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Abstract 

In South Asia, biomass is burned for energy and waste disposal, producing brown carbon (BrC) 15 

aerosols whose climatic impacts are highly uncertain. To assess these impacts, a real-world 

understanding of BrC’s physio-optical properties is essential. For this region, the order-of-

magnitude variability in BrC’s spectral refractive index as a function of particle volatility 

distribution is poorly understood. This leads to oversimplified model parameterization and 

subsequent uncertainty in regional radiative forcing. Here we used the field-collected aerosol 20 

samples from major anthropogenic biomass activities to examine the methanol-soluble BrC 

optical properties. We show a strong relation between the absorption strength, wavelength 

dependence, and thermo-optical fractions of carbonaceous aerosols. Our observations show 

strongly absorbing BrC near the Himalayan foothills that may accelerate glacier melt, further 

highlighting the limitations of climate models where variable BrC properties are not 25 

considered. These findings provide crucial inputs for refining climate models and developing 

effective regional strategies to mitigate BrC. 
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1. Introduction 

Carbonaceous aerosols, such as black and organic carbon, make up most fine particulate matter 30 

(PM2.5) emissions globally (Mcduffie et al., 2020; Roy et al., 2023; Kurokawa and Ohara, 2020; 

Crippa et al., 2018) and ~40% over South Asia (Tibrewal et al., 2024; Pandey et al., 2014; 

Sadavarte et al., 2019). Anthropogenic biomass usage for residential cooking and heating 

(Pandey et al., 2014; Habib et al., 2023; Navinya et al., 2023), residue burning for agricultural 

waste disposal (Kapoor et al., 2023b; Azhar et al., 2019) and biomass-fired brick kilns (Weyant 35 

et al., 2014; Tibrewal et al., 2023) are the common sources of these carbonaceous aerosols 

across South Asia (Tibrewal et al., 2024; Pandey et al., 2014; Sadavarte et al., 2019; Ohara et 

al., 2007) and many other developing countries (Bonjour et al., 2013; Yevich and Logan, 2003; 

Mcduffie et al., 2020). These aerosols perturb the Earth’s energy balance, depending on their 

mixing state, size distribution, wavelength dependence of optical properties, and absorption 40 



2 
 

strength (Zhang et al., 2020; Neyestani and Saleh, 2022; Brown et al., 2018; Arola et al., 2015; 

Bond and Bergstrom, 2006). However, the extent of this perturbation remains uncertain (Szopa 

et al., 2021; Gliß et al., 2021). Over the last two decades, extensive research has focused on the 

climate impact of highly absorbing black carbon (BC) (Bond et al., 2013). In contrast, the 

climate implications of light-absorbing organic carbon (OC), termed brown carbon (BrC), have 45 

received relatively less attention and are thus less certain (Saleh et al., 2018; Brown et al., 2018; 

Saleh, 2020). The chemical composition of BrC varies significantly, and consequently its 

optical properties, as reported across previous studies, span orders of magnitude in the 

imaginary refractive index (k) values that determine its light absorbing strength (Chakrabarty 

et al., 2023; Choudhary et al., 2021, 2018, 2017; Dey et al., 2021; Kapoor et al., 2023a; 50 

Kirillova et al., 2016; Rana et al., 2020; Rathod et al., 2017; Saleh et al., 2018, 2014; Srinivas 

and Sarin, 2014). Previous studies often measured aged ambient BrC that are weakly absorbing 

(kBrC,550 <0.01) due to photobleaching (Sumlin et al., 2017), hence some climate impact 

assessment studies have considered BrC as a weakly or non-absorbing particle (Lee et al., 2010; 

Sand et al., 2021; Zhang et al., 2020). However, this underestimates the impact of freshly 55 

emitted BrC that has high absorption strength (kBrC,550 > 0.1) and resists photobleaching, 

resulting in extended atmospheric lifetime (Chakrabarty et al., 2023). Furthermore, the 

formation of light-absorbing secondary BrC and the enhancement of BC absorption  due to OC 

coating (Rastogi et al., 2021; Bhowmik et al., 2024; Kapoor et al., 2022) add complexity to 

radiative transfer models. 60 

BrC has a wide range of absorption strength; studies show kBrC,550 varying from ~0.007 (Islam 

et al., 2022) to ~0.2 (Chakrabarty et al., 2023). In addition to the different methods used to 

derive BrC optical information, such variation is associated with the different combustion 

conditions (Saleh et al., 2018), ageing of BrC (Sumlin et al., 2017; Dasari et al., 2019; 

Romonosky et al., 2016; Chen et al., 2021), and secondary reactions (Wang et al., 2020; Kroll 65 

et al., 2007; Kroll and Seinfeld, 2008; Hecobian et al., 2010). An experimental study explained 

that the progressive transformation of BC precursors to BC results from different combustion 

conditions, which create the BrC-BC light-absorption continuum (Saleh et al., 2018). This 

continuum shows an increase in the absorption strength of carbonaceous aerosols that is 

associated with a decrease in wavelength dependence (w), solubility, and volatility (Saleh, 70 

2020). Recent studies also observed such a relationship, but for a smaller range of kBrC (<0.01) 

(Devaprasad et al., 2024; Luo et al., 2022). However, information about real-world source 

specific BrC absorption and its position in the BrC-BC continuum is lacking. Understanding 

this light absorption continuum alongside carbonaceous aerosol emissions aids BrC 

parameterization in climate models (Zhang et al., 2020; Saleh et al., 2014). Presently, because 75 

source specific BrC information is absent from emission inventories, many climate models 

inadequately account for BrC. Studies have used the BrC to BC ratio along with the kBrC to 

understand its direct radiative effect (Park et al., 2010; Feng et al., 2013). Furthermore, other 

studies (Zhang et al., 2020; Neyestani and Saleh, 2022; Brown et al., 2018) have employed 

BrC parameterization schemes based on laboratory-generated data to address the climate 80 

impact of BrC, but this approach might not adequately represent real-world biomass burning 

conditions (Saleh et al., 2014; Lu et al., 2015). Hence, regions with high OC emissions and 

stronger BrC (S-BrC), also known as dark BrC (kBrC,550 > 0.1), could have a high climate impact 
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due to persistent BrC, possibly underestimated in the absence of regional source specific BrC 

data. 85 

The recent Carbonaceous Aerosol Emissions, Source Apportionment and Climate Impacts 

(COALESCE) field emission measurement campaigns and questionnaire surveys in India 

(Navinya et al., 2023; Kapoor et al., 2023b; Tibrewal et al., 2023; Habib et al., 2023) have 

prepared a comprehensive inventory encompassing both formal (transportation, industries and 

power generation) and informal (residential, agricultural residue burning, and brick production) 90 

emission sectors (Venkataraman et al., 2020; Tibrewal et al., 2024). It recognizes the substantial 

contribution of anthropogenic PM2.5 in India arising from biomass fuel burning practices for 

residential cooking and agricultural residue burning (Kapoor et al., 2023b; Tibrewal et al., 

2024; Habib et al., 2023). Recent studies have highlighted considerable biomass consumption 

for residential heating and brick production (Tibrewal et al., 2023; Navinya et al., 2023). Figure 95 

1 shows 91% of the OC emissions (3 Tg y-1) over India are from three sources: residential 

cooking (COOK), heating (HEAT), and agricultural residue burning (AGRI), with most 

emissions from the Indo-Gangetic plain (~50%) (Tibrewal et al., 2024). The unexplored climate 

impacts of OC emitted from these biomass-based sources make the Indian subcontinent 

particularly prone to environmental challenges.  100 

 

Figure 1. The spatial distribution of OC emissions (Mg y-1 pixel-1) from three major sources—

agricultural residue burning (AGRI), residential cooking (COOK) and residential heating 

(HEAT)—covers ~91% of the total OC emissions (3.3 Tg y-1) over India. OC emissions are 

taken from the Carbonaceous Aerosol Emissions, Source Apportionment and Climate Impacts 105 
(COALESCE) Speciated Multipollutant Generator (SMoG)-India emission inventory for the 

year 2019 (Tibrewal et al., 2024). Here, the pixel size is 5×5 km. The pie chart represents the 

shares of anthropogenic biomass burning sources in the total OC emissions over India. Other 

sources (OTHR) of OC include brick production, transportation, industries, and power 

generation. 110 
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This study leverages samples of aerosol particle emissions collected on filter substrates during 

the COALESCE field campaign to evaluate BrC-BC light absorption continuum behavior in 

real-world biomass burning emissions. Using a UV-Vis spectrophotometer, it examines BrC 

derived from major biomass fuel sources such as cooking, heating, agricultural residue burning, 115 

and brick production. The study aims to connect BrC with the thermo-optically resolved carbon 

fractions to parameterize BrC absorption over South Asia. Further, it endeavours to couple 

source specific BrC properties with the BC-to-organic-aerosols (OA) ratio to explore the spatial 

variability of the absorption properties of BrC emitted across India. 

2. Data and Methods 120 

2.1. Data Collection 

The field-based emissions measurement campaign (Figure S2) was conducted from Oct-2021 

to Apr-2022 in rural parts of Gujarat and Maharashtra, two western India states. These locations 

were selected based on their representativeness for the fuels and devices commonly used in 

South Asia based on previous studies (Navinya et al., 2023; Kapoor et al., 2023b; Tibrewal et 125 

al., 2023; Habib et al., 2023). The primary aim of this campaign was to capture physical, 

chemical, and optical information about the emissions from biomass sources: agricultural 

residue burning, brick production from clamps, cooking, and heating. The versatile source 

sampling system, as described by Kumari et al. (2024) and Venkataraman et al. (2020), consists 

a multi-arm inlet design adapted from Roden et al. (2006) to function as an area plume sampler, 130 

positioned 1 to 1.5 meters above the emission source (Figure S2). The system comprises eight 

arms that aspirate aerosols, which are then combined in a mixing plenum to ensure 

representative sampling of the smoke plume. Aerosols drawn through the inlet pass through a 

2.5 µm cut-off cyclone, subsequently being divided into two streams: for real-time and 

gravimetric measurements. Aerosols in the gravimetric stream were collected on quartz filter 135 

substrates for offline laboratory analysis over the entire duration of the experiment, 

encompassing ignition, flaming, and smoldering phases, in order to obtain a sample 

representative of the complete combustion cycle. The temperatures of the emitted plumes were 

diluted by the surrounding air, reaching levels close to that of ambient air before entering the 

multi-arm sampler. This ensured that the emissions had undergone gas-to-particle partitioning, 140 

corresponding to the properties of emissions used in climate models. In this study, we utilized 

aerosol-laden quartz filter substrates from 14 different fuel and source combinations (Table S1) 

to understand soluble BrC absorption (Mm-1 = 106 m-1) and total OC concentration (µg m-3).   

2.2. Estimation of BrC Properties 

We used 4.5 ml of methanol solvent and dissolved two 0.25-inch diameter punches of quartz 145 

filters. After 1 hour of sonication, the extracted solvent was passed through a 0.22 µm 

polytetrafluoroethylene membrane syringe filter (Fisherbrand™) to remove insoluble debris. 

The absorption of this methanol-soluble OC (considered as BrC absorption) was estimated by 

using a UV-visible spectrophotometer (LAMBDA 35, PerkinElmer) with a working range of 

300 nm to 900 nm and a spectral resolution of 1 nm. The equation shown below was used to 150 

estimate the absorption coefficient at any given wavelength (Chakrabarty et al., 2023; Sarkar 
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et al., 2019; Satish and Rastogi, 2019; Srinivas and Sarin, 2013, 2014; Bikkina et al., 2020; 

Boreddy et al., 2021; Choudhary et al., 2017, 2018, 2021, 2022; Dasari et al., 2019; Dey et al., 

2021; Kirillova et al., 2016; Mukherjee et al., 2020; Rajeev et al., 2022; Rastogi et al., 2021; 

Rathod et al., 2017; Rana et al., 2020; Shamjad et al., 2016b, 2018).  155 

𝑏𝑎𝑏𝑠,𝐵𝑟𝐶,𝜆 =
(𝐴𝜆 − 𝐴700) × 𝑉𝐸𝑥𝑡𝑟𝑎𝑐𝑡 × ln(10)

𝑉𝑆𝑎𝑚𝑝𝑙𝑒𝑑 × 𝐿 × 𝑓𝑓𝑖𝑙𝑡𝑒𝑟 𝑎𝑟𝑒𝑎
 

(1) 

In equation 1, 𝐴𝜆is absorbance at wavelength λ, 𝑉𝐸𝑥𝑡𝑟𝑎𝑐𝑡 is the volume of solvent extract used 

(4.5 ml in this study), 𝑉𝑆𝑎𝑚𝑝𝑙𝑒𝑑 is the volume of air sampled, 𝑓𝑓𝑖𝑙𝑡𝑒𝑟 𝑎𝑟𝑒𝑎 is the fraction of filter 

area used for the analysis, and 𝐿 is the optical path length (0.01 m). Given that soluble BrC 160 

does not absorb at 700 nm and longer wavelengths or, at best, absorbs very little, the absorption 

at 700 nm (𝐴700) was used to normalize absorbance to account for signal drift within the 

instrument, which is a limitation of this method. In this study, the estimated BrC only includes 

the methanol-soluble component and may not fully represent total BrC, including its insoluble 

components. The estimated BrC absorption could be underestimated due to excluded insoluble 165 

BrC and tarball structures, which possess high absorption strength (Corbin et al., 2019; 

Chakrabarty et al., 2023, 2010). The underestimation may be more pronounced as particle light 

absorption strength increases, i.e., closer to the dark-BrC region, since particle solubility is 

inversely proportional to light absorption strength (Saleh, 2020). In brief, Saleh (2020, and 

references therein) reviewed and categorized different BrC classes based on their volatility, 170 

using UV-vis spectrometry, optical closure (Aethalometer, Cavity Ring-Down Spectroscopy, 

and photoacoustic), and electron energy loss spectroscopy techniques. While UV-vis 

spectrometry misses out insoluble particles, optical closure techniques consider absorption by 

particles regardless of their solubility. However, they have uncertainties associated with 

separating BrC light absorption from the total aerosol light absorption. In this study only two 175 

data points, observed marginally in the dark-BrC region, might be affected. 

Quartz filters were examined using a Magee Scientific DRI multi-wavelength thermo-optical 

carbon analyser with the IMPROVE-A protocol to estimate the elemental (EC) and organic 

carbon (OC) concentrations (Chow et al., 2007). Thermo-optically resolved carbon fractions 

(OC1, OC2, OC3, OC4, EC1, EC2, and EC3) were used after pyrolytic correction to 180 

reconstruct the total organic carbon and total elemental carbon fractions (Chow et al., 2007). 

For the purpose of representation in Figure 3, pyrolytic carbon was assigned to OC4. These 

fractions are associated with the volatility of the OC (Kapoor et al., 2023a; Shetty et al., 2023; 

Tohidi et al., 2022; Vodička et al., 2015; Soleimanian et al., 2019; Ma et al., 2016), as these OC 

fractions are measured under increasing temperature peaks (140, 280, 480, & 580°C) during 185 

thermo-optical analysis. Hence, OC1 exhibits relatively higher volatility compared to OC2, 

while OC2 is more volatile than OC3, and so forth. In this study, pyrolysis corrected EC was 

treated as a proxy of BC to facilitate the comparison with other studies. The uncertainty 

associated with OC and EC measurements are 5 and 10% respectively (Cheng et al., 2021; DRI 

Manual, 2015). Cheng et al. (2021) reported an overall uncertainty of approximately 10% for 190 

methanol-soluble kBrC determined through UV-vis spectrophotometry. When accounting for the 
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5% manufacturer-reported uncertainty in OC concentration, the corresponding uncertainty in 

the absorption coefficient is estimated to be around 10%. 

Furthermore, OC concentration and 𝑏𝑎𝑏𝑠,𝐵𝑟𝐶,𝜆 were used to calculate the mass absorption 

coefficient (MACBrC,λ). The imaginary refractive index of BrC (kBrC,λ) was estimated by 195 

considering the density (𝜌) of freshly emitted OC to be 1500 kg m-3 (Liu et al., 2013; Shamjad 

et al., 2016), using the following relation (Jennings et al., 1979):   

𝑘𝜆 =
𝜌 × 𝜆 × 𝑀𝐴𝐶𝜆

4𝜋
 

(2) 

The same equation was used in many previous studies, some of which cover the same 200 

geographic region (Shamjad et al., 2018; Bikkina and Sarin, 2019; Shamjad et al., 2016b; Rana 

et al., 2020; Liu et al., 2013; Zhang et al., 2020). In addition, an absorption Angstrom exponent 

(AAE) between 365 and 550 nm (AAE365/550 = -ln[babs,BrC,365/babs,BrC,550]/ln[365/550]) was also 

estimated to understand the spectral dependence of the BrC absorption coefficient. Similarly, 

w (AAE-1) indicates the spectral dependence of the imaginary refractive index between 365 205 

nm (a commonly used wavelength for studying BrC absorption) and 550 nm (the peak of solar 

radiation intensity). In this study, we have used w and k for the ease of comparison with 

previous studies (Saleh et al., 2014; Lu et al., 2015; Luo et al., 2022; Saleh et al., 2018). 

However, AAE and MAC can also be used interchangeably. 

 210 

2.3. Spatial variation of BrC absorption 

The relationship between fuel and source averaged kBrC,550 and the BC to OA ratio (kBrC,550 = 

0.0365(±0.006)×(BC/OA) + 0.0047(±0.0037), R2 = 0.93) was established using field-collected 

fuel samples. Similarly, w was also calculated as a function of the BC to OA ratio 

(w=5.355(±0.50)×exp(-0.428(±0.25)×(BC/OA), R2=0.60). Here, OA was derived by 215 

multiplying OC by a factor of 1.8, a methodology consistent with previous studies (Turpin et 

al., 2001; Chow et al., 2015; Navinya et al., 2020; Provençal et al., 2017; Kumar et al., 2023), 

and aligned with the considered OA density (Kuwata et al., 2012). Although this factor does 

not impact the R-square (R2) of the relationship, it facilitates comparisons with other studies 

that have utilized the BC to OA ratio to derive kBrC,550. The spatial distribution of BC and OC 220 

emissions from the SMoG-India emission inventory (Tibrewal et al., 2024) was integrated into 

the equation, after converting OC into OA using the same factor, to calculate the nationwide 

kBrC,550 and w for the major (~90%) OC emitting sources: AGRI, COOK, and HEAT. 

Additionally, we derived overall kBrC and w values through a weighted averaging approach, 

incorporating OC emissions (Figure S5) as weights, along with source-specific information 225 

(Figure S3). BRICK (brick production) was omitted because field-based samples were limited 

to clamp kilns, but not available for other major brick production technologies, including Bull’s 

trench kilns and vertical shaft brick kilns (Weyant et al., 2014; Tibrewal et al., 2024, 2023).  
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3. Results and Discussion  230 

3.1. BrC-BC Absorption Continuum 

The measured kBrC,550 values varied from 0.0007 to 0.1199, while w ranged from 7.52 to 1.00, 

highlighting inverse dependence of kBrC on w (Figure 2). A previous study using synthetic fuels 

under different combustion conditions reported a similar observation, based on experimental 

measurements (Saleh et al., 2018). In this study, different field-collected sources and fuels 235 

reflected real-world variations in burning practices. An equation fitted to the data (w = 

0.1917/(kBrC,550 + 0.02886)) has an R2 value of 0.58, and an extension of this curve with 95% 

prediction bounds overlaps the BC absorption region (k550 = 0.6-0.8 and w = ~0-0.2) (Bond 

and Bergstrom, 2006; Saleh et al., 2018; Liu et al., 2018; Gyawali et al., 2013). The range of 

kBrC,550 and w observed in this study spans across three broad classes of BrC (weak, moderate 240 

and strong) suggested by Saleh (2020) for different combustion conditions. They suggest that 

while combustion processes emit particles containing a mix of different BrC classes, 

smoldering biomass emissions are skewed more toward weakly absorbing BrC (W-BrC), while 

high-temperature biomass combustion emissions are skewed more toward moderately and 

strongly absorbing BrC (M-BrC and S-BrC). In the present work, some data points, mainly 245 

from cooking and heating, exhibit greater spectral variation (larger w) than that suggested for 

M-BrC, while falling within its kBrC,550 range. Changing combustion conditions were observed 

during several experiments, where both flaming and smoldering combustion phases occurred, 

while particles were collected as a time averaged filter sample. Here, the greater spectral 

dependence in M-BrC measurements, implies that these samples would exert stronger light 250 

absorption in the near-UV range, than typical M-BrC. The thermo-optically resolved carbon 

fractions show a decline in the total OC fraction, mainly in OC1 and OC2 (relatively high 

volatile fractions), with increasing BrC absorption strength from weak to moderate (Figure 3a). 

A simultaneous increase of EC highlights the dominance of BC absorption as the strength of 

BrC absorption increases, as also reported previously (Saleh et al., 2014; Chakrabarty et al., 255 

2023). Relationships between BC, OC and BrC properties, reported by Saleh et al. (2014), are 

useful in parameterizing BrC absorption in radiative and climate models (Brown et al., 2018; 

Neyestani and Saleh, 2022; Wang et al., 2018). 
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Figure 2. BrC-BC light absorption continuum in semi-log scale, showing the wavelength 260 
dependence (w = AAE-1) of the imaginary part of the refractive index (k550) versus the 

imaginary part of the refractive index at 550 nm (k550), w = 0.1917(±0.074)/(kBrC,550 + 

0.02886(±0.014)). Here, the BC region lies between k550 = 0.6 - 0.8 and w = 0 - 0.2. The BrC 

classes are defined per Saleh, (2020): strongly absorbing BrC (S-BrC), moderately absorbing 

BrC (M-BrC), and weakly absorbing BrC (W-BrC). Arrow in the right indicates reduction in 265 
the solubility and volatility with increase in k550 (Saleh, 2020). The shaded grey area represents 

the continuum reported by previous studies (Saleh et al., 2014; Lu et al., 2015; Luo et al., 2022; 

Saleh et al., 2018), and the equations for the shaded area are given in the supplementary 

information, S1 and figure S1. The right axis displays the range of wavelength dependence for 

the three BrC classes. 270 

 

3.2. Source Specific BrC 

We observed that the variability of source specific BrC properties is larger within a source 

category than among different source categories. Figure 3b shows no significant changes in 

kBrC,550 among different source categories. However, there are much larger differences among 275 

individual data points in a source category, because of varying fuels, meteorology, and burning 

practices. The kBrC,550 means from agricultural residue burning, brick production, cooking and 

heating are respectively 0.026 (±0.035), 0.015 (±0.026), 0.015 (±0.003), and 0.010 (±0.006) 

(Figure 3b). A large variation in kBrC,550 was observed during agricultural residue burning, with 

banana, which has a high moisture content (Tock et al., 2010), showing a kBrC,550 of 0.008, and 280 

pigeon pea (an oil seed legume) having a kBrC,550 of 0.082. In comparison, kBrC,550 varies from 

0.006 (final-stage) to 0.022 (initial stage) during brick kiln operation and from 0.002 (crop 

residue) to 0.013 (firewood) during residential heating. This contrasts with cooking, where 

deliberate efforts are made to ensure efficient burning of fuel for meal preparation. Hence, BrC 

properties in cooking emissions do not vary much (kBrC,550= 0.015±0.001). Our study observed 285 

kBrC,365 of ~0.1 (±0.01) for cooking, which is higher than lab-measured values (0.014-0.054) 
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for the same fuels at 350 nm (Rathod et al., 2017). We observed that the MACBrC,365 stayed 

between 1.5-2.5 m2 g-1 for all the source-fuel combinations, except for pigeon pea residue 

burning (MACBrC,365=4.01 m2 g-1). The current findings are comparable with the MACBrC,365 

value of 2 (±0.5) m2 g-1  from Indian airmasses influenced by agricultural residue burning 290 

(Satish et al., 2020). The values reported in our study are in the upper range of ambient 

MACBrC,365 (0.62-2.3 m2 g-1) reported previously over India (Sarkar et al., 2019; Shamjad et 

al., 2018; Satish et al., 2020; Rastogi et al., 2021; Rana et al., 2020; Kirillova et al., 2016; Dey 

et al., 2021), which could be due to photobleaching of ambient BrC that decreases MAC. 

However, our estimation of MACBrC,365 aligns well with the previously reported source-specific 295 

values (1.09-2.53) (Pandey et al., 2020; Debbarma et al., 2024; Rathod et al., 2017). The 

observed AAEBrC (~5.23 ± 1.51, range 2-8.5, see Table S1) is comparable with previous 

observations (~5.31 ± 1.67, range 2.3-6.8) for biomass burning over India (Islam et al., 2022; 

Pandey et al., 2020; Rathod et al., 2017; Satish et al., 2020). In agricultural residue burning, 

banana residue shows the lowest kBrC,550 (0.008), and BC to OA ratio (0.030) (Table S2). In 300 

contrast, pigeon pea residue burning has the highest kBrC,550 (0.082) and BC to OA ratio (2.054). 

A similar relationship between kBrC,550 and BC to OA ratio has also been observed in other 

source-fuel combinations and used to parameterize kBrC,550 and w (Figure 4). 

 

Figure 3. (a) kBrC,50 distribution (right) and thermo-optically resolved carbon fractions (left) 305 
with varying BrC classes based on wavelength dependence. Here, the strongly absorbing BrC 

(S-BrC), moderately absorbing BrC (M-BrC) and weakly absorbing BrC (W-BrC) ranges are 

respectively <1.5, 1.5 - 4, and 4< in wavelength dependence (Saleh, 2020). (b) source specific 

kBrC,550 distribution (right) and thermo-optically resolved carbon fractions (left). The 

distribution of violin plot shows the Kernel density. Arrow near legends indicates reduction in 310 
the relative volatility from OC1 to OC4 (Ma et al., 2016). For the purpose of representation, 

pyrolytic carbon was assigned to OC4. 

 

3.3. Parameterization of kBrC and w 

We leveraged the significant correlation (p-value < 0.01) between the BC to OA ratio and the 315 

BrC properties (kBrC,550, R
2=0.93; w, R2 = 0.60) to build a relationship between these quantities. 
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Despite the variety of fuel burning technologies used, such as traditional stoves, open residue 

burning, and brick clamps, kBrC,550 variability is explained (R2 = 0.93) by the BC to OA ratio. 

We observed that kBrC,550 varies linearly from 0.006 to 0.74 for BC to OA ratios of 0 to 20 

(Figure 4a). Similarly, we explain w by using the BC to OA ratio to provide an approximation 320 

of the BrC absorption over the different wavelengths. We observed an exponential relation 

between w and the BC to OA ratio with an R2 of 0.60 (w varies from 5 to ~0 for BC to OA 

ratios of 0 to 20, respectively) (Figure 4b). Relative to the present studies, the relationship used 

in climate modelling studies (Zhang et al., 2020; Neyestani and Saleh, 2022; Brown et al., 

2018) given by Saleh et al. (2014) would overestimate the kBrC,550 over South Asia (Figure S7). 325 

In contrast, previous studies (Saleh et al., 2014; Lu et al., 2015; Luo et al., 2022) underestimate 

the range of w observed in this study, which may result in an underestimation of kBrC,365 (Figure 

S7). Such an underestimation would propagate uncertainties to radiative forcing calculations, 

especially over South Asia. 

 330 

Figure 4. (a) Mean KBrC,550 versus BC to OA ratio (kBrC,550= 

0.0365(±0.006)×(BC/OA)+0.0047(±0.0037), R2=0.93) and (b) w versus the BC to OA ratio 

(w=5.355(±0.50)×exp(-0.428(±0.25)×(BC/OA)), R2=0.60). Here, OA = OC x 1.8: the factor 

1.8 is widely used to convert OC into OA (Turpin et al., 2001; Chow et al., 2015; Navinya et 

al., 2020; Provençal et al., 2017; Kumar et al., 2023). The grey shaded area represents the 335 
relationship reported by previous studies (Saleh et al., 2014; Lu et al., 2015; Luo et al., 2022), 

and the equations for the shaded area are given in the supplementary information (S2, S3 and 

figure S1). The right axis in Figure 4b displays the ranges of wavelength dependence for the 

three BrC classes.  

 340 

3.4. Spatial Differences in kBrC,365 and w 

Several studies have reported ambient BrC absorption in the South Asian region (Dey et al., 

2023; Srinivas and Sarin, 2013, 2014; Bikkina et al., 2020; Boreddy et al., 2021; Choudhary et 

al., 2017, 2018, 2022; Dasari et al., 2019; Dey et al., 2021; Kirillova et al., 2016; Mukherjee et 

al., 2020; Rajeev et al., 2022; Rastogi et al., 2021; Rana et al., 2020; Shamjad et al., 2016b, 345 

2018), while most climate models continue to consider weakly absorbing BrC absorption (Sand 
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et al., 2021; Feng et al., 2013), invariant of sources and combustion conditions. Feng et al. 

(2013) simulated global BrC absorption by using 2- to 5-fold weaker kBrC values than those 

observed in our study, and they noted underestimation over South Asia owing to presence of 

strongly absorbing BrC. Other studies (Brown et al., 2018; Zhang et al., 2020) have used 2- to 350 

3-fold higher kBrC,550 values (Saleh et al., 2014; Mcmeeking, 2008) than observed in this study 

to simulate the global radiative impact of BrC. Hence, neglecting the spatial variability of kBrC 

could lead to bias in understanding its radiative impact. Thus, we calculated emissions-

weighted BrC optical properties across the Indian region to demonstrate their spatial 

heterogeneity in the region. The relationships shown in Figure 4 were used to make a spatial 355 

map of kBrC,550, kBrC,365, and w, with emission strength  from the COALESCE SMoG-India 

emission inventory (Tibrewal et al., 2024). SMoG-India is a multi-sectoral, multi-pollutant data 

set available at 5 km grid resolution, developed under the COALESCE network (Venkataraman 

et al., 2020), which also facilitated the collection of samples used in the present study. 

Figure 1 shows the large OC emissions over the Indo-Gangetic Plain, with annual emissions 360 

ranging from 50-70 Mg y-1 pixel-1 (pixel size is 5×5 km), while other regions emit ~10-20 Mg 

y-1 pixel-1. Emission weighted spatial information about w (range: 4.3 - 5.3) and kBrC,550 (0.006 

– 0.023) aids the estimation of kBrC,365. Figure 5a shows kBrC,365 ranges from 0.05 to 0.14, 

indicating strong absorption in the UV-visible wavelengths. The Himalayan foothills show 

large kBrC compared to other parts of India, mainly due to high BC to OA emissions from the 365 

predominant heating activity. A recent study highlighted the low photobleaching rate of BrC 

near Himalayan regions due to the low ambient temperatures (Choudhary et al., 2022). The 

coincidence of dark BrC particle emissions in this study, along with their reported extended 

lifetimes, could result in snow darkening on deposition, along with accelerated snow and 

glacier melting. The northwestern region of India exhibits the highest OC emissions from 370 

agricultural residue burning (Figure S5), primarily from straw residue burning (Kapoor et al., 

2023b), which has a relatively low BC to OA ratio. Consequently, the kBrC remains lower 

compared to other regions, such as Maharashtra and Andhra Pradesh, where oilseed crop 

burning is prevalent (Kapoor et al., 2023b), resulting in higher BC to OA ratio and kBrC values. 

Heating activities are particularly intense in the colder areas, especially in the Himalayan 375 

foothills, with a higher use of firewood in the eastern India (Navinya et al., 2023), leading to 

significantly higher BC to OA ratios, and elevated kBrC in the northern and eastern regions 

(Figure S3). In the Central Indo-Gangetic Plain, particularly in Uttar Pradesh and Bihar, dung 

cake is more commonly used for heating (Navinya et al., 2023), which contributes to very low 

kBrC. The variation in the BC to OA ratio across India due to cooking activities is minimal 380 

(0.075-0.125) compared to that from agricultural residue burning (0.025-0.2) and heating 

(0.025-0.25), resulting in substantially low spatial variation of kBrC,365 (0.06-0.08) from cooking 

(Figure S3). The kBrC,550 values of combustion aerosol emissions from India vary from 0.006 

to 0.023 (Figure S6), with some hotspots scattered across the country. These numbers highlight 

the order of magnitude increase in kBrC,365 compared to kBrC,550, with higher values over Eastern 385 

and Northern India. An earlier investigation also noted elevated modelled BrC absorption in 

the Eastern regions of India (Zhu et al., 2021). The substantial emissions of BrC across the 

country, coupled with the high kBrC values observed in certain other regions, suggest that BrC 

particles may have significant radiative impacts over the region.  
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 390 

Figure 5. The spatial distribution of (a) kBrC,365 and (b) wavelength dependence (w). The BC 

to OA ratio is taken for the year 2019 from the COALESCE SMoG-India emission inventory 

(Tibrewal et al., 2024). 

 

4. Implications 395 

The variability in kBrC,near-UV across modelling studies, ranging from 0.045 (Zhang et al., 2020) 

to 0.168 (Lin et al., 2014), arises from methodological, fuel, and burning condition disparities 

in the studies reporting BrC absorption properties from lab-based biomass combustion 

(Kirchstetter et al., 2004; Chen and Bond, 2010; Lack et al., 2012). However, our study, by 

using field measurements of a variety of sources, introduces source- and fuel-specific kBrC 400 

values, enhancing modelling capabilities for a more nuanced understanding of the radiative and 

climate impacts of BrC. Additionally, the observed varying wavelength dependence (w), linked 

with the BC to OA ratio in this research, amplifies uncertainty when it is assumed to be constant 

in models (Zhang et al., 2020). Compared to the findings of this study, typical BrC 

parameterization schemes (Saleh et al., 2014; Lu et al., 2015; Luo et al., 2022) in climate 405 

models tend to overestimate kBrC,550 while substantially underestimating wavelength 

dependence, which may misrepresent near-UV BrC absorption in world regions with biomass 

combustion emissions resembling those in South Asia. Additionally, this study's findings aid in 

pinpointing biomass fuels and activities, including burning of some agricultural residues and 

residential space heating, that are both prone to emitting stronger absorbing BrC (kBrC,550 > 0.1) 410 

and prevalent across developing nations. These variations in kBrC with sources and fuels lead 

to spatial variations in emitted BrC properties. In the Himalayan foothills, residential space 

heating produces stronger absorbing (and more persistent) BrC emissions, and the deposition 

of these emissions increases the potential risks of increased snow darkening and accelerated 

glacier melting. Leveraging this information with emission inventories enables the 415 

identification and potential interventional targeting these biomass fuels and activities, towards 

reducing both their local health and global climate impacts.  
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