 

Eqs. in the formula (3) in the text are nonlinear with a 2nd-order term on the left-hand 

side. However, the iteration procedures have made the problem a linear one. This will 

help reduce the calculation error and make the calculation more stable. Nevertheless, 

it is not easy to get the formula of the error of the iterations. In this study, we have 

performed two tests on the typical magnetic fields to illustrate the feasibility of this 

method and check the errors. The detailed evaluation on the iteration accuracy of this 

algorithm can be made in the future when the real mission data are available. 

 

 

Random errors: 

 

Due to imperfect (noisy) input data (measurement inaccuracies), the 

estimated parameters (first and second derivatives) will be subject to random 

errors, in addition to the discretisation errors and iteration errors mentioned 



above. In the current version of the manuscript, with demonstrations using 

noise-free model magnetic fields only, neither random errors are considered, 

nor the stability of the estimation (inversion) procedure (parameter 

reconstruction from noisy input data) which is likely to be associated with the 

set of different spatial discretisation scales. Since the inverse problem is 

weakly nonlinear, a condition number could be constructed for the linearised 

problem in the iterative procedure, or Monte Carlo simulations could be 

utilised to assess the impact of random errors. If such an approach is 

considered beyond the scope of this paper, the authors should at least 

critically discuss the implications of random errors, and outline the directions 

for future work. 

Reply： 

The noise or disturbances in the data can come from the measurement error, but 

they could mainly be caused by the plasma waves. This can make the calculation of 

the high order magnetic gradients very difficult (see Shen et al. 2021). In analyzing 

the actual observation data, we could use filtering methods to delete the high 

frequency components so as to smooth the raw data and avoid the negative effect of 

the data disturbance. 

 

Magnetic field divergence: 

 

To quantitatively assess the limitations of this high-dimensional 

reconstruction problem with 33 model parameters, it is not sufficient to 

consider only a scalar quantity such as an estimate of the divergence of the 



magnetic field. Furthermore, in its original form, the divergence is normalised 

by the curl of the magnetic field (lines 201-203), while the latter quantity is 

zero for one of the two test cases (dipole field) in Section 3. To see if a 

dimensionless version of the divergence differs significantly from zero, 

meaningful reference values need to be chosen. 

Reply： 

1. In this approach, the magnetic Gaussian Low ( 0B =  along with 

( ) 0B  = ) has been used as the measures of the errors of the first order and 

second order magnetic gradients for the actual data analysis. Really it is not 

perfect because it can not include partial components of the magnetic gradients 

( the formula 0B =  contains 3 of the total 9 components of B  while 

( ) 0B  =  contains 9 of the total 18 components of B ). The advantage to 

use them as the measures of the errors of the magnetic gradients is that they are 

very reliable and also simple. We still have not found other better ways for 

evaluating the accuracy of the algorithm because the actual values of the magnetic 

gradients are unknown for comparation when analyzing the real observation data. 

So that it is a feasible and practical way for calculating the errors of the magnetic 

gradients. 

2. It is true that the method for calculating the error in Curlometer method is invalid 

when there is no electric current. Here we use the normalized forms to avoid this 

problem. 

3. It is sure that the characteristic magnetic field and spatial scale of the structures 

must be properly chosen during the actual data analyses thus the errors resulted 

can represent the accuracy of the calculations.   

 

Terminology: 

 

It is very unusual to refer to the tensor of second partial derivatives as the 



"quadratic gradient". It is strongly recommended to adjust the terminology. 

Canonical options are: "Hessian" or "Hessian matrix" (2nd derivatives of a 

scalar field) or "Hessian tensor". 

Reply： 

We are also very concerned of the names of the second partial derivatives. Hessian 

tensor is a possible name for it, but too unfamiliar to the average readers. Liu et al. 

(2019) have used the second order gradient for it, which are somewhat too long if 

frequently used. Torbert et al. (2020) have used quadratic coefficient for it. In the 

1998 data analysis book, Chanteur (the first to stress this question) has used the term 

quadratic for it. Therefore, we think that the cautious and proper way may be calling it 

quadratic gradient, and giving a note of Hessian tensor for it at the beginning (in the 

Introduction section). It is noted that the second order magnetic gradient is composed 

of 18 components, while Hessian tensor contains 6 components because it commonly 

means the second partial derivatives of a scalar. 

 

Specific comments 

Abstract and Key Points: 

 

- The statements 

"The tests for the situations of magnetic flux ropes and dipole magnetic field 

have verifies the validity and accuracy of this approach." 

and  

"Magnetic flux ropes and dipole magnetic field testing verifies the validity and 

accuracy of the approach." 

are too strong (and also difficult to understand in the first place). A proof of 



concept is presented, but a complete assessment of the accuracy would 

require studying all error types and the stability of the model inversion 

procedure. 

Reply： 

As the referee pointed out, not all error types have been considered. This manuscript only 

evaluates the truncation errors. It is the limitation of our study. The strong statements 

have been modified accordingly.  

The first reviewer also raised the problem on the measurement errors, please refer to the 

reply to the referee #1. 

Theoretical evaluating on iteration stability is a tough work, which cannot be solved 

completely in a short time. In this initial study, we are concentrated on the feasibility of 

the algorithm. Nevertheless, two tests made in this research have confirmed the reliability 

of the method because the iterations for both tests can arrive at convergence and the total 

errors are rather small.  

 

 introduction: 

 

- Line 54: The statement "To obtain high-order gradients in the magnetic 

field ..." is ambiguous as it could also refer to different orders of accuracy in 

discrete representations of the gradient. Instead, one could write "To 

estimate second derivatives of the magnetic field ..." 

Reply： 

The correction has been made accordingly. 

 

 



Method: 

- Line 81: The statement "Calculation of the linear and quadratic gradients of 

a magnetic field generally requires magnetic measurements from at least ten 

spacecraft" should be made precise and briefly explained (3+9+18=30 

parameters in the Taylor expansion up to second order, 3N magnetic field 

measurements in an array with N spacecraft). 

Reply： 

The problem of balancing the number of unknowns versus the number of available 

observations is briefly explained in section 2.1.2 of the manuscript. A brief 

explanation has been also inserted in the referee mentioned place. 

 

 

 

- Lines 105/106: The statement "The errors in formula (3) are on the order 

V/c." is unclear. What kind of errors? Meaning of the variable c? Non-

relativistic limit? 

Reply：The errors mean the truncation errors of the formula (3) compared with the 

accurate one. Here V is the apparent speed of the magnetic structure and c is the speed 

of light in vacuum, which are explained in the text now. In the non-relativistic limit 

(V/c<<1, it is generally valid in space plasmas) we can derive the simple formula (3). 

The accurate formula is complicated for the analysis. An explanation on this issue is 

in the talk of the first author in the EGU meeting this year and the ppt is attached for 

the reference. 

 

- Line 114: first-order or zero-order? 

Reply： 



As referee pointed out, it should be zero-order. The correction has been made 

accordingly. 

 

 

 

- Line 121: In the statement "The iterations are performed repeatedly until 

satisfactory results are achieved.", quantify what is meant by "satisfactory 

results" (which error measure/threshold). 

Reply： 

As Figure 4 and 8 in the manuscript shown, the lines become flat with increasing 

number of iterations, which means that the iterative results are convergent. In the 

tests, the number of iterations is set to 100, and the results with 100 iterations are 

regarded as "satisfactory results". The sentence has been modified as “The iterations 

are performed repeatedly until results are converge, which means satisfactory results 

are achieved.” 

 

 

 

 

- Line 142: In the statement "The temporal variation rate ... is readily obtained 

using time-series magnetic observation.", explain how the temporal variation 

rate is approximated (finite differencing? time resolution?). 

Reply： 



In the test, central difference has been used. And the first value of series data has been 

obtained by first order forward difference, and the last value has been obtained by 

first order backward difference. Explanation has been made after the sentence 

accordingly. 

For actual magnetic observations, the time resolution is very high (~0.01sec), there 

are plenty of time series data, so it is not difficult to get the time derivative of 

magnetic field even in high orders.  

 

 

Comparison of new method with analytical modelling: 

 

- General comment: With spacecraft separations on the order 0.01 RE, and 

model magnetic fields varying on spatial scales on the order RE, the magnetic 

configurations vary only gradually on the spacecraft array scale, so these are 

not particularly challenging tests of the proposed method. In geospace, 

magnetic field structures can vary on much smaller scales. Furthermore, the 

model magnetic field configurations are simplified and highly symmetrical 

structures with a very small number of parameters so that only a minor 

subset of the 33 degrees of freedom can be assessed. The specifics and the 

limitations of the chosen test cases should thus be critically discussed. 

Reply： 

The linear gradient of the magnetic field has 9 components, while the quadratic 

gradients comprise 18 independent components due to the symmetry of quadratic 

gradients. For the flux rope case, only 3 components of linear gradient and 5 

components of quadratic gradients have been assessed. But for dipole field case, 4 

components of linear gradient and 10 components of quadratic gradients have been 

assessed. The number of assessed parameters has reached half. We have chosen so 



symmetrical model magnetic field in order to easily compare the simulation results 

with the accurate analytic calculations. Nevertheless, these are still somewhat 

complete tests because the zero components of the magnetic gradients are calculated 

with the algorithm as well and checked. Accordingly, further evaluations on the 

algorithm could be made with the modeled magnetosphere with less symmetry in the 

future. 

 

- Lines 226/227: With the given value of the first eigenvalue 2

1 0.1643 Ew R= , 

the characteristic size L should be 12 0.8106 EL w R= = . 

Reply： 

In the manuscript, the value of characteristic size L is correct, but wrong values of the 

eigenvalues are given. 
3 2

1 0.1643 10 Ew R−=  , 
3 2

2 0.1104 10 Ew R−=  , and 

3 2

3 0.0341 10 Ew R−=  . Corrections have been made accordingly. 

 

 

- Lines 254-258: Only total errors after a given number of iterations are 

discussed. It would be more interesting to get separate assessments of 

iteration errors and discretisation errors. 

Reply： 

It is not very easy to separate iteration errors and discretisation errors. The separate 

assessments of errors should be considered in future work. 

 

 

- Lines 277/278 and line 321: In the statement "The relative error approaches 



50%; however, the absolute error is low." it is not clear which reference is 

used (low/small compared to what?) 

Reply： 

The term “low” is compared to zero. Explanation has been made accordingly. 

“however, the absolute error is just 0.143, which is approaching zero.” 

 

 

 

Errors: 

 

- General comment: As explained above, this section is very incomplete 

regarding the various types of errors. In particular, the current version of the 

manuscript lacks a critical discussion of random errors and the stability of the 

parameter estimation (inversion) procedure. 

Reply： 

Regarding the stability of the parameter estimation (inversion) procedure, refer to the 

above response. 

Regarding the random errors: The noise or disturbances in the data can come 

from the measurement error, but they could mainly be caused by the plasma waves. 

This can make the calculation of the high order magnetic gradients very difficult (see 

Shen et al. 2021). In analyzing the actual observation data, we could use filtering 

methods to delete the high frequency components so as to smooth the raw data and 

avoid the negative effect of the data disturbance at utmost. 

 



 

- Figures 12 and 13: It may be worth mentioning that the errors of the first 

derivative decrease quadratically with the scale L (second-order accuracy with 

regard to discretisation errors) whereas the errors of the second derivatives 

decrease linearly with L (first-order accuracy with regard to discretisation 

errors). 

Reply：

 



 

The above two figures show the trend of dimensionless divergence and gradient of 

divergence with characteristic size L for dipole field and flux rope case, respectively. 

As referee’s suggestion, the errors of the first derivative decrease quadratically with 

the scale L whereas the errors of the second derivatives decrease linearly with L. This 

conclusion has been added in the manuscript accordingly. 

 

Conclusions: 

 

- General comment: In line with the previous comments, this section should 

be rewritten to reflect the actual limitations of this study and the method, 

and explain where further work is required. 

Reply： 

Thanks for the reminding! In the future, the random errors, measurement errors, 

iteration errors and discretisation errors could be evaluated in details, especially when 

the mission payloads are fixed and the real mission data are available. The statement 

has been added in Conclusions (Section 5) accordingly. 


