
General comments 

 

This study assesses the 11-year solar cycle signals in the middle atmosphere in multiple-model ensemble 

simulations. This study starts with initial solar cycle signals in short wave heating rate, ozone, and 

temperature anomalies and continues with an analysis of whether the top-down mechanism explaining the 

downward propagation of these initial solar signals can be found in the presented models. I find the study 

highly relevant for long-term discussion of indirect solar effects and recommend it for publication with 

minor comments listed below. 

 

Specific comments 

 

I am not convinced that three sets of historical-like simulations with 9, 6 and 10 ensemble members, 

respectively, can be called “large ensembles” (l2+l330) since we do not know how large the large 

ensemble needs to be (Milinski et al, 2020). 

➔ Thanks for the reference. Indeed, as shown in the work of Drews et al. (2022), even a 10-member 

ensemble is still not large enough to quantify the solar signal in the zonal wind at stratopause (~1 

hPa) or the surface. But it’s good enough to quantify the solar signal in the temperature at the 

tropical stratopause (see Figure 14 in the Extended Data of Drews et al. (2022)). We deleted the 

word “large” to avoid misleading.  

 

Reference: 

Drews, A., Huo, W., Matthes, K., Kodera, K., and Kruschke, T.: The Sun's role in decadal climate 

predictability in the North Atlantic, Atmos. Chem. Phys., 22, 7893–7904, https://doi.org/10.5194/acp-22-

7893-2022, 2022. 

Can you specify the threshold in the abstract (l8)? 

➔ Revised. Please see lines 7-8. 

 

What does “partly confirmed” (l25) mean?  

➔ It means that top-down propagation of the solar signal was found in subsequent studies, but with 

varying times of propagation. The texts are revised, please see lines 26-29.  

 

The authors should elaborate more on the fact that the solar signal may not be stationary (Thejll et al, 

2003) related to modulation by QBO and PDO (l30). 

➔ Thanks for the suggestion, the descriptions are revised. Please see lines 29-33. 

I would omit the “controversial” label (l39) even though these studies may reduce the confidence level of 

the solar-NAO connection as you state. 

➔ Replaced the “controversial” with “diverse”. 



 

As shown in previous studies (e.g. Mitchell et al, 2014; Kuchar et al, 2015) the upper stratospheric 

equatorial temperature anomaly related to the solar cycle has been detected showed a statistically 

significant signal with structure and amplitude of 1–1.25 K. Temperature response in Fig. 2A maximizes 

at 0.6 K. I would say that models a bit underestimate the response even with comparison (l167) with 

Kunze et al (2020). These facts should be discussed and even analyzed more thoroughly in your models.  

➔ Thanks for pointing this out. In general, I would say, yes, the climate models with interactive 

chemistry used in this study (i.e., FOCI and EMAC) might a bit underestimate the response 

compared to the model with prescribed ozone chemistry (i.e., MPI-ESM-HR). This is consistent 

with the results based on CMIP5 simulations (as shown in Figure 4 in the work of Mitchell et al 

(2015)) that the models with interactive ozone chemistry simulate a response of 0.5 K in the 

tropical stratopause.  

Besides, we calculated the composite differences between solar maxima and minima of the 

annual tropical SWHR, temperature, and O3 volume mixing ratio anomalies in the FULL 

ensemble mean with respect to the FIX ensemble mean (Figure. 2A). Following the method used 

in the work of Drews et al. (2022), here three years — the year of the peak (valley) of each solar 

cycle and two years around it — are selected as solar maximum (minimum). This definition could 

avoid a problem from double “peaks” in one solar cycle and smooth out the high-frequency 

interannual variability (< 3 years). But it also might lead to an “underestimation” compared to 

other methods, like multiple linear regression used in the works of Mitchell et al (2015) and 

Spiegl et al. (2023). To check the influence of the method, we repeated the composite analysis 

only based on the peak and valley years (Table R1), and the results are shown in Figure. R1.  

 

Figure. R1. Same as Figure. 2A, but composite based on the solar maximum and minimum years listed in 

Table R1 (below).  

 

 

 

 



Table R1. The peak (maximum) and valley (minimum) years of solar cycles used for the “test” composite 

shown in Fig. R1 

Solar peak 11, 21, 34, 44, 57, 68, 78, 88, 98, 108, 119, 131, 140, 151 

Solar valley 6, 17, 28, 39, 52, 63, 73, 83, 94, 104, 114, 126, 136, 146 

 

Comparison between Figure. R1 and Figure. A2, we found our method has very little impact on the 

responses in chemistry-climate models (FOCI and EMAC), but reduces the simulated temperature 

response in the MPI-ESM-HR model a lot (from 1.0 K to 0.6 K at the stratopause). Well, even the 1 K 

response of the tropical stratopause (Figure. R1) in the MPI-ESM-HR is still smaller than the result in the 

work of Spiegl et al. (2023) (about 1.2 K), which is estimated by a multiple linear regression method and 

CMIP5 historical simulations.  

Compared to the reanalysis datasets (e.g., ERA-I, MERRA, and JRA-55 used in Mitchell et al (2015)), 

there is an “underestimation” of the initial solar signals in the upper and middle stratosphere in both the 

CMIP5 models (Figure 4 in Mitchell et al (2015)) and the models used in our study, especially for the 

models with interactive ozone chemistry. However, we should note that the reanalysis datasets do not 

cover the “weak” solar cycles (i.e., solar cycles before 1940) and only one member for each dataset. The 

SWHR is sensitive to the strength of the solar cycle (as demonstrated in Figure 1 of the work of Spiegl et 

al. (2023)) and hence a weaker solar signal is achieved when more “weak” solar cycles are included (e.g., 

back to 1850). In addition, the ensemble mean of transition simulations could smooth out some 

“coincide” between the solar signal and internal variability. In the study of Kunze et al (2020), the 

response of SWHR in tropical stratopause is about 0.2 Kd-1 based on sensitivity simulations forced by 

perpetual solar maximum conditions of the solar cycle 22 maximum and 0.15 Kd-1 in our transient 

simulations. Due to the difference in methods and experiments’ design, we will not directly conclude that 

our models underestimate the solar signals but include a discussion on it. Please see lines 167-182. 

References:  

Mitchell, D., Misios, S., Gray, L., Tourpali, K., Matthes, K., Hood, L., Schmidt, H., Chiodo, G., 

Thiéblemont, R., Rozanov, E., Shindell, D., and Krivolutsky, A.: Solar signals in CMIP-5 simulations: the 

stratospheric pathway, Q.J.R. Meteorol. Soc., 141, 2390–

2403,https://doi.org/https://doi.org/10.1002/qj.2530, 2015. 

Spiegl, T. C., Langematz, U., Pohlmann, H., and Kröger, J.: A critical evaluation of decadal solar cycle 

imprints in the MiKlip historical ensemble simulations, Weather and Climate Dynamics, 4, 789–807, 

https://doi.org/https://doi.org/10.5194/wcd-4-789-2023, 2023. 

Kunze, M., Kruschke, T., Langematz, U., Sinnhuber, M., Reddmann, T., and Matthes, K.: Quantifying 

uncertainties of climate signals in chemistry climate models related to the 11-year solar cycle – Part 1: 

Annual mean response in heating rates, temperature, and ozone, Atmos. Chem. Phys., 20, 6991–7019, 

https://doi.org/https://doi.org/10.5194/acp-20-6991-2020, 2020. 

 

Based on Fig. 1.c (l159), the authors suggest that a nonlinear response can occur when the solar forcing is 

strong enough but I would soften these statements given the large spread and not enough samples for high 

sfu values. 

➔ Thanks for the suggestion. The statements are revised. Please see lines 162-166.  



I would omit the publications of Gray et al (2010) which provides a review of the Kodera and Kuroda 

mechanism and Mitchell et al (2015; CMIP5) which does not show any BDC response (l219) and only 

highlight the link between weaker BDC and lower-stratospheric temperature induced by the 11-year solar 

cycle.  

➔ Revised. 

How different (l240)? 

➔ Spiegl et al. (2023) analyzed a set of historical simulations forced by CMIP5 external forcings 

(i.e., the CMIP5 protocol) and the solar forcing follows the reconstruction of lean (2000). 

The simulations were integrated from 1850 to 2005 and they focused on the period 1880 – 1999 

in their study. We revised the texts, please see lines 251-252. 

 

Would you find relevant to reproduce composite differences between Smax and Smin as in e.g. A8 for 

ERA5 and assess whether the response of temperature and zonal wind in a reanalyzed dataset also reveals 

a sensitivity to weak and strong solar epochs?  

➔ It’s hard to assess the sensitivity based on the ERA5 data (1950--present) because it only partly 

overlaps the strong epoch (i.e., 1932--2014). However, here we reproduced the composite 

analysis based on the ERA5 (Figure. R2) and discussed the comparison with the modeling results 

in this study. We should notice the lower top of the ERA5 data (up to 1 hPa) compared to the 

climate models used in this study. Similar to the modeling results (Figure 4 in manuscript), a 

weak warm response can be found in the tropical stratosphere in most winter months (except 

February) with ERA5 data (first row of Figure. R2). However, the stratospheric temperature 

response in EAR5 does not pass the significant test. Compared with using a short single member, 

(e.g., EAR5 here), the ensemble mean of climate modeling runs can extract the external forcing 

signal. The temperature response in FOCI during the strong epoch (second row of Figure A7 in 

the manuscript) is a bit larger than in the ERA5, which may be due to the warm bias in the 

tropical upper stratosphere of FOCI (as shown in Figures 10 and 12) leads to a higher sensitivity 

of the model to the solar forcing. As a result of the increased meridional temperature gradient, 

response in the zonal mean zonal wind anomalies can be found in the ERA5 (second row of 

Figure. R2), which is stronger than the FOCI modeling results (second row of Figure. A8) and 

interrupted by the strong internal variability in February. 



 

 

Figure. R2. Composite differences between solar maximum and minimum of the zonal-mean 

temperature anomalies (Units: K, first row) and zonal mean zonal wind anomalies (Units: m/s, 

second row) from ERA5 data (1950--2014).  

 

 

Using vector figures instead of raster ones may help to improve the quality of your publication. 

➔ Thanks for the suggestion. We submitted the high-resolution figures (in .pdf formats) to the 

system for publication.  

 

Due to the extensiveness and unique methodology of the study, I think the whole community would 

appreciate an adoption of Open Science approaches to allow reproduce the extensive analysis in this study 

(e.g. Laken, 2016). In particular, I would recommend any kind of willingness of the authors to publish the 

code allowing to reproduce the figures in the paper. There are multiple ways how to proceed, either to 

allow the access upon request or via portals allowing to assign Digital Object Identifier (DOI) to the 

research outputs, e.g. ZENODO. I think it could enhance the quality and reliability of this publication. 

➔ Thanks for the suggestion. All the codes involved in this study are achievable via the ZENODO 

link: https://doi.org/10.5281/zenodo.13358940. We added the description in lines 407-409.  

 

I really appreciate the authors’s willingness to use the robust bootstrap method to but why do you use 

only 1000 samples? Furthermore, this should be used to assess the significance level of the correlation 

coefficient to secure methodological consistency. Or was the temporal autocorrelation taken into account 

in your composites? Can you discuss how the inclusion of the effective sample size (see Section 5 in 

Bretherton et al, 1999) would influence the t-test results? Do your composite samples comply with the t-

test assumptions? 

https://doi.org/10.5281/zenodo.13358940


➔ Following the method described by Diaconis and Efron (1983), we performed a 1000-fold 

bootstrapping test with replacement to estimate the statistical confidence level (90%) of the 

ensemble mean composites in this study. Here is a bit more explanation of this method and we 

took a composite of temperature anomalies as an example. (1) We calculated the ensemble mean 

temperature response to the solar cycle by the difference of ensemble mean temperature 

anomalies between solar maximum and minimum --- the true value for the bootstrap method. (2) 

Using all the original data (i.e., all years and all members) as a seeds pool, we calculated an 

averaged value of the all-years (i.e., 165 years in total) from the seeds pool --- the observed value 

for a random set. (3) We mimicked step (2) 1000 times by replacing the temperature anomaly 

randomly. If 90% of the amount of the observed values from step (3) were different from (and 

smaller than) the true value of step (1), we then marked the true value as a significant response. 

This method can be used to identify the significance level of the solar signal different from the 

background noise without assuming that the data have a normal distribution, especially for the 

cases where only several solar cycles were included (i.e., only a few data).  

 

Of course, we could also mimic the process 10000 times more or increase the critical level (like 

95%). We tested the 10000 times and only very tiny changes happened in the results, so we kept 

the 1000 times to save the computing resources. However, when the critical level is increased to 

95%, the significance of the composite of temperature anomalies only reduces a bit but a large 

reduction in the composite of zonal mean zonal wind anomalies. To facilitate the comparison 

with our previous work (Drews, et al., 2022) which used the same method, we kept the 90% 

significance level in this study. 

 

➔ The bootstrap t-test does improve the power of the t-test for a pair of non-normality datasets. In 

this study, we calculated the correlation coefficients in the 45-year running windows and 

demonstrated their dependencies on the solar cycle amplitudes. However, the 95% significant 

levels based on the bootstrap t-test in all the 45-year windows and for all the ensemble members 

mixed up in one busy figure (in a way as Figure 2), and most of them overlapped. It is hard to 

interpret and compare. Considering the effective degree of freedom in the 45-year running 

windows (method described below) are quite similar, we prefer to use a consistent t-value from 

the two-sides student’s t-test to show the 95% significant level (as indicated by the black dash 

line in Figure 2) to facilitate the comparisons and reproduction. The effective degree of freedom 

in each 45-year window was calculated following the method used in the work of Pyper and 

Peterman (1998) and simplified as only the autocorrelation coefficients at lag 1 are considered. 

More details of this method are also described in the work of Huo et al. (2023).  

 

We briefly described the method of calculating the effective degree of freedom in the method 

section, please see lines 143-147.  

 

References: 

Diaconis, P. and Efron, B.: Computer-Intensive Methods in Statistics, Scientific American, 248, 

116–131, 1983. 

Pyper, B. J. and Peterman, R. M.: Comparison of methods to account for autocorrelation in 

correlation analyses of fish data, Canadian Journal of Fisheries and Aquatic Sciences, 55, 2127–

2140, https://doi.org/10.1139/f98-104, 1998. 

 



Huo, W., Xiao, Z., and Zhao, L.: Phase-Locked Impact of the 11-Year Solar Cycle on Tropical 

Pacific Decadal Variability, Journal of Climate, 36, 421–439, 

https://doi.org/https://doi.org/10.1175/JCLI-D-21-0595.1, 2023.455 

 

Please specify what CCR in your figures stands for 

➔ “CCR.” stands for “correlation coefficients in a running window”. An explanation is added in the 

method section. Please see line 133. 

l288 replace EAR with ERA5 

➔ Revised. 

l290 replace EAR with ERA5 

➔ Revised. 
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