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Abstract. Land planning projects aiming to maximize soil organic carbon (SOC) stocks are increasing in number and scope, 15 

often in line with the objective to reach carbon neutrality by 2050. In response, a rising number of studies assess where 

additional SOC could be stored over regional to global spatial scales. In order to provide realistic values transferrable beyond 

the scientific community, studies providing targets of SOC accrual should consider the timescales needed to reach them, taking 

into consideration the effects of C inputs, soil type and depth on soil C dynamics.  

This research was conducted in a 320 km2 territory in North-eastern France where eight contrasted soil types have been 20 

identified, characterized and mapped thanks to a high density of fully-described soil profiles. Continuous profiles of SOC 

stocks were interpolated for each soil type and land use (cropland, grassland or forest). We defined potential targets for SOC 

accrual using percentile boundary lines, and used a linear model of depth-dependent C dynamics to explore the C inputs 

necessary to reach those targets within 25 years. We also used values from the literature to model C input scenarios, and 

provided maps of  SOC stocks, maximum SOC accrual and realistic SOC accrual over 25 years. 25 

SOC stocks and maximum SOC accrual are highly heterogenous over the region of study. Median SOC stocks range from 78 

- 333 tC ha-1. Maximum SOC accrual varies from 19 tC ha-1 in forested Leptosols to 197 tC ha-1 in grassland Gleysols. The 

simulated realistic SOC accrual over 25 years in the whole region of study was five times lower than the maximum SOC 

accrual. Further consideration of depth-dependent SOC dynamics in different soil types is therefore needed to provide targets 

of SOC storage over timescales relevant to public policies aiming to approach carbon neutrality by 2050. 30 
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1 Introduction 

Soils constitute a carbon reservoir that can help us mitigate for climate change, or conversely accelerate GHG emissions if not 

managed properly. Objectives for carbon neutrality by 2050 rely on an increase in soil organic carbon (SOC) via changes in 

land management practices over the coming decades, while preserving existing stocks (Minasny et al., 2017). There is a rising 35 

demand for the scientific community to provide quantitative targets for SOC accrual for stakeholders at regional scales and 

over decadal timescales. However, soils are heterogenous and dynamic systems: soil carbon stocks are constantly being 

mineralized and renewed by new inputs. The spatial heterogeneity of soil carbon stocks and fluxes presents a challenge to soil 

carbon sequestration strategies. Certain soils may represent large stocks that need to be preserved, while others may have a 

greater capacity for SOC accrual.  40 

Estimation of SOC stocks and SOC stock accrual potential should be performed over the whole soil profile because SOC 

below 20 cm can account for more than 50% of the total stock (Jobbágy & Jackson, 2000; De Vos et al., 2015). Impacts of 
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management practices on SOC dynamics have been found to vary above and below 30 cm, so the consideration of the whole 

soil profile is important to provide accurate recommendations to stakeholders (Tautges et al., 2019). 

Targets of SOC accrual are currently estimated using two distinct concepts. The first is the fine fraction saturation approach, 45 

using the clay and silt content as a proxy of the maximum carbon content that a given soil is theoretically able to stabilize in 

association with mineral phases (Hassink 1997, Angers et al., 2011). The other is based on the analysis of current ecosystems’ 

functioning: this method seeks the highest observed SOC stock from a dataset taken in a given pedoclimatic context, and 

assumes this stock to be a realistic target under the management practices captured by the dataset (Lal 2016, Chen et al., 2019). 

In this study we will adapt this method to define depth-dependent targets as a continuous profile. The fine fraction saturation 50 

approach will not be used due to our focus on the whole soil profile: at depth, SOC storage becomes limited by diminishing 

organic matter inputs, therefore carbon saturation in the fine fraction is unlikely to be a pertinent constraint on maximum SOC 

accrual (Poeplau et al., 2024).  

Targets of SOC accrual need to be evaluated over timescales relevant to stakeholders, keeping in mind in particular the carbon 

neutrality objective by 2050. Getting the kinetics of SOC accrual necessitates a model-driven approach and scenarios of C 55 

inputs to the soil (Barré et al., 2017). Mechanistic models of SOC dynamics such as Millenial (Abramoff et al., 2022) are one 

option to incorporate the effect of climate change and modifications in management practice, but necessitate a lot of input data, 

therefore simpler models remain valuable to explore (Derrien et al., 2023; Schimel 2023). For some studies, simple linear 

models dependent on C inputs have proven to be sufficient to capture respiration patterns across different soils and SOC levels, 

even though temporal fluctuation in respiration fluxes were not properly represented (Fujita et al., 2014). We will use a linear 60 

model that contains a fast cycling, a slow cycling and an inert pool. Pool size and turnover have been calibrated by Balesdent 

et al. (2018) using a global database of C concentrations and 13C isotopes measured after a change in vegetation in multiple 

campaigns, principally over several decades. This calibration makes the Balesdent et al. (2018) parameters singularly robust 

to estimate C accrual over 25 years.  

In addition to land use (Guo & Gifford, 2002), the physico-chemical properties of the soil play an important role on SOC 65 

accumulation and residence time (Kögel-Knabner et al., 2021). Soil properties that affect SOC stabilization include the clay 

content and exchangeable cations (Rasmussen et al., 2018). High Ca2+ concentrations in soils were found to intensify SOC 

accumulation either through increased occlusion within aggregates or through enhanced SOC association with minerals 

(Rowley et al., 2021). Low pH values also hinder microbial activity and organic matter degradation, leading to an increased 

residence time of SOC in the soil (Malik et al., 2018). The parameters from Balesdent et al. (2018) in the model will therefore 70 

be modulated with functions from other models that account for these soil properties. Finally, SOC dynamics are impacted by 

climate change, both directly through the effects of soil temperature and moisture on C decomposition rates, and indirectly 

through modifications in soil properties (Luo et al., 2017).  

Once targets of SOC accrual have been set for a given timescale, the next step to facilitate communication with stakeholders 

is to map where this carbon can be stored in a given region, in order to account for the spatial heterogeneity of soils. Soil maps 75 

therefore constitute an important tool to spatially assess SOC stocks and fluxes (Wiesmeier et al., 2015).  
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The main objective of this paper is to estimate and map realistic targets for SOC accrual within decadal timescales, accounting 

for soil type and depth. To that end, we will explore the effect of land use and soil type on whole-profile SOC stocks and 

decadal dynamics. We focus on a region of study where dense data collection has taken place and where land use change has 

seen very little variation for 200 years. We use a combination of pre-existing methods (interpolation of continuous SOC 80 

profiles, estimation of theoretical maximum SOC stocks based on observed values, application of a simple model of C 

dynamics robust at decadal timescales, mapping of the simulated SOC accrual after 25 years) as an innovative way of 

generating realistic results that are transferrable beyond the scientific community. We will explore two scenarios of SOC 

accrual: one where we apply annual C inputs necessary to reach the theoretical maximum SOC stock within 25 years, and one 

where we apply realistic C input values found in the literature. We will also explore scenarios with different rates of 85 

temperature increase by 2050 following climate change scenarios RCP4.5 and RCP8.5. 

2 Materials and Methods 

2.1 Study site and data acquisition 

The Perennial Observatory of the Environment (OPE in French) is monitoring since 2007 a 320 km2 area located in the North-

Eastern part of France (in Meuse and Haute Marne counties). This observatory operated by the Radioactive Waste Management 90 

Agency (ANDRA) aims to follow the environmental impacts of a planned deep underground nuclear waste storage facility. In 

the framework of the monitoring program, various environmental data including soil characterization and mapping have been 

collected.  

The OPE study area is dominated by agricultural and forest lands: 55% of the region is occupied by agricultural lands managed 

by conventional agriculture practices; 29% is occupied by forests dominated by deciduous trees (oak, charm, beech); 14% is 95 

occupied by grassland, and less than 2% by urban areas. A land occupation map from 1830 shows that limited modifications 

in land use have taken place over the past 200 years (Dupouey et al., 2008). The region’s continental climate is softened by 

some oceanic influences. According to data collected by the OPE weather stations from 2009 to 2019, the mean annual 

temperature is 10.4 °C (+/- 6.2 °C between summer and winter), annual cumulated rainfall is 983 mm (+/- 113) and ETP = 

661 mm (+/- 79).  100 

This study uses a total of 198 soil profiles (932 samples) to estimate SOC stocks and maximum SOC accrual. 86 of these soil 

profiles were collected within the region of study between 1995 and 2019, and were used along with a 1/50,000 pedological 

map (Party et al. / Sol Conseil 2019) to classify the soils into eight dominant soil types and define the physico-chemical 

characteristics of each of their horizons, such as pH, CaCO3, texture and rock fragment content (Table 1). 

The eight identified soil types can be broadly divided based on the geological parent materials and the geomorphology of the 105 

region (Figure 1). On the plateaus, preserved detritic Cretaceous layers from the Valanginian stage with high concentrations 

of silt and sand lead to the formation of Eutric and Dystric Cambisols, with locally Podzosols reaching deeper than 2 m. On 

the hillslopes and in the valleys, the parent materials are Tithonian limestones and Kimmeridgian marls and limestones, leading 
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to the formation of Calcaric to Hypereutric Cambisols with high rock fragment contents in the deeper horizons. Soils on the 

hillslopes, referred to as Rendzic Leptosols and Hypereutric Epileptic Cambisols, are more superficial and have higher rock 110 

fragment contents. Stagnosols and Gleysols can be found at the bottom of the valleys and over the Kimmeridgian marls and 

limestones: they are deep, clay-rich and hydromorphic soils; the former is waterlogged for part of the year while the latter is 

waterlogged all year round. In the north-east of the study area, clay-rich and CaCO3-bearing materials from a tunnel excavation 

in 1841-1846 form local pockets of Technosols, which were not considered in this study due to their limited spatial extent. 

Land use information was derived from the 1/100,000 CORINE Land Cover 2018 at a resolution of 25 ha.  115 

The data from the 86 soil profiles contain SOC content data in the different soil horizons (253 samples), but only 48 bulk 

density measurements using the cylinder method. In order to provide additional SOC content and bulk density data as a function 

of depth, 112 additional profiles corresponding to these eight soil types were collected from soil databases in the six 

surrounding administrative geographical units (counties). The soil profiles were collected by the RMQS (French Soil Quality 

Monitoring Network) and Renecofor (French Permanent Plot Network for the Monitoring of Forest Ecosystems). In each 120 

collected sample, organic carbon content (g kg-1) is measured in the fine fraction (< 2 mm) by dry combustion after removal 

of the inorganic carbon with acid. Since this study only considers mineral soil, the litter layer was excluded from the forest 

profiles. Bulk density values are measured using the cylinder method in 552 out of the 932 samples, and are otherwise estimated 

from a pedotransfer function from Beutler et al. (2017) based on clay and total organic content values as follows:  

𝐵𝐷 =  [1.6179 −  0.0180 ∗  (𝐶𝑙𝑎𝑦 +  1)0.46  −  0.0398 ∗  𝑆𝑂𝐶0.55]−1.33     (1) 125 

where BD is the bulk density (kg m−3), Clay is the clay content (g kg−1), and SOC is the total organic carbon content (g kg−1). 

The pertinence of this pedotransfer function to estimate bulk density in our region of study has been validated with the 48 

samples from the region of study where bulk density measurements were available with a mean square error value of 0.70. 

Other pedotransfer functions from the literature (Saxton & Rawls, 2006; Akpa et al., 2016; Shiri et al., 2017) were also tested 

but gave mean square error values of 3.13, 6.81 and 353.35 respectively. 130 
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Table 1: Mean values of pH, clay content, rock fragments content and CaCO3 concentration for each soil type and horizon, calculated 

from 86 whole soil profiles sampled between 1995 and 2019 within the region of study. Standard deviations are given in brackets. 

See measurement protocols in Appendix A. 

Soil Type Horizon Depth (cm) Horizon 

Thickness 

(cm) 

Clay (g kg-1) pH Rock 

fragments (%) 

CaCO3 (g kg-1) 

Calcaric 

Rendzic 

Leptosols  

1 35 (9) 16 (5) 478 (68) 7.8 (0.9) 3 (15) 58 (118) 

2 19 (6) 392 (123) 8.3 (0.4) 35 (30) 414 (186) 

Calcaric 

Cambisol 

1 60 (17) 14 (6) 462 (110) 7.8 (0.9) 8 (15) 13 (136) 

2 21 (11) 394 (87) 8.2 (0.4) 35 (23) 465 (250) 

3 25 (11) 328 (110) 8.3 (0.3) 70 (20) 389 (246) 

Hypereutric 

epileptic 

Cambisol 

1 43 (11) 22 (7) 489 (73) 7.8 (0.8) 0 0 

2 21 (5) 523 (86) 6.9 (1.1) 60 (31) 0 

Hypereutric 

Cambisol 

1 84 (61) 20 (6) 409 (125) 6.9 (1.0) 2 (13) 0 

2 30 (14) 522 (147) 7.5 (0.7) 3 (28) 0 

3 33 (45) 733 (119) 7.8 (0.4) 50 (26) 2 (5) 

Eutric 

Cambisol 

1 85 (30) 18 (6) 278 (107) 5.6 (0.8) 0 0 

2 27 (10) 484 (164) 6.2 (1.0) 0 0 

3 40 (28) 595 (207) 7.5 (1.5) 5 (36) 2 (17) 

Dystric 

Cambisol 

1 168 (33) 15 (5) 40 (1) 4.0 (0.2) 0 0 

2 18 (3) 27 (6) 4.3 (0.2) 0 0 

3 10 (0) 40 (8) 4.3 (0.2) 0 0 

4 48 (3) 75 (9) 4.7 (0.1) 0 0 

5 78 (23) 95 (44) 4.6 (0.1) 0 0 

Stagnosol 1 115 (30) 28 (5) 490 (182) 7.8 (1.0) 0 2 (196) 

2 40 (11) 353 (131) 8.2 (1.4) 0 98 (244) 

3 47 (11) 346 (111) 8.4 (1.2) 1 (15) 576 (236) 

Gleysol 1 140 (41) 23 (7) 453 (88) 7.8 (0.4) 0 103 (105) 

2 46 (12) 386 (62) 8.2 (0.3) 0 143 (189) 

3 72 (36) 350 (75) 8.2 (0.3) 0 290 (288) 
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 135 

Figure 1: Land uses, soil types and geomorphological context of the study region. (a) Land use (Source: Corine Land Cover 2018). 

(b) Map of dominant soil types (Source: Party et al., 2019). (c) Synthetic cross-section of the geology, topography and dominant soil 

types in the region of study. 
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2.2 Estimation of initial and maximum SOC stocks 

2.2.1 Initial SOC stocks 140 

Soil organic carbon stocks per surface unit are calculated as follows (Chen et al., 2019): 

SOCstock =  
 p ∗ SOC ∗ BD ∗(100−% Rock fragments) 

1000
       (2) 

where SOCstock is the total SOC stock (kg m−2), p is the soil thickness (m), SOC the soil organic carbon content (g kg−1), BD 

the bulk density (kg m−3 = g dm-3) and % Rock fragments the percentage of elements > 2 mm (%).  

This methodology assumes that the fraction > 2 mm does not contain organic carbon, which has been disputed by Harrison et 145 

al. (2011) in cases where the rock fragments are abundant and display signs of porosity and weathering. 

The median soil organic carbon content (SOC in g kg−1) as a function of depth for each soil type and land use was calculated 

using the typical SOC content profile established by Mathieu et al. (2015) and Jreich (2018) on the basis of three descriptors: 

Ω1 the SOC content of the soil type at maximal depth, Ω2 the SOC content at the surface, and Ω3 the depth at half maximum 

of the SOC content:  150 

SOC (s, z)  =  Ω1(s)  + (Ω2(s) −  Ω1(s))  ∗ e−(z/Ω3(s))       (3) 

where s is the soil type, z the depth. 

This method was used to interpolate SOC content data from national and regional datasets, acquired per horizon, in order to 

obtain the continuous distribution of SOC stock over the whole soil profile for each soil type and land use considered. A least 

square method for non-linear curve-fitting (Matlab function lsqcurvefit) was then applied to adjust the Ω1-3 parameters 155 

(Appendix B).  

Continuous vertical profiles of median bulk density were then obtained for each soil type using a logarithmic fit. The horizon 

thickness and percentage of rock fragments correspond to the median of the values per horizon per soil types in the 86 profiles 

within the OPE zone. This gave us a continuous profile of median SOC stocks as a function of depth, corresponding to the 

initial SOC stock profile. The dataset was collected between 1995 and 2019, but since land use has not changed since 1830, 160 

the soil profiles were assumed to be at steady state, and to represent the initial SOC stocks before the implementation of C 

input modelling scenarios. The median SOC stock was then calculated at each 1 cm interval along the whole profile based on 

the median bulk density curve, the median SOC curve and the percentage of rock fragments. 

2.2.2 Theoretical maximum SOC stocks and maximum SOC accrual 

The theoretical maximum SOC stocks in this study are theoretical targets based on the upper values of the SOC data observed 165 

within the region. These targets represent the SOC stock that a given soil type can reach under the land management strategies 

represented in the region of study. The theoretical maximum SOC stock is therefore region-dependent as it is not solely driven 

by the intrinsic textural properties of the soil, but also by climate and the ecosystem plant productivity as they influence soil 

biology and chemistry along the soil profile. The maximum SOC accrual corresponds to the difference between the theoretical 

maximum SOC stock and the initial SOC stock.  170 
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The regression fit method applied using equation 3 from Jreich (2018) worked iteratively by first computing the 50th percentile 

boundary line (median profile corresponding to the initial SOC stocks) and removing all data points inferior to that line. The 

process was then repeated for the 75th percentile, then the 88.5th, and finally the 94th. The choice in percentile value strongly 

affects the estimation of maximum SOC stocks (Chen et al., 2019). In our case, since the number of SOC data points per soil 

type ranges from 29 (Hypereutric Epileptic Cambisol) to 268 (Stagnosol), the 75 th boundary line is calculated based on 14 to 175 

134 data points, the 88.5th percentile based on 7 to 67 data points, and the 94th percentile based on 3 to 34 data points. We 

chose the 75th boundary line to define the theoretical maximum SOC stocks. We also calculated the 88th percentile boundary 

line to discuss its impact on theoretical maximum stocks and on subsequent SOC dynamic modelling.  

A bootstrap method was used to determine the overall uncertainty of the initial SOC stocks and maximum SOC accrual for 

each soil type at 90% confidence interval (Chen et al. 2019). We generated random subsets of input parameters SOC, BD, 180 

percentage of rock fragments and depth values within the standard deviation of each soil type, and repeated the procedure 1000 

times to obtain 1000 estimates of the mean and percentiles values of the carbon stocks.  

2.3 Simulation of SOC accrual at different timescales 

Our modelling approach is illustrated in Figure 2, with further details of model functioning and equations in Appendix C. The 

profiles of initial SOC stocks were first discretized into 10 cm layers. In each layer, we applied a three-pool model with a fast 185 

cycling, a slow cycling pool and an inert pool, where the dynamic pools are ruled by exponential kinetics. SOC stocks do not 

saturate and are linearly dependent on C inputs for a given situation. Pools relative size and turnover were calibrated by 

Balesdent et al. (2018) using a global database of change in stable carbon (C3/C4) signatures measured over multiple 

campaigns, over decadal timescales, for 112 grassland, forest and cropland sites. The C3/C4 approach is typically efficient to 

follow carbon dynamics over timescales ranging from one to one thousand years, especially compared to the 14C method, 190 

which covers timescales of several thousand years (Verma et al., 2017). We corrected the model parameters calibrated at the 

global scale in Balesdent et al. (2018) to account for local conditions of temperature, humidity, pH, clay content and CaCO3 

content as recommended by Rasmussen et al. (2018). This was done using the equations from the AMG model (Andriulo et 

al., 1999; Saffih-Hdadi & Mary, 2008; Clivot et al. 2017; Levavasseur et al., 2020). The mean residence times as a function 

of depth derived from the corrected mineralization factors in the fast and slow pools can be found in Appendix D.  195 
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Figure 2: Summary of our approach: (a) estimation of initial and theoretical maximum SOC stocks from the measured data; (b) 

estimation of vertical repartition of C inputs for the different scenarios considered, obtained by matrix inversion; (c) Functioning of 

the depth-dependent three-pool model (fast-cycling pool, slow-cycling pool, inert pool). a = allocation factor; MRT = Mean Residence 

Time (in years), y = years. MRT values vary with depth as per Balesdent et al. (2018) and are corrected for temperature, humidity, 200 
pH, texture and CaCO3; values displayed correspond to the mean MRT values per pool and depth section (see Methods for details 

and Appendix D for MRT values for each soil type and depth). The initial C inputs and maximum C inputs are provided in Appendix 

E. 
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We modelled three different scenarios of C inputs to explore how much SOC might accrue after 25 years: 

• Scenario 1 (initial input regime) corresponds to the annual C inputs necessary to maintain the initial SOC 205 

stocks in each soil type and land use, obtained by matrix inversion (Mao et al., 2019): there is no SOC 

accrual in this case;  

• Scenario 2 (extreme input regime) corresponds to the annual C inputs necessary to reach the theoretical 

maximum SOC stocks within 25 years, obtained through iterative optimization of the model;  

• Scenario 3 (realistic increased input regime) defines C inputs values higher than in scenario 1 that are 210 

compatible with the ranges of gain in C inputs after implementation of practices promoting C sequestration 

found in the literature: +0.5 tC ha-1 y-1 in forests, +1.0 tC ha-1 y-1 in grasslands, and +1.5 tC ha-1 y-1 in 

croplands.  

For scenario 3, we sought values of typical current plant inputs and of realistic increased inputs from the literature or from 

existing data within the region of study. Typical current C inputs in forests range within 1.6 - 2.8 tC ha-1 y-1 according to 215 

measurements carried out in the Renecofor network in the region of study, assuming 50% mineralisation of above ground input 

in the forest floor (Mao et al., 2019). Changes in harvest practices towards non-export of harvest residues after thinning could 

provide additional inputs in the range of 0.5 – 2 tC ha-1 y-1 (total realistic input range: 1.6 – 4.8 tC ha-1 y-1) (Mao et al., 2019).  

In grasslands, annual inputs to the soil range within 1.18 – 5.2 tC ha-1 y-1 according to studies from Australia and Western 

Europe (methods used: RothC inverse modelling, allometric equations using yield data, expert opinion) (Martin et al., 2021). 220 

In croplands, annual inputs to the soil range within 1.8 – 6.8 tC ha-1 y-1 according to studies conducted worldwide (methods 

used: direct measurements, RothC inverse modelling, allometric equations using yield data, expert opinion) (Martin et al., 

2021). Within these ranges, the specific realistic values for the region of study were chosen by matrix inversion of the 

theoretical maximum SOC stocks, which provide the annual inputs necessary for the model to reach but to not exceed the 

maximum SOC stocks in the long term. 225 

The equations of SOC stock evolution over time were then applied for these scenarios over 5000 years to visualize the new 

steady state and assess the maximum potential for C storage. Particular attention was given to the SOC accrual reached after 

25 years to fit with the carbon neutrality timeline. 

Finally, we tested the effect of projected rises in temperature on the simulated SOC accrual by modifying the mineralization 

correction factor linked to temperature (see Equation C1). The temperature was increased linearly to projected annual 230 

temperatures in the region of study according to the scenarios RCP4.5 (+1.0°C) and RCP8.5 (+1.3 °C) according to model 

simulations by the Meteo France ALADIN63_CNRM-CM5 model within an 8 km radius area around Bure (55087), comparing 

the year intervals 2046-2055 and 2009-2019 (Drias, données Météo-France, CERFACS, IPSL). This corresponds to an increase 

in mean annual temperatures from 10.4 °C to 11.4°C (RCP4.5) or 11.9°C (RCP8.5) over 25 years at all depths. RCP8.5 amounts 

to an extreme scenario in terms of increased mineralization rates, since in addition to using the most pessimistic RCP scenario, 235 

our model assumes that rises in temperature propagate instantly at depth and that humidity conditions remain at the present 

levels. We tested the sensitivity of SOC accrual to the two temperature scenarios in the different soil types and land covers. 
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2.4 Spatialization  

The study site was divided into zones characterized by their land use (cropland, grassland, forest) and by their dominant soil 

type. Mapping zones were derived from the intersection of the CORINE Land Cover map and of the soil map. Values of SOC 240 

stocks, maximum SOC accrual, and simulated accrual after 25 years were then associated to each mapping zone. 

Mapping results are by necessity a simplification of the real distribution of soils properties and SOC contents. Figure 1b shows 

the dominant soil type in each mapping zone, but in reality, due to the high spatial variability of soil characteristics, each 

mapping zone contains several soil types that cannot be explicitly delimited on the map at this spatial resolution. Therefore, 

each point within a given zone has a probability of belonging to one of several soil types (e.g.: 70% chance of being a Eutric 245 

Cambisol, 30% chance of being a Stagnosol). The total SOC stock for a zone is then obtained by the weighted mean of the 

SOC stocks (e.g. 70 % of the SOC stock for Eutric Cambisols and 30 % of the SOC stock for Stagnosols). The standard 

deviation of the total SOC stock should likewise be obtained by the weighted standard deviations of the SOC stocks. The local 

uncertainty corresponds to expected local variations in the zone if the different soil types have contrasted SOC stocks. We 

visualized this local uncertainty by mapping the contrasts in SOC stocks within each zone in Appendix F. 250 

3 Results 

3.1 SOC stock and maximum SOC accrual as a function of depth, land use and soil type 

3.1.1 Vertical repartition of SOC stocks 

Current SOC stocks over the whole profile range from 78 to 333 tC ha-1 (Table 2), of which 59 to 156 tC ha-1 are in the topsoil 

(0 - 30 cm). The lowest SOC stocks are found in the shallower soil types (Calcaric Rendzic Leptosol and Hypereutric Epileptic 255 

Cambisol). Current SOC stocks are twice to three times higher in hydromorphic soils (Stagnosols and Gleysols) compared to 

non-hydromorphic soils. 

SOC content and stocks decrease with depth, with sharp decreases in the SOC stock profiles corresponding to a change in the 

percentage of rock fragments between two horizons (Figure 3). On average, excluding the shallower soil types (Calcaric 

Rendzic Leptosol and Hypereutric Epileptic Cambisol), the proportion of the SOC stock situated in the first 30 cm is 53 % in 260 

croplands, 67 % in grasslands and 71 % in forests (Appendix G). The soils in croplands are therefore depleted in SOC in the 

topsoil compared to forests and grasslands (Figure 3a). The difference in SOC stocks between land uses diminishes in the 

deeper horizons.  
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 265 

Table 2: Initial SOC stocks, C input regimes to the soil considered in this study, theoretical maximum SOC stocks based on the 75th 

percentile of our regional dataset, and SOC stock after 25 years under a realistic scenario of C inputs, for each soil type and land 

use. Realistic range of annual C inputs to the soil is 1.8 – 6.8 tC/ha/y for croplands (Martin et al., 2020), 1.18 – 5.2 tC/ha/y for 

grasslands (Martin et al., 2020), and 1.6 – 4.8 tC/ha/y for forests according to measurements made in the region of study.     
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Figure 3: (a) Median (50th percentile of the dataset for each land use) and theoretical maximum (75th percentile of the dataset) fitted 

depth profiles of SOC content in each soil type. The Jreich parameters (2018) used to plot the SOC content profiles are given in 

Appendix B. (b) Current SOC stocks under croplands and maximum SOC accrual to reach the theoretical maximum SOC stocks of 275 
each soil type.  

3.1.2 Theoretical Maximum SOC stocks and maximum SOC accrual 

The theoretical maximum SOC content decreases with depth under all soil types, from 50-100 g kg-1 near the surface to under 

25 g kg-1 at the bottom of the soil profiles (Figure 3a). The theoretical maximum SOC stocks range from 129 tC ha-1 in the 

Hypereutric Epileptic Cambisol to 476 tC ha-1 in the Gleysols.  280 
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The maximum SOC accrual varies from 19 tC ha-1 for shallow, rocky forest soils to 197 tC ha-1 for agricultural Gleysols 

considering a conversion of cropland into grassland or forest. According to the 75th percentile method, soils in the region of 

study are at 74% of their theoretical maximum SOC stock on average, ranging between 16-61% for croplands, 30-56% 

grasslands and 40-82% for forests. Across all land uses, the shallow rocky soils (Calcaric Rendzic Leptosol and Hypereutric 

Epileptic Cambisol) are closer to their theoretical maximum SOC stocks than the Stagnosols and Gleysols. Using percentile 285 

88th instead of 75th increases our estimation of the theoretical maximum SOC stocks by about 16% (9 - 27% depending on 

soil type), without changing the hierarchy of tmaximum SOC stocks across the eight soil types (Appendix G). 

3.2 Exploring kinetics of simulated SOC accrual 

The equations of our model calculate the SOC mean residence times per depth as a function of the physico-chemical properties 

of the studied soil types (see Equations C1-5). In our study site, they range from 50 – 100 years above 30 cm and from 145 – 290 

453 years below 30 cm (Appendix D). The increase in mean residence time with depth is stark in the slow pool (from 477 – 

1100 years in the first 10 cm to 1744 – 5817 years in the deeper soil horizons), but is hardly discernible in the fast pool (17-38 

years in the first 10 cm to 11-47 years in the deeper soil horizons). Since most of the new C inputs are allocated to the fast 

carbon pool and in the surface horizons (Appendix D-E), the SOC accrual is not strongly affected by soil type over 25 years. 

The initial stationary C inputs obtained by model matrix inversion are, depending on soil type, between 1.0 – 2.8 tC ha-1 y-1 295 

for croplands, 1.2 – 4.6 tC ha-1 y-1 for grasslands and 1.0 – 2.8 tC ha-1 y-1 for forests (Table 2). By contrast, the extreme input 

regime needed to reach the theoretical maximum SOC stocks within 25 years ranges between 3.8 - 17.3 tC ha-1 y-1 for croplands, 

6.0 - 14.9 tC ha-1 y-1 for grasslands and 3.4 - 9.4 tC ha-1 y-1 for forests. The realistic increased input regime chosen based on 

the literature is 2.5 – 4.3 tC ha-1 y-1 for croplands, 2.2 – 5.1 tC ha-1 y-1 for grasslands and 1.5 – 3.3 tC ha-1 y-1 for forests.  

Under the realistic increased input regime, and when rising temperatures are not considered, the SOC accrual after 25 years 300 

ranges from 22-26 tC ha-1 under cropland, 15-18 tC ha-1 under grassland, to 8-10 tC ha-1 under forest (Figure 4, Appendix H). 

Kinetics of SOC accrual are dependent on the time since the implementation of the practice increasing C inputs to soil. The 

yearly accrual rates averaged over the first few decades range between 0.88-1.04 tC ha-1 y-1 under croplands, 0.6-0.72 tC ha-1 

y-1 under grassland and 0.32-0.4 tC ha-1 y-1 under forest. The accrual rates then decrease over decadal and centennial timescales 

as the SOC stocks stabilize asymptotically towards the new steady state, as per the model equations. SOC accrual at the new 305 

steady state is highest under Dystric Cambisol owing to the effect of the low pH on the mineralization rates as implemented in 

the model. Modelled SOC accrual after 25 years decreases with depth under all soil types and land uses (Figure 5). 

Under the RCP4.5 scenario of 1.0 °C increase over 25 years, the SOC accrual is attenuated by 7 to 38% compared to the SOC 

accrual simulated at constant temperature (10% under cropland, 20% under grassland and 30% under forest on average). The 

SOC accrual after 25 years under this scenario ranges from 16-24 tC ha-1 under cropland, 10-16 tC ha-1 under grassland, to 5-310 

8 tC ha-1 under forest (Appendix H). 

Incorporating the RCP8.5 scenario of 1.3 °C increase in temperature over 25 years attenuates SOC accrual by 10 to 50%, and 

shows a stronger impact of soil type and especially land cover on the mineralization rates (Appendix H). SOC accrual is 



16 

 

attenuated by 10-20% in cropland soils, 10-40% in grassland soils, and 40-50% in most forest soils except Dystric Cambisols 

(20%).   315 

 

Figure 4: Model results of SOC accrual after 25, 100 and 5000 years under forests for a scenario of +0.5 tC ha-1 y-1 compared to the 

initial C inputs, temperature remaining constant.  
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 320 

Figure 5: Model results of SOC accrual after 25 years at each depth under the three considered C input scenarios (+1.5 tC ha-1 y-1 

under croplands, +1.0 tC ha-1 y-1 under grasslands, +0.5 tC ha-1 y-1 under croplands compared to the initial C inputs), temperatures 

remaining constant. Model results for each soil type are only shown for the land uses represented in the dataset. 

3.3 Maps of SOC stocks, maximum SOC accrual, and simulated accrual after 25 years 

The repartition of SOC stocks and maximum SOC accrual in the region of study is most visibly related to land use, but is also 325 

affected by the spatial distribution of Stagnosols and Gleysols (Figure 6). The current SOC stock in the region of study amounts 

to a total of 3.9 MtC, with a standard deviation of 1.5 MtC according to the bootstrap method (Appendix I). To compare these 

results with national-scale estimates of SOC stocks, we average 3.9 MtC over the entire region of study and obtain a mean 

value of 122 tC ha-1, of which 87 tC ha-1 are in the first 30 cm. 

The maximum SOC stocks that the region can theoretically contain is 3.9 + 2.5 = 6.4 MtC, suggesting that the soils in the 330 

region of study are at 61% of their theoretical maximum SOC stock. However, according to model results in scenario 3, this 

maximum SOC stock would only be reached over timescales of centuries to millenia, and the SOC accrual after 25 years only 

reaches 0.57 MtC. The SOC accrual in the region of study is attenuated by 14% and reaches 0.49 MtC when a 1.0 °C increase 

in temperature is implemented in the mineralization rates (Appendix J).  
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 335 

Figure 6: Maps of SOC stocks (a), maximum SOC accrual (b) and simulated SOC accrual after 25 years under a realistic increased 

input scenario (+ 0.5 tC ha-1 y-1 under forests, + 1.0 tC ha-1 y-1  under grassland, + 1.5 tC ha-1 y-1  under cropland) (c). Upper and 

lower confidence intervals provided by the bootstrap method are given in Appendix I. The standard deviation of the total SOC 

stocks and maximum SOC accrual based on the upper and lower confidence intervals applied to the whole region is 1.5 MtC. 
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4 Discussion 340 

4.1:  Implications of our approach to estimate target SOC stocks and accrual rates 

There is a rising interest in representing the contribution of soils to carbon storage, both through the mapping of current SOC 

stocks, and through the mapping of the maximum SOC stocks that these soils can theoretically reach. Modelling can then be 

used to explore the input rates and timescales needed to reach these targets SOC stocks. Our approach for estimating SOC 

theoretical maximum stocks was made possible by the uncommon abundance of soil profile data and by the detailed 345 

pedological map available in the region of study. This approach is most pertinent in areas where the land use and management 

has remained stable for many years (over 200 years in our region of study), because the high values of SOC stocks used to 

estimate target SOC stocks per soil type are more likely to represent a steady state rather than a transient stage. Such data-rich, 

well-documented regions can serve as references for similar pedoclimatic zones. A further step would then be to intensify 

profile-scale data collection in other regions to provide reference values of SOC stocks and maximum SOC accrual in as many 350 

pedoclimatic zones as possible, in order to upscale this approach from the regional to the global scale (Barré et al., 2017). 

Three C input scenarios were implemented to explore kinetics of SOC accrual. The first was an initial input regime obtained 

by matrix inversion, and corresponds to the annual C inputs necessary to maintain the initial SOC stocks at the steady state. 

We found a good agreement between the model-derived initial C inputs and available measurements and estimates made within 

the region of study: in croplands, the simulated C inputs were consistent with estimations of C inputs derived from the method 355 

of Bolinder et al. (2007) based on crop yields recorded in the region of study (Appendix K). In forests, the model-derived 

initial C inputs were consistent with measurements from the Renecofor carried out in the region of study. 

 The second scenario sought the annual C inputs necessary to reach the theoretical maximum SOC stocks within 25 years. The 

required annual C input rates largely exceed the realistic ranges from the literature for most soil types. The only soil types for 

which this scenario is realistic are the shallow soils (Calcaric Rendzic Leptosol and Hypereutric Epileptic Cambisol) and the 360 

sandy Dystric Cambisol, because these soils have lower SOC stocks than the others and are already close to their theoretical 

maximum SOC stocks.  

The third scenario used realistic annual C input values from the literature, and found SOC accrual rates ranging from 0.32 – 

1.04 tC ha-1 y-1 within the first 25 years. Examples can be found from previous studies of similar SOC accrual rates within 

decadal timescales following changes in land management strategies without changing the land use: transition from 365 

conventional to conservation agriculture in croplands (Autret et al., 2016); promoting an increase in plant diversity in 

grasslands (Yang et al., 2019); less frequent cutting in forests, or acting on forest productivity to increase root inputs and 

limiting soil disturbance during harvesting (Jandl et al., 2007; Mayer et al., 2020). The 1.5 tC ha-1 y-1 additional C inputs 

modelled in croplands resemble values calculated in a long-term field experiment after transition from conventional agriculture 

to conservation agriculture (1.72 tC ha-1 y-1 over 16 years, Autret et al., 2016). Those inputs also correspond to what the model 370 

requires to maintain the theoretical maximum SOC stocks at steady state; this convergence confirms the robustness of the 

approach. 
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Using a percentile boundary line (here: 75th percentile of the SOC data) to estimate the theoretical maximum SOC stocks 

comes with a methodological challenge: the percentile regression necessarily depends on the size of the dataset and on its 

variability. A low percentile value within a large dataset underestimates the maximum SOC accrual, but an excessive percentile 375 

value within a small dataset produces an unrealistic target and increases the sensitivity to outliers. Other studies have used the 

following percentile values to estimate theoretical maximum SOC stocks at various spatial scales: Chen et al. (2019) compared 

maximum total SOC stocks following the 0.8, 0.85 and 0.9 percentile value at the national scale (1089 sites); Georgiou et al. 

(2022) compared the maximum mineral-associated SOC with low and high activity minerals at the 0.9, 0.95 and 0.975 

percentiles at the global scale (1144 profiles). Standardized rules to define the choice of a percentile value for a target stock, 380 

depending on the scale of the study and the size and variability of the dataset, have yet to be established. Here, our choice of 

target SOC stocks at the 75th percentile is justified by the concordance between the annual C inputs necessary to maintain these 

stocks at steady state and realistic ranges of annual C inputs from Martin et al. (2021) and from regional Renecofor datasets 

(Table 2). By contrast, maintaining SOC stocks at the 88th percentile boundary line would require annual C inputs between 4.4 

and 21.7 tC ha-1 y-1, far in excess of what can be realistically added to soils. We recommend, where possible, to verify the 385 

realism of SOC stock targets using carbon dynamics models and matrix inversion to estimate the annual C inputs necessary to 

reach these targets in the long term. 

Interrogating the realism of target SOC stocks is of particular importance when deeper soil horizons are considered. Another 

concept used to define target SOC stocks is to focus on the mineral associated carbon, considered to be more stable, by using 

the clay and fine silt fraction as a proxy of the amount of carbon that can be theoretically stored in a soil in the long term 390 

(Hassink 1997, Cotrufo et al., 2019, Georgiou et al., 2022). However, applying this concept over the whole soil profile leads 

to unrealistically high targets, and therefore unrealistic C inputs at depth (Appendix L).  

Modelled SOC accrual in scenario 3 ranged from 8.5 to 26 tC ha-1 after 25 years, with a rapid decrease of SOC accrual rates 

with depth driven by decreasing C inputs. The deeper horizons of the soil provide limited opportunity for additional storage 

over short timescales using current land management practices. Furthermore, the proportion of new carbon inputs that is 395 

allocated to the fast carbon pool exceeds 85% at all depths in the soil profile (Appendix D): this implies that even in the deeper 

soil horizons, the majority of new C inputs is quickly mineralized, as also simulated by Sierra et al. (2024). The mean residence 

times (MRT) in the fast pool remain similar near the surface and at depth (17 – 38 years and 11 - 47 years respectively), but 

increase with depth in the slow pool (from 477 - 1100 years to 1744 - 5817 years). The greater contrast in mean residence 

times between the fast and slow pools at depth challenges our understanding of SOC dynamics.   400 

Soil type did not play a major role on SOC accrual over short timescales: the observed differences in mineralization rates 

across soil types are not sufficient to have a significant impact after 25 years, especially in the fast pool (Appendix D). It is 

rather the land use that affects SOC accrual by controlling the quantity and vertical repartition of inputs (Appendix E). 

However, soil type has a strong influence on current SOC stocks by categorizing soils based on profile depth, rock fragment 

content and other physico-chemical properties. Hydromorphic soils in particular have total SOC stocks up to three times higher 405 
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than in other soil types, making their preservation particularly critical. These high SOC stocks are due to waterlogged 

conditions strongly limiting decomposers activity (Sahrawat, 2004), notably for energetic reasons (Keiluweit et al., 2016).  

Our model provides a widely-applicable tool to assess the effect of different soil types and initial distributions of SOC stocks 

on SOC dynamics at decadal timescales. It does not account for vertical transfer, but Balesdent et al (2018) showed that 13C 

incorporation in subsoil after a change in vegetation is slow and affects only long-term carbon dynamics. Sierra et al. (2024) 410 

also found that transport may only play a secondary role in the formation of soil carbon profiles according to simulation 

examples and measurements from carbon and radiocarbon profiles. Priming effect is not taken into consideration in our model, 

even though it is expected to occur when C inputs to the soil increase, which could cause simulated results to overestimate 

SOC accrual (Guenet et al., 2018). Priming is difficult to include in predictive models because the processes involved are still 

poorly understood (Bernard et al., 2022). Current explorations of the priming effect use either mechanistic models centred on 415 

microbial processes (Schimel, 2023), or theoretical models fitted to laboratory experiments, which do not fit the scope of our 

study.   

Testing for the effect of temperature increase on mineralization rates led to an attenuation of SOC accrual by 2050 of 7 to 50 

% depending on the climate scenario considered. We did not account holistically for the effects of climate change on SOC 

dynamics in this study: the combination of changes in temperature, CO2 concentration and precipitation can drive a myriad of 420 

responses in net primary production, SOC input repartition and mineralization processes (Rocci et al., 2021; Bruni et al., 

2021). In forests for instance, increased drought conditions may increase tree mortality, but might also enhance deeper roots 

prospection for water, thereby changing the vertical repartition of C inputs (Schlesinger et al., 2016). Different soil types are 

also expected to respond differently to climate change, due for instance to the impact of soil texture on soil moisture regimes 

(Bormann, 2012; Hartley et al., 2021). Here, we have considered a simplified case where humidity conditions do not change 425 

from the 2009-2019 period and dot not affect soil carbon dynamics. The scientific community needs to improve its 

understanding of the priming effect, of SOC dynamics processes driven by climate change, and to further explore how soil 

type influences organic matter decomposition dynamics over decadal timescales. 

4.2: Implications for stakeholders: what levels of C accrual are achievable after 25 years? 

Increasing soil organic carbon (SOC) stocks in soils has the potential to provide global benefits, but its successful 430 

implementation requires regional scale information on land use and soil type. An important aspect of this work is to provide 

relevant SOC storage targets to stakeholders. The maximum SOC accrual can be used as a theoretical, long-term target value, 

but is not representative of how much carbon can realistically be added to soils over decadal timescales. In the region of study, 

total SOC accrual after 25 years under a realistic scenario of C inputs was found to be five times lower than the maximum 

theoretical SOC accrual (0.57 MgC versus 2.5 MgC). Our simulation of rising temperatures following RCP4.5 (+1.0 °C) and 435 

RCP8.5 (+1.3°C) attenuated this SOC accrual by 7 - 38% and 10 - 50% respectively over 25 years through the increase of 

mineralization rates. This shows that increasing organic matter inputs to the soil remains worthwhile, since SOC accrual 
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remains significant even in an extreme scenario (highest projected increase in temperature but no change in humidity 

conditions).  

Maps of SOC stocks are efficient tools to synthetize scientific results at the regional scale for stakeholders. Crucially, they 440 

highlight areas where soil degradation would lead to the greatest release of CO2. The current SOC stocks have been built over 

timescales of centuries to millennia, especially in the deeper soil horizons, but can be rapidly lost due to land use change and 

other disturbances. Therefore, as highlighted by Sierra et al. (2024), the priority should be to preserve the existing SOC stocks, 

even as we attempt to implement innovative land management practices to maximize these SOC stocks where possible. Despite 

the high uncertainties associated with regional-scale estimations of SOC stocks (Appendix I-J), our mean SOC stock values of 445 

87 tC ha-1 in the first 30 cm are in accordance with national-scale estimates that found SOC stocks of 75 – 100 tC ha-1 in the 

North-East of France (Pellerin et al., 2021).  

The map of maximum SOC accrual was found to be of limited interest because it does not provide a timescale for when that 

maximum SOC stock might realistically be reached. Reaching the theoretical maximum SOC stocks by the 2050 horizon for 

carbon neutrality would require prohibitively high annual C input rates. We therefore recommend maps of prospective SOC 450 

accrual to be time-specific, with C input rates within realistic ranges.  

Our time-specific SOC accrual map is an improvement from simple representation of maximum theoretical SOC stocks, but 

remains a simplification of what can realistically be implemented. The map implies a uniform increase in C input rates for 

each land use in the entire region of study, but this would likely be hindered by practical and socio-economic factors. The SOC 

stock and time-specific SOC accrual maps should be used as part of a wider set of decision support tools for land planners. In 455 

some circumstances, adding organic carbon to soils might not even be the best solution for mitigating climate change: biomass 

harvest not returned to the soils can instead be used as a source of food, biosourced energy or biomaterials (Derrien et al., 

2023). These alternate uses of carbon biomass offer a mean of substituting fossil carbon, which should be verified 

quantitatively by life cycle analysis. 

Finally, soil type information provided to stakeholders should not be limited to the current or prospective SOC stocks. Soil-460 

type specific physico-chemical properties are an important but as of yet poorly considered factor for land planning. Soil type 

affects numerous soil functions such as water retention, resistance to erosion and nutrient cycling (Adhikari & Hartemink, 

2016). These soil functions should be considered in addition to the SOC dynamics to choose management strategies adapted 

to each soil type. 

5 Conclusion 465 

Informing stakeholders on soil management strategies to preserve and maximize existing soil organic carbon (SOC) stocks is 

a pressing concern to the scientific community. It is critical to communicate on the effects of soil type, depth and land-use on 

SOC accrual in soil over time periods compatible with the roadmap for C neutrality, and to explore the C inputs necessary to 

reach these targets. 



23 

 

The annual C inputs necessary to reach theoretical maximum SOC stocks within 25 years in the region of study were found to 470 

exceed realistic C input ranges from the literature for most soil types (3.4 – 17.3 versus 1.18 – 6.8 tC ha-1 y-1). The SOC accrual 

after 25 years modelled under a realistic scenario of increased C inputs was five times lower than the maximum SOC accrual 

estimated over the whole region of study (0.57 MgC versus 2.5 MgC).  

We note a greater contrast of SOC mean residence times at depth, which invites further investigation: while a fraction of the 

new C inputs added to the deep soil horizons can remain stable over millennial timescales, the majority is mineralized within 475 

two decades. Simulating a rise in temperatures of 1.3°C over 25 years following RCP8.5 attenuated SOC accrual by 10 to 

50%. 

The effect of soil type on SOC mineralization rates was not visible over the decadal timescales considered. However, soil type 

plays an important role on the spatial repartition of the current SOC stocks that need to be preserved. Studies of SOC stocks 

and storage capacities should be complemented by more holistic explorations of soil functioning and ecosystem services. 480 

This study provided a set of maps to give a more complete picture of the issues related to carbon storage in soils (carbon stocks, 

maximum SOC accrual, and realistic SOC accrual over decadal timescales). Such maps have the potential to facilitate 

communication with land planners and stakeholders by highlighting areas most worthy to preserve, and where carbon storage 

practices are likely to be the most efficient over decadal timescales. The efficacy of such maps as decision support tools should 

be explored via collaboration projects with stakeholders. 485 
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Appendices 

Appendix A: List of soil properties collected at each soil profile and their measurement protocol 655 

Study type Soil Property Unit Method 

Field observation 

Slope % In situ operator's assessment 

Soil depth Cm In situ operator's assessment 

Horizon Textural Class Type In situ operator's assessment completed by NF X 31-107 

Horizon Compacity Type knife test (ISO 25177: 2008) 

Horizon Rock Fragment Content % In situ operator's assessment 

Horizon Hydromorphic Features Type In situ operator's assessment 

Lab 

Agronomical 

Analysis 

Horizon pH - NF ISO 10390 

Horizon OM g/kg NF ISO 10694 

Horizon CaCO3 g/kg NF ISO 10693 

 

Appendix B: List of descriptors used to plot the SOC content curves for each soil type and land use: Ω1 the SOC content of the soil 

type at maximal depth, Ω2 the SOC content at the surface, and Ω3 the depth at half maximum of the SOC content (based on Mathieu 

et al. (2015) and Jreich (2018)) 

Land use Soil type (WRB) Soil type (RPF) 

Ω1 

Bottom SOC 

(g/kg) 

Ω2 

Top SOC 

(g/kg) 

Ω3 

Depth at half 

maximum of the 

carbon content (cm) 

Cropland Calcaric rendzic leptosol Rendosol 17 31 17 

Forest Calcaric rendzic leptosol Rendosol 22 74 16 

Grassland Calcaric rendzic leptosol Rendosol 12 53 15 

Cropland Calcaric cambisol Calcosol 14 33 21 

Forest Calcaric cambisol Calcosol 17 62 18 

Grassland Calcaric cambisol Calcosol 14 54 15 

Cropland Hypereutric epileptic cambisol Rendisol 19 38 13 

Forest Hypereutric epileptic cambisol Rendisol 16 60 12 

Cropland Hypereutric cambisol Calcisol 10 24 17 

Forest Hypereutric cambisol Calcisol 22 64 21 

Grassland Hypereutric cambisol Calcisol 14 54 15 

Cropland Eutric cambisol Brunisol 8 18 21 
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Forest Eutric cambisol Brunisol 8 45 16 

Grassland Eutric cambisol Brunisol 5 23 21 

Forest Dystric cambisol Alocrisol 4 31 15 

Cropland Stagnosol Rédoxisol 10 21 19 

Forest Stagnosol Rédoxisol 9 46 17 

Grassland Stagnosol Rédoxisol 9 40 14 

Cropland Gleysol Réductisol 16 26 16 

Grassland Gleysol Réductisol 21 68 18 

 660 

Appendix C: Details of model functioning  

A depth-dependent SOC dynamic model using multilayer soil modules was built to establish the time needed to reach different 

levels of carbon storage in the soil. SOC is allocated to three boxes (fast, slow, stable) corresponding to different SOC 

mineralization rates defined by Balesdent et al. (2018) based on a meta-analysis of changes in stable carbon isotope signatures 

at 55 grassland, forest and cropland sites, in the tropical zone.  665 

The mineralization factors associated with each box were then corrected for temperate soils using correction factors defined 

for the AMG model to account for the difference in environmental conditions (temperature and humidity) between tropical 

and temperate, but also to account for the differences in pH, clay content and CaCO3 between soil types. The correction factors 

linked to temperature and humidity are based on Andriulo et al. (1999) and Saffih-Hdadi and Mary (2008). The correction 

factors linked to pH, clay content and CaCO3 were previously established by Clivot et al. (2017) based on the monitoring of 670 

N mineralization in 65 bare fallow soils representative of arable cropping systems in France, over a depth up to 150cm. These 

corrections are in accordance with recommendations from Rasmussen et al. (2018), for whom SOM stabilization not only 

depends on clay content, but also on pH and exchangeable calcium for alkaline soils. The correction factors for the temperature 

(T), humidity (H), clay content (A), pH and CaCO3, as used in the 2019 AMG model, were as follows: 

• 𝑓𝑇 =  
25

1+(25−1) ∗  𝑒0.12∗15 ∗ 𝑒−0.12∗T    [Equation C1] 675 

• 𝑓𝐻 =  
1

1+0.03∗𝑒−5.247∗(P−PET)/1000    [Equation C2] 

• 𝑓𝐴 =  𝑒−2.519 ∗ 10−3 ∗ Clay     [Equation C3] 
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• 𝑓𝑝𝐻 =  𝑒−0.112 ∗ (pH−8.5)2
     [Equation C4] 

• 𝑓𝐶𝑎𝐶𝑂3 =  
1

1+(1.5∗10−3 ∗ CaCO3)
    [Equation C5] 

With T the mean annual temperature, P the mean annual precipitation and PET the potential evapotranspiration.  680 

The total correction factor f = fT * fH * fA * fpH * fCaCO3, was calculated for the tropical sites from Balesdent et al. (2018) 

and for the temperate conditions in the OPE region of the study (fBAL and fOPE respectively). The corrected mineralization 

factors k1corr and k2corr were obtained with the following equations: 

• k1corr = k1 *  fOPE / fBAL    [Equation C6] 

• k2corr = k2 *  fOPE / fBAL    [Equation C7] 685 

For each soil type and land use, the initial carbon stocks every 10 cm was again obtained by data interpolation with the Jreich 

method (2018); they were distributed between the three pools based on the depth-dependent allocation factors defined by 

Balesdent et al. (2018), as follows: 

• C1init(i) = Cinit(i) * a1(i)    [Equation C8] 

• C2init(i) = Cinit(i) * a2(i)    [Equation C9] 690 

• C3init(i) = Cinit(i) * (1-(a1(i)+a2(i)))   [Equation C10] 

With Cinit the initial carbon stock, and a1 and a2 the proportion of carbon in pool 1 and 2 at each depth i. 

The incorporated soil carbon inputs at each depth i and timestep t were added as follows:  

• C1in(t,i) = INPUT(i) * α(i)    [Equation C11] 

• C2in(t,i) = INPUT(i) * (1-α(i))   [Equation C12] 695 

with α the proportion of new carbon inputs that is allocated to the fast carbon pool, calculated from the steady-state input 

equations (see Equations C19-22 below).  

The outputs at each timestep were a function of the carbon stock at timestep t and of the corrected mineralization factors at 

each depth i, as follows: 

• C1out(t,i)=C1(t,i) * ( 𝑒−k1𝑐𝑜𝑟𝑟(i)∗timestep - 1)  [Equation C13] 700 

• C2out(t,i)=C2(t,i) * ( 𝑒−k2𝑐𝑜𝑟𝑟(i)∗timestep - 1)  [Equation C14] 

The change in soil carbon stock at each depth i between t and t+1 was defined as follows: 
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• dC1(t,i)=C1out(t,i) + C1in(t,i)   [Equation C15] 

• dC2(t,i)=C1out(t,i) + C2in(t,i)   [Equation C16] 

The soil carbon stocks at t+1 were therefore defined as:  705 

• C1(t+1,i) = C1(t,i) + dC1(t,i)   [Equation C17] 

• C2(t+1,i) = C2(t,i) + dC2(t,i)   [Equation C18] 

The corrected mineralization rates also led to the definition of carbon mean residence times as a function of depth for each soil 

type (MRT = 1/k, see Appendix B). SOC mean residence times at the steady state depend on the physico-chemical properties 

of the studied soil types: in our study site, they range from 50 – 100 years in the topsoil and from 145 – 453 years underneath.  710 

The model was initialized under the assumption that the carbon stocks calculated at the different depths in 2018 were at steady 

state. This assumption is justified on average by a land occupation map from 1830 showing limited changes in land use over 

the past 200 years (Dupouey et al., 2008). Inversing the model at the steady state yielded the vertical repartition of yearly C 

inputs necessary to keep the input and output fluxes equal across the full profile. We defined INPUTeq the repartition of 

incorporated C inputs every 10 cm at the steady state, as follows: 715 

• 𝐶1𝑒𝑞(𝑖) = 𝐼𝑁𝑃𝑈𝑇(𝑖) ∗  
𝛼(𝑖)

𝑘1𝑐𝑜𝑟𝑟
   [Equation C19] 

• 𝐶2𝑒𝑞(𝑖) = 𝐼𝑁𝑃𝑈𝑇(𝑖) ∗  
(1−𝛼)

𝑘2𝑐𝑜𝑟𝑟
   [Equation C20] 

The two previous equations are used to define α as follows: 

• 𝛼(𝑖) =
a1∗k1corr

𝑎2∗𝑘2𝑐𝑜𝑟𝑟

1+(
a1∗k1corr

𝑎2∗𝑘2𝑐𝑜𝑟𝑟
)
      [Equation C21] 

This estimate of the yearly inputs did not distinguish between surface inputs and inputs by the root systems. The model further 720 

assumed that there was no vertical redistribution of SOC between the layers following this initial allocation (Balesdent et al., 

2018). Then, the allocation and mineralization rates of these inputs were used at each depth layer to infer the mean residence 

time of the C inputs per land use: this second definition of the mean residence time depends on both the physico-chemical 

properties of the soil and on the vertical repartition of inputs. 

 725 
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Appendix D: Details of the SOC average mean residence time (MRT = 1/k) in the fast pool (MRT1 = 1/k1) and in the slow pool (MRT2 

= 1/k2), represented in years as a function of depth for each soil type, using parameters from Balesdent et al. (2018), with correction 

factors from the AMG model for the temperature, P/PET, pH, clay content and CaCO3. a1 and a2 are the  proportion of initial C at 

steady state distributed in the fast and slow pools – the carbon proportion in the inert pool being the complement to reach one). α 

represents the proportion of new carbon inputs that is allocated to the fast carbon pool (see Equation C21), the complement is 730 
allocated to the slow pool, no carbon is allocated to the inert pool. Soil 1: Calcaric rendzic leptosol, soil 2: Calcaric cambisol; soil 3: 

Hypereutric epileptic cambisol; soil 4: Hypereutric cambisol; soil 5: Eutric cambisol; soil 6: Dystric cambisol; soil 7: Stagnosol; soil 

8: Gleysol.  

Depth  

(cm) 
a1 a2 α  Mean Residence Time MRT (y) 

 
   Soil 1 Soil 2 Soil 3 Soil 4 Soil 5 Soil 6 Soil 7 Soil 8 

 
   MRT1 MRT2 MRT1 MRT2 MRT1 MRT2 MRT1 MRT2 MRT1 MRT2 MRT1 MRT2 MRT1 MRT2 MRT1 MRT2 

0-10 0,61 0,34 0.98 22 628 20 563 22 630 20 566 26 742 38 1100 23 664 17 477 

10-20 0,29 0,67 0.92 31 777 27 696 31 779 28 701 36 918 37 948 32 822 23 591 

20-30 0,11 0,85 0.86 13 643 14 676 26 1284 23 1121 29 1422 24 1190 21 1031 15 741 

30-40 0,07 0,86 0.86 13 863 13 908 25 1724 22 1505 28 1910 25 1727 14 977 13 892 

40-50 0,07 0,83 0.88   11 1013 26 2321 23 2026 29 2571 22 1943 15 1315 14 1200 

50-60 0,07 0,80 0.90   13 1317   44 4654 30 3198 24 2526 16 1710 15 1561 

60-70 0,07 0,75 0.91       47 5171 32 3553 25 2807 17 1900 16 1734 

70-80 0,05 0,71 0.91       42 5817 29 3997 23 3158 14 1948 14 1951 

80-90 0,04 0,65 0.91       37 5817 26 3997 20 3158 12 1948 11 1744 

90-100 0,04 0,60 0.92           22 3501 12 1948 11 1744 

Average MRT above 

30 cm 
62 57 69 62 81 100 70 50 

Average MRT below 

30 cm 
145 155 309 453 418 384 226 206 
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Appendix E: Vertical repartition in % of yearly C inputs at the steady state for each soil type, land use and depth layer every 10 cm. 

The bottom of the table provides the total inputs in tC ha-1 y-1 needed to stay at the steady state, or to reach the maximum SOC 

stocks estimated by the 75th percentile data-driven method. C = Cropland; F = Forest; G = Grassland.  

Depth (cm) 

Calcaric rendzic 

leptosol 

Calcaric cambisol 

Hypereutric 

epileptic 

cambisol 

Hypereutric 

cambisol 

Eutric cambisol 

Dystric 

cambisol 

Stagnosol Gleysol 

 C F G C F G C F C F G C F G F C F G C G 

0 0.672 0.709 0.737 0.701 0.700 0.764 0.739 0.772 0.705 0.699 0.743 0.668 0.738 0.760 0.629 0.499 0.651 0.630 0.489 0.606 

10 0.173 0.167 0.158 0.148 0.155 0.128 0.184 0.172 0.164 0.171 0.154 0.160 0.157 0.151 0.174 0.130 0.149 0.142 0.108 0.141 

20 0.116 0.096 0.082 0.082 0.083 0.060 0.045 0.034 0.054 0.055 0.046 0.061 0.049 0.045 0.061 0.066 0.060 0.060 0.056 0.061 

30 0.039 0.028 0.023 0.033 0.031 0.023 0.030 0.020 0.032 0.032 0.025 0.037 0.023 0.020 0.025 0.058 0.041 0.044 0.043 0.037 

40    0.020 0.018 0.014 0.003 0.002 0.024 0.023 0.018 0.023 0.012 0.010 0.019 0.047 0.026 0.030 0.038 0.026 

50    0.015 0.013 0.011   0.008 0.007 0.005 0.017 0.008 0.005 0.013 0.038 0.017 0.021 0.033 0.019 

60         0.007 0.006 0.005 0.015 0.006 0.004 0.011 0.034 0.013 0.017 0.030 0.016 

70         0.006 0.005 0.004 0.013 0.005 0.003 0.009 0.030 0.010 0.014 0.026 0.013 

80         0.002 0.002 0.001 0.006 0.002 0.001 0.009 0.029 0.009 0.013 0.028 0.013 

90               0.008 0.027 0.009 0.012 0.027 0.013 

100               0.009 0.030 0.010 0.013 0.031 0.014 

110               0.009 0.012 0.004 0.005 0.031 0.014 

120               0.009    0.031 0.014 

130               0.009    0.028 0.013 

140               0.009      

Total inputs 
to stay at 

the steady 

state  
(tC ha-1 y-1) 

1.34 2.75 1.91 1.84 2.83 2.73 1.47 1.97 1.36 2.26 2.51 0.98 2.02 1.19 1.03 1.50 2.33 1.92 2.79 4.59 

Total inputs 

to reach 

Max SOC 
(tC ha-1 y-1) 

3.15 3.61 2.20 3.14 2.26 1.44 3.22 5.99 3.15 3.61 2.20 3.14 2.26 1.44 3.22 5.99 3.15 3.61 2.20 3.14 
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Appendix F: Local uncertainty of SOC linked to the non-explicit repartition of soil types within the cartographic units. As an 

example, in zone 1, which is under forest, the represented soil types are 80% Eutric cambisol (157 tC ha-1) and 20% Stagnosol (172 

tC ha-1). In zone 2, which is under grassland, the represented soil types are 80% Stagnosol (161 tC ha-1) and 20% Gleysol (333 tC 

ha-1). For this reason, the local variability of SOC stocks is higher in zone 2 than zone 1. 
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Appendix G: SOC stocks and maximum storage capacity above and below 30 cm (below 30 cm represented in bold) 
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Median SOC stocks in 2018 (tC ha-

1) 

 

Theoretical  

maximum SOC 

stocks  

(75th percentile) 

Theoretical  

maximum SOC  

stocks  

(88th percentile) 

 

Maximum SOC accrual (tC ha-1) 
 

 Cropland Grassland Forest All land uses All land uses Cropland Grassland Forest 

Calcaric Rendzic 

Leptosol 

70 

8 

155 

12 

138 

11 

155 

12 

170 

13 

85 

5 

60 

6 

17 

2 

Calcaric 
Cambisol 

81 

19 

155 

36 

123 

24 

155 

36 
180 

42 

75 
17 

41 
16 

32 
12 

Hypereutric 

Epileptic 

Cambisol 

78 

14 
112 

17 

97 

10 
112 

17 
122 

18 

34 
3 

 
15 
7 

Hypereutric 

Cambisol 

63 

40 

142 

86 

104 

56 

142 

86 

180 

109 

78 

46 

28 

32 

38 

30 

Eutric Cambisol 
59 

43 

130 

64 

119 

38 

130 

64 

146 

72 

71 

22 

59 

45 

11 

27 

Dystric 

Cambisol 

 101 

68 

76 

44 

101 

68 

117 

79 
  

25 

24 

Stagnosol 
64 

101 

142 

143 

76 

44 

142 

143 

180 

182 

76 

42 

50 

74 

28 

85 

Gleysol 
78 

202 

187 

289 

114 

58 

187 

289 

209 

324 

110 

87 

32 

111 
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Appendix H: simulated SOC accrual in tC ha-1 in the different soil types and land uses (C= cropland, F=forest, G=grassland) after 760 
1, 10, 50, 200, 1000 and 5000 years of model run under a scenario of additional inputs of 0.5 tC ha-1 y-1 under forests, 1.0 tC ha-1 y-1 

under grasslands and 1.5 tC ha-1 y-1 under croplands. Constant temperature in the top part of the table. 

Years 

Calcaric rendzic 

leptosol 

Calcaric cambisol 

Hypereutric 

epileptic 

cambisol 

Hypereutric 

cambisol 

Eutric cambisol 

Dystric 

Cambisol 

Stagnosol Gleysol 

 C G F C G F C F C G F C G F F C G F C G 

1 1.5 1.0 0.5 1.5 1.0 0.5 1.5 0.5 1.5 1.0 0.5 1.5 1.0 0.5 0.5 1.5 1.0 0.5 1.5 1.1 

10 12.6 8.6 4.6 12.5 8.6 4.6 12.9 4.6 12.6 8.7 4.5 13.1 8.8 4.6 4.6 12.8 8.8 4.6 12.3 8.9 

25 23.7 16.2 8.7 22.9 15.8 8.4 24.5 8.6 23.7 16.2 8.5 26.0 17.3 9.1 9.4 23.6 16.4 8.7 21.3 15.5 

50 32.6 22.2 11.9 30.6 21.0 11.2 34.3 11.9 32.2 21.9 11.5 37.5 24.8 13.0 14.4 33.1 23.1 12.2 27.6 20.1 

100 39.1 26.3 14.0 36.0 24.4 13.0 40.9 14.0 38.2 25.7 13.5 46.5 30.3 15.9 18.8 40.6 27.9 14.6 32.7 23.3 

200 45.5 30.0 16.0 41.8 27.8 14.9 46.7 15.7 44.2 29.4 15.4 54.0 34.5 18.0 22.1 49.1 32.7 16.8 40.1 27.6 

5000 84.5 52.1 27.4 78.9 48.4 26.4 92.4 27.6 98.5 60.1 32.1 133.8 69.6 36.2 50.0 142.3 77.9 36.1 118.5 64.1 

 SOC accrual after 25 years under temperature increase of 1.0 °C by 2050 (RCP 4.5 scenario) 

25 21.5 13.6 5.5 20.2 12.5 5.3 22.1 6.2 21.4 13.0 5.8 24.1 15.5 6.5 8.0 21.3 13.8 5.9 17.8 10.5 

 SOC accrual after 25 years under temperature increase of 1.3 °C by 2050 (RCP 8.5 scenario) 

25 20.8 12.9 4.5 19.4 11.4 4.3 21.4 5.5 20.7 12.1 5.0 23.5 14.9 5.8 7.5 20.5 13.0 5.1 16.7 9.0 
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 765 

Appendix I: SOC stocks and maximum SOC additional storage capacity, with lower and upper confidence intervals as estimated by 

the bootstrap method. The SOC stock in the region of study ranges from 2.4 – 5.3 MtC and the maximum SOC additional storage 

capacity 1.2 - 4.1 MtC. 
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Appendix J: SOC accrual after 25 years under a scenario of additional C inputs dependent on land use, (a) with temperatures staying 770 
at their 2018 level, and (b) with a 1.0 °C increase in temperature over 25 years, increasing the C mineralization rates according to 

the correction factors of the AMG model. The attenuation in SOC accrual due to increased mineralization rates is (0.49 – 0.57) / 0.57 

= 14%. The 1.0 °C increase in temperature was obtained from model simulations of mean annual temperatures by the Meteo France 

ALADIN63_CNRM-CM5 model under scenario RCP4.5, within an 8 km radius area around Bure (55087), comparing the year 

intervals 2046-2055 and 2009-2019. Source: Drias, données Météo-France, CERFACS, IPSL. 775 
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Appendix K: Estimation of the current incorporated C inputs in croplands via a yield-based allocation coefficients method from 

Bolinder et al. (2017) using agricultural yield and amendment values based on compiled reports from 2010-2019 in the region of 

study. The allocation coefficients were derived from the literature (harvest index and carbon content in plant parts from Bolinder 780 
et al. (2007), organic matter content in manure from Houot et al. (2014), root:shoot ratios in croplands from Jackson et al. (1996), 

incorporation coefficients form Girard et al. (2011)). Estimated C inputs in the croplands in the region of study are 1.4tC ha-1 y-1, 

with a mean winter wheat yield value of 5.53 tDM ha-1 y-1 and an amendment value of 2.13 tDM ha-1 y-1.  The average C inputs at 

the steady state obtained via model inversion in the croplands of the region of study, weighted by the proportion of each soil type in 

the cropland areas, amount to 1.7 tC ha-1 y-1.  785 
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Appendix L: Carbon saturation curves from Hassink as a function of depth. The Hassink equation was established empirically on 

the basis of 20 Dutch grassland soils considered to be at the stationary state, as follows: Csat = 4.09 +0.37 * (Clay + fineSilt) (%) 

where Csat is the theoretical carbon saturation concentration in the fine fraction in g kg-1. The Hassink equation provides unrealistic 790 
profiles of maximum SOC content distribution in the fine fraction at depth below 30 cm, especially in the Hypereutric Cambisol, 

Eutric Cambisol and Stagnosol, as the equation only accounts for soil texture and does not consider the biotic controls on C inputs 

and SOC decomposition rates. As comparison, the 75th percentile fit represents a theoretical maximum SOC content in both the fine 

fraction and the particulate organic matter. 
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