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We would like to express our sincere gratitude for the time and effort you have dedicated to reviewing our

manuscript. Your insightful comments and constructive feedback have been invaluable in enhancing the

clarity, rigor, and overall quality of our work. Each of your suggestions has provided us with the opportunity

to refine our methodologies, clarify our explanations, and ensure that our findings are presented in the

most comprehensive and accessible manner possible.

We deeply appreciate your attention to detail and your commitment to advancing research in this field.

Your expertise has significantly contributed to the improvement of our study, and we are confident that

the revisions made in response to your feedback have strengthened our manuscript. Thank you once again

for your thoughtful and thorough reviews.

Best regards,

Olmo Zavala-Romero

In their work, the Authors address one very important initial step for making learned GCMs

operational, as well as a way to accelerate a costly process in operational geosciences with traditional

GCMs, namely the assimilation of observations into the operational framework. Given the chaotic

nature of the system, any numerical model, learnt or not, requires updating with real observations,

but exactly matching sparse and noisy real observations is a nonoptimal solution to the operational

process.

My issues with the paper are both structural and scientific.

The authors remain unclear in the abstract as well as prior to the experiment phase as to the input

and outputs of the deep learning models used. Namely, they should clarify early on that they train a

Deep Learning Architecture to reproduce the outputs of the T-SIS Assimilation, given the model

forecast of SST and SSH and the simulated (? that has stayed unclear) satellite observations of SST

and SSH. I sincerely hope that this is what is happening, since it remains unclear to me. I searched

through the manuscript for an explanation of the observations, and it is nowhere to be found. Thank

you for your comments and for highlighting the lack of clarity regarding the inputs and outputs of our deep

learning models. You are correct in your understanding. Our CNN models are trained to replicate the

increments generated by the T-SIS data assimilation package, given:

Inputs: Real satellite observations of SST from GHRSST, along-track altimeter SSH observations (ADT), the

model background state (previous forecast), and the innovations (differences between observations and

background).

Outputs: The increments (corrections) that should be applied to the model forecast to assimilate the

observations.

We have revised the abstract to clearly state this and added a detailed explanation in the "Data" subsection in

the manuscript.

It is implied this is a twin experiment, but it really warrants clarification. Thank you for your comment

and for pointing out the need to clarify the nature of our experiments. We apologize for any confusion caused

by the implication that our study is a twin experiment.
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Our study is not a twin experiment. In a traditional twin experiment, synthetic observations are generated from

a model run (often referred to as the "truth"), and these observations are then assimilated back into the model

to evaluate the data assimilation system's ability to recover the known truth under controlled conditions.

In contrast, our experiments use real observational data:

- Real satellite observations of sea surface temperature (SST) from the Group for High Resolution Sea Surface

Temperature (GHRSST). - Real along-track altimeter observations of sea surface height (SSH) from satellite

missions. - The model background state (previous forecast) from HYCOM. - Innovations, calculated as the

differences between the observations and the model background state.

Outputs:

- The increments generated by the T-SIS data assimilation system, representing the corrections applied to the

model forecast to assimilate the real observations.

Our Convolutional Neural Network (CNN) models are trained to replicate the increments produced by T-SIS

using these real observations and model states. The goal is to assess whether CNNs can emulate the data

assimilation step performed by T-SIS when provided with actual observational data, rather than synthetic data

derived from the model itself.

Moreover, our CNN models are not yet implemented as a full replacement for the data assimilation process in

HYCOM. Instead, they serve as a proof-of-concept to demonstrate the potential of machine learning to

approximate the corrections made by traditional data assimilation methods using real-world data.

We have added the following paragraph to explicitly state the nature of our experiments:

"It is important to note that our experiments are not twin experiments. In twin experiments, synthetic

observations are generated from a model run (considered the "truth") and are then assimilated back into the

model to assess the data assimilation system under controlled conditions. In our study, we utilize real

observational data for both training and testing our CNN models. The T-SIS data assimilation system generates

increments based on these real observations, and our CNN models are trained to replicate these increments. By

using actual observations from GHRSST for SST and along-track altimeter data for SSH, our experiments reflect

a realistic scenario where the CNN models learn from real-world data, capturing the complexities and

uncertainties inherent in operational ocean modeling."

Similarly the assimilation step seems to be daily, but the assimilated field is complete, which is wildly

unrealistic given the fields used as inputs. Thank you for your comment regarding the assimilation step and

the completeness of the assimilated fields in our study.

You are correct that our assimilation step is performed daily. Regarding the nature of the assimilated fields and

the inputs used:

Sea Surface Temperature (SST): The SST observations we assimilate come from the Group for High Resolution

Sea Surface Temperature (GHRSST) dataset. This dataset provides interpolated SST fields with complete spatial

coverage.

Sea Surface Height (SSH): The SSH observations are derived from along-track altimeter data (ADT tracks),

which are indeed sparse and discontinuous in both space and time. While we resample these observations onto

the model grid using nearest-neighbor interpolation, they remain sparse and do not form a complete field on

their own.
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A key aspect of the data assimilation (DA) approach—both in the traditional T-SIS method and our CNN models

—is the ability to propagate the information from sparse observations throughout the model domain to

produce a complete assimilated field.

To address your concern and enhance the clarity of our methodology, we have added an additional figure (now

Figure 2 in the revised manuscript) that illustrates the inputs and outputs of our model during the assimilation

process. This figure displays:

Possible inputs:

- The sparse SSH observations (ADT tracks) overlaid on the model grid. - The complete SST observational field

from GHRSST. - The model background state of SSH and SST (prior forecast). - The model innovations

(difference between the observations and the model) for SST and SSH.

Additional inputs to improve the prediction:

- 200m mask - Normalized latitude and longitude

Outputs: The desired increments for the SSH and SST fields.

We have also expanded the explanation in the "Data" section to clarify this point:

"It's important to note that while the SST observations from GHRSST provide near-complete spatial coverage,

the SSH observations from along-track altimeter data are sparse and irregularly distributed. The DA schemes

are able to handle such sparse datasets and propagate the observational information across the model domain.

This is achieved through statistical interpolation and the physical dynamics represented in the model by the T-

SIS system, which together allow us to estimate the ocean state in unobserved areas based on the available

observations."

As to the rest of the article, the techniques used are now ~10 year old approaches, lacking a lot of

significant improvements from the architectural side, but more importantly, on the implementation

side, there are lots of elements missing:

The pre-processing is not detailed. Given the different value ranges of the input variables, it is crucial

to perform a normalization beforehand. Thank you for highlighting the importance of detailing the

preprocessing steps in our manuscript. We agree that normalization is a crucial aspect when training machine

learning models, especially with input variables that have different value ranges.

We have added a dedicated Preprocessing section to the manuscript to thoroughly describe the steps we have

taken to prepare the data for training our CNN models.

Added Preprocessing section:

Prior to training the Convolutional Neural Network (CNN) models, we performed several preprocessing steps to

ensure that the input data was appropriately scaled and formatted. First, to address the issue of differing value

ranges among the input variables, we normalized each field individually. This normalization involved adjusting

each input field—such as sea surface temperature (SST) observations and sea surface height (SSH) observations

—to have a mean of zero and a standard deviation of one. Normalization is an important step in machine

learning, as it ensures that all input features contribute equally during training, preventing variables with

larger magnitudes from disproportionately influencing the model's learning process. By standardizing the

inputs, we facilitated a more stable and efficient optimization during model training.
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The parameters used for normalization, specifically the mean and standard deviation for each input field, were

calculated using the data from the full training period, encompassing the years 2009 and 2010. These

calculated parameters were then applied to the validation and test datasets, as well as to the additionally

tested years 2002 and 2006.

After the CNN models generated the predicted increments, we applied an inverse transformation using the

previously calculated mean and standard deviation to denormalize the outputs. This denormalization step

converted the increments back to their original units—such as degrees Celsius for SST or meters for SSH—

making them compatible with the model forecast corrections. By restoring the original scale of the data, we

ensured that the increments could be directly applied to the HYCOM model outputs.

We addressed the irregular distribution and missing values of the along-track altimeter SSH data by mapping

these observations onto the model grid and filling the missing data points with zeros. Representing the absence

of observations with zeros allowed the CNN models to process the SSH data as continuous fields, where zeros

explicitly indicated locations without observational data. The response of the CNN to missing values

represented as zeros is of interest to us and was part of the experiments.

Missing values: how are the missing values handled? The lack of mention of missing values seems to

indicate a twin experiment, and even then it is unrealistic given the nature of the data. Thank you for

bringing up this important point regarding the handling of missing values in our study.

In our experiments, we work with real observational data, particularly the sea surface height (SSH)

observations from along-track altimeter measurements, which are inherently sparse and contain missing values

due to the satellites' orbit paths and revisit times. These missing values are a realistic characteristic of satellite

observations and present a common challenge in operational data assimilation.

To incorporate these sparse observations into our Convolutional Neural Network (CNN) models, we mapped the

SSH observations onto the model grid and represented missing values by filling them with zeros. This approach

allowed the CNN models to process the SSH data as continuous fields, where zeros explicitly indicated locations

without observational data.

We have added a detailed explanation of how missing values are handled in the newly included Preprocessing

section of the manuscript.

There is no care taken for data leakage. There are no dates dropped between train validation and test.

Thank you for bringing up this critical point regarding data leakage. We agree that data leakage is a significant

concern in machine learning applications, particularly in Earth sciences and even more in the ocean, where

temporal autocorrelation is prevalent, and the state of the ocean does not vary significantly on a daily basis.

To enhance the clarity regarding our handling of data leakage, we have made the following modifications:

Inside Data Splitting and Methodology: In Earth sciences, particularly in ocean modeling, data leakage is a

significant concern due to the strong temporal autocorrelation in the data. The state of the ocean does not

change dramatically over short periods, which means that random splitting of data can lead to leakage where

the model learns from future information. To mitigate this, we employed a chronological data splitting

strategy. From the 730 daily examples the first 80% is used for training, 10% for validation, and the last 10% is

used for testing, ranging from October $19^{\text{th}}$ to December $31^{\text{st}}$ of 2010.

This method ensures that the model is trained on past data and evaluated on future data, reducing the risk of

information from the test set influencing the training process. However, we recognize that the proximity of the
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training and test sets may still allow for some data leakage due to the ocean's slow-changing nature.

To further assess the model's ability to generalize and to address potential data leakage, we tested the model

on datasets from the years 2002 and 2006. These years were selected because they exhibit different dynamical

states of the GoM, with the Loop Current mostly in retracted and extended phases, respectively. By evaluating

the model on data that is entirely separate from the training and validation sets and representing different

oceanographic conditions, we reduce the likelihood that the model's performance is artificially inflated due to

data leakage.

The model maintained strong performance on these additional datasets, with RMSE values comparable to

those on the original test set as described in the Generalization Tests section.

Modified Conclusions:

Data leakage is a critical issue in machine learning applications within Earth sciences due to the temporal and

spatial dependencies in the data. Our approach of chronological data splitting and testing on entirely separate

years aims to mitigate this concern. To test the generalization of our proposed model, we utilized data from

two different years that presented varied dynamical states of the GoM. Although errors were slightly higher

than with the initial test data (maybe due to the proximity of the training and test sets), an error of 4 mm was

observed as a typical value when applying our CNN data assimilation (DA) method, and this is the expected

error of our model in operational systems.

The layers do not include any form of regularisation: Dropout, AdamW with a heavier weight loss

penalization of (my preference) Batch Normalization Thank you for your comment regarding the use of

regularization in our neural network models. We appreciate the opportunity to clarify our approach and

address your concerns.

Clarification on Regularization Techniques Used:

Batch Normalization:

We did incorporate Batch Normalization layers after each convolutional layer in our U-Net architecture, except

for the final output layer. Batch Normalization is known to stabilize and accelerate the training process by

normalizing the inputs to each layer, reducing internal covariate shift. It also provides a form of regularization

by mitigating the risk of overfitting.

We acknowledge that this detail was not explicitly stated in the original manuscript. To rectify this oversight,

we have updated the corresponding figure (now Figure 4) to illustrate the inclusion of Batch Normalization

layers. Additionally, we have added a description in the text to highlight their use in our U-Net models.

Dropout:

We conducted initial experiments incorporating a Dropout rate of 20% after the convolutional layers. However,

we observed that the performance of the networks with Dropout was lower than that of networks without

Dropout. We hypothesize that this decrease in performance may be due to our training dataset not being large

enough for Dropout to be effective. In smaller datasets, Dropout can sometimes hinder learning by excessively

reducing the network's capacity during training. Therefore, we decided not to include Dropout in our final

models to maintain optimal performance.

Optimizer Choice (AdamW):



reviews.md 2024-10-08

6 / 10

We appreciate your suggestion regarding the use of the AdamW optimizer with increased weight decay as a

form of regularization through L2 weight penalization. In our experiments, we utilized the standard Adam

optimizer with default parameters. We agree that employing AdamW could potentially improve generalization

by providing stronger regularization. We plan to explore the use of AdamW with a higher weight decay

coefficient in future work to assess its impact on model performance.

Newer techniques of deep learning are not addressed: CBAM layers in Sma-at U-Nets, or Masked

Autoencoder ViT, or Denoising Diffusion Inpainting which are known to outperform U-Nets which tend

to smooth out the output field Thank you for your comment and for highlighting newer deep learning

techniques such as the Convolutional Block Attention Module (CBAM) in SmaAt U-Nets, Masked Autoencoder

Vision Transformers (ViT), and Denoising Diffusion Inpainting models. We appreciate your suggestion to

consider these advanced architectures, which have demonstrated superior performance in preserving fine

details and reducing the smoothing effect often associated with traditional U-Nets.

The primary objective of our study was to explore the feasibility of using Convolutional Neural Networks

(CNNs), specifically U-Net architectures, to emulate the data assimilation process performed by the T-SIS

optimal interpolation method in an operational ocean model setting. We aimed to establish a foundational

understanding of how deep learning models can be applied to this domain before delving into more complex

architectures.

While we recognize the potential benefits of incorporating these newer techniques, integrating such advanced

models into our current experimental pipeline presents significant computational challenges. We have trained

a total of 75 CNN models in our experiments, which is computationally intensive. Incorporating additional

models would require a substantial amount of computational resources that are currently beyond our capacity.

Additionally, our study serves as a proof-of-concept to demonstrate that CNN-based models can approximate

the data assimilation increments generated by T-SIS. By focusing on U-Net architectures, we aimed to build a

solid baseline and understand the fundamental capabilities and limitations of CNNs in this context before

exploring more sophisticated models.

We agree that incorporating attention mechanisms like CBAM, exploring Vision Transformers, and utilizing

Denoising Diffusion Models could potentially enhance the performance of data assimilation models by

preserving finer details and reducing smoothing effects. These techniques are indeed promising and relevant to

our research area.

To acknowledge the importance of these newer techniques and outline our plans for future research, we have

added the following paragraph to the Conclusions section:

"While our study focused on traditional CNN architectures, specifically U-Nets, we acknowledge that newer

deep learning techniques such as attention-based models (e.g., CBAM in SmaAt U-Nets), Vision Transformers

(ViT), and Denoising Diffusion Models have demonstrated superior performance in various image processing

tasks by preserving fine details and reducing smoothing effects. Incorporating these advanced architectures

into ocean data assimilation represents a promising direction for future research. However, due to

computational constraints and the scope of this study, we did not explore these models. Future work will aim to

investigate these techniques, leveraging their strengths to further enhance the accuracy and efficiency of data

assimilation in ocean models."

The network in all its configurations is not provided with any information on latitude or longitude,

therefore preventing it from knowing contextually the Coriolis force Thank you for your comment
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regarding the inclusion of latitude and longitude information in our neural network models. We agree that

providing the network with spatial coordinates could enhance its ability to capture geophysical processes

influenced by location, such as the Coriolis force, which varies with latitude.

Recognizing the importance of spatial context, we conducted additional experiments where we included

normalized latitude and longitude fields as input channels to the network. The latitude and longitude values

were normalized to a range between 0 and 1 to maintain consistency with the scaling of other input features.

These experiments were performed specifically on the set that varied the window size (box size), resulting in an

additional 20 models trained and evaluated.

Results and Observations:

Interestingly, the inclusion of latitude and longitude did not significantly change the trends observed in our

original experiments. The models' performance remained consistent with the previous results, indicating that

the spatial coordinates did not provide substantial additional information for the network to improve its

predictions in this context. This suggests that the network may already be capturing location-dependent

information implicitly through the input data provided, such as sea surface temperature (SST) and sea surface

height (SSH) fields.

We have included a description of the additional experiments where normalized latitude and longitude fields

were incorporated into the models. The text now reads:

"To assess the impact of spatial coordinates on model performance, we conducted additional experiments by

including normalized latitude and longitude fields as input channels to the network. The latitude and longitude

values were scaled between 0 and 1 to align with the normalization of other input features."

We have updated the results to include findings from the models that incorporated latitude and longitude. The

revised text states:

"The inclusion of latitude and longitude as additional inputs did not significantly alter the performance of the

models across different window sizes as shown in Figure 6. The root mean square error (RMSE) and other

performance metrics remained comparable to those of the models without spatial coordinates, indicating that

the network did not benefit from the explicit addition of latitude and longitude in this context."

In the conclusions, we have discussed the implications of these findings and potential future research

directions:

"Our experiments incorporating normalized latitude and longitude fields as inputs did not yield significant

improvements in model performance."

As far as the experiments are concerned, the presentation and analysis of the multiple base CNNs

which are not really in use nowadays for these types of problems do not seem useful. Running this

experiment with U-Nets that learn over different patches could be interesting, potentially. Thank you

for your insightful feedback on our manuscript. We apologize for any confusion regarding the use of the 'Simple

CNN' architectures in our experiments.

The 'Simple CNN' architectures were utilized only in one of the experiments, which aimed to compare different

network complexities and assess the impact of model depth and capacity on performance. Our intention was to

establish a baseline and understand how simpler architectures perform relative to more advanced models.
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All subsequent experiments, including those involving different patch sizes (window sizes), input configurations,

ocean coverage percentages, and generalization tests across different years, were conducted using the U-Net

architecture exclusively.

By evaluating models of varying complexity, we aimed to establish a performance baseline. This helps in

understanding whether the added complexity of U-Nets is justified by a significant improvement in

performance. Comparing Simple CNNs with the U-Net allowed us to investigate how network depth and the

presence of skip connections affect the model's ability to replicate the data assimilation increments. The

results from this comparison highlight the advantages of using more sophisticated architectures like U-Net for

complex geoscientific tasks, thereby justifying their use in subsequent experiments.

To enhance clarity and avoid any misunderstanding, we have made the following revisions:

We have clarified the scope of the Simple CNNs:

"In the experiment analyzing network complexity, we evaluated different network complexities by comparing

Simple CNN architectures with varying depths (2, 4, 8, and 16 layers) to the U-Net architecture. This experiment

aims to assess the impact of network depth on model performance. All subsequent experiments utilize the U-

Net architecture exclusively to explore the effects of window size, input configurations, ocean percentage, etc."

We have included a paragraph explaining the inclusion of Simple CNNs:

"Our initial comparison between Simple CNNs and the U-Net architecture provided valuable insights into the

importance of network complexity and the use of skip connections in capturing the spatial features necessary

for accurate data assimilation emulation. Although Simple CNNs are less commonly used in current geoscience

applications, this analysis was crucial in demonstrating the necessity of employing advanced architectures like

U-Net for such complex tasks."

The results however are encouraging and should the Authors significantly expand and clarify their

paper, I would consider it a worthy contribution to the field. Thank you for your encouraging remarks

regarding our results. We appreciate your recognition of the potential contribution our work can make to the

field. In response to your valuable feedback, we have significantly expanded and clarified our paper to address

the points you raised.

Specifically, we have:

Enhanced Clarity: Clarified our experimental design, methodology, and the handling of real

observational data.

Detailed Preprocessing Steps: Provided thorough explanations of data normalization and the handling of

missing values.

Addressed Data Leakage: Explained our data splitting strategy and conducted additional tests to assess

model generalization.

Expanded Literature Review: Included references to relevant U-Net applications in geoscience over the

past decade.

Improved Presentation: Updated figures and tables for better clarity and understanding.

Considered Advanced Techniques: Discussed newer deep learning methods and outlined plans for future

research.

We appreciate your guidance, which has helped us improve the manuscript. We hope the revised paper meets

your expectations and contributes meaningfully to the field.
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// Minor comments:

Section 2.2 would benefit from a quick bibliographical referencing of some of the many U-Nets and

Sma-at U-Nets applied in a multitude of geoscience problems over the last 10 years. Thank you for your

insightful suggestion. We agree that including a brief overview of U-Net architectures and their applications in

geoscience over the past decade would enhance Section 2.2 and provide valuable context for our work. U-Nets

and their variants have indeed been widely applied in various geoscientific fields, demonstrating their

effectiveness in handling spatial data and complex patterns similar to those in our study.

We have revised Section 2.2 to include a discussion of notable applications of U-Nets in geoscience, along with

appropriate references to key studies. This addition highlights the relevance of U-Net architectures in

addressing problems related to Earth observation, remote sensing, climate modeling, oceanography, and other

areas within geoscience.

Revised Section 2.2:

*Over the past decade, U-Net architectures have been extensively applied to a variety of geoscience

problems due to their capability to learn hierarchical features and capture both local and global contexts.

Variants of U-Net, such as the attention U-Net (ref) and the Small Attention-UNet (SmaAt-UNet) (ref), have

been developed to enhance feature extraction and improve performance in complex geoscientific tasks.

These variants introduce mechanisms like attention gates and efficient channel interdependencies,

allowing models to focus on relevant features while reducing computational requirements. Some notable

applications of U-Nets in geoscience include:

Remote Sensing and Earth Observation: U-Nets have been extensively used for semantic

segmentation and classification of satellite imagery, including land cover mapping (ref), building and

road extraction (ref), and change detection (ref).

Meteorology and Climate Science: U-Net architectures have been employed for precipitation

nowcasting using radar data (ref).

Hydrology and Flood Mapping: U-Nets have been applied to flood detection and mapping from

satellite images (ref), and mountain ice segmentation (ref).

Oceanography: U-Net architectures have been utilized in oceanography for bathymetry estimation

from optical imagery (ref), and ocean eddy detection and classification (ref).

Data Assimilation and Ocean Modeling: (ref) introduced Multimodal 4DVarNets, where U-Net-

based architectures obtain similar results to 4DVarNets for the reconstruction of sea surface

dynamics by leveraging synergies between sea surface temperature (SST) and sea surface height

(SSH) observations. Their work demonstrates the capability of deep learning models to assimilate

multiple data modalities and reconstruct ocean surface variables with high accuracy.

The versatility of U-Net architectures in geoscientific applications makes them a suitable choice for data

assimilation in ocean modeling, given their ability to capture spatial dependencies and manage multiscale

features. This capability aligns well with the demands of integrating observational data into ocean models,

motivating our choice to adopt this architecture.

Consider flipping table to horizontally into a two-column paradigm so as to not imply linewise

combinations of parameters. Thank you for your insightful suggestion regarding the presentation of Table 2.

We understand that the current format of the table, which lists parameters in columns and combinations in

rows, might inadvertently imply that only the linewise combinations of parameters were tested in our

experiments.
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We have updated Table 2 in the manuscript to reflect this new format. Additionally, we have revised the

accompanying text to ensure consistency and to explain that the experiments involved testing various

combinations of these parameters independently.

New text: Table (ref) summarizes the parameters and their respective values tested in our experiments. Each

parameter was varied independently to assess its impact on the performance of the CNN models in assimilating

oceanographic data. By exploring different combinations of window sizes, CNN complexities, ocean

percentages, inputs, and outputs, we aimed to gain comprehensive insights into the behavior and capabilities

of the models under various conditions. Each tested model is trained five times to gather statistics on the

training's consistency and allow a more accurate comparison between the models' performances. A total of 75

CNN models are evaluated in these experiments.


