Methane, carbon dioxide and nitrous oxide emissions from two clear-water and two turbid-water urban ponds in Brussels (Belgium)

Thomas Bauduin 1,2, Nathalie Gypens 1, Alberto V. Borges 2

1Ecology of Aquatic Systems, Université Libre de Bruxelles, Belgium
2Chemical Oceanography Unit, University of Liège, Belgium

Abstract. Shallow ponds can exist in a clear-water state dominated by macrophytes or a turbid-water state dominated by phytoplankton, but it is unclear if these two states affect differently carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) emissions to the atmosphere. Two clear-water urban ponds (Silex and Tenreuken) dominated by macrophytes, and two turbid-water urban ponds (Leybeek and Pêcheries) dominated by phytoplankton, in the city of Brussels (Belgium), were sampled 46 times between June 2021 and December 2023 to measure the partial pressure of CO₂ (pCO₂), dissolved CH₄ concentration, N₂O saturation level (%N₂O), and ancillary variables. CH₄ ebullitive fluxes were also measured in the four ponds during 8 deployments, totally 48 days of cumulated measurements. The ¹³C/¹²C ratio of CH₄ (δ¹³C-CH₄) was measured in bubbles from the sediment and in water to decipher the pathway of sedimentary methanogenesis (acetoclastic or hydrogenotrophic) and quantify methane oxidation (MOX) in the water column. The pCO₂ and CH₄ values in the sampled urban ponds correlated with precipitation and water temperature, respectively. The %N₂O values did not correlate with dissolved inorganic nitrogen (DIN) nor other variables for the individual ponds, but a positive relation to DIN emerged from the combined data-set for the four ponds. The sampled turbid-water and clear-water ponds did not show differences in terms of diffuse emissions of CO₂ and N₂O. Clear-water ponds exhibited higher values of annual ebullitive CH₄ fluxes compared to turbid-water ponds, most probably in relation to the delivery to sediments of organic matter from macrophytes. At seasonal scale, CH₄ fluxes between the surface of the ponds and the atmosphere exhibited a temperature dependence in all four ponds, with ebullitive CH₄ fluxes having a stronger dependence to temperature than diffusive CH₄ fluxes. The temperature sensitivity of ebullitive CH₄ fluxes was different among the four ponds and decreased with increasing water depth. During summer 2023, hydrogenotrophic methanogenesis pathway seemed to dominate in clear-water ponds and acetoclastic methanogenesis pathway seemed to dominate in turbid-water ponds, as indicated by the δ¹³C-CH₄ values of bubbles sampled by physically perturbing sediments. The δ¹³C-CH₄ values of bubbles sampled during bubble trap deployments in 2021-2023 indicated a seasonal shift to hydrogenotrophic methanogenesis pathway in fall compared to spring and summer, when acetoclastic methanogenesis pathway seemed to dominate. The δ¹³C-CH₄ of dissolved CH₄ indicated higher rates of MOX in turbid-water ponds compared to clear-water ponds, with an overall positive correlation with total suspended matter (TSM) and Chlorophyll-a (Chl-a) concentrations. The presence of suspended particles putatively enhanced MOX by reducing light inhibition of MOX and/or by serving as substrate for fixed methanotrophic bacteria in the water column. Total CH₄ emissions in CO₂ equivalents either equalized or exceeded those of CO₂ in most ponds, while N₂O emissions were negligible compared to the other two greenhouse gases (GHGs). Total annual GHG emissions in CO₂ equivalents from all four ponds increased from 2022 to 2023 due to higher CO₂ diffusive fluxes, likely driven by higher annual precipitation in 2023 compared to 2022, possibly in response to the intense El Niño event of 2023.
Emissions to the atmosphere from inland waters (rivers, lakes, and reservoirs) of greenhouse gases (GHGs) such as carbon dioxide (CO$_2$), methane (CH$_4$) and nitrous oxide (N$_2$O) are quantitatively important for global budgets (Lauerwald et al., 2023). Emissions from lakes are lower than from rivers for CO$_2$ (Raymond et al., 2013) and N$_2$O (Lauerwald et al., 2019; Maavara et al., 2019). However, emissions of CH$_4$ from lakes (Rosentreter et al., 2021; Johnson et al., 2022) are significant compared to rivers (Stanley et al., 2016; Roche-Ros et al., 2023). The contribution of CO$_2$ and CH$_4$ emissions from small water bodies (ponds) could be disproportionately high compared to large systems (Holgerston and Raymond, 2016) as shallow lakes are the most abundant of all lake types in number (Verpoorter et al., 2014, Cael et al., 2017). The emissions of GHGs from artificial ponds (agricultural reservoirs, urban ponds, storm-water retention basins, …) could be higher than those from natural systems (Martinez-Cruz et al., 2017; Grinham et al., 2018; Herrero Ortega et al., 2019; Gorsky et al., 2019; Ollivier et al., 2019; Peacock et al., 2019, 2021; Webb et al., 2019; Bauduin et al., 2024). This seems to result from higher external inputs of anthropogenic carbon and nitrogen in artificial systems but might also reflect other differences compared to natural systems such as in hydrology (Clifford and Heffernan, 2018). Among artificial systems, urban ponds have been seldom investigated for GHG emissions (Singh et al., 2000; Natchimuthu et al., 2014; van Bergen et al., 2019; Audet et al., 2020; Peacock et al., 2021; Bauduin et al., 2024). Urban areas have many small artificial water bodies mostly associated to green spaces such as public parks, and their number is increasing due to rapid urbanisation worldwide (Brans et al., 2018; Audet et al., 2020). Urban ponds are generally small, shallow, and surrounded by impervious surfaces (Davidson et al., 2015; Peacock et al., 2021). Runoff results in high inputs of organic matter and dissolved inorganic nitrogen (DIN) that sustain production and emission of CO$_2$, CH$_4$, and N$_2$O to the atmosphere.

In shallow ponds and lakes, including urban ponds, submerged aquatic primary production is either dominated by submerged macrophytes or by phytoplankton, corresponding to two alternate states (Scheffer et al., 1993). These two alternative states correspond to clear waters or turbid waters, during the productive periods of year (summer in mid-latitudes). The presence of macrophytes strongly affects CH$_4$ cycling in freshwaters (Bastviken et al., 2023) and vegetated littoral zones of lakes exhibit higher CH$_4$ emissions than non-vegetated (Desrosiers et al., 2022; Theus et al., 2023). Macrophytes influence sediment and organic matter decomposition processes depending on the quality and quantity of plant matter they release into their environment (Reitsema et al., 2018; Harpenslager et al., 2022; Theus et al., 2023). Yet, few studies have consistently compared CH$_4$ emissions in clear-water and turbid-water ponds (Hilt et al., 2017). A study in Argentina reported higher dissolved CH$_4$ concentrations in natural clear-water ponds with submerged macrophytes compared to turbid-water phytoplankton dominated ponds, but no differences in measured CH$_4$ emissions (Baliña et al., 2023). The presence of macrophytes also strongly influences nitrogen cycling in sediments of lakes and ponds (Barko et al., 1991; Choudhury et al., 2018; Deng et al., 2020; Dan et al., 2021) and should in theory also affect N$_2$O emissions, although seldom investigated, and available studies provide contradictory conclusions. Ni et al. (2022) showed that N$_2$O emissions followed diurnal cycles, peaking in the middle of the day when O$_2$ concentrations were maximal in areas dominated by submerged macrophytes in Lake Wuliangsuhai (China). Yang et al. (2012) showed that N$_2$O emissions followed the seasonal cycle of aboveground biomass of emerged macrophytes (Phragmites) in Baiyangdian Lake (China). On the contrary, some studies showed there were no significant differences of denitrification and N$_2$O production in sediments of macrophyte-rich (n=10) and macrophyte-free (n=12) lakes in subtropical China (Liu et al., 2018). The emissions from aquatic systems of CO$_2$ and N$_2$O are exclusively through diffusion across the air-water interface (diffusive flux), while CH$_4$ can be additionally emitted as bubbles released from sediments to the atmosphere (ebullitive flux). The ebullitive CH$_4$ flux usually represents more than half of total (diffusive+ebullitive) CH$_4$ emissions from shallow lakes (Wik et
al., 2013; Deemer and Holgerson, 2021). Ebullitive CH$_4$ fluxes are particularly high in the littoral zone of lakes at depths <5 m (Wik et al., 2013; DelSontro et al., 2016; Borges et al., 2022) and strongly increase in response to temperature (DelSontro et al., 2016; Aben et al., 2017), as well as organic matter availability (DelSontro et al., 2016; 2018). Ebullitive CH$_4$ fluxes tend to be higher in small and shallow water bodies (Deemer and Holgerson, 2021) but are notoriously variable in time and are difficult to estimate reliably (DelSontro et al., 2011).

Here, we report a dataset of CO$_2$, CH$_4$, and N$_2$O dynamics in four shallow and small urban ponds (Leybeek, Pêcheries, Silex, and Tenreuken) in the city of Brussels (Belgium) (Fig. 1). Data were collected 46 times on each pond between June 2021 and December 2023 at a frequency ranging from one (winter) to three (summer) times per month at a single fixed station in each of the four ponds. The air-water diffusive fluxes of CO$_2$, CH$_4$, and N$_2$O were calculated from dissolved concentrations and the gas transfer velocity and the ebullitive CH$_4$ fluxes were measured with inverted funnels during 8 deployments (totalling 48 days) in the four ponds. The 13C/12C ratio of CH$_4$ (δ^{13}C-CH$_4$) in the sedimentary bubbles and in the water provides additional information on CH$_4$ dynamics such as the methanogenesis pathway (acetoclastic or hydrogenotrophic) and methane oxidation (MOX).

Figure 1: Location of the four sampled ponds in Brussels (Belgium, Europe). Bottom left map shows the metropolitan area of the region of Brussels delineated by the black line and surrounding region of Flanders in Belgium, showing land cover and sampled urban ponds (black diamonds). The star corresponds to the center of the city (50.8504°N, 4.3487°E). Additional information for each pond is indicated on right panels: shapes of the ponds, surface area (ha), perimeter (m), average depth (m), mean±standard deviation of summer chlorophyll-a (Chl-a, in µg L$^{-1}$) and summer total suspended matter (TSM, in mg L$^{-1}$) of periods from 21 June 21 to September 21 in 2021, 2022, 2023, and summer total macrophyte cover (MC, in %) (Table S1).
2. Material and Methods

2.1. Field sampling and meteorological data

Sampling was done from a pontoon, with 60ml polypropylene syringes for gases (CO₂, CH₄, N₂O) and a 2L polyethylene container for processing at the home laboratory for other variables. Water temperature, specific conductivity, and %O₂ were measured in-situ with VWR MU 6100H probe. pCO₂ was measured with a Li-Cor Li-840 infrared gas analyser (IRGA) based on the headspace technique with 4 polypropylene syringes (Borges et al., 2019). The Li-Cor 840 IRGA was calibrated before and after each cruise with ultrapure N₂ and a suite of gas standards (Air Liquide Belgium) with CO₂ mixing ratios of 388, 813, 3788 and 8300 ppm. The overall precision of pCO₂ measurements was ±2.0%. Samples for CH₄ and N₂O were transferred from the syringes with a silicone tube in 60 ml borosilicate serum bottles (Weathon), poisoned with 200 µl of a saturated solution of HgCl₂ and sealed with a butyl stopper and crimped with aluminium cap, without a headspace.

Surveys to identify and quantify visually the relative coverage of emerged and submerged macrophytes were conducted in summer 2023 (Table S1). This list of species of macrophytes agreed with past studies in Brussels ponds (Peretyatko et al., 2009).

Three bubble traps were deployed at 50 cm apart for measuring ebullitive CH₄ flux. The bubble traps consistent in inverted polypropylene funnels (diameter 23.5cm) mounted with 60ml polypropylene syringes and attached with steel rods to a polystyrene float. The volume of gas collected in the funnels was measured every 24 hours with 60ml syringes. The collected gas was stored in pre-evacuated 12 ml vials (Exetainers, Labco, UK) for the analysis of CH₄ concentration and δ¹³C-CH₄. The measurement series were lengthier at the Silex pond than the other three ponds, because the Silex pond is closed to the public during the week, while the other three ponds are open to the public all the time.

In summer 2023, the bubbles present in the sediment were directly sampled with bubble traps by physically perturbing the sediment with a wooden rod. These samples are referred hereafter to as “perturbed sediments.” The samples collected in the bubble traps during the ebullition measurements are referred to as from “trapped bubbles.”

Air temperature, precipitation, wind speed, and atmospheric pressure, were retrieved from https://www.meteo.be/en for the meteorological station of the Royal Meteorological Institute of St-Lambert (50.8408°N, 4.4234°E) in Brussels, located between 2.5 and 5 kilometers from the surveyed ponds. Air temperature, wind speed and atmospheric pressure were averaged over 24 h to obtain a daily mean value. Precipitation was integrated each day to obtain daily rainfall.

2.2. Laboratory analysis

2.2.1. CH₄ and N₂O measurements by gas chromatography and δ¹³C-CH₄ by cavity ring-down spectrometry

Measurements of N₂O and CH₄ concentrations dissolved in water and in the gas samples from bubbles were made with the headspace technique (20ml of ultra-pure N₂, Air Liquid Belgium, Weiss, 1981) and a gas chromatograph (GC) (SRI 8610C) with a flame ionisation detector for CH₄ (with a methanizer for CO₂) and electron capture detector for N₂O calibrated with CO₂;CH₄;N₂O:N₂ gas mixtures (Air Liquide Belgium) with mixing ratios of 1, 10 and 30 ppm for CH₄, 404, 1018, 3961 ppm for CO₂, and 0.2, 2.0 and 6.0 ppm for N₂O. The precision of measurement based on duplicate samples was ±3.9% for CH₄ and ±3.2% for N₂O.

The CO₂ concentration is expressed as partial pressure in parts per million (ppm) and CH₄ as dissolved concentration (nmol L⁻¹), in accordance with convention in existing topical literature, and because both quantities were systematically and distinctly
above saturation level (400 ppm and 2-3 nmol L$^{-1}$, respectively). Variations of N$_2$O were modest and concentrations fluctuated around atmospheric equilibrium, so data are presented as percent of saturation level (\%N$_2$O, where atmospheric equilibrium corresponds to 100\%).

The δ^{13}C-CH$_4$ was measured in gas of the headspace (20ml of synthetic air, Air Liquid Belgium) equilibrated with the water sample (total volume 60ml) for water samples and directly on gas stored in Exetainers for gas samples from the bubble traps. The gas samples were diluted to obtain a final partial pressure of CH$_4$ in the cavity below 10 ppm to fall within the recommended operational concentration range of the instrument, prior to injection into a cavity ring-down spectrometer (G2201-I, Isotopic Analyzer, Picarro) with a Small Sample Introduction Module 2 (SSIM, Picarro). Data were corrected with curves of δ^{13}C-CH$_4$ as a function of concentration based on two gas standards from Airgas Specialty Gases with certified δ^{13}C-CH$_4$ values of -23.9±0.3 \% and -69.0±0.3 \%.

2.2.2. Chlorophyll-a, total suspended matter, and dissolved inorganic nutrients.

Water was filtered through Whatman GF/F glass microfiber filters (porosity 0.7 \(\mu\)m) with a diameter of 47 mm for total suspended matter (TSM) and Chlorophyll-a (Chl-a). Filters for TSM were dried in the oven at 50$^\circ$C and filters for Chl-a were kept frozen (-20$^\circ$C). The weight of each filter was determined before and after filtration of a known volume of water using an Explorer™ Pro EP214C analytical microbalance (accuracy: ±0.1mg) for determination of TSM. Filtered water was stored in 50 ml plastic bottles and frozen (-20$^\circ$C) for analysis of dissolved nutrients. Chl-a was measured on extracts with 90\% acetone by fluorimetry (Kontron model SFM 25) (Yentsch and Menzel, 1963) with a limit of detection of 0.01 \(\mu\)g L$^{-1}$. Ammonium (NH$_4^+$) was determined by the nitroprusside-hypochlorite-phenol staining method (Grasshoff and Kre, 1972), with a limit of detection of 0.05 \(\mu\)mol L$^{-1}$. Nitrite (NO$_2^-$) and nitrate (NO$_3^-$) were determined before and after reduction of NO$_2^-$ to NO$_2^-$ by a cadmium-copper column, using the Griess acid reagent staining method (Grasshoff and Kremling, 2009), with a detection limit of 0.01 and 0.1 \(\mu\)mol L$^{-1}$, respectively. Soluble reactive phosphorus (SRP) was determined by the ammonium molybdate, ascorbic acid and potassium antimony tartrate staining method (Koroleff, 1983), with a limit of detection of 0.1 \(\mu\)mol L$^{-1}$. Concentration of dissolved inorganic nitrogen (DIN) was calculated as the sum NH$_4^+$, NO$_2^-$ and NO$_3^-$ concentrations.
CH₄ and N₂O emissions were converted into CO₂ equivalents (CO₂-eq) considering a 100-year timeframe, using global warming potential (GWP) of 32 and 298 for CH₄ and N₂O, respectively (Myrhe et al., 2013).

2.3.2. Ebullitive flux

Bubble flux (ml m⁻² d⁻¹) measured with the inverted funnels was calculated according to Eq. (2):

\[F_{bubble} = \frac{V_g}{A \Delta t} , \]

(2)

where \(V_g \) is the volume of gas collected in the funnels (ml), \(A \) is the cross-sectional area of the funnel (m²), \(\Delta t \) is the collection time (d).

A multiple linear model of \(F_{bubble} \) dependent on water temperature and drops of atmospheric pressure (\(\Delta p \)) was fitted to the data according to Eq. (3):

\[\log_{10}(F_{bubble}) = \alpha \times T_w + \beta \times \Delta p . \]

(3)

where \(\alpha \) and \(\beta \) are the slope coefficients of the multiple linear regression model, and \(\Delta p \) quantifies the drops in atmospheric pressure, calculated according to Zhao et al. (2017) in Eq. (4):

\[\Delta p = -\frac{1}{\Delta t} \int_{t_0}^{t} p - p_0 ; \quad \forall \ p < p_0 . \]

(4)

where \(p \) is the atmospheric pressure, \(p_0 \) a threshold pressure fixed at 1atm and \(\Delta t \) the time interval between two measurements (Fig. S1).

Ebullitive CH₄ fluxes (mmol m⁻² d⁻¹) were calculated according to Eq. (5):

\[E_{CH_4} = [CH_4] \times F_{bubble} . \]

(5)

where \([CH_4]\) is the CH₄ concentration in bubbles (mmol ml⁻¹).

The methane ebullition \(Q_{10} \) represents the proportional change in the ebullitive CH₄ flux per 10°C alteration in water temperature (DelSontro et al., 2016) and was computed according to Eq. (6):

\[Q_{10} = 10^{10b} . \]

(6)

where \(b \) is the slope of the linear regression between the logarithm of the ebullitive CH₄ flux (\(E_{CH_4} \)) and the water temperature \((T_w) \) and \(c \) is the y-intercept, according to Eq. (7):

\[\log_{10}(E_{CH_4}) = b \times T_w + c . \]

(7)

The flux of CH₄ from dissolution of rising bubbles was computed using the model of McGinnis et al. (2006) implemented in the SiBu-GUI graphical user interface (Greinert and McGinnis, 2009).

2.3.3. Methane oxidation

The fraction of CH₄ removed (FOX) was calculated with a closed-system Rayleigh fractionation model (Liptay et al., 1998) according to Eq. (8):
\ln(1 - \text{FOX}) = \frac{\ln(\delta^{13}\text{C}-\text{CH}_4_{\text{initial}} + 1000) - \ln(\delta^{13}\text{C}-\text{CH}_4 + 1000)}{\alpha - 1}, \quad (8)

where \delta^{13}\text{C}-\text{CH}_4_{\text{initial}} is the signature of dissolved CH\text{$_4$} as produced by methanogenesis in sediments, \delta^{13}\text{C}-\text{CH}_4 is the signature of dissolved CH\text{$_4$} in-situ, and \alpha is the fractionation factor.

We used a value of 1.02 for \alpha based on laboratory culture experiments carried out at 26°C (Coleman et al., 1981) and field measurements in three Swedish lakes (Bastviken et al., 2002) and one tropical lake (Morana et al., 2015). The \alpha values gathered in the three Swedish lakes were independent of season and temperature according to Bastviken et al. (2002) and were very similar to those derived in a tropical lake by Morana et al. (2015).

For \delta^{13}\text{C}-\text{CH}_4_{\text{initial}}, we used a value of -69‰ for spring and summer, and -83‰ for fall based on average of measured \delta^{13}\text{C}-\text{CH}_4 in trapped bubbles (see Sect. 3.5). For winter we used a value of -76‰ corresponding to the average of the fall and spring/summer values.

MOX was indirectly determined from FOX and the \text{FO}_0 of CH\text{$_4$} (\text{FCH}$_4$) according to (Bastviken et al., 2002) in Eq. (9):

\text{MOX} = \frac{\text{FCH}_4 \times \text{FOX}}{1 - \text{FOX}}. \quad (9)

2.4. Statistical analysis

Statistical analysis and graphs production were conducted utilizing GraphPad Prism v10. Prior to analysis, data underwent log-transformation to ensure normality, with Shapiro tests conducted to assess distribution normality. Ordinary one-way ANOVA and Pearson's rank correlation were employed to examine differences and correlations among variables. The regressions depicted in the graphs are characterized as linear, exponential, or quadratic, and are explicitly identified when utilized.

3. Results and discussion

3.1. Seasonal variations of meteorological conditions and GHG concentrations

During the sampling period, from June 2021 to December 2023, water temperature in the surface of the four sampled ponds (Leybeek, Pécherries, Silex, and Tenreuken; Fig. 1) tracked closely the air temperature that ranged between -1.5 and 30°C following the typical seasonal cycle at mid-latitudes in the Northern Hemisphere (Fig. S2). Years 2022 and 2023 were about 1°C warmer than the average for the period 1991-2020, while year 2021 was closer to the long-term average (Fig. 2). Year 2022 was warmer and drier than 2021 and 2023 (Fig. 2), with positive temperature anomalies observed evenly throughout the year (9 months out of 12) and negative precipitation anomalies in summer, fall and early winter (Fig. S2). Conversely, year 2021 showed warmer and drier months in June and September, colder and wetter months in July and August, and was overall wetter and colder than 2022 (Fig. 2). Year 2023 was marked by both positive temperature and precipitation anomalies (Fig. S2), resulting in a wetter and warmer year than normal compared to 2021 and 2022. (Fig. 2). Daily wind speed was generally low (<1 m s$^{-1}$) except for a windier period in spring 2022 (up to 5.8 m s$^{-1}$) and in fall 2023 (up to 9.7 m s$^{-1}$).
Figure 2: Temperature anomaly (difference between the average annual temperature and the normal annual temperature for the reference period, in °C) plotted against precipitation anomaly (ratio between annual precipitation and normal annual precipitation for the reference period, in %) from 2003 to 2023 for the reference period 1991-2020 in the city of Brussels (11°C and 837mm). Each hexagon represents values for years from 2003 to 2023 and filled hexagons are sampling years from this study (2021, 2022 and 2023).

Linear regression for years 2003-2020 shown as black solid line (Table S5). Note the anomalous rainy year in 2023 relative to the pattern as function of temperature for the other years, possibly in response to the strong El Niño event of 2023 (Chen et al., 2024).

The four sampled ponds were in the periphery of the city of Brussels, with Silex pond bordered by the Sonian Forest (Fig. 1). The four ponds are relatively small (0.7-3.2 ha) and shallow (0.6-1.4 m) and have not been drained or dredged since at least 2018 (Table S2). The Leybeek and Pêcheries ponds had turbid-water with high summer Chl-a (78.8±49.5 and 19.1±13.7 µg L⁻¹, respectively) and high summer TSM (48.7±36.2 and 13.7±10.7 mg L⁻¹, respectively) concentration values, and undetectable submerged macrophyte cover in summer (Fig. 1, Table S1). Values of Chl-a and TSM concentrations were generally higher in the Leybeek pond compared to Pêcheries pond (Fig. 3). The Tenreuken and Silex ponds had clear-waters with low summer Chl-a (3.3±2.4 and 1.0±1.2 µg L⁻¹, respectively) and TSM (4.9±3.2 and 4.0±3.2 mg L⁻¹, respectively) concentration values, and a high total macrophyte cover during summer (68 and 100%, respectively). The low summer-time values of Chl-a and TSM concentrations in the Silex and Tenreuken ponds are probably related to competition for inorganic nutrients from macrophytes, with Silex pond showing lower Chl-a, lower TSM concentrations and higher summer total macrophyte cover compared to Tenreuken pond (Fig. 1).
Figure 3: Seasonal variations of Chlorophyll-a (Chl-a, in µg L⁻¹); total suspended matter (TSM, in mg L⁻¹); oxygen saturation (%O₂, in %); partial pressure of CO₂ (pCO₂ in ppm); dissolved CH₄ concentration (CH₄ in nmol L⁻¹), and N₂O saturation level (%N₂O in %) in four urban ponds (Leybeek, Pécheries, Tenreuken, and Silex) in the city of Brussels (Belgium) from June 2021 to December 2023. Box plots show median (horizontal line), mean (cross), and 25–75% percentiles (box limits). Whiskers extend from minimum to maximum values. White and grey bands in the graphs on the right correspond to the autumn/winter and spring/summer periods, respectively, and dotted vertical bars represent the first days of each season. ANOVA results of the multiple comparison between boxplots are summarized in Table S6.
The %O₂ values ranged from 11 to 191% (Fig. 3). The highest %O₂ values in the four ponds were observed in spring and summer compared to fall and winter owing to aquatic primary production. In summer, the highest average %O₂ was observed in the Leybeek pond that was characterized by the highest phytoplankton biomass as indicated by the Chl-a concentration. The lowest average %O₂ was observed in fall in the Pêcheries pond.

The pCO₂ values ranged from 40 to 13,804 ppm (Fig. 3). Minimal values of pCO₂ were generally observed in spring and summer probably due to intense uptake of CO₂ by primary production from either phytoplankton or submerged macrophytes. Maximal pCO₂ were observed in fall probably due to release of CO₂ from degradation of organic matter due to senescence of phytoplankton or macrophytes (Fig. 3). A general control of pCO₂ by biological activity (primary production and respiration) was confirmed by the strong negative correlation with %O₂ observed in all four ponds, as well as a positive correlation with DIN observed in three ponds, and a positive correlation with SRP was observed in two ponds (Table S3). A negative correlation between pCO₂ and Chl-a was only observed in the turbid Leybeek pond, which showed the highest average Chl-a concentration, and no correlation was found in clear-water ponds, where aquatic primary production was presumably mainly related to submerged macrophytes (Table S3). In all four ponds, pCO₂ strongly correlated to precipitation suggesting a control of external inputs of carbon either as organic carbon sustaining internal degradation of organic matter or as soil CO₂ (Marotta et al., 2011).

The CH₄ dissolved concentrations ranged from 194 to 48,380 nmol L⁻¹ (Fig. 3). The dissolved CH₄ concentration was generally higher in spring and summer than fall and winter. Dissolved CH₄ concentration was positively correlated to water temperature in all four ponds (Table S3), most probably reflecting the increase of sedimentary methanogenesis with temperature (Schulz and Conrad, 1996). In individual ponds, dissolved CH₄ concentration was sometimes negatively correlated to precipitation, SRP, DIN, TSM, or Chl-a concentrations probably indirectly reflecting the seasonal variations of these variables that were minimal in summer when CH₄ was maximal presumably mainly in response to temperature increase (Table S3). A negative correlation between CH₄ and Chl-a was observed in the Silex pond, and a negative correlation between CH₄ and TSM was observed in the Tenreuken pond. Both are clear-water ponds where Chl-a or TSM concentrations were particularly low in summer (Fig. 3).

The correlations between pCO₂ and precipitation and between dissolved CH₄ concentration and temperature observed in all the four ponds individually were also observed when pooling together the data for all four ponds (“all” in Table S3). This suggested that in the four sampled ponds the effect of precipitation on pCO₂ and of temperature on dissolved CH₄ concentration outweighed other potential effects that could have arisen from differences in surface area, depth, or dominance of type of primary producers (phytoplankton or macrophyte) in explaining seasonal variations.

The %N₂O values ranged from 32 to 826% (Fig. 3). The %N₂O values did not show clear seasonal variations in any of the four sampled ponds. In individual ponds, %N₂O correlated negatively to temperature (Tenreuken) or Chl-a (Silex) or positively to SRP (Silex) and TSM (Tenreuken) concentrations. We do not have a clear explanation for these correlations (Table S3). The correlations with Chl-a and TSM were surprisingly since they were observed in the two clear-water ponds and might indirectly reflect seasonal variations (with minimal values of these two quantities in summer). More surprisingly, %N₂O was not correlated with DIN (Table S3) nor with individual forms of DIN (NH₄⁺, NO₂⁻, NO₃⁻) in the four ponds individually. However, when all the data were pooled together, %N₂O correlated positively to DIN (Table S3), but not with individual forms of DIN (NH₄⁺, NO₂⁻, NO₃⁻). In a previous study of the variation of GHGs in 22 urban ponds in the city of Brussels sampled only once during each season, %N₂O correlated positively with DIN, NH₄⁺, NO₂⁻, and NO₃⁻. The range of variation of DIN and %N₂O across these 22 ponds (2 to 625 µmol L⁻¹ for DIN and 0 to 10,354% for %N₂O) was higher than the one observed
in present study of only four ponds (1 to 135 µmol L\(^{-1}\) for DIN and 32 to 82\%\) for \(\%N_2O\). The four ponds studied here are located at the periphery of the city and most probably receive less atmospheric nitrogen deposition than closer to the city center, as shown in our previous study by the correlation between \(\%N_2O\) and DIN in the 22 sampled ponds and atmospheric nitrogen dioxide (Bauduin et al., 2024). Atmospheric nitrogen deposition has been shown to enhance denitrification and \(N_2O\) production in lakes (McCrackin and Elser, 2010; Palacin-Lizarbe et al., 2020).

3.2. Drivers of bubble flux

The bubble flux measured with inverted funnels in the four sampled ponds in the city of Brussels ranged between 0 and 2078 ml m\(^{-2}\) d\(^{-1}\) and strongly increased with water temperature (Fig. 4). Given the shallowness of the sampled systems (<1.5 m, Fig. 1) we assume that sediments experience the same temperature as surface waters. The CH\(_4\) content of the bubbles also increased with bubble flux (Fig. 4). These patterns were most probably related to the strong dependence of methanogenesis on temperature (Schulz and Conrad, 1996). As temperature increases, the concomitant increase of methanogenesis leads to the build-up of gas bubbles in sediments that are richer in CH\(_4\), and consequently to higher bubble fluxes with a higher CH\(_4\) content.

![Figure 4: Bubbles flux (ml m\(^{-2}\) d\(^{-1}\)) as a function of water temperature (°C) and the relative CH\(_4\) content in bubbles (%CH\(_4\) in %) in four urban ponds (Leybeek, Pécheries, Tenreuken, and Silex) in the city of Brussels (Belgium). Bubbles fluxes were measured with three bubble traps in spring, summer, and fall of 2022 and 2023, totaling 8 days in the Leybeek, Pécheries, and Tenreuken ponds and 24 days in the Silex pond. Solids lines represent exponential regression fit (Table S5).](https://doi.org/10.5194/egusphere-2024-1315)

Bubbling events are known to also be triggered by a decrease of hydrostatic pressure on the sediments due to water level fluctuations or changes in atmospheric pressure. Drops in atmospheric pressure have been documented to trigger bubble fluxes from lake sediments (Tokida et al., 2007; Scandella et al., 2011; Varadharaaj and Hemond, 2012; Wik et al., 2013; Taoka et al., 2020; Zhao et al., 2021). The bubble fluxes were measured during more lengthy series at the Silex pond than the other three ponds for logistical reasons. In spring 2022, the bubble flux at the Silex pond increased during events of drops in atmospheric pressure (depressions) (Fig. 5). There was no relation between wind speed and peaks of bubble flux as shown in Gatun Lake (Keller and Stallard, 1994), suggesting a more important role of changes of atmospheric pressure than wind speed in Silex pond in spring 2022. In summer 2022, the bubble flux at the Silex pond was higher than during spring, and the temporal changes tracked those of water temperature. The bubble flux was modelled as function of temperature alone or as function of...
318 both temperature and pressure changes (Figs. 5 and S3). The inclusion of the term of pressure drops in addition to temperature
319 improved the performance of the model compared to the original data, for periods of low temperature (<15°C) but not for
320 warmer periods (>15°C) (Figs. 5 and S3) when bubbling fluxes are quantitatively more important. The inclusion of the term
321 of pressure changes only improved the performance of the model compared to the original data very marginally when
322 comparing the full temperature range (<15°C and >15°C) (Fig. S3), showing that the intensity of bubble flux was mainly
323 driven by temperature change at yearly scales.

Figure 5: Water temperature (°C), wind speed (m s\(^{-1}\)), atmospheric pressure (atm), and measured and modeled bubbles flux (ml m\(^{-2}\) d\(^{-1}\)) in the Silex pond from the 29 March 2022 to the 15 April 2022 and from the 18 July 2022 to the 23 July 2022. The bubbles flux was modelled from a fit to data based on temperature alone and from both temperature and drops in atmospheric pressure.
3.3. Drivers of methane ebullitive fluxes

Ebullitive CH$_4$ fluxes in the four ponds ranged between 0 and 59 mmol m$^{-2}$ d$^{-1}$ and were positively related to temperature (Fig. 6) as shown previously in other systems (Wik et al., 2013; DelSontro et al., 2016; Aben et al., 2017). The fitted relations between ebullitive CH$_4$ fluxes and temperature were specific to each pond and encompassed the fitted relations established in similar systems: four small ponds in Québec (DelSontro et al., 2016) and a small urban pond in the Netherlands (Aben et al., 2017). The Q$_{10}$ of CH$_4$ ebullition values ranged between 4.4 in the deeper Pêcheries pond and 26.9 in the shallower Leybeek pond, respectively. The Q$_{10}$ of CH$_4$ ebullition in the ponds of the city of Brussels, in Québec (DelSontro et al., 2016), and in the Netherlands (Aben et al., 2017) were negatively related to water depth (Fig. 6). An increase in water temperature leads to a smaller increase in CH$_4$ ebullitive fluxes (lower Q$_{10}$) in deeper ponds as the impact of hydrostatic pressure on sediments is higher in deeper ponds compared to shallow ponds, restricting bubble formation and release (DelSontro et al., 2016).

![Figure 6: Measured ebullitive CH$_4$ fluxes (mmol m$^{-2}$ d$^{-1}$) as function of water temperature (°C) in four urban ponds (Leybeek, Pêcheries, Tenreuken, and Silex) in the city of Brussels (Belgium), in spring, summer, and fall of 2022 and 2023, totaling 8 days in Leybeek, Pêcheries, and Tenreuken ponds and 24 days in Silex pond, with three bubble traps. Dashed lines represent exponential fit for the four urban ponds in the city of Brussels (Table S3) and solid lines represent exponential fit established in similar systems: four small ponds in Québec (DelSontro et al., 2016) and a small urban pond in the Netherlands (Aben et al., 2017). Each exponential curve allows to determine a Q$_{10}$ of CH$_4$ ebullition, plotted against water depth, dashed line represents exponential regression fit (Table S5).](https://doi.org/10.5194/egusphere-2024-1315)
3.4. Relative contribution of methane ebullitive and diffusive fluxes

Diffusive CH$_4$ fluxes computed from CH$_4$ concentration and k derived from wind speed ranged between 0.1 and 19.7 mmol m$^{-2}$ d$^{-1}$ (Fig. 7). The diffusive CH$_4$ fluxes tended to be higher in summer and spring than in fall and winter owing to the strong positive dependency between CH$_4$ and water temperature (Fig. 3, Table S2). In addition, wind speed only showed small seasonal variations during sampling, ranging on average between 0.6±0.6 m s$^{-1}$ in spring, 0.3±0.2 m s$^{-1}$ in summer, 0.7±0.7 m s$^{-1}$ in fall and 0.6±0.2 m s$^{-1}$ in winter (Fig. 3). Ebullitive CH$_4$ fluxes were calculated from the relations with temperature for each pond given in Figure 6 from the temperature data coincident with the diffusive CH$_4$ fluxes (Fig. 7). This allowed to compare and integrated seasonally both components of CH$_4$ emissions to the atmosphere, and to calculate the relative contribution of ebullition to total (diffusive+ebullitive) CH$_4$ emissions.

![Graph showing seasonal variations of diffusive and ebullitive CH$_4$ fluxes and ratio of ebullitive CH$_4$ flux to total (diffusive+ebullitive) CH$_4$ emissions.](https://doi.org/10.5194/egusphere-2024-1315)

The relative contribution of ebullition to total CH$_4$ emissions ranged between 1 and 99% in the four sampled ponds in the city of Brussels (Fig. 7). Owing to the strong dependency of ebullitive CH$_4$ fluxes to temperature (Fig. 6), the mean relative contribution of ebullition to total CH$_4$ emissions was highest in summer, above 75% in all ponds (Fig. 7). This is consistent with other studies showing that ebullitive CH$_4$ fluxes can account for more than half of total CH$_4$ emissions (Wik et al., 2013; Deemer and Holgerson, 2021). The relative contribution of ebullition to total CH$_4$ emissions was lowest during the other
seasons, especially in the Leybeek pond (Fig. 7). Owing to the strong dependency of ebullitive CH$_4$ fluxes to temperature, the relative contribution of ebullition to total CH$_4$ emissions was related to temperature in the four ponds (Fig. S4).

The values of Q_{10} of diffusive CH$_4$ fluxes were lower than those for ebullitive CH$_4$ fluxes, less variable (1.2 in Pêcheries to 2.9 in Silex), and less statistically significant (Table S4). Other studies have also observed higher Q_{10} for ebullitive CH$_4$ flux than for diffusion in lakes and ponds (DelSontro et al., 2016; Xun et al., 2024). The lower dependence to temperature of CH$_4$ diffusion compared to ebullition might be related to a lower relative change of CH$_4$ concentrations and k to temperature change. CH$_4$ concentrations in surface water are very strongly affected by MOX (see hereafter). A relative increase of CH$_4$ production in sediments by methanogenesis will lead to a stronger increase of CH$_4$ emission by ebullition than by diffusion because of a mitigation by MOX on CH$_4$ diffusion. Additionally, k depends on wind speed. The warmer periods of the year (summer) tended to be less windy (~0.3 m s$^{-1}$) and with lower k values than the other seasons (>0.6 m s$^{-1}$) also contributing to lower dependence of CH$_4$ diffusion compared to ebullition on temperature and lower Q_{10} values.

The annual averaged diffusive and ebullitive fluxes of CH$_4$ in the four ponds in the city of Brussels were plotted against Chl-a concentration, total macrophyte cover in summer, water depth, and lake surface area (Fig. 8) that are frequent predictors of variations of CH$_4$ fluxes among lakes (Holgerson and Raymond, 2016; DelSontro et al., 2018, Deemer and Holgerson, 2021; Casas-Ruiz et al., 2021; Borges et al., 2022). The annual diffusive and ebullitive CH$_4$ fluxes in the four studied ponds did not show a clear relation with depth and surface area (Fig. 8) that probably reflected the narrow range of variation of these variables (50 to 150 cm for water depth and 0.7 to 3.2 ha for lake surface area). Correlations between CH$_4$ fluxes and depth or lake surface area have been shown among lakes across much larger ranges of variation of lake depth (Borges et al., 2022) and surface area (Holgerson and Raymond, 2016; Casas-Ruiz et al., 2021).

Figure 8: Mean diffusive and ebullitive CH$_4$ fluxes (mmol m$^{-2}$ d$^{-1}$) and mean ratio of ebullitive CH$_4$ flux to total (diffusive+ebullitive) CH$_4$ flux (%) versus chlorophyll-a (Chl-a, in µg L$^{-1}$), total macrophyte cover in summer (%), water depth (cm), and lake surface area (ha) in four ponds (Leybeek, Pêcheries, Tenreuken, and Silex) in the city of Brussels (Belgium) from June 2021 to December 2023. Error bars indicate the standard deviation. Dashed lines indicate trends in relationship between variables (Table S5).
The annual ebullitive CH$_4$ fluxes were higher in the two clear-water lakes (Tenreuken and Silex) than the two turbid-water lakes (Leybeek and Pêcheries) and were positively correlated to macrophyte cover and negatively related to Chl-α (Fig. 8). This would suggest that the delivery of organic matter to sediments from macrophytes sustained a larger methane production than from phytoplankton. This is consistent with the notion that vegetated littoral zones of lakes are hot spots of CH$_4$ production and emission (Desrosiers et al., 2022).

The annual diffuse CH$_4$ flux was higher in the two clear-water lakes (Tenreuken and Silex) than in one of the turbid-water lakes (Pêcheries) which is consistent with the pattern of higher ebullitive CH$_4$ emissions from clear-water lakes. In the four sampled urban ponds, annual CH$_4$ diffuse fluxes increased in clear-water ponds with increasing total macrophyte cover and in turbid-water ponds with increasing Chl-α (Fig. 8). This suggests that in turbid-water lakes the methane production increases with phytoplankton biomass, as suggested in other studies (Yan et al., 2019; Bartosiewicz et al., 2021; Borges et al., 2022).

Since total macrophyte cover and Chl-α were anti-correlated, we hypothesize that the variations of CH$_4$ diffuse fluxes follow a U-shaped relation with either Chl-α or macrophyte cover. Higher values of annual CH$_4$ diffuse fluxes occurred at the extreme values of Chl-α or macrophyte cover (minimum or maximum) and lower values occurred at the intermediate values of Chl-α or macrophyte cover. The relative contribution of ebullitive CH$_4$ fluxes to the total flux very strongly correlated positively to macrophyte cover and negatively to Chl-α (Fig. 8). This is consistent with the idea of an increase of ebullition relative to diffuse CH$_4$ emissions in vegetated sediments compared to unvegetated sediments (Desrosiers et al., 2022; Theus et al., 2023).

The annual diffuse and ebullitive fluxes in the four ponds in the city of Brussels were within the range of values for ponds of similar surface area (0.4 to 4.0 ha) compiled by Deemer and Holgerson (2021) (Fig. S5). The linear regression of ebullitive CH$_4$ fluxes as a function of diffuse CH$_4$ fluxes allows comparing the data of ebullitive CH$_4$ fluxes from the 4 Brussels ponds “normalized” to the diffuse CH$_4$ fluxes. The ebullitive CH$_4$ fluxes from the two turbid-water ponds (Pêcheries and Leybeek) were very close to the linear regression showing they were characterized by ebullitive CH$_4$ fluxes equivalent to those in the ponds compiled by Deemer and Holgerson (2021) when normalized by the diffuse fluxes. The ebullitive CH$_4$ fluxes from the two clear-water ponds (Tenreuken and Silex) were above the linear regression showing they were characterized by ebullitive CH$_4$ fluxes above those in the ponds compiled by Deemer and Holgerson (2021) when normalized by the diffuse fluxes. We hypothesize the relatively higher ebullitive fluxes in the two clear-water ponds were related to enhancement of ebullition from macrophytes. This is consistent with the two clear-water ponds in Brussels having ebullitive fluxes higher than in the ponds compiled by Deemer and Holgerson (2021) at equivalent Chl-α values. This would suggest that Chl-α concentration alone fails to predict ebullitive fluxes in macrophyte dominated clear-water ponds. Consequently, global scaling of CH$_4$ fluxes in lakes using Chl-α as a predictor (DelSontro et al. 2018) might under-estimate ebullitive CH$_4$ emissions due a misrepresentation of macrophyte dominated clear-water ponds.

3.5. Methanogenesis pathway inferred from δ13C-CH$_4$ in bubbles

δ13C-CH$_4$ was measured in bubbles trapped during the ebullition flux measurements and in bubbles collected by perturbing the sediments. The variations δ13C-CH$_4$ suggest that there could have been variations of the relative importance of hydrogenotrophic versus acetoclastic pathways of methanogenesis among different ponds but also seasonally. Methanogenesis by the hydrogenotrophic pathway produces CH$_4$ with more negative δ13C-CH$_4$ values (-100‰ to -60‰) compared to the acetoclastic pathway (-65‰ to -50‰) (Whiticar et al., 1986). Yet, it remains unclear which environmental factors determine the relative importance of hydrogenotrophic and acetoclastic methanogenesis pathways (Conrad et al., 2011).
The δ\(^{13}\)C-CH\(_4\) in the trapped bubbles was more negative in fall than summer and spring (Fig. 9), suggesting a dominance of
hydrogenotrophic methanogenesis in fall compared to spring and summer when acetoclastic methanogenesis seemed
dominant. Hydrogenotrophic methanogenesis occurs at higher temperatures than acetoclastic methanogenesis (Schulz and
Conrad 1996; Schulz et al., 1997), however, temperature in fall (11.9±3.7 °C) was lower than in summer (21.1±1.9 °C). A
shift from acetoclastic methanogenesis to hydrogenotrophic methanogenesis has been documented in response to the increase
of NH\(_4\)\(^+\) (Ni et al., 2022; Wang et al., 2022) and the decrease of pH (Kotsyurbenko et al., 2007) expected in response to an
increase of CO\(_2\). An increase of NH\(_4\)\(^+\) and decrease of pH in pore waters in fall compared to summer and spring would be
consistent with the sustained benthic organic matter degradation leading to a gradual change of pore water chemistry from
spring to fall.

Figure 9: \(^{12}\)C/\(^{13}\)C ratio of CH\(_4\) (δ\(^{13}\)C-CH\(_4\) in ‰) in bubbles collected during ebullitive flux measurements (“trapped bubbles”) in four
urban ponds (Leybeek, Pécheries, Tenreuken, and Silex) in the city of Brussels (Belgium), measured in spring, summer, and fall in
2022 and 2023 (September 2023 and October 2023 in Leybeek; July 2023 and October 2023 in Pécheries; August 2023 and October
2023 in Tenreuken; April 2022 and July 2022 in Silex). Box plots show median (horizontal line), mean (cross), and 25–75%
percentiles (box limits). Whiskers extend from minimum to maximum values. ND = no data. ANOVA results of the multiple
comparison between boxplots are summarized in Table S7.

In summer 2023, a survey of all ponds was made to simultaneously sample by perturbation of the sediment for the
determination of the δ\(^{13}\)C-CH\(_4\) in the released bubbles. The δ\(^{13}\)C-CH\(_4\) of perturbed sediments was more negative in the clear-
water macrophyte dominated ponds than in the turbid-water phytoplankton dominated ponds (Fig. 10). This could suggest a
higher contribution of the hydrogenotrophic methanogenesis pathway compared to the acetoclastic pathway in the clear-water
ponds where organic matter for methanogenesis was mainly related to macrophytes rather than phytoplankton. Based on gene
expression during incubations (qPCR), Wang et al., (2023) suggested that macrophyte organic carbon stimulated acetoclastic
methanogenesis pathway compared to phytoplankton organic matter in lakes Chaohu and Taihu in China. The pattern of δ\(^{13}\)C-
CH\(_4\) data in the four urban ponds of the city of Brussels suggests the opposite pattern, with macrophyte organic carbon
stimulating the hydrogenotrophic methanogenesis pathway. This pattern seems consistent with the more refractory nature of
macrophyte organic carbon compared to the more labile nature of phytoplankton organic carbon. Organic matter from
macrophytes has a large share of molecules difficult to degrade such as cellulose unlike organic matter from phytoplankton
that is rich in polysaccharides and proteins (West et al., 2015; Berberich et al., 2020). In presence of more refractory organic
matter, a partial fermentation would favour the production of H\(_2\) over acetate which would favour hydrogenotrophic
methanogenesis over acetoclastic methanogenesis (Liu et al., 2017).
Figure 10: 12C/13C ratio of CH$_4$ (δ^{13}C-CH$_4$ in ‰) in bubbles sampled after release from sediments after physical perturbation (“perturbed sediments”) versus chlorophyll-a (Chl-a, in µg L$^{-1}$) and total macrophyte cover in summer (%) in four ponds (Leybeek, Pêcheries, Tenreuken, and Silex) in the city of Brussels (Belgium) measured in summer 2023 (4th September 2023). Error bars indicate standard deviation on the mean. Dashed lines indicate linear regressions (Table S5).

3.6. Methane oxidation

The δ^{13}C-CH$_4$ in surface waters in the four sampled ponds in the city of Brussels ranged between -16 and -64 ‰ (Fig. 11). The δ^{13}C-CH$_4$ in surface waters were generally higher than in sediments based on trapped bubbles during the ebullition measurements (-55 to -87 ‰; Fig. 9). The 13C enriched values in surface waters samples probably resulted from MOX. FOX in surface waters in the four sampled ponds in the city of Brussels ranged between 22 and 97%. MOX in surface waters in the four sampled ponds in the city of Brussels ranged between 0.1 and 73.0 mmol m$^{-2}$ d$^{-1}$ (Fig. 11).

FOX and MOX followed the same seasonal variations than δ^{13}C-CH$_4$ since both quantities were derived from isotopic models that include δ^{13}C-CH$_4$, δ^{13}C-C$_2$H$_6$, FOX, and MOX were in most ponds higher in summer and fall than in spring and winter (Fig. 11). δ^{13}C-CH$_4$, FOX, and MOX showed distinct differences among the four ponds. δ^{13}C-CH$_4$, FOX, and MOX were higher in the turbid-water ponds (Leybeek and Pêcheries) than in clear-water ponds (Tenreuken and Silex), particularly during summer (Fig. 11). δ^{13}C-CH$_4$, FOX, and MOX positively correlated to TSM and Chl-a concentrations (Fig. 12). These patterns could reflect the increase of micro-organisms including methanotrophs fixed on particles leading to an increase of MOX in parallel to an increase of TSM concentration (Abril et al. 2007). Micro-organisms can grow on fixed inorganic particles, aggregates of organic matter (Kirchman and Mitchell 1982), but also on aggregates of living cyanobacteria (Li et al., 2021). An increase of particles in the water column increases light attenuation in the water column which would alleviate the inhibition of MOX by light (Dumestre et al., 1999; Murase and Sugimoto 2005; Morana et al., 2020), also possibly contributing to a positive relation between MOX and TSM and Chl-a. Both processes could co-occur contributing to the observed positive patterns between MOX and TSM and Chl-a concentrations.
Figure 11: Seasonal variations of 12C/13C ratio of CH$_4$ in surface waters (δ^{13}C-CH$_4$ in Ő), fraction of CH$_4$ removed by methane oxidation (FOX, in %), and methane oxidation (MOX, in mmol m$^{-2}$ d$^{-1}$) in four urban ponds (Leybeek, Pêcheries, Tenreuken, and Silex) in the city of Brussels (Belgium) from January 2022 to December 2023. Box plots show median (horizontal line), mean (cross), and 25–75% percentiles (box limits). Whiskers extend from minimum to maximum values. White and grey bands in the graphs on the right correspond to the fall/winter and spring/summer periods, and dotted vertical bars represent the first days of each season. ANOVA results of the multiple comparison between boxplots are summarized in Table S6.
Figure 12: 12C/13C ratio of CH$_4$ in surface waters (δ^{13}C-CH$_4$ in ‰), fraction of CH$_4$ removed by methane oxidation (FOX, in %), and methane oxidation flux (MOX, in mmol m$^{-2}$ d$^{-1}$) versus total suspend matter concentration (TSM, in mg L$^{-1}$) and chlorophyll-α concentration (Chl-α, in µg L$^{-1}$) in four urban ponds (Leybeek, Pêcheries, Tenreuken, and Silex) in the city of Brussels (Belgium) from January 2022 to December 2023. Linear regression shown as black solid line (Table S5).

Figure 13 compares the main fluxes of dissolved CH$_4$ in the water column: MOX, diffusive CH$_4$ emissions, bubble dissolution that were derived from measurements, and the sedimentary diffusive CH$_4$ flux that was computed as a closing term (assuming a steady state) for comparative purposes. The dissolution of bubbles was a smaller input term of dissolved CH$_4$ compared to the diffusive sedimentary flux that represented 88±18% of the total input of CH$_4$ to the water column. Bubble dissolution depends on the time spent by the bubble in the water column during ascent, which is directly proportional to depth (McGinnis et al., 2006). MOX was a larger sink of dissolved CH$_4$ than the diffusive CH$_4$ emission to the atmosphere in the four ponds. For all four ponds, MOX accounted for 78±26% of total CH$_4$ removal from the water column, in agreement with other studies (Kankaala et al., 2006; Morana et al., 2020; Reis et al., 2022).
Figure 13: Bubble dissolution flux, methane oxidation (MOX), diffusive CH$_4$ emissions to atmosphere, and sedimentary diffusive CH$_4$ flux computed from the other fluxes assuming steady-state (=MOX - Bubble dissolution + atmospheric emissions) in four urban ponds (Leybeek, Pêcheries, Tenreuken, and Silex) in the city of Brussels (Belgium) between June 2021 and December 2023. All fluxes are in mmol m$^{-2}$ d$^{-1}$. Box plots show median (horizontal line), mean (cross), and 25–75% percentiles (box limits). Whiskers extend from minimum to maximum values. ANOVA results of the multiple comparison between boxplots are summarized in Table S8.

3.7. Relative contribution of CO$_2$, CH$_4$ and N$_2$O emissions

The annual fluxes in CO$_2$-eq of the three GHGs (CO$_2$, CH$_4$, and N$_2$O) in 2022 and 2023 were higher in the two clear-water ponds than in the two turbid-water ponds (Fig. 14) due to higher CH$_4$ emissions (diffusive+ebullitive) in clear ponds than in turbid ponds, as there were no significant differences between the four ponds for CO$_2$ and N$_2$O emissions in 2022 and 2023.

The majority of GHG emissions in CO$_2$-eq was related to CO$_2$ and CH$_4$ (diffusive+ebullitive) in the four ponds. In turbid-water ponds CO$_2$ represented the largest fraction of GHG emissions (68.5% (2022) and 79.3% (2023), and 49.0 (2022) and 58.3 (2023) in Pêcheries and Leybeek ponds, respectively), and in clear-water ponds CH$_4$ represented the largest fraction of GHG emissions (66.5 (2022) and 63.3 (2023), and 60.8% (2022) and 50.0% (2023), in Silex and Tenreuken ponds, respectively). The higher annual GHG emissions in CO$_2$-eq from the two clear-water ponds than the turbid-water ponds were related to the higher contribution of ebullitive CH$_4$ fluxes. N$_2$O contribution to GHG emissions was marginal and ranged between 0.0% in the Pêcheries pond that occasionally acts as a sink and 1.7% in the Leybeek pond.

The GHG fluxes peaked seasonally in summer with 2.9 and 1.7 mg CO$_2$-eq m$^{-2}$ d$^{-1}$ in the Silex and the Tenreuken ponds, respectively, and 1.1 mg CO$_2$-eq m$^{-2}$ d$^{-1}$ in the Leybeek pond. The GHG fluxes peaked in fall in the Pêcheries, with 1.3 mg CO$_2$-eq m$^{-2}$ d$^{-1}$. The higher value of the total GHG emissions in fall compared to other seasons in the Pêcheries pond is due to the summer increase in CH$_4$ was lower than the CO$_2$ increase in fall, which particularly increased in fall 2023. The GHG fluxes were the lowest in winter with 1.3 and 0.9 mg CO$_2$-eq m$^{-2}$ d$^{-1}$ in the Silex and the Tenreuken ponds, respectively, and 0.8 and 0.6 mg CO$_2$-eq m$^{-2}$ d$^{-1}$ in the Pêcheries and the Leybeek ponds, respectively. The relative contribution of ebullitive CH$_4$ fluxes peaked in summer in all four ponds, 73.8% and 70.9% in the Silex and the Tenreuken ponds, respectively, and 23.6% and 58.3% in the Pêcheries and the Leybeek ponds, respectively. The relative contribution of ebullitive CH$_4$ fluxes was lowest in winter with 22.1% and 10.0% in the Silex and the Tenreuken ponds, respectively, and 6.7% and 1.0% in the Pêcheries and the Leybeek ponds, respectively.
Figure 14: Temporal evolution and relative contribution of emissions to the atmosphere of CO₂ (diffusive), CH₄ (diffusive and ebullitive), and N₂O (diffusive) expressed in CO₂ equivalents (in mg CO₂-eq m⁻² d⁻¹), in four urban ponds (Leybeek, Pêcheries, Tenreuken, and Silex) in the city of Brussels (Belgium) from June 2021 to December 2023. Averages per season include data from 2021, 2022, and 2023. Year 2023 had a higher annual precipitation (1011 mm) than year 2022 (701 mm).

The annual GHG fluxes increased from 2022 to 2023 due to an increase in relative contribution of CO₂ diffusive emissions in all four ponds. CO₂ diffusive emissions averaged 0.5 mg CO₂ m⁻² d⁻¹ in 2022 and 0.7 mg CO₂ m⁻² d⁻¹ in 2023. CO₂ emissions were two times higher in summer 2023 than in summer 2022, and 2.5 times higher in fall 2023 than in fall 2022, for similar values between 2023 and 2022 in spring and winter (1.1 higher and 1.1 lower, respectively). Spring, summer and fall were rainier in 2023 than 2022 (2.2, 2.5 and 1.4 times, respectively) and winter 2023 was 1.2 times drier than winter 2022. Winter, spring and summer were colder in 2023 than in 2022 (-0.5, -1.1°C and -0.4°C, respectively), and fall was warmer in 2023 than 2022 (+0.6°C). Higher precipitations are likely to increase the inputs of organic and inorganic carbon from soils to ponds by ground-waters, soil-waters, and surface runoff, as previously shown in other lakes (Marotta et al., 2011). Higher runoff combined with higher temperature led to more favourable conditions for OM degradation and respiration. The highest seasonal increase of CO₂ emissions was observed in fall 2023 (rainier and warmer in 2023 than in 2022), followed by summer and spring, which showed the higher decrease of temperature in 2023 compared to 2022. While this hypothesis is only based on the comparison of two years, the increase of the relative contribution of CO₂ diffusive emissions was observed in all four ponds which suggests a common uniform driver that would be consistent with a large variation weather such as annual precipitation.

The El Niño event in 2023 has induced low-level cyclonic wind anomalies and higher precipitation over Western Europe, including Belgium (Chen et al., 2024).
4. Conclusions

We found very marked differences in CH₄ dynamics between the two clear-water macrophyte dominated ponds (Tenreuken and Silex) and the two turbid-water phytoplankton dominated ponds (Pêcheries and Leybeek) of the city of Brussels. MOX was more important in the two turbid-water ponds compared to the clear-water ponds. MOX correlated to TSM and Chl-a concentrations possibly owing to a higher abundance of methanotrophs in the water column fixed to particles and/or an attenuation of light limitation of MOX. Ebullitive CH₄ emissions were higher in the two clear-water ponds than the two turbid-water ponds, possibly related to high availability of macrophyte organic matter. The annual diffusive N₂O and CO₂ fluxes in 2022-2023 were not statistically different in the two clear-water ponds (Tenreuken and Silex) and in the two turbid-water ponds (Pêcheries and Leybeek). Other studies have found no difference in N₂O sedimentary production in lakes with high and low density of submerged macrophytes. We hypothesize that in human impacted system such as the urban ponds in the city of Brussels, the strong range of variations of DIN was the main driver of N₂O levels and over-rides other possible drivers such as presence or absence of macrophytes. Such a hypothesis was consistent with an overall positive relation between %N₂O and DIN in the urban ponds of the city of Brussels irrespective of presence or absence of macrophytes (Bauduin et al., 2024; this study).

The total (diffusive and ebullitive) CH₄ emissions represented 57.7±28.9% (ranging from 4.9 to 99.9%) of total GHG emissions in CO₂ equivalents in the two clear-water ponds compared to 41.0±28.7% (ranging from 2.8 to 99.9%) in two turbid-water ponds. CO₂ represented nearly all the remainder of total GHG emissions, since N₂O represented a very marginal fraction (0.8±1.6%, ranging from 0.0% to 14.9%, with the maximum coinciding with minimal total GHG flux in the Leybeek pond).

The seasonal variations of GHG emissions were dominated by ebullitive seasonal variations that peaked in summer (both quantitatively and relatively), as CH₄ ebullition was strongly related to temperature. The pCO₂ values in the four sampled ponds increased with precipitation at seasonal scale, probably in relation to higher inputs of organic and inorganic carbon by surface runoff. Years 2022 and 2023 were abnormally dry and wet, respectively. This seemed to have affected the GHG emissions that were higher in 2023 mainly due to an increase in the relative contribution of CO₂ emissions, probably in response to a strong El Niño event. This would suggest that variations of precipitation also affected year-to-year variations of CO₂ emissions in addition to partly regulating seasonal variations of CO₂ emissions from the studied ponds.

Data availability. Full timestamped and georeferenced data-set is available at 10.5281/zenodo.11103556.

Author contributions. AVB and NG conceived the study; TB collected field samples; TB and AVB made the laboratory analysis; TB and AVB jointly interpreted data and drafted the manuscript with substantial inputs from NG.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. We thank Ozan Efe (University of Liège) and Adriana Anzil (Free University of Brussels) for analytical assistance, Florence Charlier (Free University of Brussels) for help in macrophyte identification and density quantification (Table S1), Bruxelles Environnement for providing information on history of operations in the ponds (Table S2), and Cédric Morana for help and advice in setting up the Picarro G2201-i isotopic analyzer. AVB is a Research Director at the FRS-FNRS.

Financial support. TB received funding from the Brussels-Capital Region’s institute for the encouragement of scientific research and innovation (Innoviris) as part of the Smartwater project (RBC/2020-EPF-6 h) and from the “Fonds pour la formation à la Recherche dans l’Industrie et dans l’Agriculture” (FRIA, Belgium). The Picarro G2201-i isotopic analyzer was funded by FRS-FNRS (U.N005.21).
References

