

1 **Methane, carbon dioxide, and nitrous oxide emissions from two**
2 **clear-water and two turbid-water urban ponds in Brussels (Belgium)**

3 Thomas Bauduin ^{1,2}, Nathalie Gypens ¹, Alberto V. Borges ²

4 ¹Ecology of Aquatic Systems, Université Libre de Bruxelles, Belgium

5 ²Chemical Oceanography Unit, University of Liège, Belgium

6 Correspondence to: Thomas Bauduin (thomas.bauduin@ulb.be) and Alberto V. Borges (alberto.borges@uliege.be)

7 **Abstract.** Shallow ponds can occur either in a clear-water state dominated by macrophytes or a turbid-water state dominated
8 by phytoplankton, but it is unclear if and how these two alternative states affect the emission to the atmosphere of
9 greenhouse gases (GHGs) such as carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O). We measured the
10 dissolved concentration of CO₂, CH₄, and N₂O from which the diffusive air-water fluxes were computed, in four urban ponds
11 in the city of Brussels (Belgium): two clear-water macrophyte-dominated ponds (Silex and Tenreuken), and two turbid-water
12 phytoplankton-dominated ponds (Leybeek and Pêcheries) on 46 occasions over 2.5 years (between June 2021 and December
13 2023). Ebullitive CH₄ fluxes were measured with bubble traps in the four ponds during deployments in spring, summer, and
14 fall, totalling 48 days of measurements. Measured ancillary variables included water temperature, oxygen saturation level
15 (%O₂), concentrations of chlorophyll-*a* (Chl-*a*), total suspended matter (TSM), soluble reactive phosphorus (SRP), nitrite
16 (NO₂⁻), nitrate (NO₃⁻), and ammonium (NH₄⁺). The turbid-water and clear-water ponds did not differ significantly in terms of
17 diffusive emissions of CO₂ and N₂O. Clear-water ponds exhibited higher values of ebullitive CH₄ emissions compared to
18 turbid-water ponds, most probably in relation to the delivery of organic matter from macrophytes to sediments, but the
19 diffusive CH₄ emissions were not significantly different between clear- and turbid-water ponds. These findings imply that it
20 might be necessary to account for the presence of submerged macrophytes when scaling ebullitive CH₄ fluxes in ponds at
21 larger scale (regional or global) (particularly if Chl-*a* is used as a descriptor), although possibly less critical for diffusive
22 CH₄, CO₂, and N₂O fluxes. At seasonal scale, CH₄ emissions increased with water temperature in all four ponds, with
23 ebullitive CH₄ fluxes having a stronger dependence on water temperature (Q₁₀) than diffusive CH₄ fluxes. The temperature
24 sensitivity of ebullitive CH₄ fluxes decreased with increasing water depth, implying that shallow sediments would respond
25 more strongly to warming (e.g. heat waves). Total annual CH₄ emissions (diffusive+ebullitive) in CO₂ equivalents equalled
26 those of CO₂ in turbid-water ponds and exceeded those of CO₂ in clear-water ponds, while N₂O emissions were negligible
27 compared to the other two GHGs. Total annual GHG emissions in CO₂ equivalents from all four ponds increased from 2022
28 to 2023 due to higher CO₂ diffusive fluxes, likely driven by higher annual precipitation in 2023 compared to 2022 (leading
29 putatively to higher inputs for organic or inorganic carbon from run-off), possibly in response to the intense El Niño event of
30 2023.

31 **1. Introduction**

32 Greenhouse gas (GHG) emissions from inland water (rivers, lakes, and reservoirs) to the atmosphere such as carbon dioxide
33 (CO₂), methane (CH₄), and nitrous oxide (N₂O) are quantitatively important for global budgets (Lauerwald et al., 2023).
34 GHG emissions from lakes are lower than from rivers for CO₂ (Raymond et al., 2013) and for N₂O (Lauerwald et al., 2019;
35 Maavara et al., 2019). However, reported emissions of CH₄ from lakes (Rosentreter et al., 2021; Johnson et al., 2022) are
36 equivalent or even higher compared to rivers (Stanley et al., 2016; Rocher-Ros et al., 2023). Emissions of CO₂ and CH₄ from

37 lakes to the atmosphere represent 1.25 to 2.30 Pg CO₂ equivalents (CO₂-eq) annually with a significant proportion from CH₄
38 emissions, and represent nearly 20% of global CO₂ emissions from fossil fuels (Delsontro et al., 2018). The contribution of
39 CO₂ and CH₄ emissions from small lentic water bodies (small lakes and ponds) can be disproportionately high compared to
40 large systems (Holgerson and Raymond, 2016) as small lakes and ponds are the most abundant of all water body types in
41 number (Verpoorter et al., 2014; Cael et al., 2017), and fluxes (per m²) are usually higher in smaller water bodies. The
42 emissions of GHGs from artificial water bodies such as agricultural reservoirs, urban ponds, and storm-water retention
43 basins could be higher than those from natural systems (Martinez-Cruz et al., 2017; Grinham et al., 2018; Herrero Ortega et
44 al., 2019; Gorsky et al., 2019; Ollivier et al., 2019; Peacock et al., 2019, 2021; Webb et al., 2019; Bauduin et al., 2024).
45 These higher emissions seem to result from higher external inputs of anthropogenic carbon and nitrogen into artificial
46 systems, e.g. with rainfall runoff that brings organic matter and dissolved inorganic nitrogen (DIN), but might also reflect
47 other differences compared to natural systems such as in hydrology (Clifford and Heffernan, 2018). Among artificial
48 systems, urban ponds are the subject of a growing body of literature on GHG emissions (Singh et al., 2000; Natchimuthu et
49 al., 2014; van Bergen et al., 2019; Audet et al., 2020; Peacock et al., 2021; Goeckner et al., 2022; Ray and Holgerson, 2023;
50 Ray et al. 2023; Bauduin et al., 2024). Urban areas can have numerous small artificial water bodies mostly associated to
51 green spaces such as public parks, and their number is increasing due to rapid urbanisation worldwide (Brans et al., 2018;
52 Audet et al., 2020; Gorsky et al., 2024; Rabaey et al., 2024). Urban ponds are generally small, shallow, and usually their
53 catchment consists in majority of impervious surfaces with a smaller contribution from soils (Davidson et al., 2015; Peacock
54 et al., 2021). In general, the main function of urban ponds is for storm-water management but provide additional benefits
55 including aesthetic/recreational amenities and habitats for wildlife (e.g. Tixier et al., 2011; Hassall, 2014).

56 Shallow ponds and lakes occur in two alternative states corresponding to systems with either clear waters (macrophyte-
57 dominated) or turbid waters (phytoplankton-dominated), during the productive period of the year (spring and summer in
58 mid-latitudes) (Scheffer et al., 1993). Submerged macrophytes and phytoplankton regulate CO₂ dynamics directly through
59 photosynthesis that can be more or less balanced by community respiration in the water column (e.g., Sand-Jensen and
60 Staehr, 2007). However, it is not clear whether the presence of macrophytes increases or decreases the net CO₂ emissions
61 from ponds and lakes. Some studies have shown a decrease of CO₂ emissions with increasing macrophyte density (Kosten et
62 al., 2010; Ojala et al., 2011; Davidson et al., 2015), but other studies showed the opposite pattern (Theus et al., 2023). In
63 phytoplankton-dominated lakes, CO₂ concentrations depend in part on the developmental stage of phytoplankton, with the
64 growth and peak phases generally coinciding with lower CO₂ concentrations due to photosynthesis (Grasset et al., 2020;
65 Vachon et al., 2020).

66 CH₄ emissions have been reported to increase with the concentration of chlorophyll-*a* (Chl-*a*) in phytoplankton-dominated
67 lakes (DelSontro et al., 2018; Borges et al., 2022). The presence of macrophytes strongly affects CH₄ cycling in freshwaters
68 (Bastviken et al., 2023) and vegetated littoral zones of lakes exhibit higher CH₄ emissions than non-vegetated zones
69 (Hyvönen et al., 1998; Huttunen et al., 2003; Juutinen et al., 2003; Desrosiers et al., 2022; Theus et al., 2023). Macrophytes
70 influence organic matter decomposition processes in sediments depending on the quality and quantity of plant matter they
71 release into their environment (Reitsema et al., 2018; Grasset et al., 2019; Harpenslager et al., 2022; Theus et al., 2023). Yet,
72 few studies have consistently compared CH₄ emissions in clear-water and turbid-water ponds (Hilt et al., 2017). A study in
73 Argentina reported higher dissolved CH₄ concentrations in clear-water ponds with submerged macrophytes compared to
74 turbid-water phytoplankton-dominated ponds, but no differences in measured CH₄ emissions (Baliña et al., 2023).

75 The production of N_2O predominantly occurs through microbial nitrification and denitrification that depend on DIN, O_2
76 levels, and temperature (Codispoti and Christensen, 1985; Mengis et al., 1997; Velthuis and Veraart, 2022). Competition for
77 DIN between primary producers and N_2O -producing microorganisms can impact N_2O production. Additionally, the transfer
78 of labile phytoplankton organic matter to sediments fuels benthic denitrification and impacts N_2O fluxes. Eutrophication is
79 assumed to drive high N_2O emissions from lakes and ponds (Audet et al., 2020; Webb et al., 2021; Wang et al., 2021; Xie et
80 al., 2024) but some lakes with elevated Chl-*a* concentrations can act as sinks of N_2O due to removal of N_2O by
81 denitrification (Webb et al., 2019; Borges et al., 2022; 2023). The presence of macrophytes also strongly influences nitrogen
82 cycling in sediments of lakes and ponds (Barko et al., 1991; Choudhury et al., 2018; Deng et al., 2020; Dan et al., 2021) and
83 should in theory also affect N_2O emissions, although seldom investigated, and available studies provide contradictory
84 conclusions. N_2O emissions have been shown to follow diurnal cycles of O_2 concentrations in areas dominated by
85 submerged macrophytes in Lake Wuliangsuhai (China) (Ni et al., 2022) and the seasonal cycle of aboveground biomass of
86 emerged macrophytes (*Phragmites*) in Baiyangdian Lake (China) (Yang et al., 2012). On the contrary, a study showed there
87 was no significant difference of N_2O production in sediments of macrophyte-rich (n=10) and macrophyte-free (n=12) lakes
88 in subtropical China (Liu et al., 2018). There has been a very limited number of studies systematically investigating how
89 emissions differ between ponds dominated by phytoplankton and those dominated by macrophytes (Baliña et al., 2023), and
90 none investigating simultaneously CO_2 , CH_4 , and N_2O emissions including both diffusive and ebullitive components.

91 The emissions from aquatic systems of CO_2 and N_2O are exclusively through diffusion across the air-water interface
92 (diffusive flux), while CH_4 can be additionally emitted as bubbles released from sediments to the atmosphere (ebullitive
93 flux). At annual scale, ebullitive CH_4 flux usually represents more than half of total (diffusive+ebullitive) CH_4 emissions
94 from shallow lakes (Wik et al., 2013; Deemer and Holgerson, 2021), although the relative contribution of ebullitive and
95 diffusive CH_4 emissions is highly variable seasonally (e.g. Wik et al., 2013; Ray and Holgerson, 2023; Rabaey and Cotner
96 2024). Ebullitive CH_4 fluxes are particularly high in the littoral zone of lakes at depths <5 m (Wik et al., 2013; DelSontro et
97 al., 2016; Borges et al., 2022) and strongly increase in response to temperature (DelSontro et al., 2016; Aben et al., 2017;
98 Rabaey and Cotner 2024), as well as organic matter availability (DelSontro et al., 2016; 2018). Ebullitive CH_4 fluxes tend to
99 be higher in small and shallow water bodies (Deemer and Holgerson, 2021) but are notoriously variable in time and space,
100 and are difficult to estimate reliably (DelSontro et al., 2011).

101 Here, we report a dataset of CO_2 , CH_4 , and N_2O dissolved concentrations in four shallow and small urban ponds (Leybeek,
102 Pêcheries, Silex, and Tenreuken) in the city of Brussels (Belgium) (Fig. 1), with data collected 46 times at regular intervals
103 (between June 2021 and December 2023) on each pond. The air-water diffusive fluxes of CO_2 , CH_4 , and N_2O were
104 calculated from dissolved concentrations and the gas transfer velocity, while the ebullitive CH_4 fluxes were measured with
105 inverted funnels during 8 deployments (totalling 48 days) in the four ponds. The four ponds have similar depth, surface area,
106 and catchment urban coverage, and mainly differ by the phytoplankton-macrophyte dominance, a clear-water state
107 dominated by macrophytes and a turbid-water state dominated by phytoplankton (alternative states) (Fig. 1). We test whether
108 the differences between the four ponds are explained by the two alternative states in terms of (i) CO_2 , CH_4 , and N_2O
109 dissolved concentration and diffusive emissions; (ii) ebullitive CH_4 emissions; (iii) relative contribution of CO_2 , CH_4 , and
110 N_2O to the total GHG emissions in $\text{CO}_2\text{-eq}$.

111 **2. Material and Methods**

112 **2.1. Field sampling and meteorological data**

113 Sampling was carried out from a pontoon in the four ponds on the same day between 9am and 11am, 46 times on each pond
114 between June 2021 and December 2023 at a frequency ranging from one (winter) to three (summer) times per month at a
115 single fixed station in each of the four ponds. Water was sampled 5 cm below the surface with 60 ml polypropylene syringes
116 for analysis of dissolved concentrations of CO₂, CH₄, and N₂O. Samples for CH₄ and N₂O were transferred from the syringes
117 with a silicone tube into 60 ml borosilicate serum bottles (Wheaton), preserved with 200 µl of a saturated solution of HgCl₂,
118 sealed with a butyl stopper and crimped with aluminium cap, without a headspace, and stored at ambient temperature in the
119 dark prior to analysis in laboratory. The partial pressure of CO₂ (pCO₂) was measured directly in the field, within 5 minutes
120 of sample collection, with a Li-Cor Li-840 infrared gas analyser (IRGA) based on the headspace technique with 4
121 polypropylene syringes (Borges et al., 2019). A volume of 30 ml of sample water was equilibrated with 30 ml of atmospheric
122 air within the syringe by shaking vigorously for 5 minutes. The headspace of each syringe was then sequentially injected into
123 the IRGA and a fifth syringe was used to measure atmospheric CO₂. The final pCO₂ value was computed taking into account
124 the partitioning of CO₂ between water and the headspace, as well as equilibrium with HCO₃⁻ (Dickson et al., 2007) using
125 water temperature measured in-situ and after equilibration, and total alkalinity (data not shown). Samples for total alkalinity
126 were conditioned, stored, and analysed as described by Borges et al. (2019). The IRGA was calibrated in the laboratory with
127 ultrapure N₂ and a suite of gas standards (Air Liquide Belgium) with CO₂ mixing ratios of 388, 813, 3788 and 8300 ppm.
128 The precision of pCO₂ measurements was $\pm 2.0\%$. Water temperature, specific conductivity, and oxygen saturation level
129 (%O₂) were measured in-situ with VWR MU 6100H probe 5 cm below the surface. A 2 liter polyethylene water container
130 was filled with surface water for conditioning the samples for other variables at the laboratory in Université Libre de
131 Bruxelles.

132 Surveys to identify and quantify visually the relative coverage of emerged and submerged macrophytes were conducted in
133 summer 2023 (Table S1). The resulting list of macrophyte species agreed with past studies in Brussels' ponds (Peretyatko et
134 al., 2007).

135 Three bubble traps were deployed 50 cm apart for measuring ebullitive CH₄ flux. The bubble traps consisted of inverted
136 polypropylene funnels (diameter 23.5 cm) mounted with 60 ml polypropylene syringes, with three way stop valves allowing
137 to collect the gas without contamination from ambient air. The polypropylene funnel was attached with steel rods to a
138 polystyrene float. The volume of gas collected in the funnels was sampled with graduated polypropylene 60 ml syringes
139 every 24 hours. The value of the collected volume of gas was logged, and the gas was transferred immediately after
140 collection to pre-evacuated 12 ml vials (Exetainers, Labco, UK) that were stored at ambient temperature in the dark prior to
141 the analysis of CH₄ concentration in the laboratory. The time-series of measurements was longer at the Silex pond than the
142 other three ponds, because the Silex pond is closed to the public during the week, while the other three ponds are open to the
143 public all the time.

144 Air temperature, precipitation, wind speed, and atmospheric pressure, were retrieved from <https://wow.meteo.be/en> for the
145 meteorological station of the Royal Meteorological Institute of St-Lambert (50.8408°N, 4.4234°E) in Brussels, located
146 between 2.5 and 5.0 km from the surveyed ponds. Air temperature, wind speed and atmospheric pressure were averaged over
147 24 h to obtain a daily mean value. Precipitation was integrated each day to obtain cumulated daily rainfall.

148 **2.2. Laboratory analysis**

149 **2.2.1. Chlorophyll-a, total suspended matter, and dissolved inorganic nutrients**

150 Water was filtered through Whatman GF/F glass microfiber filters (porosity 0.7 μm) with a diameter of 47 mm for total
151 suspended matter (TSM) and Chl-a. Filters for TSM were dried in an oven at 50 $^{\circ}\text{C}$ and filters for Chl-a were kept frozen (-
152 20 $^{\circ}\text{C}$). The weight of each filter was determined before and after filtration of a known volume of water using an ExplorerTM
153 Pro EP214C analytical microbalance (accuracy ± 0.1 mg) for determination of TSM concentration. Chl-a concentration was
154 measured on extracts with 90% acetone by fluorimetry (Kontron model SFM 25) (Yentsch and Menzel, 1963) with a limit of
155 detection of 0.01 $\mu\text{g L}^{-1}$. Filtered water was stored frozen (-20 $^{\circ}\text{C}$) in 50 ml polypropylene bottles for analysis of dissolved
156 nutrients. Soluble reactive phosphorus (SRP) was determined by the ammonium molybdate, ascorbic acid and potassium
157 antimony tartrate staining method (Koroleff, 1983), with a limit of detection of 0.1 $\mu\text{mol L}^{-1}$. Ammonium (NH_4^+) was
158 determined by the nitroprusside-hypochlorite-phenol staining method (Grasshoff and Johannsen, 1972), with a limit of
159 detection of 0.05 $\mu\text{mol L}^{-1}$. Nitrite (NO_2^-) and nitrate (NO_3^-) were determined before and after reduction of NO_3^- to NO_2^- by a
160 cadmium-copper column, using the Griess acid reagent staining method (Grasshoff et al., 2009), with a detection limit of
161 0.01 and 0.1 $\mu\text{mol L}^{-1}$, respectively. Concentration of dissolved inorganic nitrogen (DIN) was calculated as the sum of NH_4^+ ,
162 NO_2^- and NO_3^- concentrations in $\mu\text{mol L}^{-1}$.

163 **2.2.2. CH_4 and N_2O measurements by gas chromatography**

164 Measurements of N_2O and CH_4 concentrations dissolved in water and in the gas samples from bubbles were made with the
165 headspace technique (Weiss, 1981) with an headspace volume of 20 ml of ultra-pure N_2 (Air Liquid Belgium) and a gas
166 chromatograph (GC) (SRI 8610C) with a flame ionisation detector for CH_4 and an electron capture detector for N_2O
167 calibrated with $\text{CH}_4:\text{N}_2\text{O}:\text{N}_2$ gas mixtures (Air Liquide Belgium) with mixing ratios of 1, 10 and 30 ppm for CH_4 , and 0.2,
168 2.0 and 6.0 ppm for N_2O . The precision of measurement based on duplicate samples was $\pm 3.9\%$ for CH_4 and $\pm 3.2\%$ for N_2O .

169 The CO_2 concentration is expressed as partial pressure (pCO_2) in parts per million (ppm) and CH_4 as dissolved concentration
170 (nmol L^{-1}), as frequently used in topical literature. CH_4 concentration were systematically and distinctly above saturation
171 level (2-3 nmol L^{-1}) and pCO_2 values were below saturation only five times out of the 187 measurements. The N_2O
172 concentrations fluctuated around atmospheric equilibrium, so data are presented as percent of saturation level (% N_2O , where
173 atmospheric equilibrium corresponds to 100%). The equilibrium with atmosphere for N_2O was calculated from the average
174 air mixing ratios of N_2O provided by the Global Monitoring Division (GMD) of the National Oceanic and Atmospheric
175 Administration (NOAA) Earth System Research Laboratory (ESRL) (Dutton and Hall, 2023), and using the Henry's
176 constant given by Weiss and Price (1980).

177 **2.3. Calculations**

178 **2.3.1. Diffusive GHG emissions**

179 The diffusive air-water CO_2 , CH_4 , or N_2O fluxes (F_G) were computed according to:

$$180 F_G = k \times \Delta[G], \quad (1)$$

181 where k is the gas transfer velocity and $\Delta[G]$ is the air-water gas concentration gradient.

182 The atmospheric pCO₂ was measured in the field with the Li-Cor Li-840. For CH₄, the global average present day
 183 atmospheric mixing ratio of 1.9 ppm was used (Lan et al., 2024). Atmospheric N₂O concentration was calculated from the
 184 average air mixing ratios of N₂O provided by the GMD of the NOAA ESRL (Dutton et al., 2017). *k* was computed from a
 185 value normalized to a Schmidt number of 600 (*k*₆₀₀) and from the Schmidt number of CO₂, CH₄ and N₂O in freshwater
 186 according to the algorithms as function of water temperature given by Wanninkhof (1992). *k*₆₀₀ was calculated from the
 187 parameterization as a function of wind speed of Cole and Caraco (1998). CH₄ and N₂O emissions were converted into CO₂
 188 equivalents (CO₂-eq) considering a 100-year timeframe, using global warming potentials of 32 and 298 for CH₄ and N₂O,
 189 respectively (Myrhe et al., 2013).

190 **2.3.2. Ebullitive flux**

191 Bubble flux (ml m⁻² d⁻¹) measured with the inverted funnels was calculated according to:

$$192 F_{bubble} = \frac{V_g}{A \times \Delta t}, \quad (2)$$

193 where *V_g* is the volume of gas collected in the funnels (ml), *A* is the cross-sectional area of the funnel (m²), *Δt* is the
 194 collection time (d).

195 A multiple linear regression model of *F_{bubble}* dependent on water temperature and drops of atmospheric pressure was fitted to
 196 the data according to:

$$197 \log_{10}(F_{bubble}) = \alpha \times T_w + \beta \times \Delta p + \gamma, \quad (3)$$

198 where α and β are the slope coefficients of the multiple linear regression model, γ is the y-intercept, *T_w* is the water
 199 temperature (°C), and Δp quantifies the drops in atmospheric pressure (atm), calculated according to Zhao et al. (2017):

$$200 \Delta p = -\frac{1}{\Delta t} \int_0^t p - p_0 ; \quad \forall p < p_0, \quad (4)$$

201 where *p* is the atmospheric pressure (atm), *p₀* a threshold pressure fixed at 1 atm and *Δt* the time interval between two
 202 measurements (d) (Fig. S1).

203 Ebullitive CH₄ fluxes (mmol m⁻² d⁻¹) were calculated according to:

$$204 E_{CH4} = [CH_4] \times F_{bubble}, \quad (5)$$

205 where [CH₄] is the CH₄ concentration in bubbles (mmol ml⁻¹).

206 The methane ebullition Q₁₀ represents the proportional change in the ebullitive CH₄ flux per 10°C change in water
 207 temperature (DelSontro et al., 2016) and was computed according to:

$$208 Q_{10} = 10^{10b}, \quad (6)$$

209 where *b* is the slope of the linear regression between the logarithm of the ebullitive CH₄ flux (*E_{CH4}*) and *T_w*, and *c* is the y-
 210 intercept, according to:

$$211 \log_{10}(E_{CH4}) = b \times T_w + c, \quad (7)$$

212 **2.4. Statistical analysis**

213 For the data-sets covering the whole sampling period, for pCO₂, dissolved CH₄ concentration, %N₂O, bubble flux, %CH₄ in
214 bubbles, and both ebullitive and diffusive CH₄ fluxes, generalized linear mixed models (GLMMs) were constructed that
215 included water temperature, rainfall, %O₂, Chl-*a*, TSM, DIN, SRP as fixed effects, and “pond” and “sampling date” as a
216 random effect to account for repeated measurements via the *lme4* package (Bates et al., 2015) in R version 4.4.1 (R Core
217 Team, 2021). When comparing data among the four ponds, “sampling date” was used as a random effect and post-hoc tests
218 were performed using estimated marginal means (*emmeans* package) to assess pairwise differences between ponds.

219 For comparisons between the four seasons, GLMMs did not converge due to insufficient number of data points.
220 Comparisons on log-transformed data were then made using repeated measures Analysis of variance (ANOVA) with
221 Tukey’s honestly significant difference (HSD) post-hoc tests.

222 The relationships between the annual means of CH₄, CO₂ and N₂O fluxes and the annual means of a subset of variables (Chl-
223 *a*, macrophyte cover, surface area, depth) were tested with Pearson’s linear or quadratic regressions. The modelled bubble
224 fluxes in Silex pond were compared to measured values with Pearson’s linear regression.

225 Statistical significance was set at $p < 0.05$ for all analyses. For comparisons presented on boxplots, different lower-case
226 letters indicate a significant difference between groups.

227 **3. Results**

228 **3.1. Seasonal variations of meteorological conditions and GHG concentrations**

229 The city of Brussels experiences a temperate climate with mild weather year-round, and evenly distributed abundant rainfall
230 totalling on average 837 mm annually for the reference period 1991-2020. The average annual air temperature was 11 °C,
231 with summer average of 17.9 °C and winter average of 4.1 °C for the reference period 1991-2020. During the sampling
232 period, from June 2021 to December 2023, water temperature in the surface of the four sampled ponds (Leybeek, Pêcheries,
233 Silex, and Tenreuken; Fig. 1) tracked closely the air temperature that ranged between -1.5 and 30.0°C following the typical
234 seasonal cycle at mid-latitudes in the Northern Hemisphere (Fig. S2). Years 2022 and 2023 were about 1 °C warmer than the
235 average for the period 1991-2020 (11 °C), while year 2021 was closer to the long-term average (Fig. 2). Year 2022 was
236 warmer and drier than 2021 and 2023 (Fig. 2), with positive air temperature anomalies observed evenly throughout the year
237 (9 months out of 12) and negative precipitation anomalies in summer, fall, and early winter (Fig. S2). Year 2021 had warmer
238 and drier months in June and September, colder and wetter months in July and August, and was overall wetter and colder
239 than 2022 (Fig. 2). Year 2023 was marked by both positive air temperature and precipitation anomalies (Fig. S2), resulting in
240 a wetter and warmer year than normal and compared to 2021 and 2022 (Fig. 2). Daily wind speed was generally low ($<1 \text{ m s}^{-1}$)
241 except for a windier period in spring 2022 (up to 5.8 m s⁻¹, corresponding to the Eunice storm) and in fall 2023 (up to 9.7
242 m s⁻¹, corresponding to the Ciarán storm) (Fig. S2).

243 The four sampled ponds are situated in the periphery of the city of Brussels, with the Silex pond bordered by the Sonian
244 Forest (Fig. 1). The four ponds are relatively small (0.7-3.2 ha) and shallow (0.6-1.4 m) and have not been drained or
245 dredged since at least 2018 (Table S2). The four studied ponds had significantly different Chl-*a* concentration values during
246 summer, with the Leybeek pond having higher Chl-*a* ($78.8 \pm 49.5 \text{ } \mu\text{g L}^{-1}$), followed by the Pêcheries pond ($19.1 \pm 13.7 \text{ } \mu\text{g L}^{-1}$),
247 the Tenreuken pond ($3.3 \pm 2.4 \text{ } \mu\text{g L}^{-1}$), and the Silex pond ($1.0 \pm 1.2 \text{ } \mu\text{g L}^{-1}$) (Figs. 1, 3, Table S3). The Leybeek and Pêcheries

248 ponds with higher summer Chl-*a* concentration had turbid-water (summer TSM = 48.7±36.2 and 13.7±10.7 mg L⁻¹,
249 respectively), and undetectable submerged macrophyte cover in summer (Fig. 1, Table S1). The Tenreuken and Silex ponds
250 with lower summer Chl-*a* concentrations had clear-water (summer TSM = 4.9±3.2 and 4.0±3.2 mg L⁻¹, respectively), and a
251 high total macrophyte cover during summer (68 and 100%, respectively, Fig. 1, Table S1). Seasonally, the highest values of
252 Chl-*a* were observed in summer in the turbid-water Leybeek and Pêcheries ponds, related to algal blooms. Conversely,
253 lowest values of Chl-*a* were observed in summer in the clear-water Tenreuken and Silex ponds (Figs. 1, 3), probably related
254 to competition for inorganic nutrients from macrophytes.

255 The %O₂ values ranged from 11 to 191% (Fig. 3). The highest %O₂ values in the four ponds were observed in spring and
256 summer compared to fall and winter owing to aquatic primary production. In summer, %O₂ was significantly higher in the
257 Leybeek pond (109±46%) characterized by higher Chl-*a* concentration compared to the Pêcheries pond (75±23%, p=0.0212,
258 Table S3). The lowest average %O₂ was observed in fall in the Pêcheries pond (46±22%) and was significantly lower than in
259 the Leybeek (85±34%, p=0.0146, Table S3) and Silex ponds (81±19%, p=0.0130, Table S3).

260 The pCO₂ values ranged from 40 to 13,804 ppm (Fig. 3). Undersaturation of CO₂ with respect to atmospheric equilibrium
261 was only observed on five occasions out of the 187 measurements, three times in the turbid-water Leybeek pond in summer
262 (40 ppm on 13 August 2021, 220 ppm on 27 June 2022 and 149 ppm on 13 June 2023), and twice in the clear-water
263 Tenreuken pond in spring and summer (383 ppm on 13 August 2021 and 55 ppm on 2 May 2022). Low values of pCO₂ were
264 generally observed in spring and summer and high values of pCO₂ were observed in fall in the four ponds (Fig. 3). In
265 summer, pCO₂ was lower in the Leybeek pond (2187±2012 ppm) than in the Pêcheries (3427±1672 ppm, p=0.0015, Table
266 S3), and Silex (3222±1175 ppm, p=0.0002, Table S3) ponds. When data were pooled together, pCO₂ was correlated
267 negatively with %O₂, and positively with both DIN and SRP, and with precipitation (Table S4). In individual ponds, pCO₂
268 correlated negatively with %O₂ and positively with precipitation in the four ponds, positively with DIN in the Leybeek pond,
269 with DIN and SRP in the Tenreuken pond, and negatively with Chl-*a* in the Silex pond (Table S5).

270 The CH₄ dissolved concentrations ranged from 194 to 48,380 nmol L⁻¹ (Fig. 3) and was always above saturation. High
271 values of CH₄ dissolved concentrations were generally observed in spring and summer and low values of CH₄ dissolved
272 concentrations were generally observed in winter in the four ponds (Fig. 3). In summer, CH₄ dissolved concentration was
273 higher in the Silex pond (4898±3384 nmol L⁻¹) than in the Pêcheries (2518±2105 nmol L⁻¹, p=0.0385, Table S3) and
274 Tenreuken (2189±1365 nmol L⁻¹, p=0.0055, Table S3) ponds. When data were pooled together, dissolved CH₄ concentration
275 was positively correlated with water temperature (Table S4). In individual ponds, CH₄ dissolved concentration was
276 positively correlated with water temperature in the four ponds (Table S5). Additionally, CH₄ dissolved concentration was
277 correlated positively with precipitation in the Leybeek pond, negatively with DIN in the Pêcheries pond, negatively with
278 Chl-*a* in the Tenreuken pond, and negatively with Chl-*a* and positively with SRP in the Silex pond (Table S5). These
279 relationships between CH₄ and other variables probably indirectly reflect the seasonal variations of these other variables that
280 also correlated with water temperature. DIN was correlated negatively with water temperature in the Pêcheries pond, Chl-*a*
281 was negatively correlated with temperature in the Tenreuken pond, and SRP was positively and Chl-*a* negatively correlated
282 with water temperature in the Silex pond (Table S6).

283 The %N₂O values ranged from 32 to 826% (Fig. 3). Undersaturation of N₂O with respect to atmospheric equilibrium was
284 observed 66 times out of the 187 measurements. Low values of %N₂O were generally observed in spring and summer and
285 high values of %N₂O were generally observed in fall and winter in the four ponds (Fig. 3). During spring, the %N₂O was
286 lower in the Pêcheries pond (90±11%) than the Leybeek (138±30%, p=0.0043, Table S3) and the Tenreuken (138±41,

287 p=0.0057, Table S3) ponds. During summer, the %N₂O was lower in the Pêcheries pond (78±17%) than the Leybeek
288 (191±104%, p<0.0001, Table S3) and the Silex (126±49%, p=0.001, Table S3) pond, and lower in the Tenreuken pond
289 (133±106%) than the Leybeek pond (p=0.0219, Table S3). During fall, %N₂O was lower in the Pêcheries pond (103±33%)
290 than the Leybeek pond (190±70%, p=0.0174, Table S3). For the all sampling period, %N₂O was lower in the Pêcheries pond
291 (94±28%) than the Leybeek (178±82 %, p<0.0001, Table S7), Tenreuken (140±77%, p<0.0001, Table S7) and Silex
292 (144±113%, p<0.0001, Table S7) ponds, and was lower in the Tenreuken pond than the Leybeek pond (p=0.0038, Table S7).
293 When data were pooled together, %N₂O was correlated negatively with water temperature and positively with DIN and NH₄⁺
294 (Table S4). In individual ponds, %N₂O was negatively correlated with water temperature in the Leybeek, Pêcheries, and
295 Tenreuken ponds (Table S5). %N₂O was positively correlated with NO₃⁻ in the Leybeek pond and with NH₄⁺ in the Pêcheries
296 and Tenreuken ponds (Table S8). %N₂O was positively correlated with Chl-*a* and TSM in the Tenreuken pond, and
297 negatively with Chl-*a* in the Leybeek pond (Table S5), probably reflecting the negative correlation of Chl-*a* and TSM with
298 water temperature in the Tenreuken pond and the positive correlation of Chl-*a* with water temperature in the Leybeek pond
299 (Table S6).

300 3.2. Drivers of bubble flux

301 The bubble flux measured with inverted funnels in the four sampled ponds in the city of Brussels ranged between 0 and 2078
302 ml m⁻² d⁻¹ and was positively correlated with water temperature (Fig. 4). The mean CH₄ content of the bubbles in the four
303 sampled ponds in the city of Brussels was 31±21%, and values were positively correlated with water temperature (Fig. 4).
304 The CH₄ content of the bubbles was correlated with bubble flux (Fig. S3) as both variables correlated positively with water
305 temperature (Fig. 4).

306 The bubble fluxes were measured during more lengthy series at the Silex pond than the other three ponds for logistical
307 reasons allowing investigating the effects of water temperature and atmospheric pressure variations on bubble fluxes in more
308 detail. In spring 2022, the bubble flux at the Silex pond increased during events of drops in atmospheric pressure
309 (depressions) (Fig. 5). There was no relation between wind speed and peaks of bubble flux ($r^2 = 0.01$, p=0.4629), suggesting
310 a more important role of changes of atmospheric pressure than wind speed in the Silex pond in spring 2022. The bubble flux
311 at the Silex pond was higher in summer (1152±433 mL m⁻² d⁻¹) than during spring (198±170 mL m⁻² d⁻¹) and the temporal
312 changes of bubble fluxes tracked those of water temperature (Fig. 5). The bubble flux was modelled as function of water
313 temperature alone or as function of both water temperature and atmospheric pressure changes (Figs. 5, S4). For periods of
314 low temperature (<15°C), the inclusion of the term of air pressure drops in the model improved the performance of the
315 model by comparison to the measurements (Figs. 5, S4). But for warmer periods (>15°C), when bubbling fluxes were
316 quantitatively more important, the inclusion of the term of air pressure drops in the model did not improve the performance
317 of the model (Figs. 5, S4). For the full temperature range (<15°C and >15°C), the inclusion of the term of air pressure drops
318 only improved the performance of the model very marginally (Fig. S4).

319 3.3. Drivers of methane ebullitive fluxes

320 Ebullitive CH₄ fluxes in the four ponds ranged between 0 and 59 mmol m⁻² d⁻¹ and were positively related to water
321 temperature (Fig. 6). The fitted relations between ebullitive CH₄ fluxes and water temperature were specific to each pond
322 and encompassed the fitted relations established in similar systems: four small ponds in Québec (DelSontro et al., 2016) and
323 a small urban pond in the Netherlands (Aben et al., 2017). The Q₁₀ of CH₄ ebullition values ranged between 4.4 in the deeper
324 Pêcheries pond and 26.9 in the shallower Leybeek pond, respectively (Table S9). The Q₁₀ of CH₄ ebullition in the four

325 studied ponds of the city of Brussels, in Québec (DelSontro et al., 2016), and in the Netherlands (Aben et al., 2017) were
326 negatively related to water depth (Fig. 6).

327 **3.4. Relative contribution of methane ebullitive and diffusive fluxes**

328 Diffusive CH₄ fluxes computed from dissolved CH₄ concentration and *k* derived from wind speed ranged between 0.1 and
329 19.7 mmol m⁻² d⁻¹ (Fig. 7). The diffusive CH₄ fluxes tended to be higher in summer and spring than in fall and winter owing
330 to the strong positive dependency between CH₄ dissolved concentration and water temperature (Fig. 3; Tables S4, S5). In
331 addition, wind speed only showed small seasonal variations during sampling (0.6±0.6 m s⁻¹ in spring, 0.3±0.2 m s⁻¹ in
332 summer, 0.7±0.7 m s⁻¹ in fall, and 0.6±0.2 m s⁻¹ in winter) (Fig. S2). Ebullitive CH₄ fluxes were calculated from the relations
333 with water temperature for each pond given in Figure 6 from the water temperature data coincident with the diffusive CH₄
334 fluxes (Fig. 7). The resulting calculated ebullitive CH₄ fluxes allowed to compare and integrate seasonally both components
335 of CH₄ emissions to the atmosphere, and to calculate the relative contribution of ebullition to total (diffusive+ebullitive) CH₄
336 emissions. The relative contribution of ebullition to total CH₄ emissions ranged between 1 and 99% in the four sampled
337 ponds in the city of Brussels (Fig. 7) and was positively correlated to water temperature (Fig. S5). The values of Q₁₀ of
338 diffusive CH₄ fluxes were lower than those for ebullitive CH₄ fluxes in each pond, and less variable (1.2 in the Pêcheries
339 pond to 2.9 in the Silex pond) (Table S9).

340 The annually averaged diffusive and ebullitive fluxes of CH₄ in the four ponds in the city of Brussels were plotted against
341 annually averaged Chl-*a* concentration, total macrophyte cover in summer, water depth, and lake surface area (Fig. 8) that
342 are frequent predictors of variations of CH₄ fluxes among lakes (Holgerson and Raymond, 2016; DelSontro et al., 2018,
343 Deemer and Holgerson, 2021; Casas-Ruiz et al., 2021; Borges et al., 2022). The annually averaged ebullitive CH₄ fluxes
344 were significantly higher in the two clear-water ponds (7.3±2.9 and 13.4±3.7 mmol m⁻² d⁻¹ in the Tenreuken and Silex ponds,
345 respectively) than the two turbid-water ponds (3.8±3.2 and 2.5±1.4 mmol m⁻² d⁻¹ in the Leybeek and Pêcheries ponds,
346 respectively) (Table S7). The annually averaged ebullitive CH₄ fluxes were significantly higher in the Silex pond, that
347 showed a higher macrophyte cover during summer (100% in the Silex pond and 68% in the Tenreuken pond), than the
348 Tenreuken pond (p<0.0001, Table S7) and were not significantly different in the two turbid-water Leybeek and Pêcheries
349 ponds (p=0.0617, Table S7) that showed similar macrophyte cover during summer (6 and 9% in the Leybeek and Pêcheries
350 ponds, respectively) (Fig. 8). The annually averaged ebullitive CH₄ fluxes were overall positively correlated with
351 macrophyte cover and negatively correlated with Chl-*a* (Fig. 8).

352 In the four sampled urban ponds, annually averaged CH₄ diffusive fluxes were higher in the pond with the highest total
353 macrophyte cover in the clear-water ponds, and higher in the pond with the highest Chl-*a* concentration in the turbid-water
354 ponds (Fig. 8). The annually averaged relative contribution of ebullition to total CH₄ emissions were higher in the two clear-
355 water ponds than the two turbid-water ponds (Table S7). The relative contribution of ebullitive CH₄ fluxes to the total CH₄
356 flux seems to increase concomitantly with the macrophyte cover (Fig. 8), and was overall positively correlated with
357 macrophyte cover and negatively to Chl-*a* (Fig. 8).

358 The annually averaged diffusive fluxes of CO₂ (F_{CO2}) and N₂O (F_{N2O}) in the four ponds in the city of Brussels were also
359 plotted against annually averaged Chl-*a* concentration, total macrophyte cover in summer, water depth, and lake surface area
360 (Fig. S6). Annually averaged F_{CO2} were lower in the Leybeek pond than the Pêcheries and Silex ponds (Table S7). F_{CO2} did
361 not significantly correlate with the other variables (Chl-*a* concentration, total macrophyte cover, water depth, and lake
362 surface area) (Fig. S6). Annually averaged F_{N2O} was not significantly different between clear-water and turbid-water ponds.

363 F_{N2O} was significantly lower in the slightly deeper Pêcheries pond than the two slightly shallower Leybeek and Silex ponds
364 (Table S7), and F_{N2O} showed a significant negative relationship with water depth (Fig. S6).

365 **3.5. Relative contribution of CO₂, CH₄ and N₂O emissions**

366 The emissions in CO₂-eq for the 3 GHGs averaged per season for both 2022 and 2023 peaked seasonally in summer with 2.9
367 and 1.7 mg CO₂-eq m⁻² d⁻¹ in the Silex and the Tenreuken ponds, respectively, and 1.1 mg CO₂-eq m⁻² d⁻¹ in the Leybeek
368 pond (Fig. 9). The GHG fluxes in CO₂-eq peaked in fall in the Pêcheries pond, with 1.3 mg CO₂-eq m⁻² d⁻¹. The higher value
369 of the total GHG emissions in fall compared to other seasons in the Pêcheries pond was due to an increase of CO₂ emissions
370 in fall that surpassed the peak of CH₄ emissions in summer. The GHG fluxes were the lowest in winter with 1.3 and 0.9 mg
371 CO₂-eq m⁻² d⁻¹ in the Silex and the Tenreuken ponds, respectively, and 0.8 and 0.6 mg CO₂-eq m⁻² d⁻¹ in the Pêcheries and the
372 Leybeek ponds, respectively. The relative contribution of ebullitive CH₄ fluxes peaked in summer in all four ponds,
373 73.8% and 70.9% in the Silex and the Tenreuken ponds, respectively, and 23.6% and 58.3% in the Pêcheries and the
374 Leybeek ponds, respectively. The relative contribution of ebullitive CH₄ fluxes was the lowest in winter with 22.1% and
375 10.0% in the Silex and the Tenreuken ponds, respectively, and 6.7% and 1.0% in the Pêcheries and the Leybeek ponds,
376 respectively.

377 The annual emissions in CO₂-eq of the three GHGs (CO₂, CH₄, and N₂O) in 2022 and 2023 were higher in the two clear-
378 water ponds (1.3±0.5 and 1.8±0.9 mg CO₂-eq m⁻² d⁻¹ in the Tenreuken and Silex ponds, respectively) than in the two turbid-
379 water ponds (1.0±0.2 and 0.9±0.5 mg CO₂-eq m⁻² d⁻¹ in the Leybeek and Pêcheries ponds, respectively) (Fig. 9) due to higher
380 total CH₄ emissions (diffusive+ebullitive) in clear-water ponds (0.7±0.4 and 1.2±0.5 mg CO₂-eq m⁻² d⁻¹ in the Tenreuken and
381 Silex ponds, respectively) than in turbid-water ponds (0.2±0.2 and 0.4±0.3 mg CO₂-eq m⁻² d⁻¹ in the Leybeek and Pêcheries
382 ponds, respectively). The contribution of N₂O to the total GHG emissions was marginal and did not affect the differences in
383 total GHG fluxes between ponds, with the highest contribution observed in the Leybeek pond, with a contribution of 1.7%.

384 The majority of GHG emissions in CO₂-eq was related to CO₂ and CH₄ (diffusive+ebullitive) in the four ponds. In turbid-
385 water ponds CO₂ represented the largest fraction of GHG emissions (68.5% (2022) and 79.3% (2023) in the Pêcheries pond,
386 and 49.0% (2022) and 58.3% (2023) in the Leybeek pond). In clear-water ponds CH₄ represented the largest fraction of
387 GHG emissions (66.5% (2022) and 63.3% (2023) in the Silex pond, and 60.8% (2022) and 50.0% (2023) in the Tenreuken
388 pond). The higher annual GHG emissions in CO₂-eq from the two clear-water ponds than the turbid-water ponds were
389 related to the higher contribution of ebullitive CH₄ fluxes.

390 The annual GHG fluxes increased from 2022 to 2023 due to an increase in relative contribution of CO₂ diffusive emissions
391 in all four ponds. Diffusive CO₂ emissions averaged annually in all four ponds 0.5 mg CO₂ m⁻² d⁻¹ in 2022 and 0.7 mg CO₂
392 m⁻² d⁻¹ in 2023. Diffusive CO₂ emissions were 2.1 times higher in summer 2023 than in summer 2022, and 2.5 times higher
393 in fall 2023 than in fall 2022, and showed similar values between 2023 and 2022 in spring and winter (1.1 higher and 1.1
394 lower, respectively).

395 **4. Discussion**

396 The Leybeek and Pêcheries ponds are turbid-water systems (high Chl-*a* and TSM values, low submerged macrophyte cover)
397 and the Tenreuken and Silex ponds are clear-water systems (low Chl-*a* and TSM values, high submerged macrophyte cover)
398 (Figs. 1, 3). All four ponds have a relatively similar size (0.7 to 3.2 ha) and depth (0.5 to 1.4 m) and are uniformly located in
399 an urban landscape in the city of Brussels. It can be assumed that, among the four systems, the major difference that is

400 expected to affect GHG emissions is the dominance of aquatic primary producer, either phytoplankton or macrophytes,
401 corresponding to two alternative states *sensu* Scheffer et al. (1993). Our data-set provides the opportunity to test the effect of
402 the two alternative states on GHG emissions from small lentic systems.

403 The reported pCO₂ values (40 to 13,804 ppm) (Fig. 3) in the four ponds in the city of Brussels were within the range of
404 values typically observed in ponds (Holgerson and Raymond, 2016; Peacock et al., 2019; Audet et al., 2020) (Fig. 3). The
405 pCO₂ values were correlated negatively with %O₂ and positively with DIN and SRP across seasons (Tables S4, S5) showing
406 that their seasonal variability was driven by aquatic primary production and degradation of organic matter (*e.g.* Holgerson
407 2015). Low values of pCO₂ were generally observed in spring and summer probably due to uptake of CO₂ by primary
408 production from either phytoplankton or submerged macrophytes. High values of pCO₂ were observed in fall in the four
409 ponds and probably reflect the release of CO₂ from degradation of organic matter due to the senescence of phytoplankton or
410 macrophytes (Fig. 3). In all four ponds, pCO₂ values were positively correlated with precipitation (Tables S4, S5) suggesting
411 an additional control of external inputs of carbon either as organic carbon sustaining internal degradation of organic matter
412 or as soil CO₂ (*e.g.* Marotta et al., 2010; Ojala et al., 2011; Rasilo et al., 2012; Vachon and del Giorgio, 2014; Holgerson,
413 2015). The %N₂O values (32 to 826%) (Fig. 3) in the four ponds were within the range typically observed in ponds (Audet et
414 al., 2020; Rabaey and Cotner, 2022). When pooled all the data together, %N₂O was positively correlated with DIN (Table
415 S4) as frequently reported by other studies in ponds and interpreted as a control of nitrification and/or denitrification (hence
416 N₂O production) by DIN levels (Audet et al., 2020; Webb et al., 2021; Wang et al., 2021; Xie et al., 2024). The negative
417 correlation between %N₂O with temperature (Table S4) might reflect the effect of the inhibition at low temperatures of the
418 final step of denitrification leading to an accumulation of N₂O (Velthuis and Veraart, 2022) but could also indirectly result
419 from the higher DIN values at low temperatures (Table S6). The CH₄ dissolved concentrations (194 to 48,380 nmol L⁻¹) (Fig.
420 3) in the four ponds were within the range of values typically observed in ponds (Natchimuthu et al., 2014; Holgerson and
421 Raymond, 2016; Peacock et al., 2019; Audet et al., 2020; Rabaey and Cotner, 2022; Ray et al., 2023), and were positively
422 correlated with water temperature in all four ponds and when pooled all the data together (Tables S4, S5), most probably
423 reflecting the increase of sedimentary methanogenesis with temperature (Schulz and Conrad, 1996).

424 Temperature also exerted a strong control on bubble flux from sediments and ebullitive CH₄ emissions. The bubble flux
425 values (0 and 2078 ml m⁻² d⁻¹) in the four sampled ponds (Fig. 4) were within the range of values reported in lentic systems
426 of equivalent size by Wik et al. (2013) (0 to 2772 mL m⁻² d⁻¹), Delsontro et al. (2016) (11 to 748 mL m⁻² d⁻¹), and Ray and
427 Holgerson (2023) (0 to 2079 mL m⁻² d⁻¹). The bubble flux was positively correlated with water temperature (Fig. 4) in
428 agreement with previous studies (*e.g.* Wik et al., 2013; DelSontro et al., 2016; Aben et al., 2017; Ray and Holgerson, 2023).
429 Bubbling events from lake sediments are known to also be triggered by a decrease of hydrostatic pressure on the sediments
430 due to water level fluctuations or drops in atmospheric pressure (Tokida et al., 2007; Scandella et al., 2011; Varadharajan
431 and Hemond, 2012; Wik et al., 2013; Taoka et al., 2020; Zhao et al., 2021). In the Silex pond, in spring 2022, some peaks in
432 bubble fluxes were related to drops in atmospheric pressure (Fig. 5) but unrelated to wind speed ($r^2 = 0.01$, $p=0.4629$) as
433 shown in Gatun Lake (Keller and Stallard, 1994). A statistical model of the bubble flux that included the contributions of
434 water temperature and air pressure drops was used to quantify the relative importance of each of these two drivers (Fig. S4).
435 The contribution of the air pressure drop seemed quantitatively important only at low water temperature (<15°C) and was
436 negligible at higher water temperature (>15°C) (Fig. S4). The inclusion of the term of air pressure drops only improved the
437 performance of the model compared to the original data very marginally when comparing across the full water temperature
438 range (<15°C and >15°C) (Fig. S4), showing that the intensity of bubble flux was mainly driven by temperature change at

439 yearly scales, in agreement with previous studies (e.g. Wik et al., 2013; DelSontro et al., 2016; Aben et al., 2017; Ray and
440 Holgerson, 2023).

441 The mean CH₄ content of the bubbles (31±21%) in the four sampled ponds in the city of Brussels was comparable to the
442 values obtained by Wik et al. (2013) (35±25%), DelSontro et al. (2016) (58±25%), and Ray and Holgerson (2023) (25±13%)
443 in lentic systems of equivalent size. The increasing pattern of the CH₄ content of the bubbles with water temperature (Fig. 4)
444 was most probably related to the strong dependence of methanogenesis on temperature (Schulz and Conrad, 1996). The
445 increase of methanogenesis with temperature leads to the build-up of gas bubbles in sediments that are richer in CH₄, and
446 consequently to higher bubble fluxes with a higher CH₄ content at higher temperatures (Figs. 4, S3). Since both bubble flux
447 and the CH₄ content of the bubbles increased with water temperature (Fig. 4), the ebullitive CH₄ fluxes in the four ponds
448 were also positively related to water temperature (Fig. 6) as shown previously in other small lentic systems (e.g. Wik et al.,
449 2013; DelSontro et al., 2016; Natchimuthu et al., 2016; Aben et al., 2017; Ray and Holgerson, 2023; Rabaey and Cotner,
450 2024). Yet, the dependency of CH₄ ebullition on temperature (Q_{10}) was different among the four ponds and was negatively
451 related to depth including data from systems in Québec (DelSontro et al., 2016) and the Netherlands (Aben et al., 2017) (Fig.
452 6). This implies that an increase in water temperature leads to a smaller increase in CH₄ ebullitive fluxes (lower Q_{10}) in
453 deeper ponds as the impact of hydrostatic pressure on sediments is higher in deeper ponds compared to shallow ponds,
454 restricting bubble formation and release (e.g. DelSontro et al., 2016). This dependence of Q_{10} of CH₄ ebullition to depth
455 suggests that the response of CH₄ ebullition to heatwaves (or longer-term warming) might be more intense the shallower the
456 pond, in addition to other effects from heat-waves on GHG emissions (e.g. Audet et al., 2017).

457 The values of Q_{10} for diffusive CH₄ fluxes in the four ponds were lower than those for ebullitive CH₄ fluxes (Table S9) as
458 reported by other studies in lentic systems (DelSontro et al., 2016; Xun et al., 2024). The lower dependence to water
459 temperature of diffusive CH₄ fluxes compared to ebullitive CH₄ fluxes might be related to a lower relative change of CH₄
460 concentrations and k with the variation of water temperature. CH₄ concentrations in surface waters of lentic systems are
461 strongly affected by microbial methane oxidation (e.g. Bastviken et al., 2002). A relative increase of CH₄ production in
462 sediments by methanogenesis might lead to a stronger increase of CH₄ emission by ebullition than by diffusion because of a
463 mitigation by methane oxidation on CH₄ diffusive fluxes. Additionally, k depends on wind speed, but in the four ponds, the
464 warmer periods of the year (summer) tended to be less windy ($\sim 0.3 \text{ m s}^{-1}$) than the other seasons ($> 0.6 \text{ m s}^{-1}$) also
465 contributing to a lower dependence on water temperature of CH₄ diffusive fluxes compared to ebullitive fluxes and lower
466 Q_{10} values.

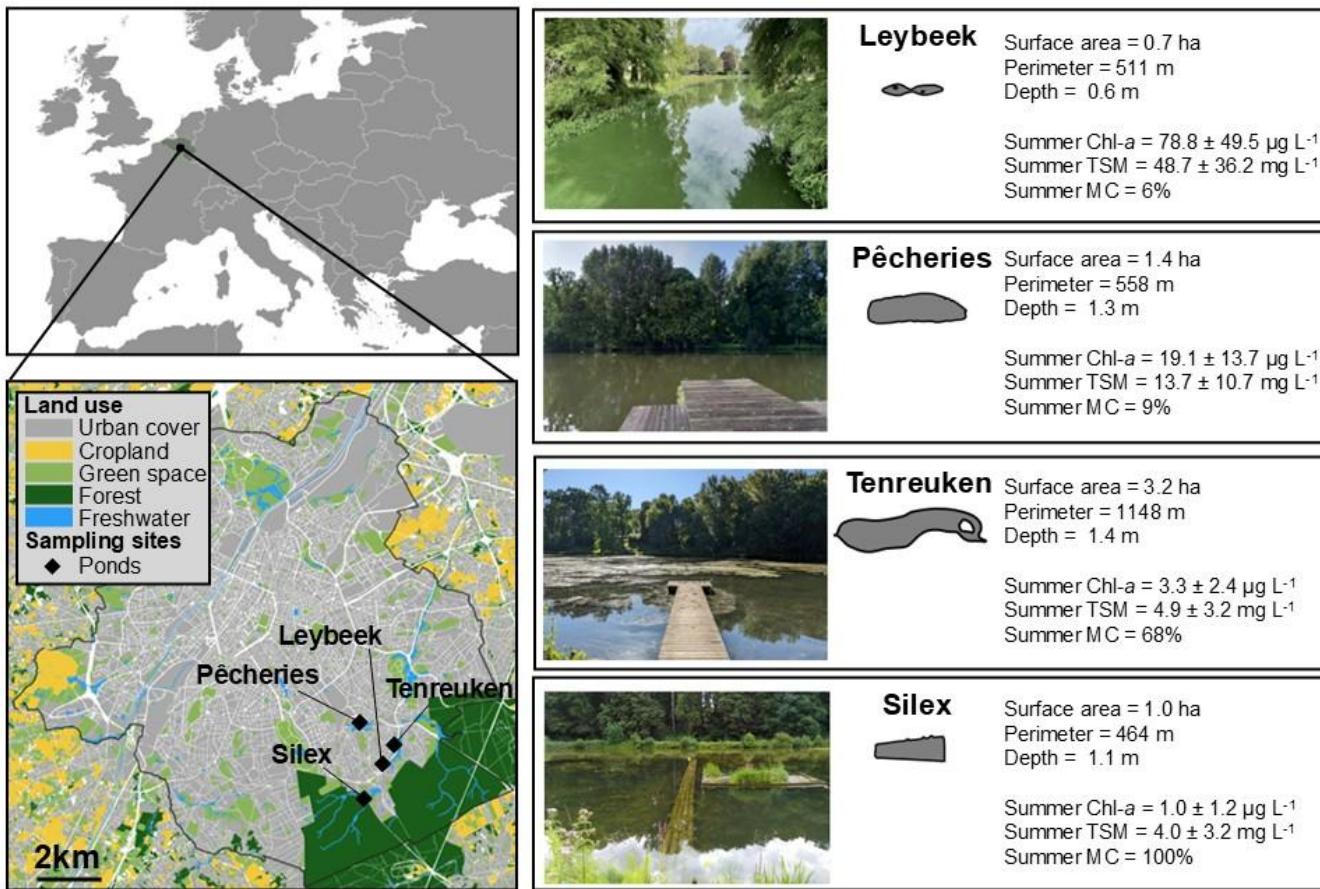
467 The difference in the Q_{10} of diffusive and ebullitive CH₄ fluxes was consistent with a variable contribution of the diffusive
468 and ebullitive CH₄ fluxes seasonally as a function of water temperature, with the contribution of ebullitive CH₄ fluxes
469 strongly increasing with water temperature in the four ponds (Fig. S5). At annual scale, ebullitive CH₄ fluxes represented
470 between 55% and 83% of the total CH₄ emissions in the Leybeek and Silex ponds, respectively. This finding is consistent
471 with other studies showing that ebullitive CH₄ fluxes can account for more than half of total CH₄ emissions in small and
472 shallow lentic systems (e.g. Wik et al., 2013; Deemer and Holgerson, 2021; Ray and Holgerson, 2023; Rabaey and Cotner,
473 2024). The averaged ebullitive CH₄ emissions were higher in the two clear-water ponds ($10.4 \text{ mmol m}^{-2} \text{ d}^{-1}$) than the two
474 turbid-water ponds ($3.2 \text{ mmol m}^{-2} \text{ d}^{-1}$) (Fig 7). The averaged ebullitive CH₄ emissions in the four ponds were positively
475 correlated with macrophyte cover and negatively correlated with Chl-*a* (Fig. 8). The higher ebullitive CH₄ emissions from
476 the two clear-water ponds would suggest that the delivery of organic matter to sediments from macrophytes sustained a
477 quantitatively larger methane production than from phytoplankton. This finding is consistent with the notion that vegetated

478 littoral zones of lakes are hot spots of CH₄ production and emission (e.g. Hyvönen et al., 1998; Huttunen et al., 2003;
479 Juutinen et al., 2003; Desrosiers et al., 2022). CH₄ fluxes in lentic systems have been scaled at globally scale assuming a
480 dependency on aquatic productivity using Chl-*a* as a predictor (e.g. DelSontro et al., 2018). The negative relation between
481 CH₄ ebullitive fluxes with Chl-*a* shows that Chl-*a* concentration alone fails to predict ebullitive fluxes in macrophyte-
482 dominated clear-water ponds.

483 The annually averaged diffusive CH₄ emissions in the four ponds seemed to respond positively to both increasing
484 phytoplankton and macrophyte biomass resulting in a U-shaped relation between diffusive CH₄ emissions and Chl-*a* as well
485 as macrophyte cover (Fig. 8). Higher values of annually averaged CH₄ diffusive fluxes occurred at the extreme values of
486 Chl-*a* or of macrophyte cover (minimum or maximum), and lower values occurred at the intermediate values of Chl-*a* or
487 macrophyte cover. Such U-shape relation resulted from the anti-correlation between macrophyte cover and Chl-*a* (alternative
488 states) and is consistent with reported positive relation between diffusive CH₄ fluxes with both macrophyte cover (e.g. Ray et
489 al., 2023; Theus et al., 2023) as well as with phytoplankton biomass (e.g. DelSontro et al., 2018; Yan et al., 2019;
490 Bartosiewicz et al., 2021). The relative contribution of ebullitive CH₄ fluxes to the total annual CH₄ flux increased with the
491 macrophyte cover (Fig. 8), in agreement with the idea of an increase of CH₄ ebullition relative to diffusive CH₄ emissions in
492 vegetated sediments compared to unvegetated sediments (e.g. Desrosiers et al., 2022; Ray et al., 2023; Theus et al., 2023).

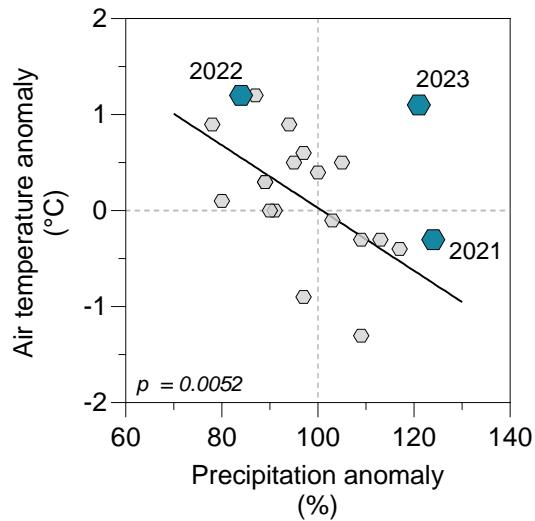
493 Fluxes of CH₄ and CO₂ have been reported to be negatively related to surface area and depth by numerous studies in ponds
494 (e.g. Holgerson, 2015; Holgerson and Raymond, 2016; Ray et al., 2023; Theus et al., 2023) and lakes (e.g. Kankaala et al.,
495 2013; DelSontro et al., 2018, Deemer and Holgerson, 2021; Casas-Ruiz et al., 2021; Borges et al., 2022). Annual diffusive
496 F_{CH₄} and F_{CO₂} were both unrelated to surface area and depth in the four studied ponds (Figs. 8, S6) resulting from the narrow
497 range of variation of water depth (0.6 to 1.4 m) and surface area (0.7 to 3.2 ha). The lack of correlation between annual F_{CO₂}
498 and both Chl-*a* and macrophyte cover in the four ponds (Fig. S6) might be surprising since other studies have reported lower
499 CO₂ fluxes in more productive lentic systems (e.g. Sand-Jensen and Staehr, 2007; Borges et al., 2022). We hypothesize that
500 given that the four systems were either phytoplankton-dominated or macrophyte-dominated (alternative states), the ponds
501 had an important submerged productivity, in both cases, resulting in a relatively invariant F_{CO₂} as function of either Chl-*a* or
502 macrophyte cover. Annual F_{N₂O} was negatively correlated with water depth (Fig. S6) which we hypothesize might reflect a
503 larger dilution of N₂O diffusing from sediments in the deeper systems.

504 Global average emissions of GHGs in CO₂-eq from inland waters are dominated by CO₂ followed by CH₄ with a small
505 contribution from N₂O according to Lauerwald et al. (2023). However, in small lentic systems such as ponds, the
506 contribution of CH₄ to CO₂-eq emissions can match (e.g. Webb et al., 2023) or dominate (e.g. Ray and Holgerson, 2023;
507 Rabaey and Cotner, 2024) the one of CO₂. The meta-analysis of Holgerson and Raymond (2016) suggested that the CO₂ and
508 CH₄ emissions in CO₂-eq are numerically close in small lentic systems such as ponds but become increasingly dominated by
509 CO₂ emissions with the augmentation of lake size. In the four studied ponds, the GHG emissions in CO₂-eq were dominated
510 by CO₂ and CH₄ with a marginal contribution (<1%) from N₂O (Fig. 9). Annually, CO₂ represented the largest fraction of
511 GHG emissions in CO₂-eq (~60%) in turbid-water ponds (Leybeek and Pêcheries), while CH₄ represented the largest
512 fraction of GHG emissions in CO₂-eq (~60%) in clear-water ponds (Silex and Tenreuken) as a result of higher ebullitive CH₄
513 fluxes in the clear-water ponds (Fig. 7).

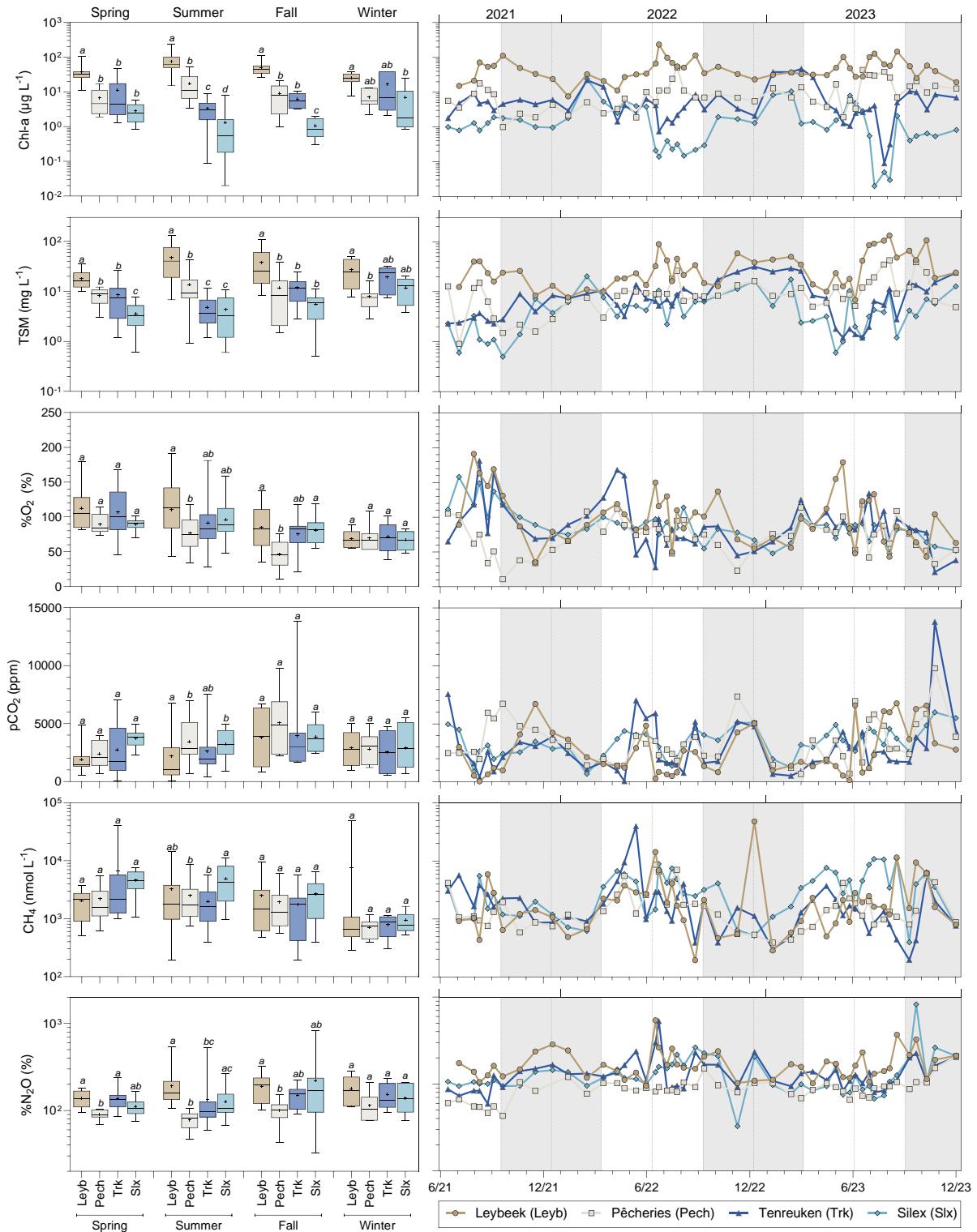

514 The annual GHG emissions in CO₂-eq increased from 2022 to 2023 due to an increase in the relative contribution of CO₂
515 diffusive emissions in all four ponds (Fig. 9) as a result of higher precipitations in 2023 (Fig. 2). Air temperatures were
516 similar in both years (annual average of 12.2°C in 2022 and 12.1°C in 2023), and precipitations were 1.5 times higher in

517 2023 than in 2022. Higher precipitations are likely to increase the inputs of organic and inorganic carbon from soils to ponds
518 by ground-waters, soil-waters, and surface runoff, as previously shown in other lentic systems (*e.g.* Marotta et al., 2011;
519 Ojala et al., 2011; Rasilo et al., 2012; Vachon and del Giorgio, 2014; Holgerson, 2015). While this hypothesis is only based
520 on the comparison of two years, the increase of the relative contribution of CO₂ diffusive emissions in 2023 was observed in
521 all four ponds which suggests a common uniform driver that would be consistent with a large variation weather such as
522 annual precipitation. The El Niño event in 2023 induced low-level cyclonic wind anomalies and higher precipitation over
523 Western Europe, including Belgium (Chen et al., 2024).

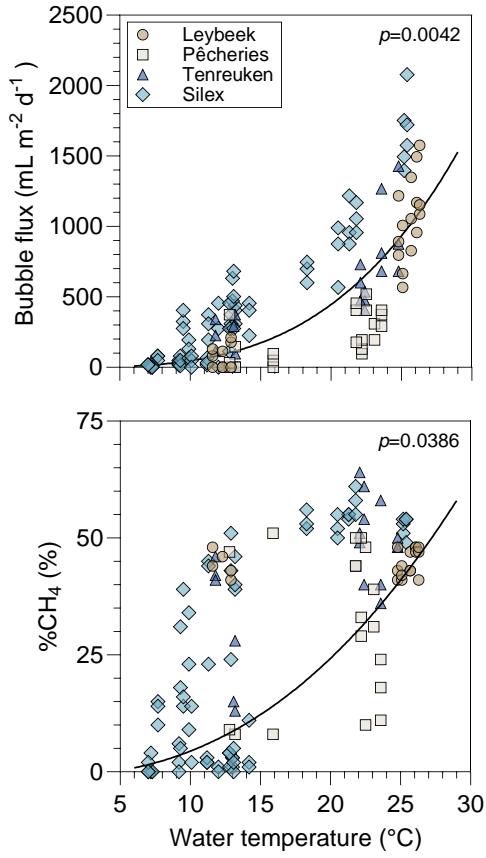
524 **5. Conclusions**


525 Ebullitive CH₄ emissions in 2022-2023 were higher in the two clear-water macrophyte-dominated ponds (Tenreuken and
526 Silex) than in the two turbid-water phytoplankton-dominated ponds (Pêcheries and Leybeek) of the city of Brussels,
527 although, the diffusive CH₄ fluxes were not systematically significantly different between the clear-water ponds and the
528 turbid-water ponds. The annually averaged diffusive N₂O and CO₂ fluxes were not significantly different in the two clear-
529 water ponds from those in the two turbid-water ponds. Other studies have found no difference in N₂O sedimentary
530 production in lakes with high and low density of submerged macrophytes. We hypothesize that CO₂ fluxes were relatively
531 invariant among the four sampled ponds because of they were of similar size and depth, and that they were all equivalently
532 productive irrespective of whether from phytoplankton or submerged macrophytes. The total (diffusive and ebullitive) CH₄
533 emissions represented 58% of total annual GHG emissions in CO₂-eq in the two clear-water ponds compared to 41% in the
534 two turbid-water ponds. CO₂ represented nearly all the remainder of total annual GHG emissions in CO₂-eq, and N₂O
535 represented a very marginal fraction (<1%).

536 The seasonal variations of GHG emissions were dominated by CH₄ ebullitive seasonal variations that peaked in summer
537 (both quantitatively and relatively), as CH₄ ebullition was strongly related to water temperature resulting from an increase
538 with water temperature in both flux of bubble and CH₄ content of bubble. The pCO₂ values in the four sampled ponds
539 increased with precipitation at seasonal scale, probably in relation to higher inputs of organic and inorganic carbon by
540 surface runoff. Years 2022 and 2023 were abnormally dry and wet, respectively, and consequently, the GHG emissions were
541 higher in 2023 mainly due to an increase in the relative contribution of CO₂ emissions, probably in response to a strong El
542 Niño event. This would suggest that variations of precipitation also affected year-to-year variations of CO₂ emissions in
543 addition to partly regulating seasonal variations of CO₂ emissions from the four studied ponds.

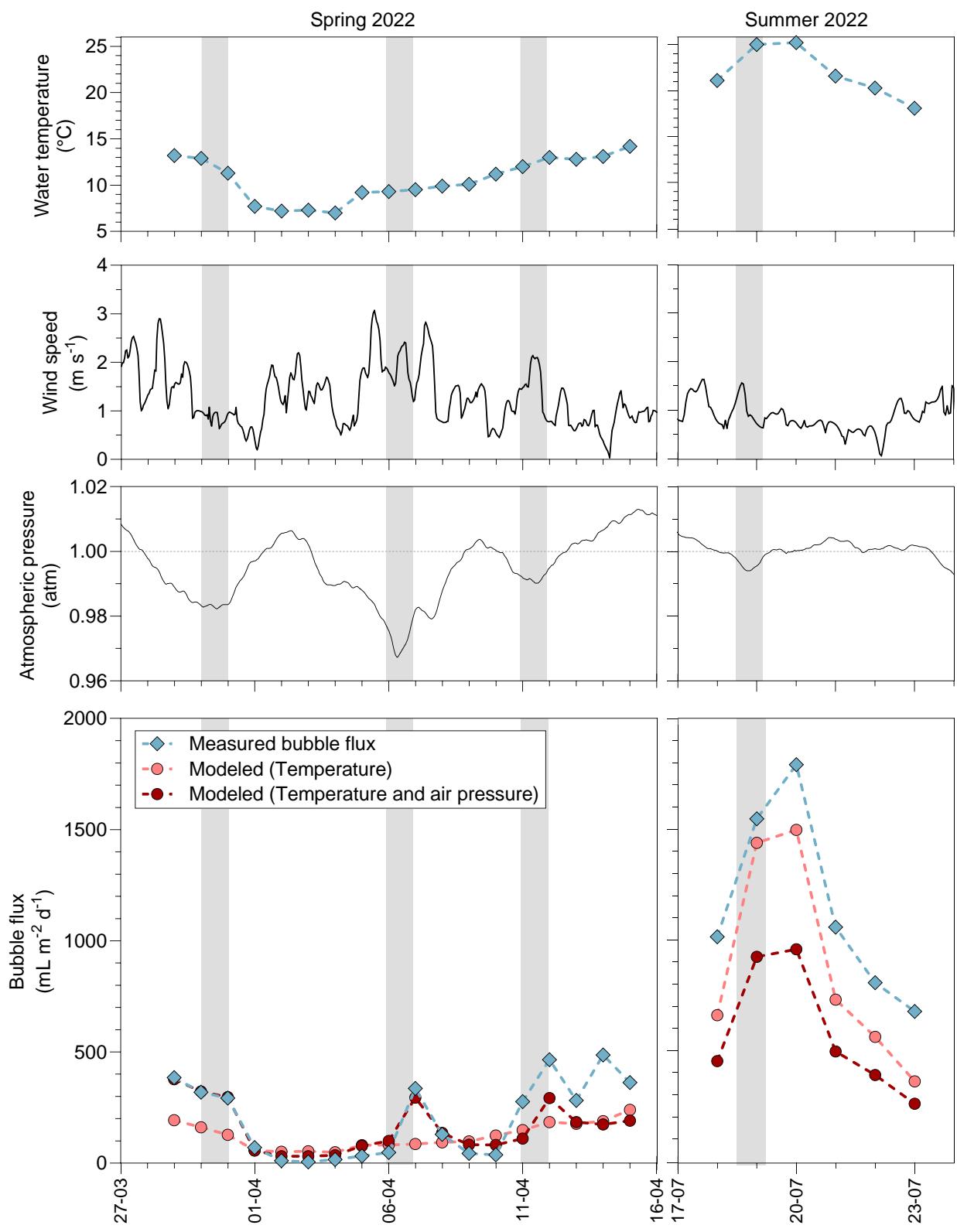

544

545 Figure 1: Location of the four sampled urban ponds (black diamonds) in city of Brussels (Belgium) delineated by the black line.
 546 Right panels indicate for each pond the shape of the ponds, surface area (ha), perimeter (m), average depth (m), mean±standard
 547 deviation of chlorophyll-a (Chl-a, in $\mu\text{g L}^{-1}$) and total suspended matter (TSM, in mg L^{-1}) in summer (21 June to 21 September in
 548 2021, 2022, 2023), and summer total macrophyte cover (MC, in %) (Table S1).

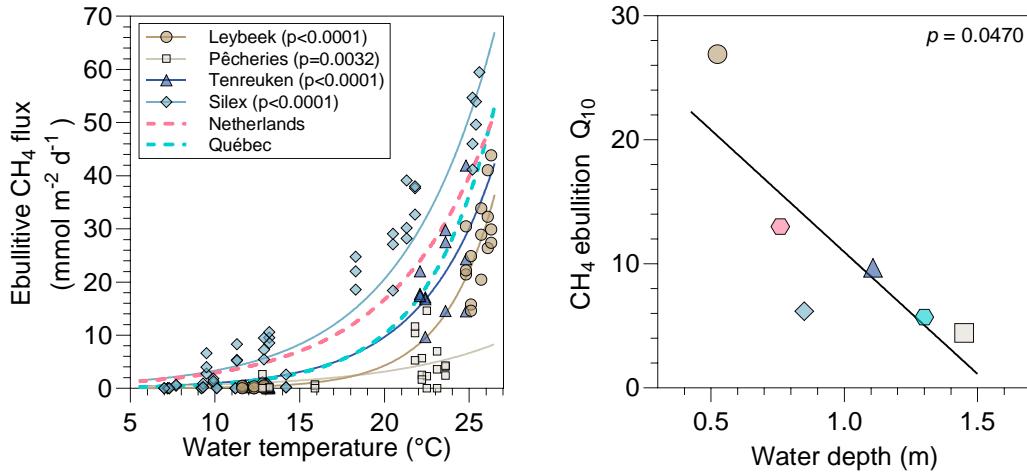


549

550 **Figure 2:** Anomaly of annual air temperature (°C) as a function of anomaly of annual precipitation (%) from 2003 to 2023 with
 551 respect to average of the 1991-2020 period (11 °C and 837 mm, respectively). Each small grey hexagon represents values for years
 552 from 2003 to 2020 and larger blue hexagons represent the years of sampling from this study (2021, 2022 and 2023). Linear
 553 regression for years 2003-2020 is shown by a black solid line ($Y = 3.29 - 0.03 \cdot X$, n=20). Note the anomalous rainy year in 2023
 554 relative to the pattern as function of temperature for the other years, possibly in response to the strong El Niño event of 2023
 555 (Chen et al., 2024).

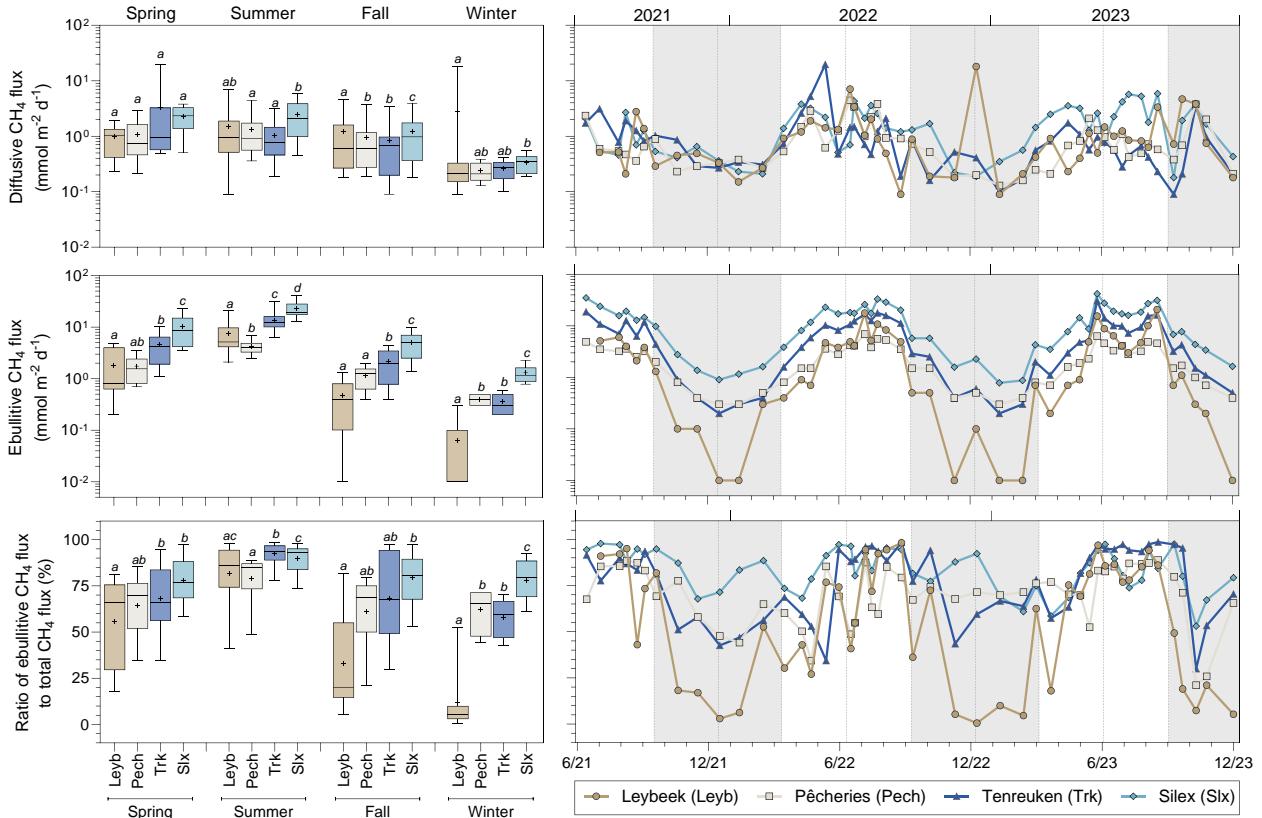


557 **Figure 3: Seasonal variations of Chlorophyll- α (Chl- α , in $\mu\text{g L}^{-1}$), total suspended matter (TSM, in mg L^{-1}), oxygen saturation (558 $\% \text{O}_2$, in %), partial pressure of CO_2 (pCO_2 in ppm), dissolved CH_4 concentration (559 CH_4 , in nmol L^{-1}), and N_2O saturation level (560 $\% \text{N}_2\text{O}$, in %) in four urban ponds (Leybeek (Leyb), Pêcheries (Pech), Tenreuken (Trk), and Silex (Slx)) in the city of Brussels 561 (Belgium) from June 2021 to December 2023. Box plots show median (horizontal line), mean (cross), and 25–75% 562 percentiles (box limits). Whiskers extend from minimum to maximum values. White and grey bands in the graphs on the right 563 correspond to the autumn/winter and spring/summer periods, respectively, and dotted vertical bars represent the first day of each 564 season. Lower case letters indicate significant differences between ponds (Tables S3 and S4).**

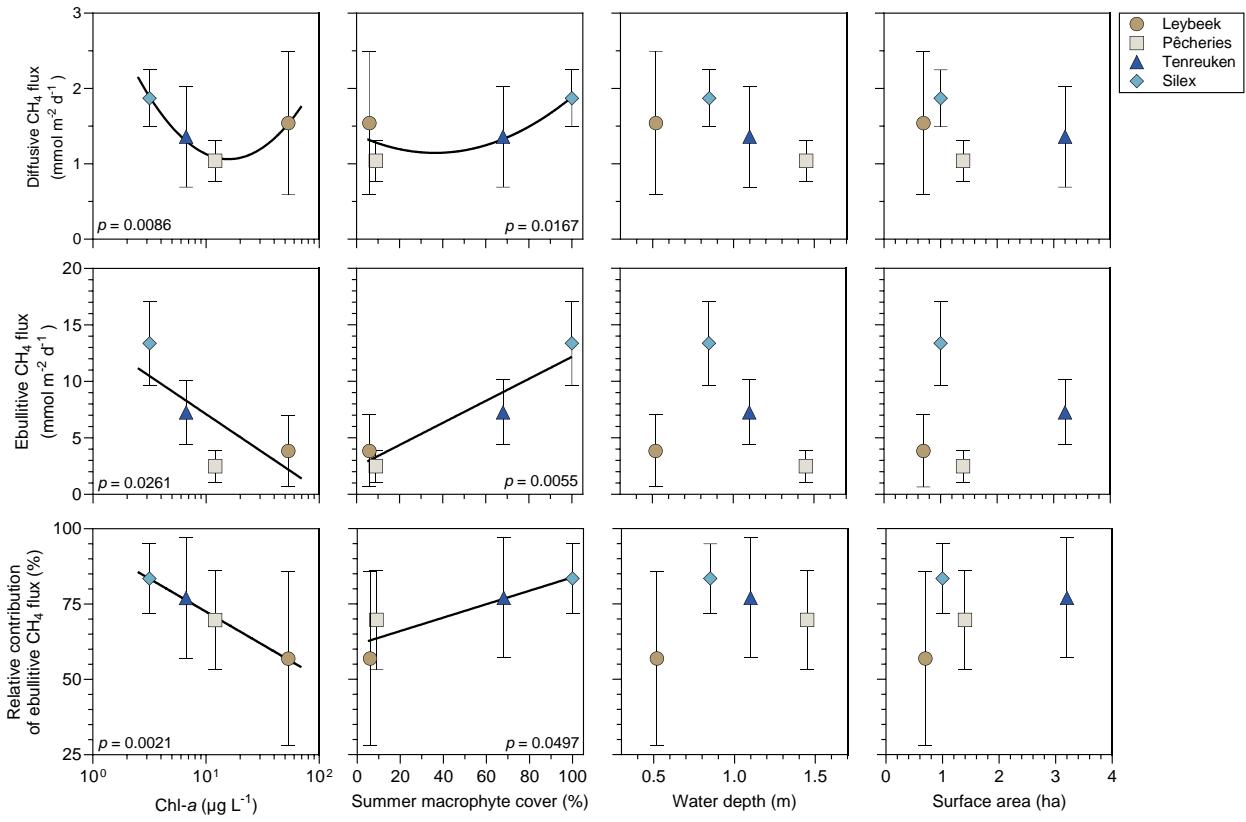


564

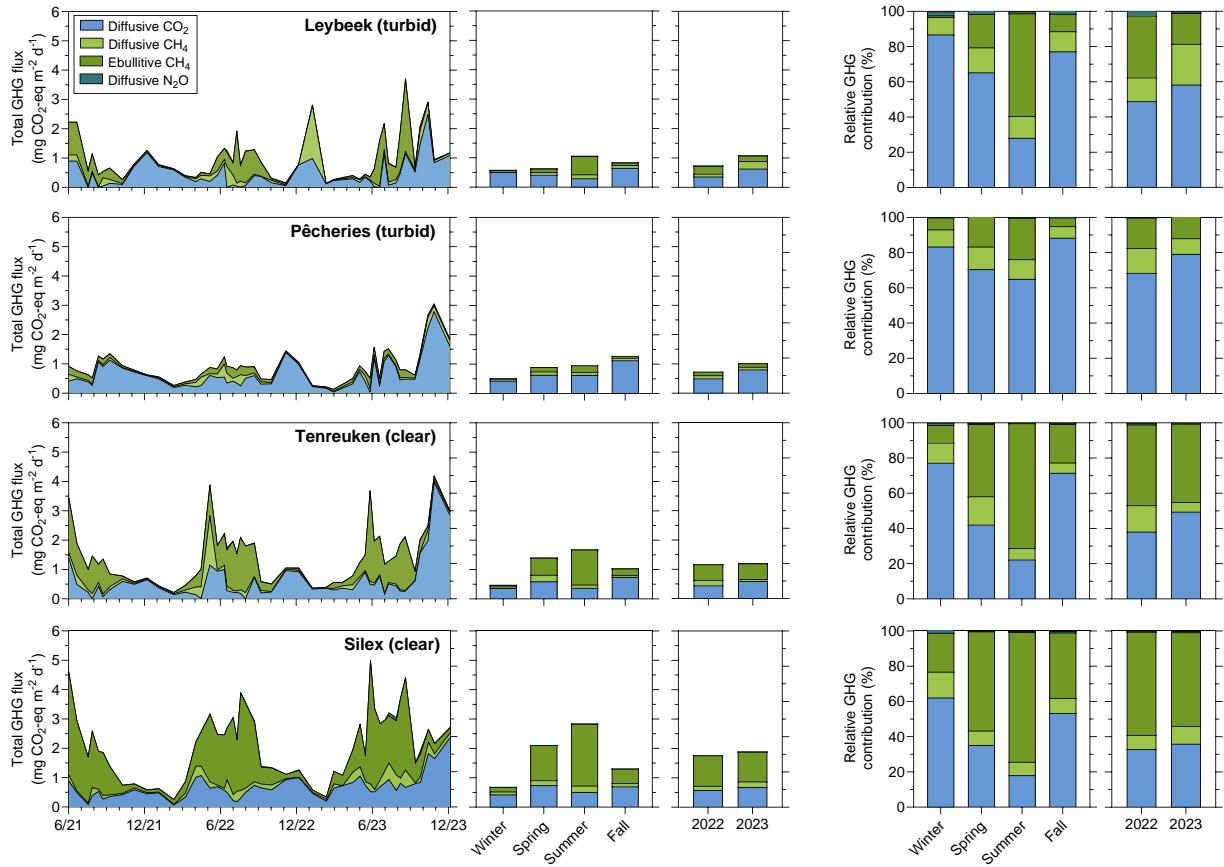
565 Figure 4: Bubble flux ($\text{ml m}^{-2} \text{ d}^{-1}$) and the relative CH_4 content in bubbles (% CH_4 , in %) as a function of surface water
 566 temperature ($^{\circ}\text{C}$) in four urban ponds (Leybeek, Pêcheries, Tenreuken, and Silex) in the city of Brussels (Belgium) from June 2021
 567 to December 2023. Bubbles fluxes were measured with three bubble traps in spring, summer, and fall of 2022 and 2023, totalling 8
 568 days in the Leybeek, Pêcheries, and Tenreuken ponds and 24 days in the Silex pond. Given the shallowness of the sampled systems
 569 (<1.5 m, Fig. 1), we assume that sediments experience the same temperature as surface waters. Solid lines represent the predictions
 570 of the GLMM considering the ponds and sampling dates as random effects for bubble flux as function of water temperature ($Y = 0.0121 \times (1 + X)^{3.4538} - 1$), and % CH_4 as function of water temperature ($Y = 0.0181 \times (1 + X)^{3.3783} - 1$).
 571



574 **Figure 5:** Surface water temperature (°C), wind speed (m s⁻¹), atmospheric pressure (atm), measured and modeled bubble flux (ml
 575 m⁻² d⁻¹) in the Silex pond from the 29 March 2022 to the 15 April 2022 and from the 18 July 2022 to the 23 July 2022. The bubble
 576 flux was modelled from a fit to data based on water temperature alone and based on both water temperature and drops in
 577 atmospheric pressure.


578

579 **Figure 6: Measured ebullitive CH₄ fluxes (mmol m⁻² d⁻¹) as function of surface water temperature (°C) in four urban ponds**
580 (Leybeek, Pêcheries, Tenreuken, and Silex) in the city of Brussels (Belgium), in spring, summer, and fall of 2022 and 2023,
581 totalling 8 days in the Leybeek, Pêcheries, and Tenreuken ponds and 24 days in the Silex pond, with three bubble traps. Solid lines
582 represent exponential fit for the Leybeek ($Y = 0.01 \cdot e^{0.32 \cdot X}$, n=22), Pêcheries ($Y = 0.16 \cdot e^{0.15 \cdot X}$, n=22), Tenreuken ($Y =$
583 $0.10 \cdot e^{0.23 \cdot X}$, n=19), Silex ($Y = 0.54 \cdot e^{0.18 \cdot X}$, n=72) ponds (Table S7). Dashed lines represent published exponential fit
584 established in similar systems: four small ponds in Québec ($Y = 0.06 \cdot e^{0.25 \cdot X}$) (DelSontro et al., 2016) and a small urban pond in
585 the Netherlands ($Y = 0.51 \cdot e^{0.17 \cdot X}$) (Aben et al., 2017). Each exponential curve allows to determine a Q₁₀ of CH₄ ebullition,
586 plotted against water depth; solid line represents linear regression ($Y = 30.64 - 19.67 \cdot X$, n = 6).


587

588 **Figure 7: Seasonal variations of diffusive and ebullitive CH₄ fluxes (mmol m⁻² d⁻¹), and the ratio of ebullitive CH₄ flux to total
589 (ebullitive+diffusive) CH₄ flux (%) in four urban ponds (Leybeek (Leyb), Pêcheries (Pech), Tenreuken (Trk), and Silex (Slx)) in
590 the city of Brussels (Belgium) from June 2021 to December 2023. Diffusive fluxes were calculated from CH₄ concentration and gas
591 transfer velocity derived from wind speed. Ebullitive CH₄ fluxes were calculated from the relations with water temperature for
592 each pond (Fig. 6; Table S7) from the water temperature data coincident with the diffusive CH₄ fluxes. Box plots show median
593 (horizontal line), mean (cross), and 25–75% percentiles (box limits). Whiskers extend from minimum to maximum values. White
594 and grey bands in the graphs on the right correspond with the autumn/winter and spring/summer periods, respectively, and
595 dotted vertical bars represent the first days of each season. Lower case letters indicate significant differences between ponds
596 (Tables S3 and S4).**

597

598 **Figure 8: Mean diffusive and ebullitive CH₄ fluxes (mmol m⁻² d⁻¹) and mean ratio of ebullitive CH₄ flux to total**
 599 **(diffusive+ebullitive) CH₄ flux (%) versus chlorophyll-*a* (Chl-*a*, in µg L⁻¹), total macrophyte cover in summer (%), water depth**
 600 **(m), and lake surface area (ha) in four ponds (Leybeek, Pêcheries, Tenreuken, and Silex) in the city of Brussels (Belgium) from**
 601 **June 2021 to December 2023. Error bars indicate the standard deviation. Solid lines indicate either linear or polynomial fits.**
 602 **Statistical comparisons between the four ponds are summarized in Table S3.**

603

604 **Figure 9: Temporal evolution and relative contribution of emissions to the atmosphere of CO_2 (diffusive), CH_4 (diffusive and**

605 **ebullitive), and N_2O (diffusive) expressed in CO_2 equivalents (in $\text{mg CO}_2\text{-eq m}^{-2} \text{d}^{-1}$), in four urban ponds (Leybeek, Pêcheries,**

606 **Tenreuken, and Silex) in the city of Brussels (Belgium) from June 2021 to December 2023. Averages per season include data from**

607 **2021, 2022, and 2023. Year 2023 had a higher annual precipitation (1011 mm) than year 2022 (701 mm).**

608 **Data availability.** The full data-set is available at 10.5281/zenodo.11103556.

609 **Author contributions.** AVB and NG conceived the study; TB collected field samples; TB and AVB made the laboratory
610 analysis; TB and AVB jointly interpreted data and drafted the manuscript with substantial inputs from NG.

611 **Competing interests.** The authors declare that they have no conflict of interest.

612 **Acknowledgements.** We thank Ozan Efe (University of Liège) and Adriana Anzil (Université Libre de Bruxelles) for
613 analytical assistance, Florence Charlier (Université Libre de Bruxelles) for help in macrophyte identification and density
614 quantification (Table S1), Bruxelles Environnement for providing information on history of operations in the ponds (Table
615 S2), two anonymous reviewers and Associate Editor (Gabriel Singer) for comments and suggestions on the initial
616 manuscript.

617 **Financial support.** TB received funding from the Brussels-Capital Region's institute for the encouragement of scientific
618 research and innovation (Innoviris) as part of the Smartwater project (RBC/2020-EPF-6 h) and from the "Fonds pour la
619 formation à la Recherche dans l'Industrie et dans l'Agriculture" (FRIA, Belgium). AVB is a Research Director at the FRS-
620 FNRS.

621 **References**

622 Aben, R. C. H., Barros, N., Van Donk, E., Frenken, T., Hilt, S., Kazanjian, G., Lamers, L. P. M., Peeters, E. T. H. M.,
623 Roelofs, J.G.M., de Senerpont Domis, L. S., Stephan, S., Velthuis, M., Van de Waal, D., Wik, M., Thornton, B.,
624 Wilkinson, J., Delsontro, T., and Kosten, S.: Cross continental increase in methane ebullition under climate change.
625 *Nature communications*, 8(1), 1682. <https://doi.org/10.1038/s41467-017-01535-y>, 2017.

626 Audet, J., Neif, É.M., Cao, Y., Hoffmann, C.C., Lauridsen, T.L., Larsen, S.E., Søndergaard, M., Jeppesen, E., and Davidson,
627 T.A.: Heat-wave effects on greenhouse gas emissions from shallow lake mesocosms. *Freshwater
628 Biology*. 2017; 62: 1130–1142. <https://doi.org/10.1111/fwb.12930>, 2017.

629 Audet, J., Carstensen, M.V., Hoffmann, C.C., Lavaux, L., Thieme, K., and Davidson, T.A.: Greenhouse gas emissions from
630 urban ponds in Denmark. *Inland Waters*, 10 (3), 373–385. <https://doi.org/10.1080/20442041.2020.1730680>, 2020.

631 Baliña, S., Sanchez, M. L., Izaguirre, I., and del Giorgio, P. A.: Shallow lakes under alternative states differ in the dominant
632 greenhouse gas emission pathways. *Limnology and Oceanography*, 68(1), 1-13. <https://doi.org/10.1002/lno.12243>,
633 2023.

634 Barko, J. W., Gunnison, D., and Carpenter, S. R.: Sediment interactions with submersed macrophyte growth and community
635 dynamics. *Aquatic botany*, 41(1-3), 41-65. [https://doi.org/10.1016/0304-3770\(91\)90038-7](https://doi.org/10.1016/0304-3770(91)90038-7), 1991.

636 Bartosiewicz, M., Maranger, R., Przytulska, A., and Laurion, I.: Effects of phytoplankton blooms on fluxes and emissions of
637 greenhouse gases in a eutrophic lake. *Water Research*, 196, 116985. <https://doi.org/10.1016/j.watres.2021.116985>,
638 2021.

639 Bastviken, D., Ejlertsson, J. and Tranvik, L.: Measurement of methane oxidation in lakes: A comparison of methods.
640 *Environmental Science & Technology*, 36, 3354-3361. <https://doi.org/10.1021/es010311p>, 2002.

641 Bastviken, D., Treat, C.C., Pangala, S.R., Gauci, V., Enrich-Prast, A., Karlson, M., Gålfalk, M., Romano, M.B., and
642 Sawakuchi, H.O.: The importance of plants for methane emission at the ecosystem scale. *Aquatic Botany*, 184,
643 103596. <https://doi.org/10.1016/j.aquabot.2022.103596>, 2023.

644 Bates, D., Maechler, M., Bolker, B., and Walker, S.: Fitting linear mixed-effects models using lme4. *Journal of Statistical
645 Software*, 67, 1–48. <https://doi.org/10.1126/science.1176170>, 2015.

646 Bauduin, T., Gypens, N., and Borges, A.V.: Seasonal and spatial variations of greenhouse gas (CO₂, CH₄ and N₂O)
647 emissions from urban ponds in Brussels. *Water Research*, 121257. <https://doi.org/10.1016/j.watres.2024.121257>,
648 2024.

649 Borges, A.V., Darchambeau, F., Lambert, T., Morana, C., Allen, G.H., Tambwe, E., and Bouillon, S.: Variations in
650 dissolved greenhouse gases (CO₂, CH₄, N₂O) in the Congo River network overwhelmingly driven by fluvial-
651 wetland connectivity. *Biogeosciences*, 16 (19), 3801–3834. <https://doi.org/10.5194/bg-16-3801-2019>, 2019.

652 Borges, A.V., Deirmendjian, L., Bouillon, S., Okello, W., Lambert, T., Roland, F.A.E., Razanamahandry, V.F., Voarintsoa,
653 N.R.G., Darchambeau, F., Kimirei, I.A., Descy, J., Allen, G.H., and Morana, C.: Greenhouse gas emissions from
654 African lakes are no longer a blind spot. *Sciences Advances*, 8 (25), eabi8716. <https://doi.org/10.1126/sciadv.abi8716>, 2022.

656 Borges, A.V., Okello, W., Bouillon, S., Deirmendjian, S., Nankabirwa, A., Nabafu, E., Lambert, T., Descy, J-P, and Morana,
657 C.: Spatial and temporal variations of dissolved CO₂, CH₄ and N₂O in Lakes Edward and George (East Africa).
658 *Journal of Great Lakes Research*, 49, 229-245, <https://doi.org/10.1016/j.jglr.2022.11.010>, 2023.

659 Brans, K.I., Engelen, J.M., Souffreau, C., and De Meester, L.: Urban hot-tubs: local urbanization has profound effects on
660 average and extreme temperatures in ponds. *Landscape and Urban Planning*, 176, 22–29. <https://doi.org/10.1016/j.lup.2018.07.018>.

662 Cael, B. B., Heathcote, A. J., and Seekell, D. A.: The volume and mean depth of Earth's lakes. *Geophysical Research
663 Letters*, 44(1), 209-218. <https://doi.org/10.1002/2016GL071378>, 2017.

664 Casas-Ruiz, J.P., Jakobsson, J., and del Giorgio, P.A.: The role of lake morphometry in modulating surface water carbon
665 concentrations in boreal lakes. *Environmental Research Letters*, 16 (7), 074037 <https://doi.org/10.1088/1748-9326/ac0be3>, 2021.

667 Chen, B., Zhang, L., and Wang, C.: Distinct impacts of the central and eastern Atlantic Niño on the European climate.
668 *Geophysical Research Letters*, 51(2), e2023GL107012. <https://doi.org/10.1029/2023GL107012>, 2024.

669 Choudhury, M. I., McKie, B. G., Hallin, S., and Ecke, F.: Mixtures of macrophyte growth forms promote nitrogen cycling in
670 wetlands. *Science of the Total Environment*, 635, 1436-1443. <https://doi.org/10.1016/j.scitotenv.2018.04.193>, 2018.

671 Clifford, C.C., and Heffernan, J.B.: Artificial aquatic ecosystems. *Water*, 10 (8), 1096. <https://doi.org/10.3390/w10081096>,
672 2018.

673 Codispoti, L.A., and Christensen, J.P.: Nitrification, denitrification and nitrous oxide cycling in the eastern tropical South
674 Pacific Ocean. *Marine chemistry*, 16 (4), 277–300. [https://doi.org/10.1016/0304-4203\(85\)90051-9](https://doi.org/10.1016/0304-4203(85)90051-9), 1985.

675 Cole, J.J., and Caraco, N.F.: Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the
676 addition of SF₆. *Limnology and Oceanography*, 43 (4), 647–656. <https://doi.org/10.4319/lo.1998.43.4.0647>, 1998.

677 Dan, Z., Chuan, W., Qiaohong, Z., and Xingzhong, Y.: Sediments nitrogen cycling influenced by submerged macrophytes
678 growing in winter. *Water Science and Technology*, 83(7), 1728-1738. <https://doi.org/10.2166/wst.2021.081>, 2021.

679 Davidson, T.A., Audet, J., Svenning, J.C., Lauridsen, T.L., Søndergaard, M., Landkildehus, F., and Jeppesen, E.:
680 Eutrophication effects on greenhouse gas fluxes from shallow-lake mesocosms override those of climate warming.
681 *Global Change Biology*, 21 (12), 4449–4463. <https://doi.org/10.1111/gcb.13062>, 2015.

682 Deemer, B. R., and Holgerson, M. A.: Drivers of methane flux differ between lakes and reservoirs, complicating global
683 upscaling efforts. *Journal of Geophysical Research: Biogeosciences*, 126(4) <https://doi.org/10.1029/2019JG005600>
684 , 2021.

685 DelSontro, T., Beaulieu, J. J., and Downing, J. A.: Greenhouse gas emissions from lakes and impoundments: Upscaling in
686 the face of global change. *Limnology and Oceanography Letters*, 3(3), 64-75. <https://doi.org/10.1002/lol2.10073>,
687 2018.

688 DelSontro, T., Kunz, M. J., Kempfer, T., Wüest, A., Wehrli, B., and Senn, D. B.: Spatial Heterogeneity of Methane
689 Ebullition in a Large Tropical Reservoir, *Environmental Science & Technology*, 45 (23), 9866-9873,
690 <https://doi.org/10.1021/es2005545>, 2011.

691 DelSontro, T., Boutet, L., St-Pierre, A., del Giorgio, P.A., and Prairie, Y.T.: Methane ebullition and diffusion from northern
692 ponds and lakes regulated by the interaction between temperature and system productivity, *Limnology and*
693 *Oceanography*, 61(S1), S62-S77 <https://doi.org/10.1002/lno.10335>, 2016.

694 Deng, Hg., Zhang, J., Wu, J., Yao, X., and Yang, L.-W.: Biological denitrification in a macrophytic lake: implications for
695 macrophytes-dominated lake management in the north of China. *Environmental Sciences and Pollution Research*,
696 27, 42460–42471. <https://doi.org/10.1007/s11356-020-10230-3>, 2020.

697 Desrosiers, K., DelSontro, T., and del Giorgio, P.A.: Disproportionate Contribution of Vegetated Habitats to the CH₄ and
698 CO₂ Budgets of a Boreal Lake. *Ecosystems*, 1-20. <https://doi.org/10.1007/s10021-021-00730-9>, 2022.

699 Dickson, A.G.; Sabine, C.L. and Christian, J.R.: Guide to best practices for ocean CO₂ measurement. Sidney, British
700 Columbia, North Pacific Marine Science Organization, 191pp. (PICES Special Publication 3; IOCCP Report 8).
701 <https://doi.org/10.25607/OPB-1342>, 2007.

702 Dutton, G., Elkins II, J., Hall, B., NOAA ESRL, Earth System Research Laboratory Halocarbons and Other Atmospheric
703 Trace Gases Chromatograph for Atmospheric Trace Species (CATS) Measurements. NOAA National Centers for
704 Environmental Information. <https://doi.org/10.7289/V5X0659V>. Version 1. [Database: atmospheric nitrous oxide
705 N₂O] [2024-03-27], 2023.

706 Goeckner, A. H., Lusk, M. G., Reisinger, A. J., Hosen, J. D., and Smoak, J. M.: Florida's urban stormwater ponds are net
707 sources of carbon to the atmosphere despite increased carbon burial over time. *Communications earth &*
708 *environment*, 3(1), 53, <https://doi.org/10.1038/s43247-022-00384-y> 2022.

709 Gorsky, A. L., Dugan, H. A., Wilkinson, G. M., and Stanley, E. H.: Under-ice oxygen depletion and greenhouse gas
710 supersaturation in north temperate urban ponds. *Journal of Geophysical Research: Biogeosciences*, 129(6),
711 <https://doi.org/10.1029/2024JG008120>, 2024.

712 Gorsky, A.L., Racanelli, G.A., Belvin, A.C., and Chambers, R.M.: Greenhouse gas flux from stormwater ponds in
713 southeastern Virginia (USA). *Anthropocene*, 28, 100218. <https://doi.org/10.1016/j.ancene.2019.100218>, 2019.

714 Grasset, C., Abril, G., Mendonça, R., Roland, F., and Sobek, S.: The transformation of macrophyte-derived organic matter to
715 methane relates to plant water and nutrient contents. *Limnology and Oceanography*, 64(4), 1737-1749,
716 <https://doi.org/10.1002/lno.11148>, 2019.

717 Grasset, C., Sobek, S., Scharnweber, K., Moras, S., Villwock, H., Andersson, S., Hiller, C., Nydahl, A.C., Chaguaceda, F.,
718 Colom, W., and Tranvik, L.J.: The CO₂-equivalent balance of freshwater ecosystems is non-linearly related to
719 productivity. *Global Change Biology*, 26 (10), 5705–5715. <https://doi.org/10.1111/gcb.15284>, 2020.

720 Grasshoff, K., and Johannsen, H.: A new sensitive and direct method for the automatic determination of ammonia in sea
721 water. *ICES Journal of Marine Science*, 34 (3), 516–521. <https://doi.org/10.1093/icesjms/34.3.516>, 1972.

722 Grasshoff, K., Kremling, K., and Ehrhardt, M.: Methods of Seawater Analysis: Determination of Nitrite. John Wiley & Sons,
723 2009.

724 Grinham, A., Albert, S., Deering, N., Dunbabin, M., Bastviken, D., Sherman, B., Lovelock, C.E., and Evans, C.D.: The
725 importance of small artificial water bodies as sources of methane emissions in Queensland, Australia. *Hydrology*
726 and *Earth System Sciences*, 22 (10), 5281–5298. <https://doi.org/10.5194/hess-22-5281-2018>, 2018.

727 Harpenslager, S. F., Thieme, K., Levertz, C., Misteli, B., Sebola, K. M., Schneider, S. C., Hilt, S., and Köhler, J.: Short-term
728 effects of macrophyte removal on emission of CO₂ and CH₄ in shallow lakes. *Aquatic Botany*, 182, 103555.
729 <https://doi.org/10.1016/j.aquabot.2022.103555>, 2022.

730 Hassall, C., The ecology and biodiversity of urban ponds. *WIREs Water*, 1: 187-206. <https://doi.org/10.1002/wat2.1014>,
731 2014.

732 Herrero Ortega, S., Romero González-Quijano, C., Casper, P., Singer, G.A., and Gessner, M.O.: Methane emissions from
733 contrasting urban freshwaters: rates, drivers, and a whole-city footprint. *Global change biology*, 25 (12), 4234–
734 4243. <https://doi.org/10.1111/gcb.14799>, 2019.

735 Hilt, S., Brothers, S., Jeppesen, E., Veraart, A. J., and Kosten, S.: Translating regime shifts in shallow lakes into changes in
736 ecosystem functions and services. *BioScience*, 67(10), 928–936. <https://doi.org/10.1093/biosci/bix106>, 2017.

737 Holgerson, M., and Raymond, P.: Large contribution to inland water CO₂ and CH₄ emissions from very small ponds. *Nature
738 Geoscience*, 9, 222–226. <https://doi.org/10.1038/ngeo2654>, 2016.

739 Holgerson, M.A.: Drivers of carbon dioxide and methane supersaturation in small, temporary ponds, *Biogeochemistry*, 124,
740 305–318. <https://doi.org/10.1007/s10533-015-0099-y>, 2015.

741 Huttunen, J. T., Alm, J., Liikanen, A., Juutinen, S., Larmola, T., Hammar, T., Silvola, T., and Martikainen, P. J.: Fluxes of
742 methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic
743 greenhouse gas emissions. *Chemosphere*, 52(3), 609–621. [https://doi.org/10.1016/S0045-6535\(03\)00243-1](https://doi.org/10.1016/S0045-6535(03)00243-1), 2003.

744 Hyvönen, T., Ojala, A., Kankaala, P., & Martikainen, P. J.: Methane release from stands of water horsetail (*Equisetum
745 fluviatile*) in a boreal lake, *Freshwater Biology*, 40, 275– 284. <https://doi.org/10.1046/j.1365-2427.1998.00351.x>,
746 1998.

747 Johnson, M.S., Matthews, E., Du, J., Genovese, V., and Bastviken, D.: Methane Emission from Global Lakes: New
748 Spatiotemporal Data and Observation-Driven Modeling of Methane Dynamics Indicates Lower Emissions. *Journal
749 of Geophysical Research: Biogeosciences*, 127(7). <https://doi.org/10.1029/2022JG006793>, 2022.

750 Juutinen, S., Alm, J., Larmola, T., Huttunen, J. T., Morero, M., Martikainen, P. J., and Silvola, J.: Major implication of the
751 littoral zone for methane release from boreal lakes, *Global biogeochemical cycles*, 17(4), 1117,
752 <https://doi.org/10.1029/2003GB002105>, 2003.

753 Kankaala, P., Huotari, J., Tulonen, T., and Ojala, A.: A Lake-size dependent physical forcing drives carbon dioxide and
754 methane effluxes from lakes in a boreal landscape. *Limnology and Oceanography*, 58:1915–1930.
755 <https://doi.org/10.4319/lo.2013.58.6.1915>, 2013.

756 Keller, M., and Stallard, R. F.: Methane emission by bubbling from Gatun Lake, Panama, *Journal of Geophysical Research:
757 Atmospheres*, 99(D4), 8307–8319, doi:10.1029/92JD02170, 1994.

758 Koroleff, J.: Determination of total phosphorus by alkaline persulphate oxidation. *Methods of Seawater Analysis*. Verlag
759 Chemie, Wienheim, pp. 136–138, 1983.

760 Kosten, S., Roland, F., Da Motta Marques, D. M., Van Nes, E. H., Mazzeo, N., Sternberg, L. D. S., Scheffer, M., and Cole,
761 J. J. Climate-dependent CO₂ emissions from lakes. *Global Biogeochemical Cycles*, 24(2).
762 <https://doi.org/10.1029/2009GB003618>, 2010.

763 Lan, X., K.W. Thoning, and E.J. Dlugokencky: Trends in globally-averaged CH₄, N₂O, and SF₆ determined from NOAA
764 Global Monitoring Laboratory measurements [data set]. Version 2024-08, <https://doi.org/10.15138/P8XG-AA10>,
765 2024.

766 Lauerwald, R., Regnier, P., Figueiredo, V., Enrich-Prast, A., Bastviken, D., Lehner, B., Maavara, T., and Raymond, P.:
767 Natural Lakes Are a Minor Global Source of N₂O to the Atmosphere. *Global Biogeochemical Cycles*, 33(12),
768 1564–1581. <https://doi.org/10.1029/2019GB006261>, 2019.

769 Lauerwald, R., Allen, G. H., Deemer, B. R., Liu, S., Maavara, T., Raymond, P., Alcott, L., Bastviken, D., Hastie, A.,
770 Holgerson, M.A., Johnson, M. S., Lehner, B., Lin, P., Marzadri, A., Ran, L., Tian, H., Yang, X., Yao, Y., and
771 Regnier, P.: Inland water greenhouse gas budgets for RECCAP2: 2. Regionalization and homogenization of
772 estimates. *Global Biogeochemical Cycles*, 37, e2022GB007658. <https://doi.org/10.1029/2022GB007658>, 2023.

773 Liu, W., Jiang, X., Zhang, Q., Li, F., and Liu, G.: Has submerged vegetation loss altered sediment denitrification, N₂O
774 production, and denitrifying microbial communities in subtropical lakes? *Global Biogeochemical Cycles*, 32, 1195–
775 1207. <https://doi.org/10.1029/2018GB005978>, 2018.

776 Maavara, T., Lauerwald, R., Laruelle, G. G., Akbarzadeh, Z., Bouskill, N. J., Van Cappellen, P., and Regnier, P.: Nitrous
777 oxide emissions from inland waters: Are IPCC estimates too high? *Global Change Biology*, 25(2), 473–488.
778 <https://doi.org/10.1111/gcb.145042>, 2019.

779 Marotta, H., Duarte, C. M., Pinho, L., and Enrich-Prast, A.: Rainfall leads to increased pCO₂ in Brazilian coastal lakes.
780 *Biogeosciences*, 7(5), 1607-1614. <https://doi.org/10.5194/bg-7-1607-2010>, 2010.

781 Martinez-Cruz, K., Gonzalez-Valencia, R., Sepulveda-Jauregui, A., Plascencia- Hernandez, F., Belmonte-Izquierdo, Y., and
782 Thalasso, F.: Methane emission from aquatic ecosystems of Mexico City. *Aquatic Sciences*, 79, 159–169.
783 <https://doi.org/10.1007/s00027-016-0487-y>, 2017.

784 Mengis, M., Gächter, R., and Wehrli, B.: Sources and sinks of nitrous oxide (N₂O) in deep lakes. *Biogeochemistry*, 38, 281-
785 301. <https://doi.org/10.1023/A:1005814020322>, 1997.

786 Myrhe, G., Shindell, D., Bréon, F.M., Collins, W., and Al, E. Anthropogenic and natural radiative forcing. Climate Change
787 2013 the Physical Science Basis: working Group I Contribution to the Fifth Assessment Report of the
788 Intergovernmental Panel on Climate Change. Chapter 8 : Anthropogenic and Natural Radiative Forcing
789 9781107057, 659–740. <https://doi.org/10.1017/CBO9781107415324.018>, 2013.

790 Natchimuthu, S., Panneer Selvam, B., and Bastviken, D.: Influence of weather variables on methane and carbon dioxide flux
791 from a shallow pond. *Biogeochemistry*, 119, 403–413. <https://doi.org/10.1007/s10533-014-9976-z>, 2014.

792 Natchimuthu, S., Sundgren, I., Gålfalk, M., Klemmedsson, L., Crill, P., Danielsson, Å. and Bastviken, D. (2016), Spatio-
793 temporal variability of lake CH₄ fluxes and its influence on annual whole lake emission estimates. *Limnology and*
794 *Oceanography*, 61: S13-S26. <https://doi.org/10.1002/lno.10222>, 2016.

795 Ni, M., Liang, X., Hou, L., Li, W., and He, C.: Submerged macrophytes regulate diurnal nitrous oxide emissions from a
796 shallow eutrophic lake: A case study of Lake Wuliangsu in the temperate arid region of China. *Science of The*
797 *Total Environment*, 811, 152451. <https://doi.org/10.1016/j.scitotenv.2021.152451>, 2022.

798 Ojala A., Bellido J.L., Tulonen T., Kankaala P., and Huotari J.: Carbon gas fluxes from a brown-water and a clear-water lake
799 in the boreal zone during a summer with extreme rain events, *Limnology and Oceanography*, 56,
800 <https://doi.org/10.4319/lo.2011.56.1.0061>, 2011.

801 Ollivier, Q.R., Maher, D.T., Pitfield, C., and Macreadie, P.I.: Punching above their weight: large release of greenhouse gases
802 from small agricultural dams. *Global change biology*, 25 (2), 721–732. <https://doi.org/10.1111/gcb.14477>, 2019.

803 Peacock, M., Audet, J., Bastviken, D., Cook, S., Evans, C.D., Grinham, A., Holgerson, M. A., Högbom, L., Pickard, A.E.,
804 Zieliński, P., and Futter, M.N.: Small artificial waterbodies are widespread and persistent emitters of methane and
805 carbon dioxide. *Global change biology*, 27 (20), 5109–5123. <https://doi.org/10.1111/gcb.15762>, 2021.

806 Peacock, M., Audet, J., Jordan, S., Smeds, J., and Wallin, M.B.: Greenhouse gas emissions from urban ponds are driven by
807 nutrient status and hydrology. *Ecosphere*, 10 (3), e02643. <https://doi.org/10.1002/ecs2.2643>, 2019.

808 Peretyatko, A., Symoens, J. J., and Triest, L.: Impact of macrophytes on phytoplankton in eutrophic peri-urban ponds,
809 implications for pond management and restoration. *Belgian Journal of Botany*, 83-99.
810 <https://doi.org/10.2307/20794626>, 2007.

811 R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing,
812 Vienna, Austriaa. <https://www.R-project.org/>, 2021.

813 Rabaey, J. and Cotner, J.: Pond greenhouse gas emissions controlled by duckweed coverage. *Frontiers in environmental*
814 *science*, 10, 889289 <https://doi.org/10.3389/fenvs2022.889289>, 2022.

815 Rabaey, J. and Cotner, J.: The influence of mixing on seasonal carbon dioxide and methane fluxes in ponds.
816 *Biogeochemistry*, 1-18, <https://doi.org/10.1007/s10533-024-01167-7>, 2024.

817 Rasilo, T., Ojala, A., Huotari, J. and Pumpanen, J.: Rain Induced Changes in Carbon Dioxide Concentrations in the Soil-
818 Lake-Brook Continuum of a Boreal Forested Catchment. *Vadose Zone Journal*, 11: vzh2011.0039.
819 <https://doi.org/10.2136/vzh2011.0039>, 2012.

820 Ray, N. E., and Holgerson, M. A.: High Intra-Seasonal Variability in Greenhouse Gas Emissions from Temperate
821 Constructed Ponds. *Geophysical Research Letters*, 50(18), e2023GL104235,
822 <https://doi.org/10.1029/2023GL104235>, 2023.

823 Ray, N. E., Holgerson, M. A., Andersen, M. R., Bikše, J., Bortolotti, L. E., Futter, M., Kokorite, I., Law, A., McDonald, C.,
824 Mesman, J.P., Peacock, M., Richardson, D.C., Arsenault, J., Bansal, S., Cawley, K., Kuhn, M., Shahabinia, A.R.,
825 and Smufer, F.: Spatial and temporal variability in summertime dissolved carbon dioxide and methane in
826 temperate ponds and shallow lakes. *Limnology and Oceanography*, 68(7), 1530-1545.
827 <https://doi.org/10.1002/lno.12362>, 2023.

828 Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E.,
829 Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais, P., and Guth, P.: Global carbon dioxide emissions
830 from inland waters. *Nature*, 503(7476), 355–359. <https://doi.org/10.1038/nature12760>, 2013.

831 Reitsema, R. E., Meire, P., and Schoelynck, J.: The future of freshwater macrophytes in a changing world: dissolved organic
832 carbon quantity and quality and its interactions with macrophytes. *Frontiers in Plant Science*, 9, 301954.
833 <https://doi.org/10.3389/fpls.2018.00629>, 2018.

834 Rocher-Ros, G., Stanley, E. H., Loken, L. C., Casson, N. J., Raymond, P. A., Liu, S., Amatulli, G., and Sponseller, R. A.:
835 Global methane emissions from rivers and streams. *Nature*, 621:530–535. <https://doi.org/10.1038/s41586-023-06344-6>, 2023.

837 Rosentreter, J. A., Borges, A. V., Deemer, B. R., Holgerson, M. A., Liu, S., Song, C., Melack, J., Raymond, P. A., Duarte, C.
838 M., Allen, G. H., Olefeldt, D., Poulter, B., Battin, T. I., and Eyre, B. D.: Half of global methane emissions come
839 from highly variable aquatic ecosystem sources. *Nature Geoscience*, 14(4), 225–230.
840 <https://doi.org/10.1038/s41561-021-00715-2>, 2021.

841 Sand-Jensen, K., & Staehr, P. A.: Scaling of pelagic metabolism to size, trophy and forest cover in small Danish lakes.
842 *Ecosystems*, 10, 128-142. <https://doi.org/10.1007/s10021-006-9001-z>, 2007.

843 Scandella, B. P., Varadharajan, C., Hemond, H. F., Ruppel, C., and Juanes, R.: A conduit dilation model of methane venting
844 from lake sediments. *Geophysical Research Letters*, 38(6). <https://doi.org/10.1029/2011GL046768>, 2011.

845 Scheffer, M., Hosper, S. H., Meijer, M. L., Moss, B., and Jeppesen, E.: Alternative equilibria in shallow lakes. *Trends in
846 ecology & evolution*, 8(8), 275-279. [https://doi.org/10.1016/0169-5347\(93\)90254-M](https://doi.org/10.1016/0169-5347(93)90254-M), 1993.

847 Schulz, S. and Conrad, R.: Influence of temperature on pathways to methane production in the permanently cold profundal
848 sediment of Lake Constance. *FEMS Microbiology Ecology*, 20 1-14; <https://doi.org/10.1111/j.1574-6941.1996.tb00299.x>, 1996.

850 Singh, S.N., Kulshreshtha, K., and Agnihotri, S.: Seasonal dynamics of methane emission from wetlands. *Chemosphere-
851 Global Change Science*, 2 (1), 39–46. [https://doi.org/10.1016/S1465-9972\(99\)00046-X](https://doi.org/10.1016/S1465-9972(99)00046-X), 2000.

852 Stanley, E. H., Casson, N. J., Christel, S. T., Crawford, J. T., Loken, L. C., and Oliver, S. K.: The ecology of methane in
853 streams and rivers: patterns, controls, and global significance. *Ecological Monographs*, 86(2), 146–171.
854 <https://doi.org/10.1890/15-1027>, 2016.

855 Taoka, T., Iwata, H., Hirata, R., Takahashi, Y., Miyabara, Y., and Itoh, M.: Environmental controls of diffusive and
856 ebullitive methane emissions at a subdaily time scale in the littoral zone of a midlatitude shallow lake. *Journal of
857 Geophysical Research: Biogeosciences*, 125, e2020JG005753. <https://doi.org/10.1029/2020JG005753>, 2020.

858 Theus, M. E., Ray, N. E., Bansal, S., and Holgerson, M. A.: Submersed macrophyte density regulates aquatic greenhouse gas
859 emissions. *Journal of Geophysical Research: Biogeosciences*, 128(10), <https://doi.org/10.1029/2023JG007758>,
860 2023.

861 Tixier, G., M Lafont, M., L Grapentine, L., Q Rochfort, Q., and J Marsalek, J.: Ecological risk assessment of urban
862 stormwater ponds: Literature review and proposal of a new conceptual approach providing ecological quality goals
863 and the associated bioassessment tools, *Ecological Indicators*, 11, 1497-1506,
864 <https://doi.org/10.1016/j.ecolind.2011.03.027>, 2011.

865 Tokida, T., Miyazaki, T., Mizoguchi, M., Nagata, O., Takakai, F., Kagemoto, A., and Hatano, R.: Falling atmospheric
866 pressure as a trigger for methane ebullition from peatland. *Global Biogeochemical Cycles*, 21(2).
867 <https://doi.org/10.1029/2006GB002790>, 2007.

868 Vachon, D., and del Giorgio, P.A. Whole-Lake CO₂ Dynamics in Response to Storm Events in Two Morphologically
869 Different Lakes. *Ecosystems*, 17, 1338–1353 (2014). <https://doi.org/10.1007/s10021-014-9799-8>, 2014.

870 Vachon, D., Langenegger, T., Donis, D., Beaubien, S. E., and McGinnis, D. F.: Methane emission offsets carbon dioxide
871 uptake in a small productive lake. *Limnology and Oceanography Letters*, 5(6), 384–392,
872 <https://doi.org/10.1002/lol2.10161>, 2020.

873 van Bergen, T.J.H.M., Barros, N., Mendonça, R., Aben, R.C.H., Althuizen, I.H.J., Huszar, V., Lamers, L.P.M., Lürling, M.,
874 Roland, F., and Kosten, S.: Seasonal and diel variation in greenhouse gas emissions from an urban pond and its
875 major drivers. *Limnology and Oceanography*, 64 (5), 2129–2139. <https://doi.org/10.1002/1no.11173>, 2019.

876 Varadharajan, C., and Hemond, H. F.: Time - series analysis of high - resolution ebullition fluxes from a stratified,
877 freshwater lake. *Journal of Geophysical Research: Biogeosciences*, 117(G2).
878 <https://doi.org/10.1029/2011JG001866>, 2012.

879 Velthuis, M., and Veraart, A. J.: Temperature sensitivity of freshwater denitrification and N₂O emission—A meta-analysis.
880 *Global Biogeochemical Cycles*, 36(6), <https://doi.org/10.1029/2022GB007339>, 2022.

881 Verpoorter, C., Kutser, T., Seekell, D. A., and Tranvik, L. J.: A global inventory of lakes based on high - resolution satellite
882 imagery. *Geophysical Research Letters*, 41(18), 6396–6402. <https://doi.org/10.1002/2014GL060641>, 2014.

883 Wang, G., Xia, X., Liu, S., Zhang, S., Yan, W., McDowell, W.H.: Distinctive Patterns and Controls of Nitrous Oxide
884 Concentrations and Fluxes from Urban Inland Waters, *Environmental Science & Technology*, 55, 8422–8431,
885 <https://doi.org/10.1021/acs.est.1c00647>, 2021.

886 Wanninkhof, R.: Relationship between gas exchange and wind speed over the ocean. *Journal of Geophysical Research: Oceans*, 97, 7373–7381. <https://doi.org/10.1029/92JC00188>, 1992.

888 Webb, J.R., Clough, T.J., Quayle, W.C.: A review of indirect N₂O emission factors from artificial agricultural waters,
889 *Environmental Research Letters*, 16 043005, <https://doi.org/10.1088/1748-9326/abed00>, 2021.

890 Webb, J.R., Leavitt, P.R., Simpson, G.L., Baulch, H.M., Haig, H.A., Hodder, K.R., and Finlay, K.: Regulation of carbon
891 dioxide and methane in small agricultural reservoirs: optimizing potential for greenhouse gas uptake.
892 *Biogeosciences*, 16 (21), 4211–4227. <https://doi.org/10.5194/bg-16-4211-2019>, 2019.

893 Webb, J.R., Quayle, W.C., Ballester, C., Wells, N.: Semi-arid irrigation farm dams are a small source of greenhouse gas
894 emissions. *Biogeochemistry*, 166, 123–138. <https://doi.org/10.1007/s10533-023-01100-4>, 2023.

895 Weiss, R. F., Price, B. A.: Nitrous oxide solubility in water and seawater. *Marine chemistry*, 8(4), 347–359.,
896 [doi.org/10.1016/0304-4203\(80\)90024-9](https://doi.org/10.1016/0304-4203(80)90024-9), 1980.

897 Weiss, R. F.: Determinations of carbon dioxide and methane by dual catalyst flame ionization chromatography and nitrous
898 oxide by electron capture chromatography. *Journal of Chromatographic Science*, 19, 611–616.
899 <https://doi.org/10.1093/chromsci/19.12.611>, 1981.

900 West, W.E., Coloso, J.J., and Jones, S.E.: Effects of algal and terrestrial carbon on methane production rates and methanogen
901 community structure in a temperate lake sediment. *Freshwater Biology*, 57, 949–955.
902 <https://doi.org/10.1111/j.1365-2427.2012.02755.x>, 2012.

903 Wik, M., Crill, P. M., Varner, R. K., and Bastviken, D.: Multiyear measurements of ebullitive methane flux from three
904 subarctic lakes. *Journal of Geophysical Research: Biogeosciences*, 118:791 1307–1321.
905 <https://doi.org/10.1002/jgrg.20103>, 2013.

906 Xie, S., T Xia, T., H Li, H., Y Chen, Y., W Zhang, W. , 2024, Variability in N₂O emission controls among different ponds
907 within a hilly watershed, *Water Research*, 267, 122467, <https://doi.org/10.1016/j.watres.2024.122467>, 2024.

908 Xun, F., Feng, M., Ma, S., Chen, H., Zhang, W., Mao, Z., Zhou, Y., Xiao, Q., Wu, Q. L., and Xing, P.: Methane ebullition
909 fluxes and temperature sensitivity in a shallow lake. *Science of The Total Environment*, 912, 169589.
910 <https://doi.org/10.1016/j.scitotenv.2023.169589>, 2024.

911 Yan, X., Xu, X., Ji, M., Zhang, Z., Wang, M., Wu, S., Wang, G., Zhang, C., and Liu, H.: Cyanobacteria blooms: A neglected
912 facilitator of CH₄ production in eutrophic lakes. *Science of the total environment*, 651, 466-474.
913 <https://doi.org/10.1016/j.scitotenv.2018.09.197>, 2019.

914 Yang, Z., Zhao, Y., and Xia, X.: Nitrous oxide emissions from Phragmites australis-dominated zones in a shallow lake.
915 *Environmental pollution*, 166, 116-124. <https://doi.org/10.1016/j.envpol.2012.03.006>, 2012.

916 Yentsch, C.S., and Menzel, D.W.: A method for the determination of phytoplankton chlorophyll and phaeophytin by
917 fluorescence. *Deep Sea Research and Oceanographic Abstracts*, 10. Elsevier, pp. 221-231.
918 [https://doi.org/10.1016/0011-7471\(63\)90358-9](https://doi.org/10.1016/0011-7471(63)90358-9), 1963.

919 Zhao, K., Tedford, E.W., Zare, M., and Lawrence, G.A.: Impact of atmospheric pressure variations on methane ebullition
920 and lake turbidity during ice - cover. *Limnology and Oceanography Letters*, 6(5), 253-261.
921 <https://doi.org/10.1002/lo2.10201>, 2021.

922