1 Stratospheric circulation response to <u>large</u> Northern high-latitude volcanic eruptions.

2

- 3 Hera Guðlaugsdóttir^{1,2}, Yannick Peings², Davide Zanchettin³, Gudrun Magnusdottir²
- 4 ¹University of Iceland, institute of Earth Sciences, 102 Reykjavík, Iceland
- ²University of California Irvine, Department of Earth System Science, Irvine CA 92697-3100,
- 6 United States
- 7 3University Ca'Foscari of Venice, department of Environmental Sciences, Informatics and
- 8 Statistics, 30123 Venice, Italy
- 9 Correspondence to: Hera Guðlaugsdóttir (hera@hi.is)

10 11 12

13

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

14 Abstract

The temporary enhancement of the stratospheric aerosol layer after major explosive volcanic eruptions can trigger climate anomalies for up to several years following such events. Whereas the mechanisms responsible for the prolonged response to volcanic surface cooling have been extensively investigated for tropical eruptions, less is known about the dynamical response to high-latitude eruptions. Here we use global climate model simulations of an idealized 6 month long northern hemisphere high-latitude eruption to investigate the stratospheric circulation response during the first three post-eruption winters. Two model configurations are used, with an interactive ocean, or with prescribed sea surface temperature. Our results reveal significant differences in the response of the polar stratosphere with an interactive ocean: the surface cooling is enhanced and zonal flow anomalies are stronger in the troposphere, which impacts atmospheric waveguides and upward propagation of large-scale planetary waves. We identify two competing mechanisms contributing to the post-eruption evolution of the polar vortex: 1) A local stratospheric topdown mechanism whereby increased absorption of aerosol-induced thermal radiation yields a polar vortex strengthening via thermal wind response; 2) A bottom-up mechanism whereby anomalous surface cooling yields a wave-activity, flux increase that propagates into the winter stratosphere. This causes a weakening of the polar vortex and an increase in the occurrence of sudden stratospheric warming events (SSWs). although with a small signal-to-noise ratio. In the coupled runs, the top-down mechanism dominates over the bottom-up mechanism in winter 1, while the bottom-up mechanism dominates in the follow-up winters.

Style Definition: Default Paragraph Font

Deleted: long-lasting

Deleted: beyond the duration of the radiative forcing.

Deleted: long-lasting

Deleted: forcing

Deleted: (HL)

Deleted: (NH)
Deleted: that

Deleted: contribute

Deleted: determining

Deleted: NH stratospheric

Deleted: by the enhanced aerosol layer

Deleted: a

Deleted: spatio-temporal surface temperature and land-sea

thermal contrast

Deleted: an increase in atmospheric

Deleted:

Deleted: , leading to an increased

Formatted: English (US)

Deleted:) and a weakening of the polar vortex. The

Deleted: The identification of a deterministic response such as increased SSWs following HL volcanic eruptions calls for increased attention given the widespread surface cooling SSWs can initiate, influence societies throughout the continental NH. Also, the sensitivity of such events to eruption magnitude needs to be evaluated in terms of a possible source of increased seasonal predictability of NH regional climates.

Formatted: Font: 11 pt, Not Bold

1

1 Introduction

61 62

63

64 65

66

67 68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

60

The enhancement of the stratospheric aerosol layer, which typically occurs following strong sulfurrich explosive volcanic eruptions, is an important driver of natural climate variability by imposing short-lived yet possibly very strong radiative anomalies within the atmospheric column (Robock, 2000; Timmreck, 2012; Zanchettin, 2017). This direct radiative effect can alter both meridional surface and stratospheric temperature gradients that can, in turn, initiate further dynamical climate responses on seasonal to decadal time scales (Church et al., 2005; Gleckler et al., 2006; Stenchikov et al., 2009; Shindell et al., 2009; Otterå et al., 2010; Zanchettin et al., 2012; Swingedouw et al., 2015). Direct radiative and dynamical responses critically depend on the spatiotemporal characteristics of the enhanced stratospheric aerosol layer, which ultimately depends on the characteristics of the eruption, such as magnitude, timing and location (Stenchikov et al., 2009; Shindell et al., 2009; Zanchettin et al., 2012; Swingedouw et al., 2015). Spatiotemporal characteristics of volcanic aerosol from high-latitude (HL), Northern Hemisphere (NH) eruptions are typically very different when compared to tropical eruptions. Accordingly, several studies have shown that high-latitude NH eruptions typically initiate different climate responses compared to tropical eruptions (Meronen et al., 2012; Pausata et al., 2015; Guðlaugsdóttir et al., 2018; Zambri et al., 2019; Sjolte et al., 2021). Therefore, tropical eruptions cannot be considered close analogs of high-latitude NH eruptions, underlining the need for more studies on the latter to further quantify their potential climate impacts (Zanchettin et al., 2016). In this study we explore how stratospheric sulfate aerosol enhancements largely constrained in the NH extratropics affect hemispheric-scale atmospheric dynamics, with a focus on the stratospheric polar vortex and on temporal evolution of responses through three perturbed winters. The winter stratospheric polar vortex is considered to play a deciding role in distinguishing between the response to low- and high-latitude NH enhancements of the stratospheric sulfate aerosol layer, where opposite responses are expected to emerge under the same mechanism: When the stratospheric sulfate aerosol layer is enhanced at low latitudes, e.g., following tropical volcanic eruptions, local warming by infrared absorption increases the meridional stratospheric temperature gradient that can lead to a stratospheric polar vortex strengthening due to a thermal wind response (e.g., Zanchettin et al., 2012; Bittner et al., 2016). Conversely, the local warming from aerosols

constrained at higher latitudes decreases the meridional temperature gradient, promoting a

Deleted: Radiative forcing

Deleted: refs like above).

Deleted:

Deleted: A major potential

Deleted: character

Deleted: tropical

Deleted:

Deleted: eruptions concerns

Deleted: winter

Deleted: polar vortex response.

Deleted: , or many others...).

Deleted: enabling

Oman et al., 2005; Sjolte et al., 2021). The downward propagation of the stratospheric polar vortex anomaly into the troposphere can lead to regime shifts of the tropospheric Arctic Oscillation and associated anomalous regional surface patterns (e.g., Zanchettin et al., 2012; Zambri et al., 2017). In the case of polar vortex weakening, a critical role is attributed to increased likelihood of sudden stratospheric warming events (SSWs) (Haynes, 2005; Domeisen et al., 2020; Huang et al., 2021; Kolstad et al., 2022, and references therein), whose projection on a negative Arctic Oscillation is expected to bring a series of consequences, including increased frequency of tropospheric blockings and mid-latitude cold air outbreaks (e.g., Ma et al., 2024). However, the negative Arctic Oscillation and associated tropospheric anomalies following SSWs are characterized by a low signal-to-noise ratio (e.g., Charlton-Perez et al. 2018; Zhang et al. 2019). Accordingly, recent studies tend to disagree on this top-down mechanism being a robust dominant feature of climate response to volcanic eruptions (Weierbach et al., 2023; DallaSanta and Polvani, 2023; Kolstad et al., 2022; Azoulay et al., 2021; Polvani et al., 2019; Zanchettin et al., 2022; Toohey et al., 2014). The radiative surface cooling following large volcanic eruptions has been shown to affect the stratospheric polar vortex via a bottom-up mechanism (e.g., Graf et al., 2014; Peings and Magnusdottir, 2015; Omrani et al., 2022). An example of this bottom-up mechanism following HL eruptions is demonstrated in Sjolte et al. (2021) where they linked a weak polar vortex to an increase in wave energy flux from the troposphere into the stratosphere without the meridional stratospheric temperature gradient playing a major role. With this in mind, the importance of transient atmospheric eddies (waves) and eddy-mean flow interactions is becoming increasingly clear in explaining vertical and horizontal propagation of atmospheric perturbations of various origins (e.g. Smith et al., 2022; Nakamura, 2023). DallaSanta et al. (2019) used a hierarchy of simplified atmospheric models to show that eddy feedbacks are crucial in explaining stratosphere-troposphere coupling as well as the stratospheric response alone following a tropical Pinatubo-like eruption. This demonstrates that the anomalous atmospheric circulation response to an enhanced stratospheric sulfate aerosol layer cannot be understood as the mere adjustment to meridional temperature gradients, and that eddy-mean flow interactions and eddy feedback are an essential contribution to such response. Both mechanisms, i.e., the topdown mechanism triggered by local stratospheric heating and the bottom-up mechanism triggered

by surface cooling, act together in the real world and in realistic simulations. Therefore, idealized

weakening of the polar vortex (Kodera, 1994; Perlwitz & Graf, 1995; Stenchikov et al., 2002;

103

104

105

106

107

108

109

110

111

112

113

114

115

116117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

Formatted: Header

Deleted: Bittner et al., 2016;

Deleted: ¶

■

A strengthened

Deleted: can affect

Deleted: as the positive phase

Deleted: Northern Annular Mode), while a weaker

Deleted: linked

Deleted: in the stratosphere and a negative Northern Annular Mode in the lower troposphere

Deleted: demonstrating an example of a top-down mechanism.

With its origin in the noisy stratosphere, this top-down mechanism can result in tropospheric signatures following volcanic eruptions. However, the signature tends to be weak in both observations and numerical simulations due to the different realizations and advanced statistical methods needed to extract the signal from the noise

Deleted: to

Deleted: interferences

Deleted: mediations

Deleted: stratospheric

Deleted: They also identified the extra-tropics as a dominant pathway in which the stratospheric response leads the troposphere following the eruption, a pathway similar to the response to SSWs. ...

Deleted: following volcanic eruptions does not solely depend on simplified physics via

Deleted: where

Deleted: appear to be

Deleted: . Since both

Deleted:

Deleted: , under realistic volcanic forcing

167 model experiments are required to assess their relative contribution to uncertainty in regional 168 climate variability during the period following the enhancement of the sulfate aerosol layer 169 (Zanchettin et al., 2016). 170 In the definition of a framework to study the climatic effects of a high-latitude enhancement of the 171 stratospheric sulfate aerosol layer, Icelandic volcanism provides for an ideal test bed, as it has 172 played a role in shaping past NH climate variability and will continue doing so. Two Icelandic 173 eruptions during the past 2000 years, namely Eldgjá in ~939 CE and Laki in 1783 CE, are 174 considered to have had a significant impact on climate variability up to the global scale 175 (Brugnatelli and Tibaldi, 2020; Zambri et al., 2019; Oppenheimer et al., 2018; Thordarson and 176 Self, 2003; Stothers, 1998). These types of effusive eruptions are common in Iceland where their 177 duration can extend over years. During part of the eruption time such eruptions can become 178 explosive (referred to as mixed-phase eruptions) when ascending magma in a conduit comes in 179 contact with water as was considered the case with both Eldgjá and Laki, explaining their 180 widespread impacts. Eruption history as well as dense monitoring network of Icelandic volcanic 181 systems tell us that many of these systems are currently on the verge of an eruption, having already 182 produced some of the largest volcanic eruptions over the past millennia (e.g., Öræfajökull, 183 Bárðabunga and Hekla, Larsen & Guðmundsson, 2014; Barsotti et al., 2018; Einarsson, 2019). 184 Therefore history and current activity makes these types of eruptions an ideal reference case to 185 explore the potential climatic impacts of high-latitude enhancements of the stratospheric sulfate 186 aerosol layer and to test hypotheses about the underlying mechanisms driving the climate 187 response. This is the focal point of this study where we investigate for the first time the role of 188 wave-mean flow interactions and SSWs in the atmospheric circulation response to a HL volcanic 189 eruption. For this we perform idealized, long-lasting HL volcanic perturbation experiments using 190 the Community Earth System Model version 1 (CESM1) in its coupled and atmosphere-

standalone configurations. We evaluate the NH response during the first three winters following

mechanism in each winter. This paper is organized as follows: Section 2 describes the model,

experimental design and diagnostics; results are presented in section 3 followed by discussions in

the eruption, referred to as post-eruption winters in the text, and assess the dominating

section 4 where we end with concluding our results in section 5.

191

192

193

194

195

196 197 Formatted: Header

Deleted: post-eruption

Deleted: Icelandic volcanism

Deleted: even on

Deleted: following NH eruptions

Deleted: /eddy activity perturbations

Deleted: following

Formatted: English (US)

Deleted: eruptions

Deleted:), both

Deleted: modes.

Deleted: begin our investigation in the NH stratosphere followed by troposphere to

Deleted:

Deleted: and we end with summarizing

Deleted: .

2 Methods

212

213

234 235

236

237

238

239

240

241

2.1. Numerical Model

214 We use the Community Earth System Model (CESM) version 1, developed by the National Center 215 for Atmospheric Research (NCAR). In our configuration of CESM1, the atmospheric component is the Whole Atmosphere Community Climate Model, version 4 (WACCM4, Marsh et al. 2013). 216 217 WACCM4 includes 66 vertical levels (up to 5.1×10-6 hPa, ~140 km) and uses CAM4 physics. 218 We use the specified chemistry version of WACCM4 (SC-WACCM4), which is computationally 219 less expensive to run, but simulates dynamical stratosphere-troposphere coupling and stratospheric 220 variability like SSWs and the polar vortex with skills comparable to the interactive chemistry 221 model version (Smith et al., 2014). CESM1/WACCM4 uses the Community Atmospheric Model 222 Radiative Transfer (CAMRT) to parameterize the radiative forcing where it has been shown to 223 accurately represent stratospheric aerosols by f. ex. simulating the temperature response following 224 Mt. Pinatubo in 1991 (Neely et al., 2016). The SC-WACCM4 experiments are run with a horizontal resolution of 1.9° latitude by 2.5° longitude and include present-day (year 2000) radiative forcing. 225 226 A repeating 28-month full cycle of the Quasi-biennial Oscillation (QBO) is included in the SC-WACCM4 experiments through nudging of the equatorial stratospheric winds to observed 227 228 radiosonde data. In the coupled ocean-atmosphere configuration, the ocean component of CESM1 229 is the Parallel Ocean Program version 2 (POP2). CESM1 also includes the Los Alamos sea-ice 230 model (CICE), the Community Land Model version 4 (CLM4) and the River Transport Model 231 (RTM). CLM is run at a horizontal resolution of 1.9°x2.5°, POP2 and CICE are run at nominal 1° 232 resolution with higher resolution near the equator than at the poles. Further details about CESM1 233 are given in Hurrell et al. (2013).

2.2. Volcanic Forcing File

We use the Easy Volcanic Aerosol (EVA) forcing generator (Toohey et al., 2016). EVA provides zonally symmetric stratospheric aerosol optical properties as a function of time, latitude, height, and wavelength (see detailed information on the tool in Toohey et al., 2016). EVA has been used to generate volcanic forcing in both idealized volcanic experiments (e.g., Zanchettin et al., 2016) and realistic paleoclimate simulations (Jungclaus et al., 2017) contributing to the sixth phase of the coupled model intercomparison project.

We use EVA to prescribe the volcanic aerosol loading corresponding to that of the 1991 Mt. Pinatubo eruption (14.04 Tg SO₂), but at 45° N. Since the model reads the volcanic forcing as aerosol mass (kg/kg), we scale our forcing file by using the standard aerosol mass input file for CAM4 and 5 (see Neely et al., 2016, Table 1) for the same eruption. A monthly scaling factor was derived from this linear relationship between the aerosol extinction (1/m²) and the aerosol mass (kg/kg) that was used to scale the raw EVA forcing data (Fig. 1). From these scaled forcing data, the aerosol optical properties for our experiments are obtained with a two-step approach. First, we move the injection location northwards so that the center of the aerosol mass is at 65° N latitude and spans 10-28 km in altitude. Then, we define the start of the eruption to be May 1st and prolong the peak of the forcing by extending in time the highest monthly value in the so-obtained forcing data, so that the decline in aerosol mass begins 6 months after the start of the eruption or on November 1 (see Fig. 1). We thus obtain aerosol optical properties for an idealized, long-lasting high-latitude NH eruption. In this experiment we assume stratospheric injection only, although similar eruptions in the natural world would likely inject part of the total aerosol mass within the troposphere during the eruption. Past NH eruptions like Eldgjá and Laki had an atmospheric SO2 loading of 219Tg and 122Tg respectively, that was carried aloft with the eruptive column up into the upper troposphere with portions of the aerosols reaching the lower stratosphere during the eruptions (Thordarson et al., 2001). Hence our experiment can also be considered as a 6-month stratospheric aerosol injection that is analogous to similar although smaller eruptions (as compared to Laki) without the tropospheric aerosols.

242

243

244245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

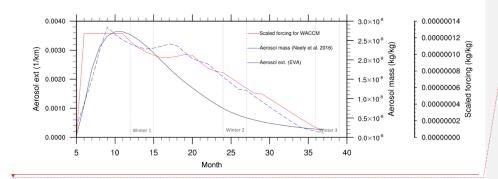
261

262

263

264

265



Deleted: Laki and

Deleted: 210Tg

Deleted: 120Tg

Deleted:, much larger than our 14Tg eruption,

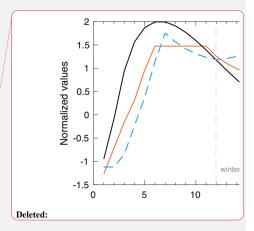


Figure 1: The time series of the original EVA aerosol extinction output (1/km, black curve) and the aerosol mass of the volcanic forcing file of Neely et al. (2016) (kg/kg, blue dashed curve) used for deriving the linear scaling coefficient for the conversion of EVA output into WACCM4 input (kg/kg, red curve). The horizontal axis is time (months) from the start of the eruption. Here we assume that the aerosol lifetime at 65° N is the same as at 45° N. Dashed vertical lines show the three winters that we focus on in this study.

Deleted: The time series are normalized (mean=0, standard deviation=1) to allow comparison of time series with different units. . . .

Formatted: Font: Bold

Deleted:

Deleted:

2.3. Experimental design

We ran two volcanic perturbation experiments with CESM1. The first experiment is conducted with the atmosphere-only version of the model, where boundaries to SC-WACCM4 are provided by prescribed fields of sea-surface temperature (SST) and sea-ice concentration (SIC) corresponding to the 1979-2008 monthly climatology of HadISST observations (Rayner et al., 2003). We refer to this experiment as *atm-only*. The second experiment is conducted with the coupled version of the model, henceforth referred to as *cpl*. For each experiment we run 20 ensemble members including the volcanic forcing and 20 paired ensemble members without the volcanic forcing and otherwise identical to the volcanic simulations, which we refer to as the control.

The atmosphere-only experiments were run over three full years, which provides two full winters after the onset of the eruption. We found that there was no need to extend the simulations further given the duration of the forcing and short memory of the atmosphere. The coupled experiments follow a similar protocol but they were integrated over 15 years to assess the response influenced by oceanic dynamical adjustment. However, in this study we only focus on the first three winters following the eruption. We define the first post-volcanic winter as December of the starting year (year 0) and the following January and February (year 1), the second post-volcanic winter is then December of year 1 and the following January and February of year 2 etc.

Because the QBO is prescribed, and given its importance for the atmospheric circulation and the distribution of volcanic aerosols within the stratosphere (Thomas et al., 2009; DallaSanta et al., 2021; Brown et al., 2023), we have been careful in homogeneously sampling the QBO phasing that is imposed on the 20 ensemble members. For this, we shift the 28-month QBO cycle by one month for every ensemble member, so that the phasing of the QBO differs from one ensemble

Deleted: to

308 member to the next (Elsbury et al., 2021). This avoids potential biases in the climatic response that 309 may be induced by any dominating QBO phase. 310 311 2.4. Diagnostics Model output is analyzed by computing paired anomalies, defined as deviations of each volcanic 312 313 simulation from the corresponding control simulation (Zanchettin et al., 2022) (volcanic minus 314 control). The statistical significance of the ensemble mean of paired anomalies is assessed at the 315 95% confidence interval, calculated from all 20 ensemble members, using a two-sided Student's t-Deleted: student's 316 test in addition to a Kolmogorov-Smirnov test. 317 To evaluate the effects of planetary waves on the zonally-averaged stratospheric response, we use 318 the Eliassen Palm (EP) flux, and its divergence (Edmon et al., 1980) in addition to the 3D Deleted: 319 generalization of the EP flux, the Plumb flux (Plumb, 1985), for a longitudinal representation in 320 the lower troposphere and stratosphere. We identify SSW events by using an algorithm following 321 the procedures described in Charlton and Polvani (2007), where mid-winter sudden warming 322 events are determined to take place if the 10 hPa zonal-mean zonal wind at 60°N becomes easterly. 323 Once a warming is identified, no day within 20 days of a central date, defined as the first day in 324 Deleted: mean wind at 60N and 10hPa is easterly, can be which the daily mean zonal-mean wind at 60N and 10hPa is easterly, can be defined as an SSW. defined as an SSW. 325 Changes in conditions for large-scale planetary waves propagation (waveguides) are examined 326 using the optimal propagation diagnostic for stationary planetary waves, described in Karami et 327 al. (2016). This metric is based on the construction of PDFs for positive values of the refractive 328 index (Matsuno 1970), as a function of zonal and meridional wave numbers. The refractive index 329 is calculated using daily zonal wind and temperature at all levels, to derive monthly and zonally-330 averaged probabilities for stationary Rossby waves to propagate through the atmosphere, in 331 function of latitude and pressure level. This is calculated for zonal wave numbers k=1,2,3 and 332 meridional wave numbers l=1,2,3 (large-scale waves), and we average the probabilistic refractive 333 index for each of the nine combinations of k and l, to provide a general estimate of chances for 334 propagation of stationary planetary waves. For the eddy feedback calculations we compute the 335 square of the local correlation across the ensemble members between DJF zonal mean zonal wind Deleted: 336 and the divergence of the northward EP flux (delta phi F phi) averaged over 600-200 hPa (Smith 337 et al. 2022). In addition, we compute the rate of temperature (K) changes in the 2m temperature

Formatted: Header

(T2m) gradient using spherical harmonics to yield a T2m gradient in the meridional (dZ/dlat) and zonal (dZ/dlon) directions.

3 Results

In the following sections we will investigate the *cpl* experiment to characterize the forced response and identify the mechanism by utilizing the information provided by the *atm-only* experiment. We begin our investigation in the upper atmosphere before making our way towards the surface.

3.1. Volcanic radiative forcing

The net shortwave (SW) and longwave (LW) downward flux at the top of the atmosphere show an expected behavior following a stratospheric sulfate injection where we see a decrease in the SW due to scattering and an increase in the LW due to absorption around the injection location (Fig. 2c-f). Temporal perturbations of SW fluxes for both *cpl* and *atm-only* are influenced by the obvious strong seasonal evolution in solar insolation, where we see strong anomalies during the first summer north of 30° N than then becomes more confined to the mid latitudes as winter progresses with a slow decrease towards the end of the third year (Fig. 2c-d).

LW anomalies also show seasonal evolution with stronger LW flux at mid latitudes compared to at high latitudes during summer that continues into the winter season and remains significant throughout most of these three years. During winter, the LW anomalies are present at high latitudes where the SW anomalies are absent. The latitudinal bands of radiative flux anomalies correspond to the maximum values of the aerosol mass between 60 and 70° N, and the aerosol mass being largely confined north of 45° N (Fig. 2a-b). Overall, the radiative forcing is largely bounded by the NH extratropics with the exception of a slight significant increase around 30-60° S in the second and third summer (Fig. 2c-d) that is visible at around 14-15 km a.s. (Fig. 2b). This occurs due to spatial features in the Neely et al. (2016) aerosol forcing that we use for scaling, where a slight aerosol increase occurs at lower latitudes, although this is not detectable when the aerosol mass is averaged through the atmospheric column with respect to time (Fig. 2a). We also detect a slight difference in the LW and SW fluxes that arises from differences in high cloud cover between atm-only and cpl, where cpl shows a decrease in high cloud cover in the northern high-latitudes, compared to atm-only (not shown).

Formatted: Font: Italic

Formatted: Header

Deleted: a decrease

Deleted: The perturbation

Deleted: is

Deleted: thus remains

Deleted: confined to

Deleted: extratropical summers

Deleted:

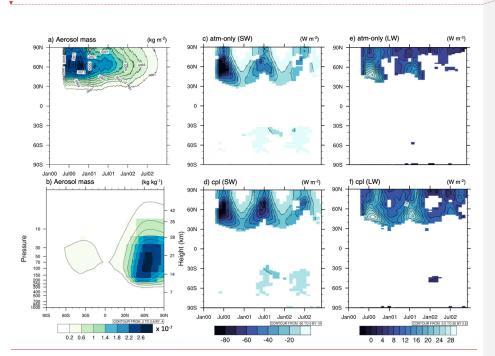
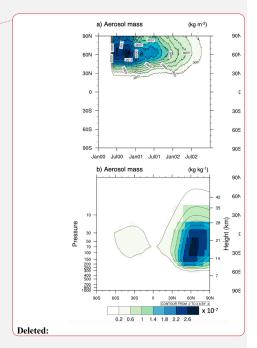



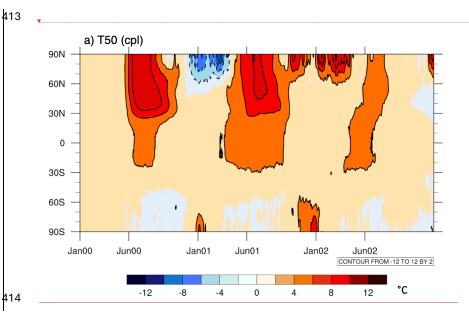
Figure 2: Left panels: a) Average aerosol column mass time evolution in kg/m2 and b) pressure vs. latitude slice of the aerosol mass in kg/kg (3-year average). Aerosol mass is the same in cpl and atm-only. c) and d) show the time evolution of the net SW flux (downward) anomaly at the top of the atmosphere, and e) and f) the same but for net LW flux anomaly, resulting from the volcanic aerosol mass, in c) *atm-only* and d) *cpl* where coloured areas indicate 99% significance compared to the control experiment according to a Student's t-test.

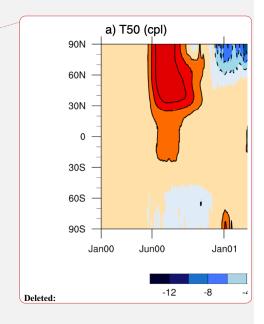
3.2. Stratospheric response

The strong seasonality in the LW perturbations described above also characterizes stratospheric temperatures, where a strong increase in the zonally averaged temperature at 50 hPa (T50) is detected north of 30° N during post-eruption summers in both experiments (Fig. 3a and 3b). This summer warming is followed by a net cooling of the polar stratosphere in the first winter seen for both *cpl* and *atm-only*. A clear difference in the T50 response in the two experiments is seen in

This reveals the intra-seasonal dynamical effects in the *cpl* experiment beyond the direct radiative response as we will see later on. The contrasting temperature response is accompanied by an opposite response in the zonal-mean zonal winds at 10hPa (U10) between 70 and 80° N. This U10 response is an indicator of the state of the polar vortex, where a polar vortex weakening is detected in winter 2 for *cpl* but a strengthening *atm-only* (Fig. 3c-d). Figures 3c-d do show a large ensemble spread in the zonal mean U10 winter response that is evident of a low signal to noise ratio. While the first winter in *cpl* and the first two in *atm-only* show little statistical significance according to a Kolmogorov-Smirnov test, this significance does increase for winter 2 in the *cpl* experiment. We also see this weakening in the zonal mean U50, also showing stronger significance during winter, (Supplementary Fig. S3) but not as clearly as in the zonal mean U10. However, for consistency we will mainly be focusing on the U50 response in the following section where this response is clear over the NH polar cap. The difference between *cpl* and *atm-only* will be in the focus in the following sections.

Formatted: Header


Deleted:), revealing


Deleted: , indicating

Deleted: .

Formatted: Font: Italic

Deleted: increases

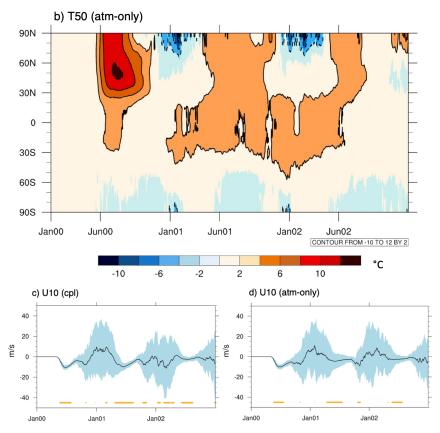


Figure 3. a,b) Latitude versus time response of T50 anomalies in a) *cpl* and b) *atm-only*. Contours are significant in 95% confidence intervals according to a student's t-test. c,d) Stratospheric polar vortex response shown as the zonal mean U10 anomalies between 70 and 80° N for c) *cpl* and d) *atm-only*. Black lines show the ensemble mean anomalies and blue shadings show the ensemble +/- 2 standard deviation anomaly range. Orange markers indicate when the difference between perturbed and unperturbed experiments becomes significant (p<0.05) according to a Kolmogorov-Smirnov test.

3.2.1 - First post-eruption winter

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

In the *cpl* experiment, the polar vortex strengthening in winter 1 is associated with extensive anomalies in temperature and zonal wind at 50 hPa (Fig. 4a). The anomalous temperature pattern consists of cooling at high latitudes and into the midlatitudes over the Atlantic, and warming over large swaths of the subtropics (to 20° N) and into the midlatitudes over the Pacific. This temperature pattern is also identified in the zonal mean T50 (Fig. 3b). Similarly, the zonal wind weakens into the midlatitudes over the Pacific while it is stronger in mid to high latitudes over the Atlantic. The strong upward EP flux (black arrows) is an indicator of the direction of propagated waves originating at the surface around the midlatitudes, where the horizontal and vertical EP flux components are proportional to the eddy momentum and heat flux, respectively (Fig. 4d). A convergence (negative divergence, dashed red contours) in the EP flux is detected in the upper troposphere that acts to weaken the tropospheric westerlies (Fig. 4d and Fig. S2). However, the EP flux and its convergence within the stratosphere does not appear to impact the stratospheric mean flow and the polar vortex. Therefore the local heating due to the volcanic aerosols and the associated increase in the meridional temperature gradient in the stratosphere appear to dominate the response of the polar vortex via thermal wind response, also depicted by the LW anomalies (Fig. 2f). Winter 1 in atm-only shows a similar thermal wind mechanism at play in the stratosphere as for the cpl experiment (Fig. 5a and 4a, respectively). In that case, less obvious tropospheric influences are detected, due to lack of forced surface cooling, as seen in the limited anomalous upward wave activity detected by the EP flux diagnostics (Fig. 5c).

Formatted: Font: Italic

Deleted: ,

Deleted: can be considered

Deleted: both

Deleted: heat and

Deleted: wave

Deleted:

Deleted: towards weakening

Deleted: Supplementary

Deleted:) while Deleted: ,

Deleted: eruption dynamics

Deleted:), in this

Deleted: with the

Deleted: less

Deleted: -

Deleted: -

Deleted:

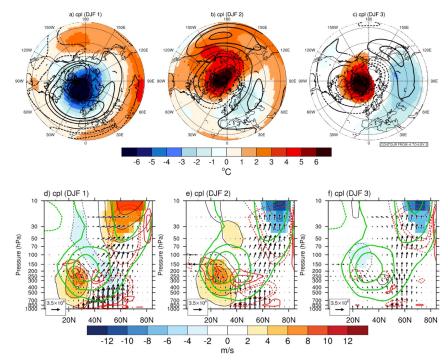


Figure 4: Winter stratospheric response in the *cpl* experiment. a-c) U50 (contours) and T50 (shading: red = warming, blue = cooling) response for winters 1-3, respectively. d-f) EP flux (arrows) and divergence (red contours) response, along with zonal-mean zonal wind response (black contours and shading: red = strengthening, blue = weakening) and climatology (green contours) in winters 1-3, respectively. Contours and color-shaded areas indicate 95% significance according to a <u>Student's</u> t-test. Only vectors that are significant at the 95% confidence interval are shown.

Deleted: student's

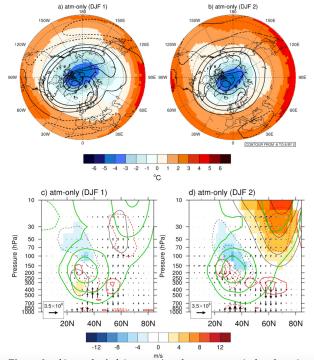


Figure 5: The same as Fig. 4 but for the *atm-only* experiment. a-b) Zonal wind (contours) and temperature (shading) response at 50 hPa for winter 1 and winter 2, respectively. c-d) EP flux (arrows) and divergence (red contours) response along with zonal-mean zonal wind (black contours) and <u>pure</u> climatology (green contours, 2m) in winters 1-2, respectively. Contours and colored area indicate 95% significance according to a <u>Student's</u> t-test.

3.2.2. Second post-eruption winter

A stark difference in the polar vortex response is detected between *cpl* and *atm-only* in winter 2. While *atm-only* exhibits a response similar to winter 1 (Fig. 5b), a significant warming over North America and the North Pacific emerges in *cpl* along with a weakening of U50 at high latitudes (Fig. 4b) indicating a shift of the polar vortex towards Eurasia. This warming at high latitudes then coincides with a slight LW absorption at high latitudes (Fig. 2f). The U50 weakening is not uniform throughout the longitudes explaining the lack of response detected in the zonal mean U50 (Fig.

Deleted: student's

Formatted: Font: Italic

Deleted: Supplementary

498 S3), where one needs to go to U10 to get a clear response in the zonal mean zonal wind (Fig. 3c). Deleted: above 50hPa, Deleted: 499 An anomalously strong upward propagation of planetary waves persists in the cpl (Fig. 4e), with Deleted: 500 a stronger upward EP flux now protruding into the stratosphere above 20hPa in contrast to winter 501 1. The upward EP flux and its convergence in the polar stratosphere are evident of their 502 contribution towards the weakening of the U50 and a general dominance over the effects of thermal 503 forcing by aerosols that have been, at this stage, substantially reduced (Fig. 1). 504 Similar wave propagation pattern as identified in the cpl experiment is known to be associated Deleted: reflection 505 with SSWs, We suspect that the decrease in the T50 difference between mid- and high latitudes, Deleted: , where we Deleted: and the pole 506 can act as a trigger for a weaker polar vortex in addition to the stratosphere absorbing the upward 507 propagating waves that is known to cause warming over the polar cap (Kodera et al., 2016; 508 Kretschmer et al., 2018). We will see further evidence of this in the next section. 509 510 3.2.3. Third post-eruption winter 511 The results in this section only refer to the *cpl* experiment since winter 3 is lacking in *atm-only*. 512 The SSW-like pattern of winter 2 clearly continues into winter 3, where most of the volcanic 513 aerosols have decreased to the extent that their radiative impacts no longer dominate, An exception Deleted:, except that 514 is the confinement of T50 warming over the polar stratosphere (Fig. 4c). Furthermore, anomalous Deleted: is now confined Deleted: Anomalous 515 upward propagation of planetary waves continues to persist (Fig. 4f). This upward wave flux in 516 addition to the T50 warming resembles a pattern that behaves much like absorbing SSWs defined 517 by Kodera et al. (2016). To examine this response further we define SSWs based on the reversal 518 of the zonal-mean zonal winds at 60° N and at 10hPa between November and March according to Deleted: 519 the method of Charlton and Polvani (2007). 520 521 Results from the SSW analysis are presented in Fig. 6. No significant increase in SSWs is found in winter 2, despite the SSW-like pattern detected. This changes in winter 3 when the difference 522 523 between perturbed and unperturbed experiment becomes statistically significant, with 27 SSWs occurring in our forced experiment compared to only 6 in the control experiment. This increase in 524 Deleted: (p-value = 2.6e-4).

SSWs agrees well with the U50 and T50 anomalies of winter 3 (Fig. 4c). During winter 2, the

warming of the polar stratosphere is as strong as in winter 3 but more spread out into midlatitudes.

These results are also in agreement with the stratospheric Plumb flux in winter 3 (Fig. S1c) where

525 526

527

Deleted: Although the response in winter 2 does not lead to

SSWs detected in winter 3.

Deleted: Supplementary

as many SSWs despite the weaker zonal winds, it does appear to act as an important precursor to the significant increase in

Formatted: Header

the upward flux is mostly circumpolar between 40° and 60° N_e showing further evidence of the SSWs detected.

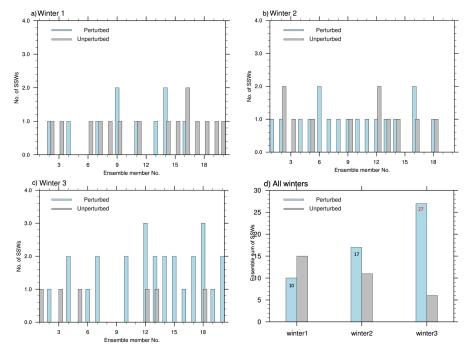


Figure 6: a-c) The number of SSWs during winters 1-3 for each ensemble member in the *cpl* experiment and d) The sum of all SSWs in each experiment for all 20 ensemble members of winters 1-3 both for *cpl* (light-blue bars) and control (gray bars). The color red indicates 95% significance according to a two-sided Student's t test.

When comparing the ensemble sum of SSWs in the perturbed and unperturbed experiment using a Kolmogorov-Smirnov test (Fig. 5d), a significant increase in the number of SSWs occurs in winter 3 (p=0.0135). This underlines the generally strong SSW response occurring in winter 3, when the fraction of ensemble members having more than 1 SSW per winter increases to 50% (10 ensemble members) in winter 3 compared to only 10% in winters 1-2. Of these 10 ensemble members, two members show three SSWs per winter that can be considered highly unlikely based

Deleted: student's

Deleted: : Despite

on historical records, Although winters with more than 1 SSWs are considered unusual, examples do exist in the observational record of multiple SSWs in one winter, like the winter of 1998/1999 and 2009/2010 (Kodera et al., 2016 and Ineson et al., 2023 respectively).

561

562

563

564

565

566

567

568 569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585 586

587

588

589

590

591

To better understand the cpl SSWs response, we also did an SSW analysis on *atm-only* (Fig. S7) where 50-75% less SSWs were detected in the perturbed simulation compared to the unperturbed one. Such a response should not be unexpected during the forced polar vortex strengthening as detected in *atm-only* (see Fig. 5). Furthermore, only single SSWs per winter were detected in all 20 ensemble members of the perturbed simulation while two (one) ensemble member(s) detected double SSWs per winter 1 (winter 2) in the unperturbed simulation. Although these results do show strong evidence of an increase in the number of SSWs in the *cpl* simulation, internal variability is large and the frequency of SSWs fluctuates substantially between the three winters in the unperturbed simulation.

Since this is indicative of a low signal-to-noise ratio and uncertainties in the response of polar vortex variability, we tested the potential impact of ensemble size on the signal-to-noise ratio for two key diagnostics of our mechanism, namely U10 and SSW. We express the signal-to-noise ratio as the uncertainty related to the expected (i.e., ensemble mean) response, calculated as standard error of the mean of post-eruption paired anomalies for the first three post-eruption winters. The standard errors converge toward the value obtained for the full 20-member ensemble for all winters and both variables (Figure 7), with a common tendency of growing uncertainty in the expected response with the ensemble size. The mean curves consistently level off for ensemble sizes larger than 10, suggesting that the full ensemble estimate is representative of uncertainty in the expected response for larger ensemble sizes. Otherwise, winter 3 produces larger uncertainty than winters 1 and 2, suggesting a less constrained forced response. This is especially evident for estimates of standard error of SSW anomalies and ensemble sizes larger than 15, where winters 1 and 2 closely superpose on each other while winter 3 does not overlap with winters 1 and 2 within the 5-95th percentile range. Overall, the flattening of the ensemble-mean expectations on the standard error, and the large values diagnosed in winter 3, suggest that the winter 3 response features an intrinsically lower signal-to-noise ratio. In fact, since the value of full-ensemble mean SSW paired anomaly in winter 3 (+1.05 events) is similar to the associated expected standard error (+1.02 events) we conclude that even a much larger ensemble would not provide more certainty in the signal detected.

Deleted:

Deleted: However, when considering the different number of SSWs between winters in the unperturbed experiment we cannot rule out the possibility that large ensembles are needed to confirm this link.

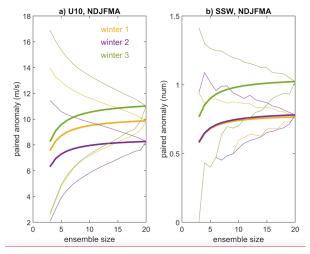


Figure 7: Impacts of ensemble size and spread on the volcanic signal. Ensemble mean (thick lines) and associated standard errors (thin lines, 5-95 percentile range) of paired anomalies calculated for different ensemble sizes and for the first three post-eruption extended winter seasons (November to April) for stratospheric zonal-mean zonal wind (a) and number of sudden stratospheric warming events (b). For each ensemble size from 3 to 20, the mean and the standard error of the mean are calculated for all sub-ensembles determined by all possible permutations of the full ensemble for the considered size. Then, means and 5th and 95th percentiles of the so-obtained standard errors for each ensemble size are plotted.

According to the above, the evolution in *cpl* from winter 1 to winter 3 can be summarized as follows: In the first winter, the thermal forcing appears to be stronger than the upward wave flux because of the large amount of aerosols present, thereby dominating the response that causes the polar vortex strengthening and the inclusion of cold polar air within. In the second winter, the thermal forcing from the volcanic aerosols at midlatitudes has decreased where it is now mostly confined to higher latitudes as seen both in the LW flux and T50 (Fig. 2f and Fig. 3b). We suspect that in addition to the aerosol decrease, this slight decrease in the temperature difference between high and midlatitudes allows the strong upward wave flux to dominate and enter the upper stratosphere. There in the stratosphere, the waves are absorbed that causes further warming over the polar cap in addition to weakening the zonal stratospheric winds (Fig. 5b and Fig. 4b). This

upward wave flux and weaker winds continue into the third winter, where winter 2 likely acts as a precursor, allowing for SSWs to develop more frequently as detected in the T50 warming that is now confined over the polar cap (Fig. 4c and Fig. 5c, respectively). The expected absence of a surface response is obvious in our *atm-only* experiment where basic physical mechanism, via the thermal wind balance due to radiative heating, dominates the atmospheric circulation response in the first two post-eruption winters, with a strong stratospheric polar vortex isolating the cold air over the polar regions in the second winter as in the *cpl* experiment (Fig. 5a-b).

3.3. Tropospheric response

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

What is it then that drives this polar vortex weakening and the SSW response in the *cpl* experiment? To examine in more detail the origin of the upward wave fluxes in winters 2 and 3 of the *cpl* experiment that causes the detected polar vortex weakening and the SSWs, we <u>now turn our attention</u> towards the <u>troposphere</u>.

We begin by comparing the response of T2m, vertical Plumb flux at 850 hPa and 200 hPa zonal wind, in *cpl* (Fig. 8) and in *atm-only* (Fig. 9).

As a response to the decrease in SW flux following the eruption, extensive and heterogeneous cooling is identified in the T2m anomalies in winters 1-3 (*1-2 for atm-only*) over latitude bands that contain the most significant SW flux decrease (Fig. 2d, Fig. 8a-c and Fig. 9a-b). The strongest cooling occurs over northeastern North America and along the Asian midlatitudes in winter 1, with much larger amplitude in *cpl* than in *atm-only* (Fig. 8a versus Fig. 9a). In *cpl*, the SST significantly cools down (Fig. S5), which extends the area of negative T2m anomalies over the ocean, in particular over the northwestern North Pacific in winter 1 (Fig. 8a). There it progresses from an initial preferential surface cooling over the midlatitudes in winter 1 to a later cooling of polar regions in winter 3, (Fig. 8c). In *atm-only*, the surface response is hampered over the ocean by the experimental design, and T2m anomalies are therefore confined to landmasses, yielding an overall much weaker temperature response compared to *cpl* (Fig. 9a-b).

Formatted: Header

Deleted: eruptive

Deleted: To understand better, we now turn our attention towards the troposphere to evaluate the role of eddies and surface cooling in the forced *cpl* response.¶

3.3.1. The role of eddy feedback

As detailed in the introduction, the mechanism behind a stratospheric polar vortex response following large volcanic eruptions has long been considered to be rooted in anomalous changes within the stratospheric temperature gradient, whereas in recent years number of studies have been emerging with evidences depicting tropospheric eddies as the main force in mediating atmospheric circulation responses towards the stratosphere and vice versa. We want to examine further if eddies play a role in the cpl polar vortex response and the upward EP flux detected (Fig. 4a-f) as well as the SSW detected in the 3rd winter, where we follow Smith et al. (2022) to calculate the eddy feedback as the squared of the correlation between the zonal mean zonal winds (U) and the divergence of the EP flux averaged over 200-600hPa. This is done for both perturbed (red) and unperturbed (blue) experiments (Fig.6).

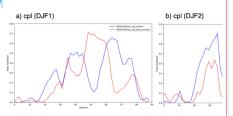


Figure 6: The cpl eddy feedback evolution in the lower atmosphere (200-600hPa) in winters 1-3 where the eddy feedback is calculated as the squared correlation of zonal mean zonal winds and the divergence.

Formatted: Font: Italic

Deleted: look

Deleted: surface

Deleted: 3.3.2. The role of surface cooling

Deleted: 7). At hemispheric scale we see the

Deleted: that protrudes

Deleted: 7a) where

Deleted: .

Deleted: 7c) occurs during the significant increase in SSWs also detected in winter 3 (Fig. 5), an expected cooling pattern during such events. In general the large-scale circulatio ... [3]

... [2]

Deleted: construction

Deleted: 8a

Deleted: Apart from the magnitude

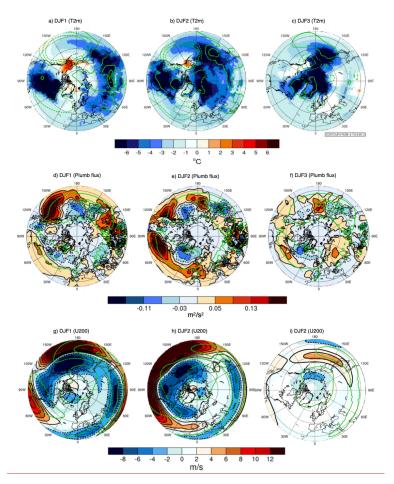


Figure 8. a) Response of 2-meter air temperature (°C) in cpl (color), and sea-level pressure (green contours), for winter 1. b) Same as a) but for winter 2. c) Same as a) but for winter 3. d) Response of 350 hPa vertical component of the Plumb flux (m^2/s^2) in cpl, and the climatology as green contours from -8 to 12 by 2, for winter 1. e) Same as a0 but for winter 2. f) Same as a0 but for winter 3. g) Response of 200 hPa zonal wind (a0 in a0 in a0, and the climatology as green contours from -0.15 to 0.15 by 0.04, for winter 1. h) Same as a0 but for winter 2. i) Same as a0 but for winter 3. Contours and colored areas indicate significance at the 95% confidence interval according to a Student's t-test.

Deleted: the cooling, the main difference between the surface

Deleted: responses

Deleted: *atm-only* is the presence

Formatted: English (US)

Deleted: anomalous warming-cooling dipoles, hence regions of enhanced

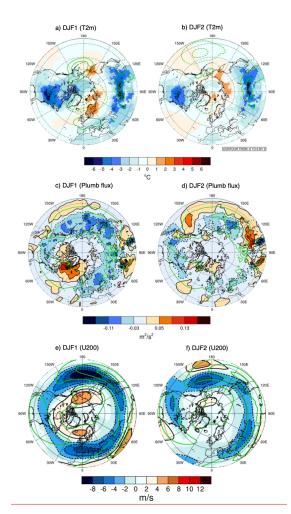


Figure 9. a) Response of 2-meter air temperature (°C) in *atm-only*, and sea-level pressure (green contours), for winter 1. b) Same as *a*) but for winter 2. c) Response of 850 hPa vertical component of the Plumb flux (m^2/s^2) in *atm-only*, and the climatology as green contours from -8 to 12 by 2, for winter 1. d) Same as *c*) but for winter 2. e) Response of 200 hPa zonal wind (m/s) in *atm-only*, and the climatology as green contours from -0.15 to 0.15 by 0.04, for winter 1. f) Same as *e*) but

Deleted: contrast like the Aleutian/Alaska region.

Formatted: English (US)

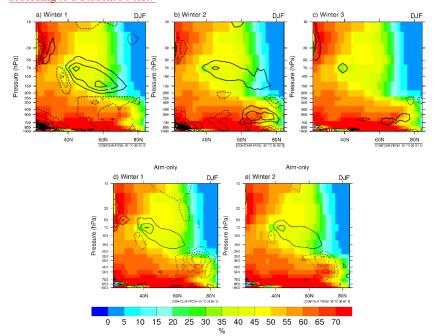


Figure 10. Probability (%) of favorable propagation conditions for large-scale stationary Rossby waves (zonal and meridional wavenumbers 1, 2 and 3) as a function of latitude and pressure levels (shading). Contours show the response in long_summer versus control. a) Winter 1 in *cpl*. b) Winter 2 in *cpl*. c) Winter 3 in *cpl*. d) Winter 1 in *atm-only*. e) Winter 2 in *atm-only*.

The vertical component of the the Plumb flux, at 850 hPa (Fig. &d-f) allows us to locate the origins of the upward EP flux in *cpl* (Fig. 4d-f). It is strongest over the north eastern part of the Pacific Ocean (off the west coast of North America) in winter 1, where it continues up into the lower stratosphere at 150 hPa (see Fig. S1a). In winter 2, the Plumb flux has decreased in the North Pacific and increased over the North Atlantic and Siberia, pointing to a possible influence of the change in land-sea temperature contrast (Fig. &e). In addition to this upward flux, we also detect downward wave flux over both the Aleutian and Greenland regions at 850 hPa and over a large area south of 45° N at 150 hPa. This downward Plumb flux is evidence of changes in the planetary

Deleted: 3D wave activity flux (
Deleted:)
Deleted: 7d
Deleted: cpl
Deleted:) as being
Deleted: Supplementary
Deleted: vertical
Deleted: decreases
Deleted: increases
Deleted: 7e
Deleted: propagating

wave structure where wave reflection occurs due to the sudden weakening of the zonal winds identified in the U10 (Fig. 3a). In winter 3, the Plumb flux now dominates both at 850 (seen in Fig. 8f) and 150 hPa (Fig. \$1c), where it encircles the polar stratosphere north of 60° N. In line with the weak EP-flux response shown in Fig. 5, the Plumb flux anomalies are generally weak in *atmonly* compared to *cpl*, for both winter 1 and 2 (Fig. 9c-d).

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

Moved (insertion) [1]

Deleted: An upward wave-activity flux now dominating both at 850 (seen in Fig. 7f) and 150 hPa (Fig.

Since upward wave activity depends on wave-mean flow interactions, several factors are at play to explain the strong response in cpl vs atm-only. First, the change in zonal flow is substantially different between the two pairs of experiments, as shown by the U200 anomalies (Fig. 8g-i and Fig. 9e-f). In the first two winters we observe an intense deepening of the Aleutian low in cpl (Fig. 8a-b) associated with a large equatorward shift of the subtropical jet over the North Pacific (Fig. 8g-h, also seen in the zonal-mean averages of Fig. 4). The change in zonal flow is not as large in atm-only, where there is a general decrease of U200 on the poleward side of the subtropical jets, rather than a marked equatorward shift as in cpl. This further emphasizes that amplified surface coupling when the ocean is coupled to the atmosphere has a dramatic impact on the amplitude of the tropospheric response. Because the zonal flow acts as a waveguide for large-scale planetary waves, we expect changes in upward wave propagation in the stratosphere. To measure how waveguides change, Fig. 10 shows the probability of favorable propagation conditions for largescale stationary waves, averaged for zonal wave numbers k=1,2,3 and meridional wave numbers l=1,2,3, as a function of pressure and latitude (see section 2 for more details). Areas of high probability show where large-scale waves preferentially propagate, while low probability regions indicate where linear wave propagation is hampered. Generally, the mid-latitude troposphere is more favorable for wave propagation than the high-latitudes and the stratosphere, consistent with the tendency for stationary waves to propagate upwards and to be deflected towards the equator, in climatology. After injection of the volcanic forcing, both cpl and atm-only exhibit an increase in the probability for wave propagation between 40 and 60 °N in the lower stratosphere during winter 1 and 2, but the responses in the troposphere are markedly different. In atm-only, wave propagation is inhibited in the free troposphere north of 60°N, for both winters 1 and 2 (Fig. 10de), which is consistent with the EP-flux anomalies of Fig. 5. This response is absent from cpl during winter 1 (Fig. 10a), and opposite during winter 2 when an increase of favorable conditions for wave propagation is diagnosed (Fig. 10b). We also see that the waveguide has greatly reduced in

the subtropical troposphere in *cpl* winters 1-2 that favor large-scale waves to be redirected towards the pole. This increase in favorable conditions for wave propagation in the troposphere between 60 and 80 °N persists during winter 3 in *cpl* (Fig. 10c), which is a partial and the most likely explanation for enhanced upward wave propagation in the stratosphere described in Fig. 4f.

860 861 862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

857

858

859

In cpl winter 3, when the cooling is reduced in the NH mid-latitudes and has migrated towards the polar regions, which is also evident in the SST (Fig. 5S), the amplitude of the 850 hPa upward Plumb flux anomalies decreases compared to previous winters (Fig. &f). This suggests that the mid-latitude spatiotemporal cooling pattern plays a part in the strong wave activity detected near the surface. This can be revealed by computing the T2m gradient (Tgrad) where strong land-sea temperature gradients are known for their ability to influence atmospheric wave activity (Hoskins and Valdes, 1990; Brayshaw et al., 2009; He et al., 2014; Wake et al., 2014; Portal et al., 2022). In winter 1 the meridional gradient shows sharp significant changes encircling 45° N (Fig. 11a), with positive (negative) gradient anomalies occurring south (north) of 45° N. In winter 2 we still see the gradient present at 45° N but now located over North America and the North Pacific, Winter 3 mostly reveals regional anomalies in the Barents-Kara, Greenland-Iceland and the North Pacific regions (Figure 11b-c), occurring over areas of significant sea ice increase (not shown). A sharp Tgrad change throughout the NH at 45° N is identified in winter 1 (Fig. 11a) that is followed by a reduction of land-sea temperature contrast over eastern Canada and the U.S. in winter 2 (Fig. 11b). This is a known cause of planetary wave enhancement (Portal et al., 2022) and could provide an explanation for the strong surface upward wave flux detected in the second and third post-volcanic winters (Figure Se-f). Both the zonal and meridional Tgrad components show an increase in the northern part of Alaska that coincides with the region of T2m warming over the Aleutian/Alaska region (Fig. 8a) and the strong upward Plumb flux (Fig. 8d). This warming, in addition to the strong continental cooling over North East America and the general decrease in Tgrad spanning from mid to northern part of North America, might influence this strong Plumb flux anomaly in the North Pacific. Of note, sea-ice extent increases around East Siberia extending into the Chukchi Sea, (not shown), highlighting the potential influence of sea ice variability on Tgrad and upward Plumb flux anomalies in the area.

Plotting the average Tgrad for various regions against the average number of SSWs for winters 1-3 (Fig. S6), we do see that the strongest Tgrad reduction occurs over the North East US in the

Moved up [1]: S1c), where it encircles the polar stratosphere north of 60° N.

Deleted:

Only minor activity is occurring in the Plumb flux of *atm-only* in winter 1 as expected, where downward flux dominates the mid-latitudes, with the exception of the upward flux over Greenland and the Himalayas that is most likely of orographic nature (Fig. 8c-d).¶

When

Deleted: no longer confined to

Deleted: in cpl

Deleted: reduced

Deleted: as in winter 3.

Deleted: Supplementary

Deleted: also

Deleted: 7f

Deleted: 9a

Deleted: while winter

Deleted: 9b

Deleted: The

Deleted: changes

Deleted: 9a),

Deleted: 7b),

Deleted:),

Deleted: 7e

Deleted: 7a

Deleted: 7d

Deleted: also trigger

Deleted: Northern

Deleted: At least it is unlikely that the Tgrad alone could explain such a strong increase in the upward Plumb flux where the source is likely to be rooted in anomalous spatial temperature patterns. Although not shown, an increase in

Deleted:

Deleted: in

Deleted: , in addition to the temperature dipole over Alaska

Deleted: North East America, might further support the role of anomalous spatial temperature pattern occurring in the vicinity of this strong upward Plumb flux detected.

Deleted: Supplementaru

second winter, agreeing with the upward Plumb flux over the same region and serving as further evidence for its contribution to the upward EP flux in winter 2. This Tgrad reduction continues into the third winter where we also detected a reduction in the upward Plumb flux over the same area (Fig. §f). Looking towards the Barents Sea, a clear spatial difference emerges compared to the North East US, where a clear Tgrad increase occurs in winter 3 related to the SSWs. In general less changes are detected between winters in the North West NA and the North Pacific, reflecting the confined cooling over higher latitudes in winter 3 associated with the SSWs.

930

931

932 933

934

935

936

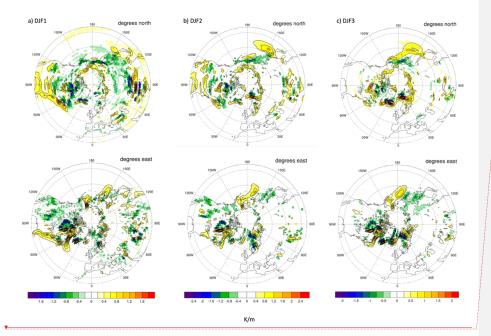
937

938 939

940

941

942 943


944

945

946

Deleted: 7f

Deleted: sea

b) DJF2

Figure 10: a-c) The zonal (degrees north) and meridional (degrees east) T2m gradient anomalies (perturbed minus unperturbed) for winters 1-3. Contours indicate 95% significance according to a Student's t-test. Note the different colorbar for each winter.

Deleted: 9

Deleted:

Deleted: Colored areas

Deleted: student's

Deleted:

To complete our assessment of the tropospheric response, we examine if eddies play a role in the *cpl* polar vortex response and the anomalous upward EP flux (Fig. 4a-f) as well as SSWs detected in winter 3 by following Smith et al. (2022) (see Methods). This is done for both perturbed (red) and unperturbed (blue) experiments in *cpl* and *atm-only* (Fig. S4). We see an increase in perturbed

eddy feedback at around 40-70° N both for *cpl* winter 1 and winters 1-2 in *atm-only* during the polar vortex strengthening (Fig. S4). However, the role of eddies in the polar vortex weakening in winters 2-3 is unclear, especially considering the eddy feedback increase of the control run in winter 2 (Fig. S4b). In general, these results suggest that the signal-to-noise ratio is too small to identify a role for eddy feedback in our experiments.

959

954

955

956

957

958

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

4 Discussion

Our two sets of coupled ocean-atmosphere (cpl) and atmosphere-only (atm-only) experiments examine the large-scale climate response to an idealized long-lasting NH eruption, where their differences give us valuable insight into the volcanically forced mechanisms at play within the coupled climate system in CESM1. Specifically, we analyzed the first three winters of the cpl. experiment and used the first two winters of atm-only as a comparison to investigate the dynamics that govern the post-eruption stratospheric polar vortex and the associated surface response. Results from the cpl experiment show a similar response in the first winter as in the two winters of atm-only, with a strengthening of the zonal winds resulting from an aerosol-induced sharp temperature gradient between the mid-latitudes and the pole (Fig. 4a and Fig. 5a). We show that this zonal wind strengthening is not affected by the detected strong upward EP flux, where the LW flux (Fig. 2e-f) supports our conclusions that the polar vortex strengthening is induced by the thermal wind balance. A distinct change to this pattern emerges in cpl winter 2 where we detect an SSW-like pattern, with strong negative anomalies emerging in the polar U50 winds and a warming in the T50 field (Fig. 4b). We also detect an LW absorption at high latitudes, that is absent at midlatitudes, where this T50 warming is evident of the potential role of a decreased temperature gradient in the identified polar vortex weakening. Furthermore, the upward wave-activity flux from the troposphere into the stratosphere and the T50 warming indicate absorption of upward propagating waves into the stratosphere that causes this warming and weakening of U10 winds over the polar cap. This pattern is known to be related to SSWs (Kretschmer et al., 2018; Kodera et al., 2016) that we further confirm to occurr in winter 3. The strong upward EP flux greatly depends on ocean-atmosphere coupling originating in the surface cooling in addition to the changes in upper tropospheric zonal flow. This further contributes to the upward EP flux from the troposphere into the stratosphere that eventually leads to polar vortex weakening and enhanced SSWs.

Deleted: Discussions

Formatted: English (US)

Deleted: We assessed

Formatted: Font: Italic

Deleted: our

Deleted: detected

Formatted: English (US)

Deleted: e

Deleted: in the LW flux

Deleted: identified

Deleted: in winter 3.

Although the above coincides with a positive (negative) eddy feedback in the first (second) winter that could in theory play a role in sustaining the strengthening (weakening) of the polar vortex, our eddy feedback results indicate low signal-to-noise ratio where further studies with additional ensemble members would be required to confirm their role in the forced response. We also note that Smith et al. (2022) identified CESM1 WACCM-SC as having one of the weakest eddy feedback of the sixteen models they investigated, so the response of eddy feedback may be more significant in other models. Similar to the eddy feedback, low signal-to-noise ratio is also evident in the SSW analysis. However, the response we detect in the U50 and T50 fields is strong compared to the unperturbed simulation where the SSWs provide an explanation in agreement with the patterns detected. Furthermore, the SSW analysis for atm-only and the ensemble size test (Fig. 7) both show strong evidence of a robust signal for winter 3 despite the noisy polar vortex and the limited ensemble size. We also see that the large decrease in SSWs in the perturbed simulation of atm-only (when compared to unperturbed) is consistent with the detected polar vortex strengthening. This further supports the significance of the signal we detect in cpl winter 3 compared to the background noise. In addition, all winters examined, in both cpl and atm-only, showed that there is up to 15% chance of getting more than 1 SSWs per winter in all ensemble members. This is not far from Ineson et al. (2022) who identified a double event once every 9 years in a 66-year ERA5 record. The exception is cpl winter 3 that is also the only winter that has 3 SSWs, with the average SSW occurrence also being the only winter above 1 (1.17) while all other winters span between 0.15-0.85 per winter. A similar NH high-latitude eruption has not taken place during the observational period, so we have no comparison. Also, to the best of our knowledge, a similar high-latitude sulfur injection study has not been performed before. Therefore, it is difficult to say at this stage if such a response is realistic or not, but in general more than two SSWs per winter can be considered exceptional yet plausible, as is also the case for our idealized eruption.

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017 1018

1019

1020 1021

1022

1023

Bittner et al. (2016b) identified an opposite response driven by a similar underlying mechanism, when compared to our *cpl* response in winters 2-3 (Fig. 4), following a Tambora-like eruption where a strengthening of the polar vortex due to less wave breaking at high latitudes was considered to be an indirect effect associated with a changes in planetary wave propagation. Since the volcanic aerosols in our experiments have declined extensively in the third winter, making the aerosol thermal forcing a limited factor, we cannot rule out similar indirect effects where changes

Deleted:

Deleted:

Formatted: English (US)

Deleted: Similarly as the eddy feedback, low signal to noise is also evident in the SSW analysis, both of which suggest the need for more ensemble members in order to get a more robust response. However, the response we do detect in the U50 and T50 fields is strong compared to the unperturbed run where the eddy feedback, and especially the SSW, provides an explanation in agreement with the patterns detected although noisy...

Deleted: a similar but

in wave propagation leads to an increase in wave breaking at high latitudes and hence the increase in SSWs.

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055 1056

1057

1058

10591060

1061

1062

1063

1064

1065

While not directly comparable to our study but still providing an important analog, Muthers et al. (2016) identified an average increase in the number of SSWs during a 30-year (constant) decrease in solar radiation in line with our significant increase in SSWs in winter 3. Our results do support the findings of Sjolte et al. (2019), where the stratospheric temperature gradient does not appear to play a major role in the polar vortex weakening we identify, while the upward wave flux does. The strong surface cooling detected in Fig. 8 is a well-known caveat in CMIP5 models (including CESM1) (Driscoll et al., 2012; Chylek et al., 2020) and is clearly detected in our coupled simulations. Since our results indicate the dominant role of the volcanically induced stratospheric thermal wind response that causes the polar vortex strengthening, the cooling does not appear to impact the response identified in winter 1. This is also revealed by the EP flux. The same cannot be said about winters 2-3, where our results indicate that the exaggerated spatiotemporal T2m pattern might explain the strong upward wave flux and the associated stratospheric response. Interestingly, a slight difference between atm-only and cpl is detected in both the LW and SW flux that is caused by a strong significant decrease in high cloud cover in the cpl simulation (not shown). This cloud cover decrease, especially at mid- to high latitudes, agrees with the increased LW fluxes at higher latitudes in addition to the decrease in SW flux and the associated surface cooling. This raises a question regarding the role of forced surface processes in these high cloud changes, which we leave open for further studies.

As mentioned in the methods section, we assume a similar lifetime of volcanic aerosols at 65° N as at 45° N. When considering the e-folding time in Toohey et al. (2019), a substantial aerosol decrease of about 43% occurs at 17km (a.b.s.) for an eruption at 60° compared to at 0°. However, since our experiment assumes a constant stratospheric injection over 5 months with the aim to simulate a long-lasting HL eruption compared to a single injection at low latitudes, the difference in the e-folding time between low and high-latitudes would be expected to decrease. Using CESM2-WACCM6 with interactive chemistry Zhuo et al. (2023) identified that although an eruption at 64° N did have a shorter aerosol lifetime compared to one at 15° N, it leads to stronger volcanic forcing over the NH extratropics. In addition, one of their conclusions was that different duration and intensity of both tropical and NH extratropical eruptions can lead to different results,

Deleted: but rather

Deleted: 7

Deleted: the

Deleted: simulation

Deleted: balance

Deleted: as

Deleted: in addition to the eddy feedback although weakly

Formatted: English (US)

Deleted:

Deleted: .,

Deleted: they lead

Deleted: although the resulting climate impacts did not last as long

stressing that our 6 month long stratospheric sulfate aerosol enhancement is not directly comparable with volcanic eruptions of shorter duration. Although the aerosol lifetime in our experiment might be exaggerated into the third year, our results do indicate that the polar vortex weakening in winter 2 appears to act as a trigger for further weakening that eventually leads to SSWs in winter 3. In order to increase confidenceprecu on such a delayed link, additional sensitivity simulations are required, which we we leave that for future studies.

1078

1079

1080

1081

1082

1083

1084 1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

11021103

1104

1105 1106

1107

1108

Unlike our eruption simulated using a version of WACCM4, where the chemistry is prescribed, natural volcanic eruptions can contain various chemical compounds that impact the formation and the lifetime of sulfate aerosols as well as affect the atmospheric circulation via, e.g., ozone depletion, like halogens are known to do. More advanced versions as well as models that include interactive chemistry are thus important to reveal in more detail the chemistry-climate interactions that occur in the natural world (Clyne et al., 2021; Case et al., 2023; Fuglestvedt et al., 2024). Thus our idealized experiment can be considered primitive in the sense that it only considers sulfate aerosols but sufficient when focusing on answering questions on the basic mechanism that such eruptions can initiate. Another important aspect that we do not focus on in our study is the role of different initial conditions on the forced climate response, where initial atmospheric and climate conditions, including e.g. the stability of the polar vortex, control the lifetime and distribution of the volcanic aerosols as well as the forced dynamic climate response (Zanchettin et al., 2019; Weierbach et al., 2023; Zhuo et al., 2023; Fuglestvedt et al., 2024). An exception is our assessment on how the easterly and westerly phase of the QBO affect our results where we compared ensemble members showing easterly phase with the westerly ones to test if the U50 and T50 response patterns would be different. They were not; both phases showed a weakening of the U50 although the zonal winds were more confined and consistent over the higher latitudes of the NH during the easterly phase (not shown). The difference in the number of ensemble members used for these calculations could of course impact the statistics of this test of ours but not the overall pattern detected.

CESM2-WACCM6 has obvious improvements when compared to CESM1-WACCM4 (see e.g. Gettleman et al., 2019, Danabasoglu et al., 2020), among them being an interactive QBO as well as having a slightly higher frequency of <u>SSW occurrence</u> (Holland et al., 2024). Nonetheless, CESM1-WACCM4 has comparable transient climate response to CESM2 as well as the ability to

Deleted: injection

Formatted: Header

Deleted: confidently confirm

Deleted: and thus

Deleted: eruption

Deleted: affecting

Deleted: .

Deleted: Quasi-Biennial-Oscillation

Deleted:

Deleted: occurring SSWs

Formatted: Header 1118 capture the general physical mechanism occurring within the climate system as identified in 1119 various recent studies (Danabasoglu et al., 2020; Zang et al., 2018; Elsbury et al., 2021b; Peings et al., 2023; Ding et al., 2023; Yu et al., 2024). 1120 1121 1122 **5 Conclusions** 1123 Through comparison of the cpl and atm-only simulations, our results clearly demonstrates the Deleted: Results from Deleted: study suggest 1124 important role of ocean-atmosphere coupling in the stratospheric response to enhancements of the 1125 stratospheric sulfate aerosol layer at higher NH latitudes. We see that this aerosol enhancement 1126 layer triggers two competing mechanisms in the first three winters: Deleted: are competing 1127 i) Winter 1: The stratospheric polar vortex strengthening is triggered by stratospheric aerosol 1128 thermal forcing via thermal wind balance. This response is not influenced by the strong upward **Deleted:** Since this 1129 wave flux identified, originating in the forced surface cooling and changes in tropospheric Deleted: this is evident 1130 circulation, and provides strong evidence of two mechanisms that are competing simultaneously: 1131 A Top-down and a Bottom-up mechanism, where the Top-down mechanism dominates the 1132 response. 1133 ii) Winter 2: The upward wave flux is absorbed in the stratosphere that causes a warming over the Deleted:, originating in the strong volcanically induced surface cooling, gets 1134 polar cap and a polar vortex weakening. This pattern is similar to SSWs although its occurrence is Deleted: in addition to 1135 not significant. Here the Bottom-up mechanism dominates. 1136 iii) Winter 3: The persistence of the upward wave flux continuing into the third winter leads to an Deleted: a significant 1137 increase in SSWs with warming now confined over the polar cap, again demonstrating the 1138 dominating Bottom-up mechanism as in winter 2. 1139 It is clear from our results that the strong surface cooling following the HL sulphate aerosol 1140 injection causes dramatic changes in tropospheric circulation. These changes further modify 1141 atmospheric waveguides where we detect an increase in propagation of planetary waves in the 1142 lower stratosphere occurring at higher latitudes. Although we do find similarities in the eddy 1143 feedback when compared to the general climate signal that we identify, such as the decrease in eddy feedback in winter 1 potentially sustaining the polar vortex strengthening, we emphasize its 1144 Deleted: underline 1145 weak signal. At the same time we encourage further studies on this subject, especially concerning Deleted: This also applies to the SSW results although they are more clearly in support of our results. 1146 the lack of published comparison studies regarding both high and low latitude volcanic eruptions 1147 and SSWs. Ideally such studies would include the latest model generations in addition to 1148 observational datasets. They should also consider the impact of different climate realizations and Deleted: as well as

 Formatted:	Header

1162	the eruption magnitude on the forced response. Furthermore, these results highlight the importance
1163	of including high-latitude volcanic forcing simulations of various lengths and/or magnitudes in
1164	projects such as VolMIP, especially considering the current volcanic unrest and increased activity
1165	in some of the major volcanic systems in Iceland.
4400	G d 1: Conv. M.

1166 Currently, work is ongoing to test the sensitivity of the polar vortex and the emerging SSWs to NH 1167 eruptions that are smaller in magnitude as well as the long-term climate impacts.

Data availability

The model output is available upon request by contacting the corresponding author.

1172 Author contribution

HG conceptualized this study along with GM, YP and DZ. <code>cpl</code> and <code>atm-only</code> experiments were carried out by HG and YP. Analysis and calculations of model output as well as graphical representation was done by HG except for the eddy feedback and the probability of favorable propagation conditions that was done by YP_and the ensemble size test that was done by DZ. Manuscript draft was done by HG and editing was done by DZ and YP. GM served as the principal investigator of this work and did the final editing.

Competing interests

The corresponding author declares that none of the authors have any competing interest.

Acknowledgement

This work is supported by the Icelandic Research Fund (IRF), grant No. 2008-0445. HG acknowledges the Fulbright Scholar Program, which is sponsored by the U.S. department of state and Fulbright Iceland, that facilitated the stay of HG and her family in Irvine, CA during this work. We also acknowledge high-performance computing support from Cheyenne (doi:10.5065/D6RX99HX) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation that we used for our experiments. HG wants to thank the staff at the department of Earth System Science at UCI for the facility and

Deleted: Cpl

	↓	(Formatted: Header
1193	assistance during this work HG's stay at UCI. Finally, we also want to thank Matthew Toohey for	(Deleted: and my
1194	his assistance in the interpolation of the forcing files for WACCM4.		
1195			
1196			
1197			
1198	References	_(Deleted: ¶
			Jeren.
1199	Azoulay, A., Schmidt, H., & Timmreck, C. The Arctic polar vortex response to volcanic forcing		1 1
1200	of different strengths. J Geophys Res-Atmos, 126(11), e2020JD034450, (2021).		¶ ¶
1201			1
1202	Baldwin, M. P., & Dunkerton, T. J. Propagation of the Arctic Oscillation from the stratosphere to		
1203	the troposphere. <u>J Geophys Res-Atmos</u> , 104(D24), 30937-30946, (1999).		1 ¶
1 1204			¶ ¶
1205	Barsotti, S., Di Rienzo, D. I., Thordarson, T., Björnsson, B. B., & Karlsdóttir, S., Assessing impact		¶ ¶
l 1206	to infrastructures due to tephra fallout from Öræfajökull volcano (Iceland) by using a scenario-		Deleted: . (2021).
1207	based approach and a numerical model. Front Earth Sci. 6, 196 (2018).		Deleted: Journal of Geophysical Research: Atmospheres
	based approach and a numerical model. Trom Earth Set, 0, 170, 120181.		Deleted: .
1208			Deleted: (1999).
1209	Bittner M, Schmidt H, Timmreck C, Sienz F. Using a large ensemble of simulations to assess the		Deleted: Journal of Geophysical Research: Atmospheres Deleted: .
1210	Northern Hemisphere stratospheric dynamical response to tropical volcanic eruptions and its		Deleted: (2018).
1211	uncertainty. Geophys Res Lett. 43(17). 9324–32. (2016).		Deleted: Frontiers in
1212)//	Deleted: Science
1213	Brayshaw, D. J., B. Hoskins, and M. Blackburn. The basic ingredients of the North Atlantic storm		Deleted: .
1214	track. Part I: Land-sea contrast and orography. J. Atmos. Sci., 66, 2539-2558,	$/\!//$	Formatted: Font: Italic
		/	Deleted: . 2016; Deleted:):
1215	https://doi.org/10.1175/2009JAS3078.1 _* (2009).	1/1	Deleted: .
1216		1	Deleted: , 2009:
1217	Brown, F., Marshall, L., Haynes, P. H., Garcia, R. R., Birner, T., & Schmidt, A. On the magnitude	, Y	Deleted: .
1218	and sensitivity of the quasi-biennial oscillation response to a tropical volcanic eruption. Atmos.	(Deleted: (2023).
1219	<u>Chem. Phys</u> , 23(9), 5335-5353 _x (2023).	(Deleted: Atmospheric Chemistry and Physics
I 1220		(Deleted: .
1221	Brugnatelli, V., & Tibaldi, A. Effects in North Africa of the 934–940 CE Eldgjá and 1783–1784		Deleted: (2020).
1222	CE Laki eruptions (Iceland) revealed by previously unrecognized written sources. <i>B. Volcanol</i> ,		Deleted: Bulletin of Volcanology
1223	82(11), 73 _x (2020).		Deleted: .

		Formatted: Header
1261		
1262	Case, P., Colarco, P. R., Toon, B., Aquila, V., & Keller, C. A, Interactive stratospheric aerosol	Deleted: (2023).
1263	microphysics-chemistry simulations of the 1991 Pinatubo volcanic aerosols with newly coupled	
1264	sectional aerosol and stratosphere-troposphere chemistry modules in the NASA GEOS Chemistry-	
1265	Climate Model (CCM). <u>J Adv. Model Earth Sy.</u> , 15(8), e2022MS003147, (2023).	Deleted: Journal of Advances in Modeling
1266		Deleted: Systems, Deleted: .
1267	Charlton-Perez AJ, Ferranti L, Lee RW. The influence of the stratospheric state on North Atlantic	Dilliu.
1268	weather regimes. Quart. J. Roy. Meteor. Soc, 144:1140–1151. https://doi.org/10.1002/qj.3280	
1269	<u>(2018).</u>	
1270	Charlton, A. J., & Polvani, L. M. A new look at stratospheric sudden warmings. Part I: Climatology	Deleted: (2007).
1271	and modeling benchmarks. <u>J. Climate</u> , 20(3), 449-469, (2007).	Deleted: Journal of climate
1272		Deleted: .
1273	Church, J.A., White, N.J., Arblaster, J.M. Significant decadal-scale impact of volcanic eruptions	Deleted: ., 2005
1274	on sea level and ocean heat content. <i>Nature</i> 438 (7064), 74–77. (2005).	Deleted: .
1 1275		
1276	Chylek, P., Folland, C., Klett, J. D., & Dubey, M. K. CMIP5 climate models overestimate cooling	Deleted: (2020).
1277	by volcanic aerosols. <u>Geophys. Res. Lett</u> , 47(3), e2020GL087047 <u>(2020)</u> .	Deleted: Geophysical Research Letters
1 1278		Deleted: .
1279	Clyne, M., Lamarque, JF., Mills, M. J., Khodri, M., Ball, W., Bekki, S., Dhomse, S. S., Lebas,	
1280	N., Mann, G., Marshall, L., Niemeier, U., Poulain, V., Robock, A., Rozanov, E., Schmidt, A.,	
1281	Stenke, A., Sukhodolov, T., Timmreck, C., Toohey, M., Tummon, F., Zanchettin, D., Zhu, Y., and	
1282	Toon, O. B.: Model physics and chemistry causing intermodel disagreement within the VolMIP-	
1283	Tambora Interactive Stratospheric Aerosol ensemble, Atmos. Chem. Phys., 21, 3317-3343,	
1284	https://doi.org/10.5194/acp-21-3317-2021, (2021).	Deleted: .
ا 1285		
1286	Colose CM, LeGrande AN, Vuille M. Hemispherically asymmetric volcanic forcing of tropical	
1287	hydroclimate during the last millennium. Earth Sys Dyn. 7(3), 681–96. doi:10.5194/esd-7-681-	Deleted: 2016;
1288	2016 <u>(2016)</u> .	Deleted:):
l 1289		Deleted: .
1290	DallaSanta, K., Gerber, E. P., & Toohey, M. The circulation response to volcanic eruptions: The	Deleted: (2019).
1291	key roles of stratospheric warming and eddy interactions. <i>J. Clim</i> , 32(4), 1101-1120 (2019).	Deleted: Journal of Climate
I		Deleted: .

	4		Formatted: Header
1311			
1812	DallaSanta, K., & Polvani, L. M. Volcanic stratospheric injections up to 160 Tg (S) yield a Eurasian		Deleted: (2022).
1313	winter warming indistinguishable from internal variability. <u>Atm. Chem. Phys</u> , 22(13), 8843-8862,		Deleted: Atmospheric Chemistry and Physics
1814	(2022).		Deleted: .
1315	(====):		
1316	Danabasoglu, G., Lamarque, J. F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J.,		
1817	& Strand, W. G. The community earth system model version 2 (CESM2). J Adv. Model Earth		Deleted: (2020).
1318	$S_{V_{a}}$ 12(2), e2019MS001916, (2020).		Deleted: Journal of Advances in Modeling
1319			Deleted: Systems
1320	Day S. C. Calib V. M. Emila Cany I. Ault T. D. Edwards D. I. Chang H. & Charles C. D.	1	Deleted:
	Dee, S. G., Cobb, K. M., Emile-Geay, J., Ault, T. R., Edwards, R. L., Cheng, H., & Charles, C. D.		Formatted: Font: Italic
1321	No consistent ENSO response to volcanic forcing over the last millennium. Science, 367(6485),		Deleted: (2020).
1322	1477-1481 <u>(2020).</u>		Deleted: .
1323			
1324	Ding, X., Chen, G., Zhang, P., Domeisen, D. I., & Orbe, C. Extreme stratospheric wave activity as		Deleted: (2023).
1325	harbingers of cold events over North America. <u>Commun.</u> Earth <u>Environ</u> , 4(1), 187, (2023).		Deleted: Communications
1 1326			Deleted: & Environment
1827	Domeisen, D. I., Grams, C. M., & Papritz, L. The role of North Atlantic-European weather regimes		Deleted: .
1828	in the surface impact of sudden stratospheric warming events. <i>Weather Clim. Dynam</i> , 1(2), 373-		Deleted: (2020).
			Deleted: and Climate Dynamics
1829	388,(2020).		Deleted: .
1330			
1831	Driscoll, S., Bozzo, A., Gray, L. J., Robock, A., Stenchikov, G. Coupled ModelIntercomparison		Deleted: ., 2012
1332	Project 5 (CMIP5) simulations of climate following volcanic erup-tions. J. Geophys. Res _z -Atmos,		Deleted: .: Atmospheres
1333	117 (D17 <u>) (2012</u>).		
1 1334			
1835	Edmon, H.J., Hoskins, B.J. and McIntyre, M.E. Eliassen-Palm cross sections for the troposphere.		Deleted: (1980)
1336	J. Atmos. Sci, 37, 2600–2616 (1980).		Deleted: Journal of the Atmospheric Sciences
1337		San	Deleted: .
	Picconn D Historical country from another classicity of Val. Held. Ö. C. 191, 11, 1, 4		(D.L. I. (2010)
1838	Einarsson, P _* Historical accounts of pre-eruption seismicity of Katla, Hekla, Öræfajökull and other		Deleted: (2019).
1839	volcanoes in Iceland. <i>Jökull</i> , 69, 35-52, (2019).		Deleted: .
1340			

	4		Formatted: Header
1364	Elsbury, D., Y. Peings and G. Magnusdottir, Variation in the Holton-Tan effect by longitude. Q. J.	and the same of th	Deleted: , 2021b
1365	Roy. Meteor. Soc. DOI: 10.1002/qj.3993 (2021b).	*****	Deleted: Quarterly Journal of the Royal Meteorological Society
1366			
1367	Elsbury, D., Peings, Y., & Magnusdottir, G. CMIP6 models underestimate the Holton-Tan effect.		Deleted: (2021).
1368	Geophys. Res. Lett, 48(24), e2021GL094083, (2021).		Deleted: Geophysical Research Letters
1369			Deleted: .
1870	Fischer, H., Siggaard-Andersen, M.L., Ruth, U., Röthlisberger, R., Wolff, E, Glacial/interglacial		Deleted: ., 2007
1371	changes in mineral dust and sea-salt records in polar ice cores: Sources,transport, and deposition.		
1372	Rev. Geophys. (1), 45 _c (2007).		Deleted: .
1373			
1874	Fuglestvedt, H. F., Zhuo, Z., Toohey, M., & Krüger, K., Volcanic forcing of high-latitude Northern		Deleted: (2024).
1375	Hemisphere eruptions. npj Clim. Atmos. Sci, 7(1), 10, (2024).		Deleted: npj Climate and Atmospheric Science
1376			Deleted: .
1377	Gettelman, A., Mills, M. J., Kinnison, D. E., Garcia, R. R., Smith, A. K., Marsh, D. R., & Randel,		
1378	W. J. The whole atmosphere community climate model version 6 (WACCM6). J. Geophys. Res-		Deleted: (2019).
1379	<u>Atmos</u> , 124(23), 12380-12403, (2019).		Deleted: Journal of Geophysical Research: Atmospheres
1 1380			Deleted: .
1881	Gettelman, A., Schmidt, A., & Egill Kristjánsson, J. Jcelandic volcanic emissions and climate.		Deleted: (2015).
1382	Nature <u>Geosci</u> , 8(4), 243-243 <u>(2015).</u>		Deleted: Geoscience
1 1383		***************************************	Deleted: .
1884	Gleckler, P.J., AchutaRao, K., Gregory, J.M., Santer, B.D., Taylor, K.E., Wigley, T.M.L, Krakatoa		Deleted: .,2006
1385	lives: The effect of volcanic eruptions on ocean heat content and thermal expansion. Geophys. Res.		
1386	Lett. (17), 33 <u>. (2006).</u>		Deleted: .
1387			
1388	Graf, H.F., Perlwitz, J., Kirchner, I. Northern hemisphere tropospheric midlatitude circulation after		Deleted: ., 1994
1389	violent volcanic eruptions. Contr. Atmos. Physics 67 (1), 3–13 (1994).		
1390			
1891	Graf, HF., D. Zanchettin, C. Timmreck and M. Bittner, Observational constraints on the		Deleted: (2014)
1392	tropospheric and near-surface winter signature of the Northern Hemisphere stratospheric polar		
1893	vortex. Clim. Dyn., 43, 3245, doi:10.1007/s00382-014-2101-0 (2014).		Deleted: :
1 1394			

	4	Formatted: Header
1417	Guðlaugsdóttir, H., Steen-Larsen, H. C., Sjolte, J., Masson-Delmotte, V., Werner, M., &	
1418	Sveinbjörnsdóttir, Á. E. The influence of volcanic eruptions on weather regimes over the North	Deleted: (2018).
1419		
	Atlantic simulated by ECHAM5/MPI-OM ensemble runs from 800 to 2000 CE. <u>Atm. Res</u> , 213,	Deleted: Atmospheric Research
1420	211-223, (2018).	Deleted: .
1421		
1422	Guðlaugsdóttir, H., Sjolte, J., Sveinbjörnsdóttir, Á. E., Werner, M., & Steen-Larsen, H. C. North	Deleted: (2019).
1423	Atlantic weather regimes in $\delta 18O$ of winter precipitation: isotopic fingerprint of the response in	
1424	the atmospheric circulation after volcanic eruptions. <i>Tellus B</i> , 71(1), 1633848, (2019).	Deleted: : Chemical and Physical Meteorology
1425		Deleted: .
1426	Haynes, P. H. Stratospheric dynamics. Ann. Rev. Fluid Mech. 37(1), 263-293, doi:	Deleted: (2005).
1427	10.1146/annurev.fluid.37.061903.175710 <u>(2005).</u>	
ا 1428		
1429	He, Y., Huang, J. & Ji, M. Impact of land-sea thermal contrast on interdecadal variation in	
1430	circulation and blocking. Clim Dyn 43 , 3267–3279, https://doi.org/10.1007/s00382-014-2103-y	Deleted: (2014).
1//21		Formatted: Font: Italic
1431	(2014).	Formatted: Font: Italic
1432		
1432 1433	Holland, M. M., Hannay, C., Fasullo, J., Jahn, A., Kay, J. E., Mills, M., & Bailey, D. New model	Formatted: Font: Italic Deleted: (2024).
1432 1433 1434	Holland, M. M., Hannay, C., Fasullo, J., Jahn, A., Kay, J. E., Mills, M., & Bailey, D. New model ensemble reveals how forcing uncertainty and model structure alter climate simulated across CMIP	
1432 1433	Holland, M. M., Hannay, C., Fasullo, J., Jahn, A., Kay, J. E., Mills, M., & Bailey, D. New model	Deleted: (2024). Deleted: Geoscientific
1432 1433 1434	Holland, M. M., Hannay, C., Fasullo, J., Jahn, A., Kay, J. E., Mills, M., & Bailey, D. New model ensemble reveals how forcing uncertainty and model structure alter climate simulated across CMIP	Deleted: (2024). Deleted: Geoscientific Deleted: Development
1432 1433 1434 1435	Holland, M. M., Hannay, C., Fasullo, J., Jahn, A., Kay, J. E., Mills, M., & Bailey, D. New model ensemble reveals how forcing uncertainty and model structure alter climate simulated across CMIP	Deleted: (2024). Deleted: Geoscientific Deleted: Development Deleted: .
1432 1433 1434 1435 1436	Holland, M. M., Hannay, C., Fasullo, J., Jahn, A., Kay, J. E., Mills, M., & Bailey, D. New model ensemble reveals how forcing uncertainty and model structure alter climate simulated across CMIP generations of the Community Earth System Model. <i>Geosci. Model Dev.</i> 17(4), 1585-1602 (2024).	Deleted: (2024). Deleted: Geoscientific Deleted: Development
1432 1433 1434 1435 1436 1437	Holland, M. M., Hannay, C., Fasullo, J., Jahn, A., Kay, J. E., Mills, M., & Bailey, D. New model ensemble reveals how forcing uncertainty and model structure alter climate simulated across CMIP generations of the Community Earth System Model. <i>Geosci. Model Dev</i> , 17(4), 1585-1602 (2024). Hoskins, B. J., and P. J. Valdes. On the existence of storm-tracks. <i>J. Atmos. Sci.</i> , 47, 1854–1864,	Deleted: (2024). Deleted: Geoscientific Deleted: Development Deleted: . Deleted: , 1990:
1432 1433 1434 1435 1436 1437 1438	Holland, M. M., Hannay, C., Fasullo, J., Jahn, A., Kay, J. E., Mills, M., & Bailey, D. New model ensemble reveals how forcing uncertainty and model structure alter climate simulated across CMIP generations of the Community Earth System Model. <i>Geosci. Model Dev</i> , 17(4), 1585-1602 (2024). Hoskins, B. J., and P. J. Valdes. On the existence of storm-tracks. <i>J. Atmos. Sci.</i> , 47, 1854–1864,	Deleted: (2024). Deleted: Geoscientific Deleted: Development Deleted: . Deleted: , 1990:
1432 1433 1434 1435 1436 1437 1438 1439	Holland, M. M., Hannay, C., Fasullo, J., Jahn, A., Kay, J. E., Mills, M., & Bailey, D. New model ensemble reveals how forcing uncertainty and model structure alter climate simulated across CMIP generations of the Community Earth System Model. <i>Geosci. Model Dev</i> , 17(4), 1585-1602 (2024). Hoskins, B. J., and P. J. Valdes. On the existence of storm-tracks. <i>J. Atmos. Sci.</i> , 47, 1854–1864, https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2 (1990).	Deleted: (2024). Deleted: Geoscientific Deleted: Development Deleted: . Deleted: , 1990: Deleted: .
1432 1433 1434 1435 1436 1437 1438 1439 1440	Holland, M. M., Hannay, C., Fasullo, J., Jahn, A., Kay, J. E., Mills, M., & Bailey, D. New model ensemble reveals how forcing uncertainty and model structure alter climate simulated across CMIP generations of the Community Earth System Model. <i>Geosci. Model Dev</i> , 17(4), 1585-1602 (2024). Hoskins, B. J., and P. J. Valdes. On the existence of storm-tracks. <i>J. Atmos. Sci.</i> , 47, 1854–1864, https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2 (1990). Huang, J., Hitchcock, P., Maycock, A. C., McKenna, C. M., & Tian, W. Northern hemisphere cold air outbreaks are more likely to be severe during weak polar vortex conditions. <i>Commun. Earth</i>	Deleted: (2024). Deleted: Geoscientific Deleted: Development Deleted: . Deleted: , 1990: Deleted: . Deleted: .
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441	Holland, M. M., Hannay, C., Fasullo, J., Jahn, A., Kay, J. E., Mills, M., & Bailey, D. New model ensemble reveals how forcing uncertainty and model structure alter climate simulated across CMIP generations of the Community Earth System Model. <i>Geosci. Model Dev</i> , 17(4), 1585-1602 (2024). Hoskins, B. J., and P. J. Valdes. On the existence of storm-tracks. <i>J. Atmos. Sci.</i> , 47, 1854–1864, https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2 (1990). Huang, J., Hitchcock, P., Maycock, A. C., McKenna, C. M., & Tian, W. Northern hemisphere cold	Deleted: (2024). Deleted: Geoscientific Deleted: Development Deleted: . Deleted: , 1990: Deleted: . Deleted: . Deleted: (2021). Deleted: Communications
1432 1433 1434 1435 1436 1437 1438 1439 1440	Holland, M. M., Hannay, C., Fasullo, J., Jahn, A., Kay, J. E., Mills, M., & Bailey, D. New model ensemble reveals how forcing uncertainty and model structure alter climate simulated across CMIP generations of the Community Earth System Model. <i>Geosci. Model Dev</i> , 17(4), 1585-1602 (2024). Hoskins, B. J., and P. J. Valdes. On the existence of storm-tracks. <i>J. Atmos. Sci.</i> , 47, 1854–1864, https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2 (1990). Huang, J., Hitchcock, P., Maycock, A. C., McKenna, C. M., & Tian, W. Northern hemisphere cold air outbreaks are more likely to be severe during weak polar vortex conditions. <i>Commun. Earth</i>	Deleted: (2024). Deleted: Geoscientific Deleted: Development Deleted: . Deleted: , 1990: Deleted: . Deleted: (2021). Deleted: Communications Deleted: & Environment
1432 1433 1434 1435 1436 1437 1438 1449 1440 1441 1442 1443	Holland, M. M., Hannay, C., Fasullo, J., Jahn, A., Kay, J. E., Mills, M., & Bailey, D. New model ensemble reveals how forcing uncertainty and model structure alter climate simulated across CMIP generations of the Community Earth System Model. <i>Geosci. Model Dev, 17</i> (4), 1585-1602 (2024). Hoskins, B. J., and P. J. Valdes, On the existence of storm-tracks. <i>J. Atmos. Sci.</i> , 47, 1854–1864, https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2 (1990). Huang, J., Hitchcock, P., Maycock, A. C., McKenna, C. M., & Tian, W. Northern hemisphere cold air outbreaks are more likely to be severe during weak polar vortex conditions. <i>Commun. Earth Environ</i> , 2(1), 147 (2021). Hurrell, J.W. Decadal trends in the north atlantic oscillation: regional tempera-tures and	Deleted: (2024). Deleted: Geoscientific Deleted: Development Deleted: . Deleted: , 1990: Deleted: . Deleted: (2021). Deleted: Communications Deleted: & Environment Deleted: . Deleted: . Deleted: .
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442	Holland, M. M., Hannay, C., Fasullo, J., Jahn, A., Kay, J. E., Mills, M., & Bailey, D. New model ensemble reveals how forcing uncertainty and model structure alter climate simulated across CMIP generations of the Community Earth System Model. <i>Geosci. Model Dev</i> , 17(4), 1585-1602 (2024). Hoskins, B. J., and P. J. Valdes. On the existence of storm-tracks. <i>J. Atmos. Sci.</i> , 47, 1854–1864, https://doi.org/10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2 (1990). Huang, J., Hitchcock, P., Maycock, A. C., McKenna, C. M., & Tian, W. Northern hemisphere cold air outbreaks are more likely to be severe during weak polar vortex conditions. <i>Commun. Earth Environ</i> , 2(1), 147 (2021).	Deleted: (2024). Deleted: Geoscientific Deleted: Development Deleted: . Deleted: , 1990: Deleted: . Deleted: . Deleted: (2021). Deleted: & Environment Deleted: .

	•	Formatted: Header
1467	Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., & Marshall, S.	
1468	The community earth system model: a framework for collaborative research. B. Am. Meteorol.	Deleted: (2013).
1469	Soc, 94(9), 1339-1360, (2013).	Deleted: Bulletin of the American Meteorological Society
1470	500,77(7), 1507 1500,(2015).	Deleted: .
1471	Ineson, S., Dunstone, N. J., Scaife, A. A., Andrews, M. B., Lockwood, J. F., & Pang, B. Statistics	Deleted: (2024).
1472	of sudden stratospheric warmings using a large model ensemble. <u>Atmos. Sci. Lett.</u> , 25(3), e1202	Deleted: Atmospheric Science Letters
1473		Deleted: .
I	(<u>2024).</u>	
1474		
1475	Jungclaus, J. H., Bard, E., Baroni, M., Braconnot, P., Cao, J., Chini, L. P., Egorova, T., Evans, M.,	
1476	González-Rouco, J. F., Goosse, H., Hurtt, G. C., Joos, F., Kaplan, J. O., Khodri, M., Klein	
1477	Goldewijk, K., Krivova, N., LeGrande, A. N., Lorenz, S. J., Luterbacher, J., Man, W., Maycock,	
1478	A. C., Meinshausen, M., Moberg, A., Muscheler, R., Nehrbass-Ahles, C., Otto-Bliesner, B. I.,	
1479	Phipps, S. J., Pongratz, J., Rozanov, E., Schmidt, G. A., Schmidt, H., Schmutz, W., Schurer, A.,	
1480	Shapiro, A. I., Sigl, M., Smerdon, J. E., Solanki, S. K., Timmreck, C., Toohey, M., Usoskin, I. G.,	
1481	Wagner, S., Wu, CJ., Yeo, K. L., Zanchettin, D., Zhang, Q., and Zorita, E.: The PMIP4	
1482	contribution to CMIP6 – Part 3: The last millennium, scientific objective, and experimental design	
1483	for the PMIP4 past1000 simulations, Geosci. Model Dev., 10, 4005-4033,	
1484	https://doi.org/10.5194/gmd-10-4005-2017, (2017).	
1485		
1486	Karami, K., Braesicke, P., Sinnhuber, M., and Versick, S. On the climatological probability of the	
1487	vertical propagation of stationary planetary waves, Atmos. Chem. Phys., 16, 8447-8460,	
1488	https://doi.org/10.5194/acp-16-8447-2016 (2016).	
ا 1489		
1490	Khodri, M., Izumo, T., Vialard, J., Janicot, S., Cassou, C., Lengaigne, M., et al., Tropical explosive	Deleted: (2017).
1491	volcanic eruptions can trigger El Niño by cooling tropical Africa. Nat. Commun, 8(1), 778.	Deleted: Nature Communications
1492	https://doi.org/10.1038/s41467-017-00755-6 (2017).	
 1493		
1494	Kim, B.M., Son, S.W., Min, S.K., Jeong, J.H., Kim, S.J., Zhang, X., Shim, T., Yoon, J.H.	Deleted: .,2014
1495	Weakening of the stratospheric polar vortex by arctic sea-ice loss. Nat.Commun. 5, 4646, (2014).	Deleted: .
1496	5 To	
00		

1	•	Formatted: Header
1507	Kodera, K. Influence of volcanic eruptions on the troposphere through strato-spheric dynamical	Deleted: ., 1994
1508	processes in the northern hemisphere winter. J. Geophys. ResAtmos. 99 (D1), 1273–1282 (1994).	
1509		
1510	Kodera, K., Mukougawa, H., Maury, P., Ueda, M., & Claud, C, Absorbing and reflecting sudden	Deleted: (2016).
1511	stratospheric warming events and their relationship with tropospheric circulation. <u>J. Geophys. Res-</u>	Deleted: Journal of Geophysical Research: Atmospheres
1512	<u>Atmos</u> , 121(1), 80-94 <u>(2016).</u>	Deleted: .
1513		
1514	Kolstad, E. W., Lee, S. H., Butler, A. H., Domeisen, D. I., & Wulff, C. O. Diverse surface signatures	Deleted: (2022).
1515	of stratospheric polar vortex anomalies. J. Geophys. Res-Atmos, 127(20), e2022JD037422,(2022).	Deleted: Journal of Geophysical Research: Atmospheres
1516		Deleted: .
1517	Kretschmer, M., Cohen, J., Matthias, V., Runge, J., & Coumou, D. The different stratospheric	Deleted: (2018).
1518	influence on cold-extremes in Eurasia and North America. <i>ppj Clim. Atmos. Sci</i> , 1(1), 44 (2018).	Deleted: npj Climate and Atmospheric Science
1519		Deleted: .
1520	Labe, Z., Peings, Y., & Magnusdottir, G. The effect of QBO phase on the atmospheric response to	Deleted: (2019).
1521	projected Arctic sea ice loss in early winter. <u>Geophys. Res. Lett.</u> , 46(13), 7663-7671. (2019).	Deleted: Geophysical Research Letters,
1522		Deleted: .
1523	Larsen, G., & Gudmundsson, M. T. Volcanic system: Bárðarbunga system. Catalogue of Icelandic	Deleted: (2014).
1524	Volcanoes, 1-11 _* (2014).	Deleted: .
1525		
1526	Lehtonen, I., & Karpechko, A. Y. Observed and modeled tropospheric cold anomalies associated	Deleted: (2016).
1527	with sudden stratospheric warmings. J. Geophys. Res-Atmos., 121(4), 1591-1610, (2016).	Deleted: Journal of Geophysical Research: Atmospheres,
1528		Deleted: .
1529	Ma, J., Chen, W., Yang, R. et al. Downward propagation of the weak stratospheric polar vortex	
1530	events: the role of the surface arctic oscillation and the quasi-biennial oscillation. Clim. Dyn. 62,	
4		
1531	4117-4131 https://doi.org/10.1007/s00382-024-07121-5 (2024).	
1532		
1532 1533	4117–4131 https://doi.org/10.1007/s00382-024-07121-5 (2024). Matsuno, T. Vertical propagation of stationary planetary waves in the winter Northern Hemisphere,	
1532 1533 1534		
1532 1533 1534 1535	Matsuno, T. Vertical propagation of stationary planetary waves in the winter Northern Hemisphere, J. Atmos. Sci., 27, 871–883. 32291, 32292, 32294, 32296, 32306 (1970).	
1532 1533 1534 1535 1536	Matsuno, T. Vertical propagation of stationary planetary waves in the winter Northern Hemisphere, J. Atmos. Sci., 27, 871–883. 32291, 32292, 32294, 32296, 32306 (1970). Meronen, H., Henriksson, S. V., Räisänen, P., & Laaksonen, A. Climate effects of northern	Deleted: (2012).
1532 1533 1534 1535	Matsuno, T. Vertical propagation of stationary planetary waves in the winter Northern Hemisphere, J. Atmos. Sci., 27, 871–883. 32291, 32292, 32294, 32296, 32306 (1970).	Deleted: (2012). Deleted: Atmospheric research, Deleted: .

	◆		Formatted: Header
1559			
1560	Muthers, S., Raible, C. C., Rozanov, E., & Stocker, T. F. Response of the AMOC to reduced solar		Deleted: (2016).
1561	radiation—the modulating role of atmospheric chemistry. Earth Syst. Dynam., 7(4), 877-892.		Deleted: System Dynamics,
1562	(2016).	San	Deleted: .
1563	<u>(2010).</u>		
1564	Nakamura, N. Large-Scale Eddy-Mean Flow Interaction in the Earth's Extratropical		Deleted: (2024).
1565	Atmosphere. <u>Annu. Rev. Fluid Mech.</u> , 56(1), 349-377. (2024).		Deleted: Annual Review of
l 1566			Deleted: Mechanics,
1567	Neely III, R. R., Conley, A. J., Vitt, F., & Lamarque, J. F. A consistent prescription of stratospheric	***	Deleted: .
	• • • • • • • • • • • • • • • • • • • •		Deleted: (2016).
1568	aerosol for both radiation and chemistry in the Community Earth System Model (CESM1). <i>Geosci.</i>		Deleted: Geoscientific
1569	Model <u>Dev.</u> , 9(7), 2459-2470 <u>(2016).</u>	Carried Control	Deleted: Development, Deleted: .
1570			Deleteu.
1571	Oman, L., Robock, A., Stenchikov, G., Schmidt, G. A., & Ruedy, R. Climatic response to high-		Deleted: (2005).
1572	latitude volcanic eruptions. <u>J. Geophys. Res-Atmos</u> , 110(D13) (2005).		Deleted: Journal of Geophysical Research: Atmospheres
1573			
1574	Omrani, NE., Keenlyside, N., Matthes, K., Boljka, L., Zanchettin, D., Jungclaus, J. H., Lubis, S.		
1575	W. Coupled stratosphere-troposphere-Atlantic multidecadal oscillation and its importance for		Deleted: (2022)
1576	near-future climate projection. npj Clim. Atmos. Sci, 5, 59, https://doi.org/10.1038/s41612-022-		Deleted: npj Climate and Atmospheric Science
1577	<u>00275-1 (2022).</u>		
1 1578			
1579	Oppenheimer, C., Orchard, A., Stoffel, M., Newfield, T. P., Guillet, S., Corona, C., & Büntgen,		
1580	U. The Eldgjá eruption: timing, long-range impacts and influence on the Christianisation of		Deleted: (2018).
1581	Iceland. Climatic Change, 147, 369-381.Otterå, O.H., Bentsen, M., Drange, H., Suo, L., 2010.		
1582	External forcing as a metronome foratlantic multidecadal variability. Nat. Geosci. 3 (10), 688–694		
1583	(2018).		
l 1584			
1585	Ortega, P., Swingedouw, D., Masson-Delmotte, V., Risi, C., Vinther, B., Yiou, P., Vautard, R.,		
1586	Yoshimura, K. Characterizing atmospheric circulation signals in. Greenlandice cores: insights		Deleted: ., 2014
1587	from a weather regime approach. Clim. Dyn. 43 (9–10), 2585–2605 (2014).		
1588	J 11		

	•	Formatted: Header
1606	Otterå, O. H., Bentsen, M., Drange, H., & Suo, L. External forcing as a metronome for Atlantic	Deleted: (2010).
1607	multidecadal variability. <i>Nat. Geosci</i> , 3(10), 688-694 (2010).	Deleted: Nature Geoscience
l 1608		Deleted: .
1609	Pausata, F. S. R., Chafik, L., Caballero, R. & Battisti, D. S. Impacts of high-latitude volcanic	
1610	eruptions on ENSO and AMOC. Proc. Natl Acad. Sci. 112, 13784–13788 (2015).	
	eruptions on ENSO and AMOC. 110c. Nati Acad. Sci. 112, 13764–13766 (2013).	
1611	D. C. DOD 77 1 of D. W. C. L. O. C. L. H. D. D. W. C. D. G. ITTOT, 110 1	
1612	Pausata, F.S.R., Zanchettin, D., Karamperidou, C., Caballero, R., Battisti, D. S. ITCZ shift and	Deleted: D. Deleted: C.
1613	extratropical teleconnections drive ENSO response to volcanic eruptions. Sci. Adv. 6(23)	Deleted: R.
1614	eaaz5006, doi: 10.1126/sciadv.aaz5006 <u>(2020).</u>	Deleted: and D. S.
1615		Deleted: (2020)
1616	Pausata, F. S. R., Zhao, Y., Zanchettin, D., Caballero, R., & Battisti, D. S. Revisiting the	Deleted: Science Advances
1617	mechanisms of ENSO response to tropical volcanic eruptions. Geophys. Res. Lett., 50,	Deleted: (2023).
1618	e2022GL102183. https://doi.org/10.1029/2022GL102183 (2023).	Deleted: Geophysical Research Letters,
1619		
1620	Perlwitz, J., Graf, H.F. The statistical connection between tropospheric and. stra-tospheric	Deleted: ., 1995
	circulation of the Northern Hemisphere in winter. J. Clim. (10),2281–2295 (1995).	Diction., 1993
1621	circulation of the Northern Hemisphere in winter. J. Chin. (10),2281–2293 (1993).	
1622		
1623	Peings, Y., & Magnusdottir, G, Response of the wintertime Northern Hemisphere atmospheric	Deleted: (2014).
1624	circulation to current and projected Arctic sea ice decline: A numerical study with CAM5. J. Clim.,	Deleted: Journal of Climate,
1625	27(1), 244-264 <mark>, (2014).</mark>	Deleted: .
1626		
1627	Peings, Y., Davini, P., & Magnusdottir, G, Impact of Ural blocking on early winter climate	Deleted: (2023).
1628	variability under different Barents-Kara sea ice conditions. J. Geophys. Res-Atmos, 128(6),	Deleted: Journal of Geophysical Research: Atmospheres
1629	e2022JD036994 <mark>,(2023).</mark>	Deleted: .
1630		
1631	Plumb, R. A. On the three-dimensional propagation of stationary waves. <i>J. Atmos. Sci.</i> , 42(3), 217-	Deleted: (1985).
1632	229 <u>(1985).</u>	Deleted: Journal of Atmospheric Sciences,
 1633	· · · · · · · · · · · · · · · · · · ·	Deleted: .
1634	Polvani, L. M., Banerjee, A., & Schmidt, A. Northern Hemisphere continental winter warming	Deleted: (2019).
1635	following the 1991 Mt. Pinatubo eruption: reconciling models and observations. <i>Atmos. Chem.</i>	
		Deleted: Atmospheric Chemistry and Physics
1636	<u>Phys</u> , 19(9), 6351-6366, (2019).	Deleted: .

	-	 Formatted: Header	\supset
1661			
1662	Portal, A., Pasquero, C., D'andrea, F., Davini, P., Hamouda, M. E., & Rivière, G. Influence of	 Deleted: (2022).	
1663	reduced winter land–sea contrast on the midlatitude atmospheric circulation. <i>J. Clim.</i> , 35(19),	Deleted: Journal of Climate,	\preceq
1664	6237-6251, (2022).	 Deleted:	\preceq
1665	0201 020 1 ₂ (2022).		
1666	Predybaylo, E., Stenchikov, G., Wittenberg, A. T. & Osipov, S. El Niño/ Southern Oscillation		
1667	response to low-latitude volcanic eruptions depends on ocean pre-conditions and eruption timing.		
1668	Commun. Earth Environ. 1, 1–13 (2020).		
1669			
1670	Rayner, N. A. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P.,		
1671	& Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature	 Deleted: (2003).	
1672	since the late nineteenth century. J. Geophys. Res-Atmos, 108(D14) (2003).	 Deleted: Journal of Geophysical Research: Atmospheres	\supset
1673			
1674	Robock, A., Mao, J. Winter warming from large volcanic eruptions. Geophys. Res.Lett. 19 (24),	 Deleted: ., 1992	\supset
1675	2405–2408 <u>,(1992).</u>	 Deleted: .	
1676			
1677	Robock, A. Volcanic eruptions and climate. Rev. Geophys. 38 (2), 191–219 (2000).	 Deleted: ., 2000	
1678		Deleted: .	
1679	Screen, J. A., Deser, C., Smith, D. M., Zhang, X., Blackport, R., Kushner, P. J., & Sun, L.	 Deleted: (2018).	
1680	Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate		
1681	models. <u>Nat. Geosci.</u> , 11(3), 155-163, (2018).	 Deleted: Nature Geoscience,	
1682		Deleted: .	
1683	Shindell, D.T., Schmidt, G.A., Mann, M.E., Faluvegi, G. Dynamic winter. Climate response to	 Deleted: ., 2009	
1684	large tropical volcanic eruptions since 1600. J. Geophys. ResAtmos.(D5), 109.Sigl, M.,		
1685	Winstrup, M., McConnell, J.R., Welten, K.C., Plunkett, G., Ludlow, F., Buntgen, U., Caffee, M.,		
1686	Chellman, N., Dahl-Jensen, D., Fischer, H., 2009. Timing and climate forcing of volcanic eruptions		
1687	for the past 2500 years. Nature 523 (7562), 543–549 (2009).		
1 1688			
1689	Sjolte, J., Adolphi, F., Guðlaugsdóttir, H., & Muscheler, R, Major Differences in Regional Climate	 Deleted: (2021).	\supset
1690	Impact Between High-and Low-Latitude Volcanic Eruptions. Geophys. Res. Lett., 48(8),	 Deleted: Geophysical Research Letters,	\supset
1691	e2020GL092017 <mark>,(2021).</mark>	 Deleted: .	\supset
I			

	4		Formatted: Header
1708			
1708	Smith D.M. Enda D. Androvia M.D. Armas H. Clade A. Christia S & Walah A. Dahuat		(P.L.4.1, (2022)
	Smith, D. M., Eade, R., Andrews, M. B., Ayres, H., Clark, A., Chripko, S., & Walsh, A. Robust	***************************************	Deleted: (2022).
1710	but weak winter atmospheric circulation response to future Arctic sea ice loss. Nat.	************	Deleted: Nature communications,
1711	<u>Commun.</u> , 13(1), 727 <u>(2022)</u>		(Deleted: .
1712			
1713	Smith, K. L., Neely, R. R., Marsh, D. R., & Polvani, L. M. The specified chemistry whole	***********	Deleted: (2014).
1714	atmosphere community climate model (SC-WACCM). J Adv. Model Earth Sy, 6(3), 883-901,		Deleted: Journal of Advances in Modeling
1715	<u>(2014).</u>	A. A	Deleted: Systems
1 1716			Deleted: .
1717	Stenchikov, G., Robock, A., Ramaswamy, V., Schwarzkopf, M.D., Hamilton, K., Ramachandran,		
1718	S _e Arctic Oscillation response to the 1991 Mount Pinatubo.eruption: Effects of volcanic aerosols	*******	Deleted: ., 2002
1719	and ozone depletion. J. Geophys. ResAtmos.(D24), 107, (2002).		Deleted: .
l 1720			
1721	Stenchikov, G., Delworth, T.L., Ramaswamy, V., Stouffer, R.J., Wittenberg, A., Zeng, F. Volcanic		Deleted: .,2009
1722	signals in oceans. J. Geophys. ResAtmos. (D16), 114, (2009).	**********	Deleted: .
1 1723			
1724	Stothers, R. B. Far reach of the tenth century Eldgjá eruption, Iceland. Climatic Change, 39(4),		Deleted: (1998).
1725	715-726 <u>.(1998).</u>		Deleted: .
1 1726			
1727	Swingedouw, D., Ortega, P., Mignot, J., Guilyardi, E., Masson-Delmotte, V., Butler, P.G., Khodri,		
1728	M., Séférian, R. Bidecadal North Atlantic ocean circulation variability controlled by timing of	************	Deleted: ., 2015
1729	volcanic eruptions. Nat. Commun. 6, 6545, (2015).	**********	Deleted: .
I 1730			
1731	Thomas, M. A., Giorgetta, M. A., Timmreck, C., Graf, H. F., & Stenchikov, G. Simulation of the		Deleted: (2009).
l 1732	climate impact of Mt. Pinatubo eruption using ECHAM5-Part 2: Sensitivity to the phase of the		
1733	QBO and ENSO. Atmos. Chem. Phys, 9(9), 3001-3009 (2009).		Deleted: Atmospheric Chemistry and Physics
l 1734		**************	Deleted: .
1735	Timmreck, C.: Modeling the climatic effects of large explosive volcanic eruptions, Wiley		
1736	Interdisciplinary Reviews: Climate Change, 3, 545–564, (2012).	********	Deleted: .
l 1737			

		Formatted: Header
1757	Thordarson, T., & Self, S. Atmospheric and environmental effects of the 1783–1784 Laki eruption:	Deleted: (2003).
1758	A review and reassessment. J. Geophys. ResAtmos., 108(D1), AAC-7, (2003).	Deleted: Journal of Geophysical Research: Atmospheres,
l 1759		Deleted: .
1760	Thordarson, T., Miller, D. J., Larsen, G., Self, S., & Sigurdsson, H. New estimates of sulfur	Deleted: (2001).
1761	degassing and atmospheric mass-loading by the 934 AD Eldgjá eruption, Iceland. J. Volcanol.	Deleted: Journal of Volcanology and Geothermal Research,
1762	<u>Geoth. Res.</u> , 108(1-4), 33-54, (2001).	Deleted: .
1 1763		
1764	Toohey, M., Stevens, B., Schmidt, H., & Timmreck, C. Easy Volcanic Aerosol (EVA v1. 0): an	Deleted: (2016).
1765	idealized forcing generator for climate simulations. <u>Geosci.</u> Model <u>Dev.</u> , 9(11), 4049-4070. (2016).	Deleted: Geoscientific
l 1766		Deleted: Development,
1767	Toohey, M., Krüger, K., Schmidt, H., Timmreck, C., Sigl, M., Stoffel, M., & Wilson, R.	Deleted: .
1768	Disproportionately strong climate forcing from extratropical explosive volcanic eruptions. Nat.	Deleted: (2019).
1769	Geosci, 12(2), 100-107, (2019).	Deleted: Nature Geoscience
1770		Deleted: .
l		Deleted: ¶
1771	Toohey, M., Krüger, K., Bittner, M., Timmreck, C., and Schmidt, H.: The impact of volcanic	
1772	aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to	
1773	forcing structure, Atmos. Chem. Phys., 14, 13063–13079, https://doi.org/10.5194/acp-14-13063-	
1774	2014, (2014).	Deleted: .
1775		
1776	Wake, B. Land-sea contrast. Nat. Clim. Change 4, 326, https://doi.org/10.1038/nclimate2233	Moved down [2]: (2014).
1777	(2014).	Deleted: Nature
l 1778		Formatted: Hyperlink
1779	Weierbach, H., LeGrande, A. N., and Tsigaridis, K.: The impact of ENSO and NAO initial	Moved (insertion) [2]
1780	conditions and anomalies on the modeled response to Pinatubo-sized volcanic forcing, Atmos.	
1781 1782	Chem. Phys., 23, 15491–15505, https://doi.org/10.5194/acp-23-15491-2023, (2023).	Deleted:
1783	Yu, Q., Wu, B., & Zhang, W. The atmospheric connection between the Arctic and Eurasia is	Deleted: (2024).
		Deleted: Communications
1784	underestimated in simulations with prescribed sea ice. Commun, Earth Environ., 5(1), 435, (2024).	Deleted: & Environment, Deleted: .
1785		Formatted: Font: Not Italic
1786	Zambri, B., Robock, A., Mills, M. J., & Schmidt, A. Modeling the 1783-1784 Laki eruption in	Deleted: (2019).
1787	Iceland: 2. Climate impacts. J. Geophys. ResAtmos, 124(13), 6770-6790, (2019).	Deleted: Journal of Geophysical Research: Atmospheres
I		Deleted: .

1	4	Formatted: Header
I		C. S. Marcea, Frederi
1813		
1814	Zambri B, Slawinska J, Robock A, LeGrande AN. Northern Hemisphere Winter Warming and	
1815	Summer Monsoon Reduction after Volcanic Eruptions over the Last Millennium. J Geophys Res	
1816	Atmos, 122 (15):7971-7989. doi: 10.1002/2017jd026728 (2017).	
1817		
1818	Zanchettin, D., Timmreck, C., Graf, H.F., Rubino, A., Lorenz, S., Lohmann, K., Jungclaus, J.H., Bi-	Deleted: ., 2012
1819	decadal variability excited in the coupled ocean-atmosphere system by strong tropical volcanic	
1820	eruptions. Clim. Dyn. 39 (1–2), 419–444. (2012).	Deleted: .
1821		
1822	Zanchettin, D., Timmreck, C., Bothe, O., Lorenz, S.J., Hegerl, G., Graf, H.F., Lutherbacher, J.,	
1823	Jungelaus, J.H. Delayed winter warming: A robust decadal response to strong tropical volcanic	Deleted: ., 2013
1824	eruptions. Geophys. Res. Lett. 40 (1), 204–209, (2013).	Deleted: .
1825		
1826	Zanchettin, D., Khodri, M., Timmreck, C., Toohey, M., Schmidt, A., Gerber, E. P., Hegerl, G.,	
1827	Robock, A., Pausata, F. S. R., Ball, W. T., Bauer, S. E., Bekki, S., Dhomse, S. S., LeGrande, A. N.,	
1828	Mann, G. W., Marshall, L., Mills, M., Marchand, M., Niemeier, U., Poulain, V., Rozanov, E.,	
1829	Rubino, A., Stenke, A., Tsigaridis, K., and Tummon, F.: The Model Intercomparison Project on the	
1830	climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for	
1831	CMIP6, Geosci. Model Dev., 9, 2701-2719, doi:10.5194/gmd-9-2701-2016, (2016).	Deleted: .
1832		
1833	Zanchettin, D., C. Timmreck, M. Toohey, J. H. Jungclaus, M. Bittner, S. J. Lorenz, A. Rubino.	Deleted: Zanchettin, D. (2017)
1834	Clarifying the Relative Role of Forcing Uncertainties and Initial-Condition Unknowns in	
1835	Spreading the Climate Response to Volcanic Eruptions. Geophys. Res. Lett. 46, 1602-1611,	
1836	https://doi.org/10.1029/2018GL081018 (2019).	
1837		
1838	Zanchettin, D. Aerosol and Solar Irradiance Effects on Decadal Climate Variability and	
1839	Predictability. Current Climate Change Reports, 3, 150, doi:10.1007/s40641-017-0065-y (2017).	
1840	Zanchettin, D., Timmreck, C., Khodri, M., Schmidt, A., Toohey, M., Abe, M., Bekki, S., Cole, J.,	
1841	Fang, SW., Feng, W., Hegerl, G., Johnson, B., Lebas, N., LeGrande, A. N., Mann, G. W.,	
1842	Marshall, L., Rieger, L., Robock, A., Rubinetti, S., Tsigaridis, K., and Weierbach, H.: Effects of	
1843	forcing differences and initial conditions on inter-model agreement in the VolMIP volc-pinatubo-	

	•		Formatted: Header
1850	full experiment, Geosci. Model Dev., 15, 2265–2292, https://doi.org/10.5194/gmd-15-2265-2022,		
1851	<u>(2022).</u>		
1852			
1853	Zhang, P., Wu, Y., Simpson, I. R., Smith, K. L., Zhang, X., De, B., & Callaghan, P. A stratospheric		Deleted: ,
1854	pathway linking a colder Siberia to Barents-Kara Sea sea ice loss Sci. Adv. 4(7), eaat6025 (2018).		Deleted: ,
	patriway miking a colder Slocha to Darents-Kara Sea sea lee 1055 501.114 - 17 1.1. Caatoo 22. 120101.	1 ///	Deleted: IR,
1855			Deleted: KL,
1856	Zhang, R., Tian, W., Zhang, J., Huang, J., Xie, F., & Xu, M. The corresponding tropospheric		Deleted: ,
1857	environments during downward-extending and nondownward-extending events of stratospheric		Deleted: ,
1858	northern annular mode anomalies. <i>J. Clim</i> , 32(6), 1857-1873 (2019).		Deleted:
Į	northern annular mode anomanes. <i>J. Cum</i> , 32(0), 1637-1673 (2017).		Deleted: . 2018 Jul 25;
1859			Deleted:):
1860	Zhu, F., Emile-Geay, J., Anchukaitis, K. J., Hakim, G. J., Wittenberg, A. T., Morales, M. S., &		Deleted: . doi: 10.1126/sciadv.aat6025. PMID: 30050990; PMCID: PMC6059732.
1861	King, J. A re-appraisal of the ENSO response to volcanism with paleoclimate data assimilation.	·	Formatted: Font: Italic
1862	<u>Nat. Commun.</u> , 13(1), 747, (2022).	\setminus /	Formatted: Font: Italic
1863		//	Formatted: Font: Italic
			Deleted: (2022).
1864	Zhuo, Z., Fuglestvedt, H. F., Toohey, M., and Krüger, K.: Initial atmospheric conditions control	1 /	Deleted: Nature communications,
1865	transport of volcanic volatiles, forcing and impacts. Atmos. Chem. Phys., 24, 6233-6249,		Deleted: .
1866	https://doi.org/10.5194/acp-24-6233-2024, (2024).		Deleted: & Krüger
1867	****		Deleted: . (2023).
I		Ì	Deleted: . EGUsphere, 2023, 1-26.
1868			
1869			
1870			