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Abstract. Numerical models are simplified representations of the real world at a finite level of complexity. Global water models

are used to simulate the global water cycle and their outputs contribute to the evaluation of important natural and societal issues,

including water availability, flood risk and ecological functioning. Whilst global water modelling is an area of science that has

developed over several decades, and individual model-specific descriptions exist for some models, there has to date been

no attempt to visualize the ways that several models work, using a standardized visualisation framework. Here, we address5

this gap by presenting a set of visualizations of several global water models participating in the Inter-Sectoral Impact Model

Intercomparison Project phase 2b (ISIMIP2b). The diagrams were co-produced between a graphics designer and 16 modelling

teams, based on extensive discussions and pragmatic decision-making that balanced the need for accuracy and detail against

the need for effective visualization. The model diagrams are based on a standardized “ideal” global water model that represents

what is theoretically possible to represent in the current generation of state-of-the-art global water models participating in10

ISIMIP2b. Model-specific diagrams are then copies of the “ideal” model, with individual processes either included or greyed

out. As well as serving an educational purpose, we envisage that the diagrams will help researchers in and outside of the global

water model community to select the suitable model(s) for specific applications, stimulate a community learning process, and

identify missing components to help direct future model developments.

1 Introduction15

Graphical visualizations (simply referred to as diagrams hereafter) of the water cycle are essential for communicating the sys-

tem, for researchers, in education, for water management, policy-related processes, and in general for science communication

(Linton, 2008; Abbott et al., 2019; Cardak, 2009; Fandel et al., 2018). For example, Linton (2014) showed that the development

of such diagrams is associated with an increasing awareness of the social dimensions of water. Some of the water cycle dia-

grams received much attention in the scientific context, for example the visualization of the terrestrial water balance including20

model-based quantifications of global fluxes and storages from Oki and Kanae (2006). In an educational experiment, Cardak

(2009) explored misconceptions in the understanding of the global water cycle by undergraduate students, from interviews, and

by specifically letting them draw the water cycle. Elsewhere, the co-creation of diagrams between environmental modellers,

design creatives, and policy-makers, has facilitated the generation of infographics and visuals that improve the understanding

and build trust on the modeling results while striking the right balance between academic integrity and detail, and relevance25

for policy such as the IPCC reports or the EU Green Deal (European Commission, 2023).

There are no commonly accepted guidelines for designing a global water diagram, although best practices for scientific

illustration of water cycle diagrams for dryland environments are discussed by Fandel et al. (2018). The design of global

water diagrams has in the past been criticised, e.g. Abbott et al. (2019) who explored the water storages, fluxes and processes

incorporated in 464 water cycle diagrams and found that human interactions were not included in a majority (85%) of the30
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diagrams. In total, they found rather similar diagrams despite differences in the intended target audience and year of creation.

The reviews mentioned earlier (Abbott et al., 2019; Linton, 2008; Fandel et al., 2018) also include several very popular diagrams

of the global water cycle. Recently, and also as a reflection of the findings of Abbott et al. (2019), a new version of the USGS

water cycle diagram has been published (Nell et al., 2023) that illustrates components of human inferences to the water cycle.

Abbott et al. (2019) classified the format of the diagrams into a) three-dimensional, large-scale catchments, b) two-dimensional35

small scale hillslopes, c) site specific for certain aspects of a catchment and hillslopes and d) schematics that typically consist

of boxes and arrows and are the most abstract representations. In the scientific community of global water modelling, it is

nowadays common to publish model description papers alongside the output data. Typically, these descriptions also include

a graphical representation of the model scheme, namely the water storages, fluxes and processes included in the model. The

format and approach differ largely, with the most popular approaches being three dimensional diagrams (e.g. Hanasaki et al.,40

2018; Lawrence et al., 2019; Burek et al., 2020) and abstract illustrations with boxes and arrows (e.g. Stacke and Hagemann,

2021; Müller Schmied et al., 2021).

When it comes to model inter-comparison exercises, a typical goal is, next to comparing model outputs, the exploration of

commonalities and differences between models (Haddeland et al., 2011). This understanding helps to explain why the model

outputs differ. The global water sector in the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) consists of around45

20 active global water models (Gosling et al., 2023b, a) that follow a specific modelling protocol to ensure a consistent cross-

model assessment (Warszawski et al., 2014; Frieler et al., 2017, 2024).

The global water models participating in ISIMIP were developed from multiple backgrounds and as such they contain dif-

ferent concepts and components. In a previous study, Telteu et al. (2021) reviewed the models that participated in the ISIMIP

phase 2b, in terms of their components, to analyze which water storages and fluxes are included in the models. Furthermore,50

they developed a common notation for the equations of each model component, resulting in a compendium of model-specific

equations. No visual depictions of the model components were shown though. Even though all the models follow basic hy-

drological principles, such as the conservation of mass, the individual calculation procedures and the relative complexities of

the models differ (Telteu et al., 2021). This previous exercise was a community-driven effort and the modelling groups were

intensively involved, leading to a better understanding of each other’s models inside the community. Though the exercise cre-55

ated a critical stepping-stone for the global water model community, those who are not familiar with the specific equations and

principles used in hydrology, may find the rich information content of Telteu et al. (2021) challenging to interpret. This neces-

sitates the need for a visual depiction of different modelling components which can act as important additional information for

model improvement, inter-model comparison, science communication and education.

To this end, herein we present the efforts of the global water community within ISIMIP2b to describe the structure of the60

computational models in a common diagram scheme, whilst including some of the information from Telteu et al. (2021). The

visualization of the models should support:

– Familiarising people outside of the global water model community with the features and concepts included in global

water models. This could be lay audiences, university students learning about hydrology and/or modelling, or researchers.
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– Model developers to identify missing model components, which could help to define areas for future model development.65

– Researchers, giving them the possibility to reflect structural model uncertainty by visualizing the model structure includ-

ing storages, processes and fluxes, which builds the basis for assessing model output to generate a multi-model water

budget considering this uncertainty.

– Users of the ISIMIP model output data repository who want to conduct and communicate numerical assessments, to

select the right models suitable for their analyses. For example, users that are interested in specific components of70

the water cycle might select only those models that have a certain representation of these processes implemented. We

envision that the diagrams will also support the selection of models for the intended purpose, both for historical time

periods and also for future projections.

– End users, stakeholders and decision makers towards a better understanding of the benefits and limitations of specific

models, in relation to the intended application of the models. For example, a model that is specifically designed as75

a vegetation model has benefits in simulating such processes but might have limitations in other areas, such as the

representation of water management. A visualization could help to identify those features quickly and builds trust in

results outside the modeling community.

The expected audience of our diagrams is relatively wide and comprises a) model output users, b) people who are new in the

global water modelling community and want to learn about the existing models, c) people in educational settings (in particular80

academic education), d) policy makers and civil society organisations as well as e) model developers seeking inspiration for

improving their models.

The remaining paper is structured as follows. In Sect. 2 we describe the general methodology from the first idea to the

finalization of the diagrams. An “ideal” model as well as the individual model diagrams are then shown in Sect. 3. A discussion

about limitations and potential improvements, how the diagrams may be used, as well as a future outlook, is in Sect. 4, followed85

by concluding remarks in Sect. 5.

2 Methods

2.1 Community-driven demand for a structural model intercomparison

In a project funded by the European Union (WATCH project under EU grant number 36946, runtime 2007-2011), the global

water model community initiated a model intercomparison and hydrological assessment study. Based on this foundation, the90

global water sector in ISIMIP was formed and has been active since ISIMIP was started in 2012. There has been a wide range of

studies focusing on model evaluation (e.g., Veldkamp et al., 2018; Zaherpour et al., 2018; Zhao et al., 2017; Masaki et al., 2017;

Kumar et al., 2022) and impact assessment (e.g., Gudmundsson et al., 2021; Reinecke et al., 2021; Prudhomme et al., 2014;

Dankers et al., 2014; Schewe et al., 2014; Thompson et al., 2021; Gosling et al., 2017) but also considering other sectors like

agriculture and health (e.g., Schewe et al., 2019; Thiery et al., 2021). The creation phase of such contributions, and specifically95
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when trying to explain why model results differ, was hindered by the unavailability of a consistent and comparative model

overview. This was the motivation for working collaboratively on an overview of the models participating in the global water

sector of ISIMIP. In an international paper writing workshop during summer 2018, in Frankfurt am Main (Germany), initial

ideas were discussed for conducting a thorough review of the global water models participating in the ISIMIP phase 2b. One

of the first outcomes from the workshop was the publication of Telteu et al. (2021) that provided first overview of participating100

models and their components. Besides the numerical descriptions of the models, the benefits for creating a common diagram

further emerged at the workshop.

We decided to generate a three-dimensional diagram of the water cycle that also shows the vertical water balance in a second

diagram. The motivation for this separation was to first provide an overview of the individual model’s representation of the

water cycle but then also to focus on a more detailed level on the vertical water balance.105

2.2 From initial drafts to a final diagram

First drawings of the diagrams were discussed at scientific conferences (Telteu et al., 2019b, a) and international ISIpedia

(Potsdam Institute for Climate Impact Research (PIK) e. V., 2023) workshops with stakeholders from data scarce regions. In

particular, we sought input on the level of detail to include in the diagrams. Whereas discussants with a more scientific view

suggested adding more details to reflect the complexity of the water cycle, stakeholder interactions in two ISIpedia workshops110

in Eastern Europe and West Africa with representatives from governmental organizations, academia and NGOs expressed the

wish for a simplified representation and felt overwhelmed by too much complexity. Also, we discussed avoiding some of the

classical misconceptions, e.g., to draw the aquifer as a sub-surface lake or river (Fandel et al., 2018). A professional graphics

designer and science communicator was included in the discussions.

We first had to find a common basis for such a model diagram and agree on the level of detail to include. This was chal-115

lenging as the focus of the diagrams is to represent how different model structures represent the global water cycle, rather than

representing the entire global water cycle with all possible processes, as intended e.g., in Nell et al. (2023). Hence, the required

level of abstraction but also realism was discussed at length. Several iterations with different user groups allowed for the uptake

of a variety of needs leading to well-balanced diagrams.

We agreed on generating a diagram of an “ideal” global water model, characterised by its broad inclusion of water fluxes,120

storages and processes represented in at least one of the models described in Telteu et al. (2021), without implying it to be

the most thorough or exhaustive representation. The climatic input variables are shown as well as the vertical and lateral

water balance and the sectors considered for human water use. Based on this “ideal” model, we derived the diagrams for the

individual models by greying (and for people with color vision deficiency also by "x"ing out) out the components that are not

present in the specific individual model. The number of layers in snow, glacier, soil and groundwater storage are considered125

in the individual model diagrams, for the “ideal” diagram, the notation of "1+n" indicates that at least one layer should be

represented. Note that the inclusion of a specific flux, storage or process can be reached in very different levels of complexity.

For example, the process that reflects the CO2 concentration on plant growth and related water use is implemented in the

models in different ways and levels of detail, but how exactly cannot be reflected in a binary information (existing or not) in
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such diagrams. In a series of feedback rounds with the individual modelling teams and the graphics designer, the diagrams130

converged into a final set of illustrations, which are presented in this study.

3 Results

3.1 The “ideal” ISIMIP2b global water model

In the “ideal” model representation, all processes and features that could be included in a global water model based on current

modelling capability within ISIMIP2b are shown (Figs. 1, 2). Thus all names, components and input data are displayed in135

colour. The term “ideal” stands for a global water model that represents all of the fluxes and storages that are included in at

least one model participating in ISIMIP2b, but not necessarily that this is the optimal way of representing the water cycle in a

model. However, none of the individual models considers all of these components together, so it is a hypothetical representation

of the currently “ideal” global water model.

The ideal model shows the vertical water balance (indicated with A), the lateral water balance (B) and the water management140

components (C) in Fig. 1. The specific illustration of the vertical water balance (Fig. 2) is also provided as, for a number of

assessments, the model output of this part of the water cycle (e.g., for indicators of groundwater recharge, runoff or the

variation of soil water storage) is not only relevant for society but also exhibits consistency among the models. In contrast, the

components of the lateral water balance and the river routing approach differ substantially between the models and this part of

the water cycle is also much more integrated with water management than the vertical water balance.145

3.2 The individual ISIMIP2b global water models

The individual model diagrams are displayed in an overview for the full water balance (Fig. 3) and the vertical water balance

(Fig. 4) in order from the highest number of included fluxes and storages to the lowest. In the Appendix A, the individual

models are shown separately, and are ordered alphabetically according to their model name.

The appearance of the 16 model representations next to each other reveals that all models commonly consider snow and soil150

water storage (Fig. 4). Most models include canopy storage (13 out of 16), groundwater storage (11 out of 16), and only 2

models (different versions of CLM) have a representation of glacier storage. All models consider the water fluxes transpiration,

soil evaporation, infiltration and (surface) runoff, which can be considered, together with the storages described above as the

core components of the hydrological cycle. Specific processes like capillary rise (5 out of 16) and interflow (5 out of 16) are

less implemented, whereas fluxes like groundwater recharge is represented in 15 out of 16 models. Interestingly, groundwater155

recharge is also presented for some models that lack an explicit representation of groundwater storage. For example, in the

case of LPJmL, the seepage from soil is reported as groundwater recharge but at the same time step as runoff, which means

that there is no delay to groundwater storage (Telteu et al., 2021).

Other than for the vertical water balance, there is no commonality in the lateral water balance and water use sectors (B-

and C-part of Fig. 3, respectively). Whereas a model like WaterGAP2 considers all lateral water storage types of the “ideal”160
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Figure 1. The representation of the components of an “ideal” global water model that participates in ISIMIP.

representation, models like DBH, WAYS and MacPDM do not integrate any storages of the lateral water balance. Nevertheless,

even though WaterGAP2 has all the surface water storages included, it does not (and other than e.g. PCR-GLBOWB) include

evaporation from rivers and might therefore not be seen as a model that fully represents the lateral part of the water cycle.

For 9 out of 16 models, water use sectors are considered, at least with the irrigation sector. Less models include other sectors,

and only 2 models (CWatM and WaterGAP2) consider all 5 water use sectors. Reservoirs are included in 7 models, interestingly165

also in models without considering any water use sector (e.g. VIC). The effect of varying CO2 concentrations is included in 8

out of 16 models.

The overview also reveals differences between model versions, in particular for CLM4.5 and CLM5.0, where the different

numbers of snow and soil layers are visible.

4 Discussion170

Here we reflect on the design process, elaborate on opportunities for improvement and provide an outlook for similar activities

(e.g. in the recent ISIMIP phase 3).
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Figure 2. The representation of the vertical water balance for an “ideal” global water model that participates in ISIMIP.

4.1 Reflection of the design process

The stages in developing a visual model description are quite different from the stages involved in describing the models with

formulas and equations (Telteu et al., 2021). The latter required individual elements of model processes and parameterisations175

to be studied and compared between models, while the development of the diagrams required a higher level of aggregation,

where individual processes had to be lumped together to a higher order, and consideration given as to whether they fell into

any one particular part of the “ideal” model diagram.

It became clear that this process could only be successful with a strong commitment of the modelling participants. It was

challenging to achieve this, and it is perhaps one of the main reasons why so few studies have been published that compare180

visual representations of environmental models. Specific challenges included the limited duration of funding to support the

activity (a few months) and variability in academic staff contracts (e.g. PhD candidates graduating and then moving to new

places of work with new priorities).

Intense interaction with the graphic designer was important for discussing and agreeing on how complex processes could be

represented in a relatively simple, visual form. Much time was spent in developing a consensus on the right balance between185

visual complexity, accuracy, detail, and simplicity. For example, groundwater is often drawn like a large sub-surface lake or
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Figure 3. The components of the individual ISIMIP2b global water models, ordered by decreasing number of included fluxes and storages.

river (Abbott et al., 2019; Fandel et al., 2018) but it is not trivial to represent a water-filled bedrock without creating such a

misconception. Also, we discussed which shapes and icons could be used to illustrate specific features, such as vegetation.

The main intention was to show a tree to represent the canopy storage. Intrinsically, we initially sketched a typical Northern

Hemisphere broad-leaf tree but during the discussion, it became clear that this inadvertently ignored the diversity of different190

canopy types that exist around the world in different biomes (e.g. the vegetation of an African savanna).

It took several general discussion rounds (online meetings), countless bilateral discussions as well as several review rounds

to reach a commonly agreed illustration. Through this process and in particular while discussing what should be greyed out or

not, the modelling teams achieved an enhanced level of understanding about the representation of specific fluxes and storages

in the models, and some of those insights led to slight refinements of the descriptions in (Telteu et al., 2021).195

We underestimated the whole effort and think this process could certainly have been improved and streamlined by including

an expert who could give guidance in such a collaborative process (e.g., from social science) or by the inclusion of a graphics

designer from the beginning. We only involved the graphics designer at a relatively late stage of the overall process.
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4.2 Potential uses of the model diagrams

The development of a consistent design style for visualizing the models has several benefits and uses.200

Model evaluation studies show that the outputs from the models differ, even when the models are forced with consistent input

data (Veldkamp et al., 2018; Zaherpour et al., 2018; Kumar et al., 2022). Whilst it is useful to understand the extent to which the

models perform differently, it is also important to understand why the models perform differently. The latter is often challenging

to address, largely because the models have been developed by multiple groups over many years (in some cases decades, e.g.

MacPDM (Gosling and Arnell, 2011) or WaterGAP (Döll et al., 2003)) and because a detailed knowledge of how each model205

works is required (Melsen, 2022). The reasons for inter-model differences are thus often only rather vaguely explained in the

literature (e.g. Zaherpour et al., 2018; Veldkamp et al., 2018). We anticipate that the model illustrations will be used alongside

with the numerical description of different modelling components Telteu et al. (2021). By comparing consistently created

diagrams, we can understand the differences among the models at a glance. This will further help researchers understand why

certain model outputs differ in future model evaluation studies.210

One of the underlying rationales of model evaluation studies is that they identify opportunities for model development and

improvement. Given that the “ideal” model was co-created by many members of the global water modeling community, it can

be used to help plan the integration of missing components or schemes into individual models. The equations and concepts

detailed in Telteu et al. (2021) should also help to build the basis for model development planning. We acknowledge that the

“ideal” model diagram is missing some components from the observed water cycle, including aspects of water management215

like flood protection measures (both green and grey (O’Donnell et al., 2021)) and inter-basin water transfer, as well as natural

processes like permafrost and the role of animals such as beavers which can significantly modify river hydrology largely

through dam construction (Larsen et al., 2021). Thus the “ideal” model should not be seen as the best way to describe the

full water cycle. Rather, it should be viewed as a representation of what is currently considered feasible within the realm of

environmental modelling capability in ISIMIP2b. The “ideal” model diagram is likely to evolve, also as the spatial and temporal220

resolution is refined and finer-scale processes are represented, and also as computing power improves along with advances in

artificial intelligence (Zaherpour et al., 2019), which are already leading to improvements in the capability of weather and

climate prediction (Lam et al., 2023).

Given the range of inherent uncertainties and differences in performance between the models (Zaherpour et al., 2019), it is

often difficult to know which of the models are better suited for some applications over others, e.g. for simulating hydrology225

in dry regions only (see the discussion in Krysanova et al., 2020; Zaherpour et al., 2019), or for analysing only droughts

(Kumar et al., 2022). Some studies focus on human interactions with the natural water cycle (Haddeland et al., 2014). The

model diagrams we present here, help to illustrate the types of human interactions they include, to what extent, and how. This

helps with selecting appropriate models to incorporate into selected studies. For example, if someone would like to assess

the amplification of streamflow (river discharge) due to reservoir management and human water use, the user can find this230

information in the diagrams. Although this information can also be obtained from the equations described in Telteu et al.

(2021), the graphical illustration provides a more intuitive and rapid overview of model components and structure. The value
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These diagrams will help to give a high-level overview of the differences between models, but they are not enough to accurately answer the "why" question. Doing so would require controlled experiments in e.g. a multi-model framework to isolate the impact of each individual decision that is different between these models. "[..], we can begin to understand the differences among models at a glance" may be a better phrase to use here.

W. Knoben
Highlight
I think I slightly disagree with this. This "ideal" diagram can be viewed as a representation of what is currently being done, but what is feasible is a wholly different question. For example, including multi-story canopies isn't currently done in these models, but there are no technical reasons why this isn't feasible. The same goes for permafrost or snow melt (partly) infiltrating into the soil, or any of the other things listed earlier in this paragraph. I think some more nuanced phrasing is required here.
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More generally, I think this paragraph supports changing the terminology "ideal" model to something a bit more descriptive of what this diagram actually represents: an amalgamation of the processes currently included in a specific selection of models.

W. Knoben
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of the diagrams in the way outlined above is not limited to just human water use, e.g. they will also facilitate the identification

of models suitable for studies on energy balance, CO2 effects, vegetation dynamics, and evapotranspiration.

Previous diagrams of the global water cycle have been criticized (Abbott et al., 2019; Fandel et al., 2018) for not accurately235

representing the magnitude of uncertainties that exist in current scientific understanding of the fluxes and stores that constitute

the cycle. For example, the use of equally thick lines for fluxes, or values of water balances without error, gives the incorrect

impression that the water cycle is fully understood and not subject to refinements or scientific discussion. Our diagrams have

the same limitation, in that the fluxes and stores do not have an uncertainty range associated with them. This was not the goal

of our exercise, but we acknowledge that such information is important. Our diagrams do, however, illustrate the concept of240

structural uncertainty. The model-specific differences in the diagrams of the individual models (Sect. 3.2) show that the water

cycle can be represented in different, yet plausible, ways (Butts et al., 2004). In follow-on studies, the model outputs could

be assessed to quantify the magnitude of uncertainty associated with the fluxes and storages. This information could then be

incldued in the model diagrams by representing the fluxes and storages with different drawn thicknesses that correspond to the

magnitude of uncertainty.245

Lastly, the diagrams serve an educational purpose and support end-users. The illustration of the “ideal” global water model

helps to show what is potentially feasible based on current modelling capability in the scientific community, while the individual

model diagrams help to show the different ways that models approach the process of simplifying the environment and human

interactions into a numerical model form. The illustrations also help with understanding the different degrees of complexity

that exist in modelling, e.g. the number of soil layers. From an educational standpoint, this helps to support understanding of250

the underlying basis of modelling the water cycle, and it opens the floor for a more detailed discussion about the way that

processes are implemented in the models Telteu et al. (2021). Also, this visualization of the structural model uncertainty of the

current generation of global water models which can help to better inform end users such as readers of assessment reports (e.g.

those from IPCC).

4.3 Updating the diagrams and future directions255

The model diagrams presented here are for the models that have participated in phase 2b of ISIMIP. ISIMIP is currently in

phase 3 (Frieler et al., 2024). Some of the models that participated in ISIMIP2b have been updated for phase 3, and in addition,

some new models are participating in phase 3 that did not participate in earlier phases. The new models do not represent the

water cycle in a completely different way compared to 2b, which means that the model diagrams presented here need to be

adapted for the new models. Furthermore, the notation of the equations in Telteu et al. (2021) can also be used. To ensure the260

sustainability of the visualization approach described here, and to maximize the value of the learning process undertaken in

developing the visuals, we have created a tool to automatically generate the model diagrams based on a json-notation of the

components included in each model (Müller Schmied, 2024). This tool was finally used to generate the figures represented in

this study. In the future, the modelling teams running new or updated models will be able to provide details on the components

included in their models in a structured json-format and based on that, a model diagram could easily be created for that model.265
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The scientific community's ability to model various sub-systems of what's shown in Figure 1 is (far) beyond what's being done in these models. We have the technical understanding to integrate these capabilities into community frameworks, and I therefore think that what is feasible at this point in time goes beyond the sum of what this specific subset of models can do. 

I think it's good to be honest about limitations in our current modeling capabilities, but I think it is equally good to not undersell them either. I would suggest to either include a discussion along these lines (i.e., what capabilities exist that are not included in the models used in this work), or to rephrase certain parts of this paper to be more specific about the fact that what we're looking at in this work is a specific subset of the wider modeling capabilities that exist within the community.
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We are also considering to develop an interactive, web-based version of the diagrams. This would link to the underlying

equations for each part of the diagram. There could also be an option to download the model outputs. We also envisage a

search facility, which would allow users to select a specific component of interest and then obtain more information about the

model(s) that consider that component, as well as the available model output. Once integrated in the general ISIMIP workflow,

this would simplify the usability of output data and also increase the visibility and up-to-date status of the contributing models.270

In the longer term, we anticipate exploring the feasibility of applying the “ideal” model and model visualization to some

of the other types of models that participate in other ISIMIP sectors, e.g. global gridded crops models, biomes models, and

global water quality models. This could then lead to improvements in cross-sectoral understanding of the models and support

assessments of model outputs accordingly.

5 Conclusions275

This study provides insights from a community effort to illustrate the components of the global water cycle that are currently

simulated by a set of state-of-the-art global water models participating in the ISIMIP phase 2b exercise. Based on inclusive

discussions between the modelling teams and a graphics designer, we co-developed an “ideal” representation of the global

water cycle that several of the current generation of global water models can theoretically simulate. We then showed how

individual models include/exclude some of the processes that appear in the “ideal” model by greying out processes where they280

do not appear, and also by adding the number of layers for different storages.

The process has highlighted the challenges and opportunities in creating a set of standardized model description diagrams.

The process has been lengthy and required multiple iterations with different user groups, but the final set of diagrams has

many potential uses. These include helping to assist with understanding differences in model performance, and identifying

which models to include in future studies. The diagrams also serve an educational purpose, foster a better understanding of285

modeling results and their potential use in e.g. policy making or adaptation planning, and they provide a basis for future model

development.

Although the models included in our study are not exhaustive (not all global water models participate in ISIMIP2b), they

provide a point of reference for what is currently achievable from a large set of global water models, some of which have

been developed over several decades. Looking to the future, the automated creation of the diagrams enables continuation and290

adapting of such graphical representations as models are updated and as new models join the ISIMIP exercise. We also hope

that our experience and results will provide inspiration for other earth system science modellers who are interested in other

aspects of the environment, to produce similar model ensemble visualizations that enhance understanding of each others’

models.

Appendix A: Individual model diagrams295
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Figure 4. The components of the vertical water balance of the individual ISIMIP2b global water models, ordered by decreasing number of

including fluxes and storages.
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Figure A1. The "CLM4.5" model representation of included components (fluxes, storages and processes) (shown in color) and of components

that are not represented (shown in grey). Please note that lake evaporation is computed in terms of the surface energy balance as the latent

heat flux. But it does not affect the lake water balance as it is deliberately counteracted by an equally large flux with opposite sign, to avoid

drifting lake levels. River storage and river discharge is calculated by MOSART. The irrigation module from CLM is taking the water from

the river storage, the irrigation flux is transferred between both models through the coupler.
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Figure A2. The "CLM4.5" model representation of included components (fluxes, storages and processes) (shown in color) and of components

that are not represented (shown in grey) for the vertical water balance.
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Figure A3. The "CLM5.0" model representation of included components (fluxes, storages and processes) (shown in color) and of components

that are not represented (shown in grey). Please note that lake evaporation is computed in terms of the surface energy balance as the latent

heat flux. But it does not affect the lake water balance as it is deliberately counteracted by an equally large flux with opposite sign, to avoid

drifting lake levels. River storage and river discharge is calculated by MOSART. The irrigation module from CLM is taking the water from

the river storage, the irrigation flux is transferred between both models through the coupler.
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Figure A4. The "CLM5.0" model representation of included components (fluxes, storages and processes) (shown in color) and of components

that are not represented (shown in grey) for the vertical water balance.
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Figure A5. The "CWatM" model representation of included components (fluxes, storages and processes) (shown in color) and of components

that are not represented (shown in grey).
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Figure A6. The "CWatM" model representation of included components (fluxes, storages and processes) (shown in color) and of components

that are not represented (shown in grey) for the vertical water balance.
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Figure A7. The "DBH" model representation of included components (fluxes, storages and processes) (shown in color) and of components

that are not represented (shown in grey).
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Figure A8. The "DBH" model representation of included components (fluxes, storages and processes) (shown in color) and of components

that are not represented (shown in grey) for the vertical water balance.
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Figure A9. The "H08" model representation of included components (fluxes, storages and processes) (shown in color) and of components

that are not represented (shown in grey).
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Figure A10. The "H08" model representation of included components (fluxes, storages and processes) (shown in color) and of components

that are not represented (shown in grey) for the vertical water balance.
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Figure A11. The "JULES-W1" model representation of included components (fluxes, storages and processes) (shown in color) and of

components that are not represented (shown in grey).
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Figure A12. The "JULES-W1" model representation of included components (fluxes, storages and processes) (shown in color) and of

components that are not represented (shown in grey) for the vertical water balance.
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Figure A13. The "LPJmL" model representation of included components (fluxes, storages and processes) (shown in color) and of components

that are not represented (shown in grey). Domestic sector is not simulated by the model itself but considered as input data.
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Figure A14. The "LPJmL" model representation of included components (fluxes, storages and processes) (shown in color) and of components

that are not represented (shown in grey) for the vertical water balance. There 5 hydrological active layers and the 6th is a thermal layer.
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Figure A15. The "MacPDM" model representation of included components (fluxes, storages and processes) (shown in color) and of compo-

nents that are not represented (shown in grey).
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Figure A16. The "MacPDM" model representation of included components (fluxes, storages and processes) (shown in color) and of compo-

nents that are not represented (shown in grey) for the vertical water balance.
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Figure A17. The "MATSIRO" model representation of included components (fluxes, storages and processes) (shown in color) and of com-

ponents that are not represented (shown in grey).
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Figure A18. The "MATSIRO" model representation of included components (fluxes, storages and processes) (shown in color) and of com-

ponents that are not represented (shown in grey) for the vertical water balance. MATSIRO does not separately deal with groundwater storage

and soil layer. Saturated soil layer (separated in up to 13 layers) is regarded as groundwater storage.
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Figure A19. The "mHM" model representation of included components (fluxes, storages and processes) (shown in color) and of components

that are not represented (shown in grey).

32

https://doi.org/10.5194/egusphere-2024-1303
Preprint. Discussion started: 6 May 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure A20. The "mHM" model representation of included components (fluxes, storages and processes) (shown in color) and of components

that are not represented (shown in grey) for the vertical water balance.
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Figure A21. The "MPI-HM" model representation of included components (fluxes, storages and processes) (shown in color) and of compo-

nents that are not represented (shown in grey).
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Figure A22. The "MPI-HM" model representation of included components (fluxes, storages and processes) (shown in color) and of compo-

nents that are not represented (shown in grey) for the vertical water balance.
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Figure A23. The "ORCHIDEE" model representation of included components (fluxes, storages and processes) (shown in color) and of

components that are not represented (shown in grey).
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Figure A24. The "ORCHIDEE" model representation of included components (fluxes, storages and processes) (shown in color) and of

components that are not represented (shown in grey) for the vertical water balance.
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Figure A25. The "PCR-GLOBWB" model representation of included components (fluxes, storages and processes) (shown in color) and of

components that are not represented (shown in grey).
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Figure A26. The "PCR-GLOBWB" model representation of included components (fluxes, storages and processes) (shown in color) and of

components that are not represented (shown in grey) for the vertical water balance.
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Figure A27. The "VIC" model representation of included components (fluxes, storages and processes) (shown in color) and of components

that are not represented (shown in grey).
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Figure A28. The "VIC" model representation of included components (fluxes, storages and processes) (shown in color) and of components

that are not represented (shown in grey) for the vertical water balance.
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Figure A29. The "WaterGAP2" model representation of included components (fluxes, storages and processes) (shown in color) and of

components that are not represented (shown in grey).
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Figure A30. The "WaterGAP2" model representation of included components (fluxes, storages and processes) (shown in color) and of

components that are not represented (shown in grey) for the vertical water balance.
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Figure A31. The "WAYS" model representation of included components (fluxes, storages and processes) (shown in color) and of components

that are not represented (shown in grey).
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Figure A32. The "WAYS" model representation of included components (fluxes, storages and processes) (shown in color) and of components

that are not represented (shown in grey) for the vertical water balance.
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Code availability. The diagrams are initially drawn by using Adobe Illustrator. The single elements have then been extracted and composed

within a Python-script and based on a json notation of the components of the ideal and individual models. The Github repository with this

code is available at Müller Schmied (2024).

Data availability. No model output is used in this particular study. The resulting diagrams are available on request and will be made publi-

cally available with the final version of the manuscript300
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