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Abstract. Land planning projects aiming to maximise maximize soil organic carbon (SOC) stocks are increasing in number 

and scope, often in line with the objective to reach carbon neutrality by 2050. In response, a rising number of studies assess 

SOC additional storage capacitieswhere additional SOC could be stored over regional to global spatial scales. In order to 20 

provide realistic values transferrable beyond the scientific community, targets forstudies providing targets of SOC accrual 

potentialSOC storage capacity assessments should consider the timescales over which this capacity might be reachedneeded 

to reach those targetsthemit, taking into consideration the effects ofconsidering the effects of C inputs, soil type and depth on 

soil C dynamics.  

This research was conducted in a 320 km2 territory in North-eastern France  where eight contrasted soil types have been 25 

identified, characterized and mapped thanks to a high density of fully-described soil profiles. Continuous profiles of SOC 

stocks were interpolated for each soil type and land use (cropland, grassland or forest). We defined potential targets for SOC 

accrual using percentile boundary lines, and used a linear model of depth-dependent C dynamics to explore the C inputs 

necessary to reach those targets within 25 years. We also used values from the literature to model C input scenarios, and 

provided maps ofDepth-dependent estimates of maximum SOC additional storage capacity using the Hassink equation and a 30 

data-driven approach were compared. We used a novel method that uses the data-driven approach to constrain C inputs in a 

simple model of depth-dependent C dynamics to simulate SOC accrual over 25 years, and mapped the  SOC stocks, maximum 

additional storageSOC accrual capacity and realistic SOC accrual over 25 years.stock evolution. 

SOC stocks and maximum SOC accrualdditional storage capacities are highly heterogenous over the region of study. Median 

SOC stocks range from 78 - 333 tC ha-1. Data-driven maximum SOC additional storage capacitiesMaximum SOC accrual 35 

potential variesy from 19 tC ha-1 in forested Leptosols to 197 tC ha-1 in grassland Gleysols. Estimations of SOC maximum 

additional storage capacities based on the Hassink approach led to unrealistic vertical distributions of SOC stock, with 
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particular overestimation in the deeper layers.T But tTCrucially, the simulated realistic SOC accrual over 25 years in the whole 

region of study was five times lower than the maximum SOC additional storage capacityaccrual. (0.57 and 2.5 MgC respectively). Further consideration of depth-dependent SOC dynamics 

in different soil types is therefore needed to provide targets of SOC storage over timescales relevant to public policies aiming 40 

to approach carbon neutrality by 2050. 

 

1 Introduction 

Soils constitute a carbon reservoir that can help us mitigate for climate change, or conversely accelerate GHG emissions if not 

managed properly. Objectives for carbon neutrality by 2050 rely on an increase in soil organic carbon (SOC) via changes in 45 

land management practices over the coming decades, while preserving existing stocks (Minasny et al.et al., 2017). There is a rising 

demand for the scientific community to provide quantitative targets for SOC accrual for stakeholders at regional scales and 

over decadal timescales. However, soils are heterogenous and dynamic systems: soil carbon stocks are constantly being 

mineralized and renewed by new inputs. The spatial heterogeneity of soil carbon stocks and fluxes presents a challenge to soil 
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carbon sequestration strategies. Certain soils may represent large stocks that need to be preserved, while others may have a 50 

greater capacity for additional storageSOC accrual. We need to provide quantitative targets for SOC sequestration for stakeholders at regional scales and over decadal timescales. 

Estimation of SOC stocks and SOC stock accrual potential should be performed over the whole soil profile because SOC 

below 20 cm can account for more than 50% of the total stock (Jobbágy & Jackson, 2000; De Vos et al.et al., 2015). Impacts 

of management practices on SOC dynamics have been found to vary above and below 30 cm, so the consideration of the whole 

soil profile is also important to provide accurate recommendations to stakeholders (Tautges et al.et al., 2019). 55 

These targets of SOC accrual are currently estimated using two distinct concepts.: tThe first is the fine fraction saturation approach, 

usingone uses the clay and silt content as a proxy of the maximum carbon content that a given soil is theoretically able to stabilize inin 

association with mineral phases (Hassink 1997, Angers et al.et al., 2011).; tThe other is the maximal SOC accrual approachbased on the analysis of current ecosystems’ 

functioning: this method seeks the highest observed SOC stock from a dataset taken in a given pedoclimatic context, and 

assumes this stock to be a realistic target under the management practices captured by theis dataset (Lal 2016, Chen et al.et al., 2019a). 60 

In this study we will adapt this method to define depth-dependent targets as a continuous profile.   

approach will not be used due to our focus on the whole soil profile: at depth, SOC storage becomes limited by diminishing 

organic matter inputs, therefore carbon saturation in the fine fraction is unlikely to be a pertinent constraint on maximum SOC 

accrual (Poeplau et al., 2024).). Historically, the clay and fine silt contents have been used as the main proxy of maximum soil organic carbon storage capacity in the fine fraction (Hassink 1997, Angers et al., 2011). The implication is that once saturation of the total available mineral surface area is reached, soil organic matter can only be stored as particular organic matter (POM), which is considered on average more labile than the mineral-associated organic matter (MAOM) fraction (1-50 years for POM and 10-1000 years for MAOM, Cotrufo et al. (2022)). However, there are arguments that the POM fraction should be included in strategies to preserve and replenish SOC stocks, as it reacts rapidly to changes in land management and OM inputs (Rocci et al., 2021; Derrien et al., 2023). The aspirational targets of SOC accrual carried by the 4p1000 initiative notably consider both the POM and MAOM fractions (Chen et al., 2019a). Consequently, recent methods have estimated target carbon stocks by the upper percentiles of the total carbon content in a large dataset, estimating it to be representative of the maximum carbon content that can be reached realistically under a specific pedoclimatic condition and under the management practices captured by the dataset (Lal 2016, Chen et al., 2019a).  

Targets of SOC accrualHowever, due to the difficulty in sampling SOC in deeper horizons, deep carbon dynamics are poorly known compared to shallow soil carbon (Gross & Harrison, 2019): only 11% of the studies included in the metanalysis by Don et al. (2023) on C sequestration in soil considered the soil horizons below 30 cm.  65 

neutrality objective by 2050. Getting the kinetics of SOC accrual necessitates a model-driven approach and scenarios of C 

inputs to the soil (Barré et al.et al., 2017). Mechanistic models of SOC dynamics such as Millenial (Abramoff et al.et al., 2022) are one 

option to incorporate the effect of climate change and modifications in management practice, but necessitate a lot of input data, 

therefore simpler models remain valuable to explore (Derrien et al.et al., 2023;, Schimel 2023). For some studies, simple linear 

models dependent on C inputs have proven to be sufficient to capture respiration patterns across different soils and SOC levels, 70 

even though temporal fluctuation in respiration fluxes were not properly represented (Fujita et al., 2014). We will use a linear 

model that contains a fast cycling, and a slow cycling and an inert pool. Pool size and turnover have been calibrated by Balesdent 

et al. (2018) using a global database of C concentrations and 13C isotopes measured after a change in vegetation in multiple 

campaigns, principally over several decades. This calibration makes the Balesdent et al. (2018) parameters singularly robust 

to estimate C accrual over 25 years.  75 

In addition to land use (Guo & Gifford, 2002), the physico-chemical properties of the soil play an important role on SOC 

accumulation and residence time (Kögel-Knabner et al., 2021). Soil properties that affect SOC stabilization notably include 

the clay content and exchangeable cations (Rasmussen et al.et al., 2018). High Ca2+ concentrations in soils were found to 

intensify SOC accumulation either through increased occlusion within aggregates or through enhanced SOC association with 

minerals (Rowley et al.et al., 2021). Low pH values also hinder microbial activity and organic matter degradation, leading to 80 

an increased residence time of SOC in the soil (Malik et al.et al., 2018). The parameters from Balesdent et al. (2018) in the model 

will therefore be modulated with functions from other models that account for these soil properties. Remettre ici le topo des lignes 68 à 74 en disant que tu as introduit des fonctions prise de d’autres modèles pour moduler les paramètres de Balesdent calibrés à l’echelle global). Finally, SOC dynamics 
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are impacted by climate change, both directly through the effects of soil temperature and moisture on C decomposition rates, 

and indirectly through modifications in soil properties (Luo et al., 2017).  

Once targets of SOC accrual have been set for a given timescale, the next step to facilitate communication with stakeholders 85 

is to map where this carbon can be stored in a given region, in order to account for the spatial heterogeneity of soils. Finally, while SOC stocks are strongly affected by land use (Guo & Gifford, 2002), the depth-dependent physico-chemical properties of the soil also play an important role on SOC accumulation and residence time (Kögel-Knabner et al., 2021). Soil maps 

therefore constitute an important tool to spatially assess SOC stocks and fluxes (Wiesmeier et al.et al., 2015). Soil properties that affect SOC stabilization notably include the clay content and exchangeable cations (Rasmussen et al., 2018). High Ca2+ concentrations in soils were found to intensify SOC accumulation either through increased occlusion within aggregates or through enhanced SOC association with minerals (Rowley et al., 2021). Low pH values also hinder microbial activity and organic matter degradation, leading to an increased residence time of SOC in the soil (Malik et al., 2018). Soil maps therefore constitute an important tool to spatially assess SOC stocks and fluxes (Wiesmeier et al., 2015). 

The main objective of this paper is to  estimate and map realistic targets for SOC accrual within decadal timescales, accounting 

for soil type and depth. To that end, we will explore the effect of land use and soil type on whole-profile SOC stocks and 

decadal dynamics. We focus on a region of study where dense data collection has taken place and where land use change has 90 

seen very little variation for 200 years over timescales relevant to stakeholders (25 years), and how SOC accrual over decadal 

timescales might differ from the maximum SOC additional storage capacity as estimated by current methods. We have chosen 

to use a model that has been calibrated over the soil profile by Balesdent et al. (2018) using C isotopes tracing over timescales 

of several decades to several centuries. The originality of our approach resides in the use of data-driven estimates of maximum 

SOC additional storage capacity combined with the depth-resolved model by Balesdent et al. (2018) to obtain the input 95 

scenarios required to reach the maximum SOC stocks of the studied area at the steady state. TheWe use a combination of pre-

existing methods (interpolation of continuous SOC profiles, estimation ofpercentile approach to obtain  theoretical a 

continuous profile of maximum SOC stocks based on observed valuess, application of a simple model of C dynamics robust 

at decadal timescales, mapping of the simulated  SOC accrual scenario after 25 years) is as an innovative way of generating 

realistic results that are transferrable beyond the scientific community. We will explore two scenarios of SOC accrual: one 100 

where we apply annual C inputs necessary to reach the theoretical maximum SOC stock within 25 years, and one where we 

apply realistic C input values found in the literature. We will also explore scenarios with different rates of temperature increase 

by 2050 following climate change scenarios RCP4.5 and RCP8.5. 

Ecrire ici scenarios de realistic inputs et elevation des temperatures 

2.1 Study site and data acquisition 105 

The Perennial Observatory of the Environment (OPE in French) is monitoring since 2007 a 320 km2 area located in the North-

Eastern part of France (in Meuse and Haute Marne counties). This observatory operated by the Radioactive Waste Management 

Agency (ANDRA) aims to follow the environmental impacts of a planned deep underground nuclear waste storage facility. In 

the framework of the monitoring program, various environmental data including soil characterization and mapping have been 

collected.  110 

The OPE study area is dominated by agricultural and forest lands: 55% of the region is occupied by agricultural lands managed 

by conventional agriculture practices; 29% is occupied by forests dominated by deciduous trees (oak, charm, beech); 14% is 

occupied by grassland, and less than 2% by urban areas. A land occupation map from 1830 shows that limited modifications 

in land use have taken place over the past 200 years (Dupouey et al., 2008).  The region’s continental climate is softened by 
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some oceanic influences. According to data collected by the OPE weather stations from 2009 to 2019, the mean annual 115 

temperature is 10.4 °C (+/- 6.2 °C between summer and winter), annual cumulated rainfall is 983 mm (+/- 113) and ETP = 

661 mm (+/- 79).  

This study uses a total of 198 soil profiles (932 data pointssamples) to estimate SOC stocks and additional storage capacitymaximum SOC accrual. 86 of these soil 

profiles were collected within the region of study between 1995 and 2019, and were used along with a 1/50,000 pedological 

map (Party et al.et al. / Sol Conseil 2019) to classify the soils into eight dominant soil types and define the physico-chemical 120 

characteristics of each of their horizons, such as pH, CaCO3, texture and rock fragment content (Table 1See measurement protocols in Appendix Table 1). 

The eight identified soil types can be broadly divided based on the geological parent materials and the geomorphology of the 

region (Figure 1). On the plateaus, preserved detritic Cretaceous layers from the Valanginian stage with high concentrations 

of silt and sand lead to the formation of Eutric and Dystric Cambisols, with locally Podzosols reaching deeper than 2 m. On 

the hillslopes and in the valleys, the parent materials are Tithonian limestones and Kimmeridgian marls and limestones, leading 125 

to the formation of Calcaric to Hypereutric Cambisols with high rock fragment contents in the deeper horizons. Soils on the 

hillslopes, referred to as Rendzic Leptosols and Hypereutric Epileptic Cambisols, are more superficial and have higher rock 

fragment contents. Stagnosols and Gleysols can be found at the bottom of the valleys and over the Kimmeridgian marls and 

limestones: they are deep, clay-rich and hydromorphic soils; the former is waterlogged for part of the year while the latter is 

waterlogged all year round. In the north-east of the study area, clay-rich and CaCO3-bearing materials from a tunnel excavation 130 

in 1841-1846 form local pockets of Technosols, which were not considered in this study due to their limited spatial extent. 

Land use information was derived from the 1/100,000 CORINE Land Cover 2018 at a resolution of 25 ha.  

The data from the 86 soil profiles contain SOC content data in the different soil horizons (253 data pointssamples), but only 

48 bulk density measurements using the cylinder method. In order to provide additional SOC content and bulk density data as 

a function of depth, 112 additional profiles corresponding to these eight soil types were collected from soil databases in the 135 

six surrounding administrative geographical units (counties). The soil profiles were collected by the RMQS (French Soil 

Quality Monitoring Network) and Renecofor (French Permanent Plot Network for the Monitoring of Forest Ecosystems). In 

each collected sample, organic carbon content (g kg-1) is measured in the fine fraction (< 2 mm) by dry combustion after 

removal of the inorganic carbon with acid. Since this study only considers mineral soil, the litter layer was excluded from the 

forest profiles. Bulk density values are measured using the cylinder method in 552 out of the 932 samples, and are otherwise 140 

estimated from a pedotransfer function from Beutler et al.et al. (2017) based on clay and total organic content values as follows:  

𝐵𝐷 =  [1.6179 −  0.0180 ∗  (𝐶𝑙𝑎𝑦 +  1)0.46  −  0.0398 ∗  𝑆𝑂𝐶0.55]−1.33     (1) 

where BD is the bulk density (kg m−3), Clay is the clay content (g kg−1), and SOC is the total organic carbon content (g kg−1). 

The pertinence of this pedotransfer function to estimate bulk density in our region of study has been validated with the 48 

samples from the region of study where bulk density measurements were available with a mean square error value of 0.70. 145 

Other pedotransfer functions from the literature (Saxton & Rawls, 2006; Akpa et al., 2016; Shiri et al., 2017) were also tested 

but gave mean square error values of 3.13, 6.81 and 353.35 respectively. 
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from 86 whole soil profiles sampled between 1995 and 2019 within the region of study. Standard deviations are given in brackets. 150 
See measurement protocols in Appendix A. 

Soil Type Horizon Depth (cm) Horizon 

Thickness 

(cm) 

Clay (g kg-1) pH Rock 

fragments (%) 

CaCO3 (g kg-1) 

Calcaric  

Rendzic 

Leptosols  

1 35 (9) 16 (5) 478 (68) 7.8 (0.9) 3 (15) 58 (118) 

2 19 (6) 392 (123) 8.3 (0.4) 35 (30) 414 (186) 

Calcaric 

Cambisol 

1 60 (17) 14 (6) 462 (110) 7.8 (0.9) 8 (15) 13 (136) 

2 21 (11) 394 (87) 8.2 (0.4) 35 (23) 465 (250) 

3 25 (11) 328 (110) 8.3 (0.3) 70 (20) 389 (246) 

Hypereutric 

epileptic 

Cambisol 

1 43 (11) 22 (7) 489 (73) 7.8 (0.8) 0 0 

2 21 (5) 523 (86) 6.9 (1.1) 60 (31) 0 

Hypereutric 

Cambisol 

1 84 (61) 20 (6) 409 (125) 6.9 (1.0) 2 (13) 0 

2 30 (14) 522 (147) 7.5 (0.7) 3 (28) 0 

3 33 (45) 733 (119) 7.8 (0.4) 50 (26) 2 (5) 

Eutric 

Cambisol 

1 85 (30) 18 (6) 278 (107) 5.6 (0.8) 0 0 

2 27 (10) 484 (164) 6.2 (1.0) 0 0 

3 40 (28) 595 (207) 7.5 (1.5) 5 (36) 2 (17) 

Dystric 

Cambisol 

1 168 (33) 15 (5) 40 (1) 4.0 (0.2) 0 0 

2 18 (3) 27 (6) 4.3 (0.2) 0 0 

3 10 (0) 40 (8) 4.3 (0.2) 0 0 

4 48 (3) 75 (9) 4.7 (0.1) 0 0 

5 78 (23) 95 (44) 4.6 (0.1) 0 0 

Stagnosol 1 115 (30) 28 (5) 490 (182) 7.8 (1.0) 0 2 (196) 

2 40 (11) 353 (131) 8.2 (1.4) 0 98 (244) 

3 47 (11) 346 (111) 8.4 (1.2) 1 (15) 576 (236) 

Gleysol 1 140 (41) 23 (7) 453 (88) 7.8 (0.4) 0 103 (105) 

2 46 (12) 386 (62) 8.2 (0.3) 0 143 (189) 

3 72 (36) 350 (75) 8.2 (0.3) 0 290 (288) 
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Figure 1: Land uses, soil types and geomorphological context of the study region. (a) Land use (Source: Corine Land Cover 2018). 

(b) Map of dominant soil types (Source: Party et al.et al., 2019). (c) Synthetic cross-section of the geology, topography and dominant 

soil types in the region of study. 155 
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2.2 Estimation of current initial and maximum SOC stocks 

2.2.1 Current Initial SOC stocks 

Soil organic carbon stocks per surface unit are calculated as follows (Chen et al.et al., 2019a): 

SOCstock =  
 p ∗ SOC ∗ BD ∗(100−% Rock fragments) 

1000
       (2) 

where SOCstock is the total SOC stock (kg m−2), p is the soil actual thickness (m) of topsoil or subsoil, SOC the soil organic 160 

carbon content (g kg−1), BD the bulk density (kg m−3 = g dm-3) and % Rock fragments the percentage of elements > 2 mm (%).  

This methodology assumes that the fraction > 2 mm does not contain organic carbon, which has been disputed by Harrison et 

al.et al. (2011) in cases where the rock fragments are abundant and display signs of porosity and weathering. 

The median soil organic carbon content (SOC in g kg−1) as a function of depth for each soil type and land use was calculated 

using the typical SOC content profile established by Mathieu et al.et al. (2015) and Jreich (2018) on the basis of three 165 

descriptors: Ω1 the SOC content of the soil type at maximal depth, Ω2 the SOC content at the surface, and Ω3 the depth at half 

maximum of the SOC content:  

SOC (s, z)  =  Ω1(s)  + (Ω2(s) −  Ω1(s))  ∗ e−(z/Ω3(s))       (3) 

where s is the soil type, z the depth. 

This method was used to interpolate SOC content data from national and regional datasets, acquired per horizon, in order to 170 

obtain the continuous distribution of SOC stock over the whole soil profile for each soil type and land use considered. A least 

square method for non-linear curve-fitting (Matlab function lsqcurvefit) was then applied to adjust the Ω1-3 parameters 

(Appendix Table 2B).  

Continuous vertical profiles of median bulk density were then obtained for each soil type using a logarithmic fit. The horizon 

thickness and percentage of rock fragments correspond to the median of the values per horizon per soil types in the 86 profiles 175 

within the OPE zone. This gave us a continuous profile of median SOC stocks as a function of depth, corresponding to the 

initial SOC stock profile. The dataset was collected between 1995 and 2019, but since land use has not changed since 1830, 

the soil profiles can bewere assumed to be at steady state, and to represent the initial SOC stocks before the implementation of C 

input modelling scenarios. The median SOC stock is was then calculated at each 1 cm interval along the whole profile based on 

the median bulk density curve, the median SOC curve and the percentage of rock fragments. 180 

2.2.2 Theoretical mMaximum SOC stocks and maximum SOC accrual 

We call maximum SOC stocks the highest SOC stocks that a given soil type is estimated to be able to contain. The theoretical maximum SOC stocks in this study are theoretical targets based on the upper values of the SOC data observed 

within the region. These targets represent the SOC stock that a given soil type can reach under the land management strategies 

represented in the region of study. The theoretical maximum SOC stock is therefore region-dependent as it is not solely driven 

by the intrinsic textural properties of the soil, but also by climate and the ecosystem plant productivity as they influence soil 185 

biology and chemistry along the soil profile. The maximum SOC additional storage capacityaccrual corresponds to the difference between the theoretical 

maximum SOC stocks and the the initialcurrent SOC stocks (corresponding to the year 2018). Two methods were compared to estimate the maximum SOC stocks: the carbon saturation method using the fine fraction of the soil (clay and fine silt) (Hassink, 1997), and a data-driven approach using the upper percentiles of measured SOC content data (Chen et al., 2019a). We call the first method the Hassink equation and the second method the data-driven approach. 
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The regression fit method applied using equation 3 from Jreich (2018) worked iteratively by first findcomputing the 50th percentile 

boundary line (median profile corresponding to the initial SOC stocks) and removing all data points inferior to that line. The 

process was then repeated for the 75th percentile, then the 88.5th, and finally the 94th. The choice in percentile value strongly 190 

affects the estimation of maximum SOC stocks (Chen et al.et al., 2019a). In our case, since the number of SOC data points per soil 

type ranges from 29 (Hypereutric Epileptic Cambisol) to 268 (Stagnosol), the 75th boundary line is calculated based on 14 to 

134 data points, the 88.5th percentile based on 7 to 67 data points, and the 94th percentile based on 3 to 34 data points. We 

chose the 75th boundary line as ourto definition e the theoretical maximum SOC stocks. TWe also calculated the 88th percentile boundary 

line to discuss its impact on theoretical maximum stocks and on subsequent SOC dynamic modelling.o explore this impact and feed a discussion on criteria for percentile selection, we calculated SOC maximum stocks at the 88th percentile by selecting the data points above the 75th percentile boundary line and fitting another logarithmic regression to these upper values.   195 

 

each soil type at 90% confidence interval (Chen et al.et al. 2019a). WIn this method, we generated random subsets of input parameters SOC, BD, 

percentage of rock fragments and depth values within the standard deviation of each soil type, and repeated the procedure 1000 

times to obtain 1000 estimates of the mean and percentiles values of the carbon stocks.  

2.3 Simulation of SOC accrual at different timescales 200 

We applied a whole-profile SOC dynamic model to simulate the vertical repartition of SOC accrual over different timescales. The Our modelling approach is illustrated in Figure 2, with further details of model functioning and equations in Appendix C1. The 

profiles of initial SOC stocks were first discretized into 10 cm layers. In each layer, we applied a three-pool model with a fast 

cycling, a slow cycling pool and an inert pool, where the dynamic pools are ruled by exponential kinetics. SOC stocks do not 

saturate and are linearly dependent on C inputs for a given situation. Pools relative size and turnover were calibrated by 

Balesdent et al. (2018) using a global database of change in stable carbon (C3/C4) signatures measured over multiple 205 

campaigns, over decadal timescales, for 55112 grassland, forest and cropland sites. The C3/C4 approach is typically efficient to 

follow carbon dynamics over timescales ranging from one to one thousand years, especially compared to the 14C method, 

which covers timescales of several thousand years (Verma et al., 2017). We corrected the model parameters calibrated at the 

global scale in Balesdent et al. (2018) to account for local conditions of temperature, humidity, pH, clay content and CaCO3 

content as recommended by Rasmussen et al. (2018). This was done using the equations from the AMG model (Andriulo et 210 

al., 1999; Saffih-Hdadi & Mary, 2008; Clivot et al. 2017; Levavasseur et al., 2020).  

of depth derived from the corrected mineralization factors in the fast and slow pools can be found in Appendix Table 3D.  

Mis en forme : Couleur de police : Texte 1

Mis en forme : Couleur de police : Texte 1, Exposant

Mis en forme : Police :Non Gras, Couleur de police : Texte 1

Mis en forme : Couleur de police : Texte 1

Mis en forme : Couleur de police : Texte 1, Exposant

Mis en forme : Couleur de police : Texte 1

Mis en forme : Police :Non Gras, Couleur de police : Texte 1

Mis en forme : Couleur de police : Texte 1

Mis en forme : Couleur de police : Texte 1, Exposant

Mis en forme : Couleur de police : Texte 1

Mis en forme : Police :Non Gras, Couleur de police : Texte 1

Mis en forme : Couleur de police : Bleu foncé



10 

 

 

Figure 2: Summary of our approach: (a) estimation of initial and theoretical maximum SOC stocks from the measured data; (b) 

estimation of vertical repartition of C inputs for the different scenarios considered, obtained by matrix inversion; (c) Functioning of 215 
the depth-dependent three-pool model (fast-cycling pool, slow-cycling pool, inert pool). a = allocation factor; MRT = Mean Residence 

Time (in years), y = years. MRT values vary with depth as per Balesdent et al. (2018) and are corrected for temperature, humidity, 

pH, texture and CaCO3; values displayed correspond to the mean MRT values per pool and depth section (see Methods for details 

and Appendix D for MRT values for each soil type and depth). The initial C inputs and maximum C inputs are provided in Appendix 

E. 220 
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• Scenario 1 The whole-profile SOC dynamic model was initialized under the assumption that the current SOC stocks in 2018 were at steady state. This assumption was justified on average by a land occupation map from 1830 showing limited changes in land use over the past 200 years (Dupouey et al., 2008). Inversing the model at the steady state yielded the vertical repartition of yearly C inputs (See Appendix Table 4), which we call stationary C inputs in Figure 2. The stationary C inputs were in agreements with estimations derived from the method of Bolinder et al. (2007) based on crop yield (Appendix Figure 1). (initial stationaryinitialconditions input regime) corresponds to the annual C inputs necessary to maintain the initial SOC 

stocks in each soil type and land use, obtained by matrix inversion (Mao et al., 2019): there is no SOC 

accrual in this case; expliquer que c’est obtenu par inversion matricielle et référer au papier de Mao 

• gain in after implementation of practices promoting C sequestration  Scenario 2 (extreme input regime) corresponds to the annual C inputs necessary to reach the theoretical 225 

maximum SOC stocks within 25 years, obtained through iterative optimization of the model; Expliquer aussi comment c’est obtenu 

• Scenario 3 (realistic increased input regime) defines C inputs values higher than in scenario 1 that are 

compatible with the ranges of gain in C inputs after implementation of practices promoting C sequestration 

found in the literature: +0.5 tC ha-1 y-1 in forests, +1.0 tC ha-1 y-1 in grasslands, and +1.5 tC ha-1 y-1 in 

croplands.  230 

For scenario 3, we sought values of typical current plant inputs and of realistic increased inputs from the literature or from 

existing data within the region of study. Typical current C inputs in forests range within 1.6 - 2.8 tC ha-1 y-1 according to 

measurements carried out in the Renecofor network in the region of study, assuming 50% mineralisation of above ground input 

in the forest floor. Changes in harvest practices towards non-export of harvest residues after thinning could provide additional 

inputs in the range of 0.5 – 2 tC ha-1 y-1 (total realistic input range: 1.6 – 4.8 tC ha-1 y-1). In grasslands, annual inputs to the soil 235 

range within 1.18 – 5.2 tC ha-1 y-1 according to studies from Australia and Western Europe (methods used: RothC inverse 

modelling, allometric equations using yield data, expert opinion) (Martin et al., 2021). In croplands, annual inputs to the soil 

range within 1.8 – 6.8 tC ha-1 y-1 according to studies conducted worldwide (methods used: direct measurements, RothC inverse 

modelling, allometric equations using yield data, expert opinion) (Martin et al., 2021).     

 240 

Finally, we tested the effect of projected rises in temperature on the simulated SOC accrual by modifying the mineralization 

correction factor linked to temperature in the AMG model (see EquationAppendix Equation C1). The temperature was 

increased linearly to projected annual temperatures in metropolitan France in 2050the region of study according to the scenarios 

RCP4.5 (+1.0°C) and RCP8.5 (+1.0°C and +1.3 °C) according to model simulations by the Meteo France ALADIN63_CNRM-

CM5 model within an 8 km radius area around Bure (55087), comparing the year intervals 2046-2055 and 2009-2019 (Drias, 245 

données Météo-France, CERFACS, IPSLfrom the mean temperatures of 1991-2020 respectively based on Soubeyroux et al., 

2020). This corresponds to an increase in mean annual temperatures from 10.4 °C to 11.4°C (RCP4.5) or 11.9°C (RCP8.5) 

over 25 years at all depths. The 1.0 °C increase in temperature in the region of study under scenario RCP4.5 was corroborated 

by model simulations of mean annual temperatures by the Meteo France ALADIN63_CNRM-CM5 model within an 8 km 

radius area around Bure (55087), comparing the year intervals 2046-2055 and 2009-2019 (Drias, données Météo-France, 250 

CERFACS, IPSL). RCP8.5 amounts to an extreme scenario in terms of increased mineralization rates, since in addition to 

using the most pessimistic RCP scenario, our model assumes that rises in temperature propagate instantly at depth and that 

humidity conditions remain at the present levels. We tested the sensitivity of SOC accrual to the two temperature scenarios in 

the different soil types and land covers. 

Mis en forme : Police :Italique, Couleur de police : Texte 1

Mis en forme : Paragraphe de liste, Avec puces + Niveau : 1
+ Alignement :  1,9 cm + Retrait :  2,54 cm
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 255 

The study site was divided into zones characterized by their land use (cropland, grassland, forest) and by their dominant soil 

type. Mapping zZones were derived from the intersection of the CORINE Land Cover map and of the pedological soil map. 

Values of SOC stocks, maximum SOC accrual, and simulated accrual after 25 years were then associated to each mapping 

zone. 

Mapping results are by necessity a simplification of the real distribution of soils properties and SOC contents. The soil units represented in Figure 1b shows 260 

the dominant soil type in each cartographic mapping zone, but in reality, each zone contains a non-spatialized mixture of soil types. Therefore, the SOC stock and SOC additional storage capacity in each cartographic zone correspond to a weighted mean following the percentage of each soil type present in the zone. Likewise, the standard deviation of SOC stocks in a zone corresponds to a weighted mean of the standard deviation of the SOC stock in each represented soil type.   

mapping zone contains several soil types that cannot be explicitly delimited on the map at this spatial resolution. Therefore, 

each point within a given zone has a probability of belonging to one of several soil types (e.g.: 70% chance of being a Eutric 

Cambisol, 30% chance of being a Stagnosol). The total SOC stock for thisa zone shouldis then be obtained by the weighted mean of the 

SOC stocks (e.g. 70 % of the SOC stock for Eutric Cambisols and 30 % of the SOC stock for Stagnosols). The standard 265 

deviation of the total SOC stock should likewise be obtained by the weighted standard deviations of the SOC stocks. The local 

uncertainty corresponds to expected local variations in the zone if the different soil types have contrasted SOC stocks. We 

visualized this local uncertainty by mapping the contrasts in SOC stocks within each zone in Appendix F. 

3 Results 

3.1 SOC stock and maximum additional storage capacitySOC accrual as a function of depth, land use and soil type 270 

3.1.1 Vertical repartition of SOC stocks 

Current SOC stocks over the whole profile range from 78 to 333 tC ha-1 (Table 32), of which 59 to 156 tC ha-1 are in the topsoil 

(0 - 30 cm). The lowest SOC stocks are found in the shallower soil types (Calcaric Rendzic Leptosol and Hypereutric Epileptic 

Cambisol). Current SOC stocks are twice to three times higher in hydromorphic soils (Stagnosols and Gleysols) compared to 

non-hydromorphic soils. 275 

SOC content and stocks decrease with depth, with sharp decreases in the SOC stock profiles corresponding to a change in the 

percentage of rock fragments between two horizons (Figure 3a-c). On average, excluding the shallower soil types (Calcaric 

Rendzic Leptosol and Hypereutric Epileptic Cambisol), the proportion of the SOC stock situated in the first 30 cm is 53 % in 

croplands, 67 % in grasslands and 71 % in forests (Appendix G). The soils in croplands are therefore depleted in SOC in the 

topsoil compared to forests and grasslands (Figure 3a). The difference in SOC stocks between land uses diminishes in the 280 

deeper horizons.  
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percentile of our regional dataset, and SOC stock after 25 years under a realistic scenario of C inputs, for each soil type and land 285 
use. Realistic range of annual C inputs to the soil is 1.8 – 6.8 tC/ha/y for croplands (Martin et al., 2020), 1.18 – 5.2 tC/ha/y for 

grasslands (Martin et al., 2020), and 1.6 – 4.8 tC/ha/y for forests according to measurements made in the region of study.     
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Table 2: Soil organic carbon stocks, maximum stocks corresponding to the 75th percentile of the datasets under all land uses, and 

maximum SOC additional storage capacity estimated from the data-driven approach for the different land uses and soil types 
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Figure 3: (a) Median (50th percentile of the dataset for each land use) and theoretical maximum (75th percentile of the dataset) fitted 

depth profiles of SOC content in each soil type and each land use. The Jreich parameters (2018) used to plot the SOC content profiles 295 
are given in Appendix BTable 2. (b) Estimation of maximum SOC content as a function of depth by the Hassink equation corrected 

with proportions of POM and MAOM from the literature (dashed blue line) and by the data-driven approach using a 75th percentile 

curve of the dataset (black solid line). (c) Current SOC stocks under croplands and maximum SOC additional storage 

capacityaccrual to reach the theoretical maximum SOC stocks of each soil type.  

3.1.2 Theoretical MMaximum SOC stocks and maximum additional storage capacitySOC accrual 300 

The theoretical maximum SOC content estimated by the data-driven approach decreases with depth under all soil types, from 

50-100 g kg--1  near the surface to under 25 g kg-1 at the bottom of the soil profiles (Figure 3ab-c). By contrast, the decrease in 

maximum SOC content with depth as estimated by the Hassink equation is less prominent. Maximum total SOC contents stay 
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at around 35 - 46 g kg-1 throughout all soil profiles (32 - 40 g kg-1 under 30 cm), except for the Dystric Cambisol where the 

average value is 11 g kg-1 (Figure 3b). The theoretical maximum SOC stocks as estimated by the data-driven approach range 305 

from 129 tC ha-1 in the Hypereutric Epileptic Cambisol to 476 tC ha-1 in the Gleysols.  

The maximum SOC additional storage capacityaccrual found by the data-driven approach varies from 19 tC ha-1 for shallow, 

rocky forest soils to 197 tC ha-1 for agricultural Gleysols (Table 2), considering the a conversion of cropland into grassland or 

forest. Using percentile 88th instead of 75th increases our estimation of the maximum SOC stocks by about 16% (9 - 27% 

depending on soil type), without changing the hierarchy of maximum SOC stocks across the eight soil types. 310 

3.2 Exploring kinetics of simulated SOC accrual 

Employing the Hassink equation was considered to underestimate the maximum SOC content near the surface and to 

overestimate maximum SOC content in the deeper horizons, for reasons that will be detailed further in the Discussion section. 

The maximum SOC content profiles obtained by the data-driven approach were therefore selected for the exploration of SOC 

kinetics.  315 

The stationary initial stationary C inputs obtained by model matrix inversion obtained by model inversion rangeare, depending on soil type,d from between 1.0 – 2.8 tC ha-1 y-1 

for croplands, 1.2 – 4.6 tC ha-1 y-1 for grasslands and 1.0 – 2.8 tC ha-1 y-1 for forests (Table 2). By contrast, the extreme input 

regime needed to reach the theoretical maximum SOC stocks within 25 years ranges between 3.8 - 17.3 tC ha-1 y-1 for croplands, 

6.0 - 14.9 tC ha-1 y-1 for grasslands and 3.4 - 9.4 tC ha-1 y-1 for forests. 1.0 – 4.6 tC ha-1 y-1, and the maximum C inputs from 1.4 – 6.0 tC ha-1 y-1 (Appendix Table 4). The realistic increased input regime chosen based on 

the literature is 2.5 – 4.3 tC ha-1 y-1 for croplands, 2.2 – 5.1 tC ha-1 y-1 for grasslands and 1.5 – 3.3 tC ha-1 y-1 for forests.  320 

Under the chosen scenario of C inputs dependent on land use (+1.5 tC ha-1 y-1 under cropland, +1.0 tC ha-1 y-1 under grassland, 

+0.5 tC ha-1 y-1 under forest),realistic increased input regime, and when rising temperatures are not considered, the SOC accrual 

after 25 years ranges from 22-26 tC ha-1 under cropland, 15-18 tC ha-1 under grassland, to 8-10 tC ha-1 under forest (Figure 4, 

Appendix Table 6H). Kinetics of SOC accrual are dependent on the time since the beginin of the adoption ofimplementation 

of the practice increasing C inputs to soil. The yearly accrual rates averaged over the first few decades is range 325 

betweentherefore 0.88-1.04 tC ha-1 y-1 under croplands, 0.6-0.72 tC ha-1 y-1 under grassland and 0.32-0.4 tC ha-1 y-1 under 

forest. The accrual rates then decrease over decadal and centennial timescales as the SOC stocks stabilise stabilize 

asymptotically towards the new steady state, as per the model equations. SOC accrual at the new steady state is highest under 

Dystric Cambisol owing to the effect of the low pH on the mineralization rates as implemented in the model. Modelled SOC 

accrual after 25 years decreases with depth under all soil types and land uses (Figure 5). 330 

By contrast, reaching the maximum SOC stocks estimated by the 88th percentile required additional C inputs of about 3.4 tC ha-1 y-1 across all land uses. This was not considered realistic, as will be justified in the discussion section. 

accrual simulated at constant temperature (10% under cropland, 20% under grassland and 30% under forest on average). The 

SOC accrual after 25 years under this scenario ranges from 16-24 tC ha-1 under cropland, 10-16 tC ha-1 under grassland, to 5-

8 tC ha-1 under forest (Appendix Table 6H). 

Incorporating thee more extreme RCP8.5 scenario of 1.3 °C increase in temperature over 25 years attenuates SOC accrual by 335 

10 to 50%, and shows a stronger impact of soil type and especially land cover on the mineralization rates (Appendix Table 

Mis en forme : Couleur de police : Rouge foncé
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6H). SOC accrual is attenuated by 10-20% in cropland soils, 10-40% in grassland soils, and 40-50% in most forest soils except 

Dystric Cambisols (20%).   

 

Figure 4: Model results of SOC accrual after 25, 100 and 5000 years under forests for a scenario of +0.5 tC ha-1 y-1 compared to the 340 
stationary initial C inputs, temperature remaining constant.  
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Figure 5: Model results of SOC accrual after 25 years at each depth under the three considered C input scenarios (+1.5 tC ha-1 y-1 

under croplands, +1.0 tC ha-1 y-1 under grasslands, +0.5 tC ha-1 y-1 under croplands compared to the stationary initial C inputs), t. 345 
Temperatures remaining constant. Model results for each soil type are only shown for the land uses represented in the dataset. 

3.3 Maps of SOC stocks, maximum additional storage capacitiesSOC accrual, and simulated accrual after 25 years 

The repartition of SOC stocks and maximum additional storage capacitiesSOC accrual in the region of study isare most visibly 

related to the land use, but is also affected by the spatial distribution of Stagnosols and Gleysols (Figure 6). The current SOC 

stock in the region of study amounts to a total of 3.9 MtC, with a standard deviation of 1.5 MtC according to the bootstrap 350 

method (Appendix Figure 3I). To compare these results with national-scale estimates of SOC stocks, we average 3.9 MtC over 

the entire region of study and obtain a mean value of 122 tC ha-1, of which 87 tC ha-1 are in the first 30 cm. 

The maximum SOC stocks that the region can theoretically contain is 3.9 + 2.5 = 6.4 MtC, suggesting that the soils in the 

region of study are at 61% of their theoretical maximum SOC stock. However, according to model results in the chosen 

scenario 3, this maximum SOC stock would only be reached over timescales of centuries to millenia, and the SOC accrual 355 

after 25 years only reaches 0.57 MtC. The SOC accrual in the region of study is attenuated by 14% and reaches 0.49 MtC 

when a 1.0 °C increase in temperature is implemented in the mineralization rates (Appendix JFigure 4).  
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Figure 6: Maps of SOC stocks (a), maximum SOC additional storage capacityaccrual (b) and simulated SOC accrual after 25 years under a realistic increased 

input scenario of additional C inputs compared to the steady state dependent on land use (+ 0.5 tC ha-1 y-1 under forests, + 1.0 tC ha-1 y-1  under grassland, + 1.5 tC ha-1 y-1  under cropland) (c). Upper and 360 
lower confidence intervals provided by the bootstrap method are given in Appendix Figure I3. The sStandard deviation of the total SOC 

stocks and additional storage potentialsmaximum SOC accrual based on the upper and lower confidence intervals applied to the whole region is 1.5 MtC. 
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4 Discussion 

4.1:  Implications of our approaches to estimate target SOC stocks and accrual rates 

There is a rising interest in representing the contribution of soils to carbon storage, both through the mapping of current SOC 365 

stocks, and through the mapping of the maximum SOC stocks that these soils can theoretically reach.  

used to explore the input rates and timescales needed to reach these targets SOC stocks. Our approach for estimating SOC 

theoretical maximum stocks was made possible by the uncommon abundance of soil profile data and by the detailed 

pedological map available in the region of study. This approach is most pertinent in areas where the land use and management 

has remained stable for many years (over 200 years in our region of study), because the high values of SOC stocks used to 370 

estimate target SOC stocks per soil type are more likely to represent a steady state rather than a transient stage. Such data-rich, 

well-documented regions can serve as references for similar pedoclimatic zones. A further step would then be to intensify 

profile-scale data collection in other regions to provide reference values of SOC stocks and maximum SOC accrual in as many 

pedoclimatic zones as possible, in order to upscale this approach from the regional to the global scale (Barré et al., 2017). 

Three C input scenarios were implemented to explore kinetics of SOC accrual. The first was an initial input regime obtained 375 

by matrix inversion, and corresponds to the annual C inputs necessary to maintain the initial SOC stocks at the steady state. 

We found a good agreement between the model-derived initial C inputs and available measurements and estimates made within 

the region of study: in croplands, the simulated C inputs were consistent with estimations of C inputs derived from the method 

of Bolinder et al. (2007) based on crop yields recorded in the region of study (Appendix K). In forests, the model-derived 

initial C inputs were consistent with measurements from the Renecofor carried out in the region of study. 380 

 The second scenario sought the annual C inputs necessary to reach the theoretical maximum SOC stocks within 25 years. The 

required annual C input rates largely exceed the realistic ranges from the literature for most soil types. The only soil types for 

which this scenario is realistic are the shallow soils (Calcaric Rendzic Leptosol and Hypereutric Epileptic Cambisol) and the 

sandy Dystric Cambisol, because these soils have lower SOC stocks than the others and are already close to their theoretical 

maximum SOC stocks.  385 

The third scenario used realistic annual C input values from the literature, and found SOC accrual rates ranging from 0.32 – 

1.04 tC ha-1 y-1 within the first 25 years. Examples can be found from previous studies of similar SOC accrual rates within 

decadal timescales following changes in land management strategies without changing the land use: transition from 

conventional to conservation agriculture in croplands (Autret et al., 2016); promoting an increase in plant diversity in 

grasslands (Yang et al., 2019); less frequent cutting in forests, or acting on forest productivity to increase root inputs and 390 

limiting soil disturbance during harvesting (Jandl et al., 2007; Mayer et al., 2020). The 1.5 tC ha-1 y-1 additional C inputs 

modelled in croplands resemble values calculated in a long-term field experiment after transition from conventional agriculture 

to conservation agriculture (1.72 tC ha-1 y-1 over 16 years, Autret et al., 2016). Those inputs also correspond to what the model 

requires to maintain the theoretical maximum SOC stocks at steady state; this convergence confirms the robustness of the 

approach. 395 
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Using a percentile boundary line (here: 75th percentile of the SOC data) to estimate the theoretical maximum SOC stocks 

comes with a methodological challenge: the percentile regression necessarily depends on the size of the dataset and on its 

variability. A low percentile value within a large dataset underestimates the maximum SOC accrual, but an excessive percentile 

value within a small dataset produces an unrealistic target and increases the sensitivity to outliers. Other studies have used the 

following percentile values to estimate theoretical maximum SOC stocks at various spatial scales: Chen et al. (2019) compared 400 

maximum total SOC stocks following the 0.8, 0.85 and 0.9 percentile value at the national scale (1089 sites); Georgiou et al. 

(2022) compared the maximum mineral-associated SOC with low and high activity minerals at the 0.9, 0.95 and 0.975 

percentiles at the global scale (1144 profiles). Standardized rules to define the choice of a percentile value for a target stock, 

depending on the scale of the study and the size and variability of the dataset, have yet to be established. Here, our choice of 

target SOC stocks at the 75th percentile is justified by the concordance between the annual C inputs necessary to maintain these 405 

stocks at steady state and realistic ranges of annual C inputs from Martin et al. (2021) and from regional Renecofor datasets 

(Table 2). By contrast, maintaining SOC stocks at the 88th percentile boundary line would require annual C inputs between 4.4 

and 21.7 tC ha-1 y-1, far in excess of what can be realistically added to soils. We recommend, where possible, to verify the 

realism of SOC stock targets using carbon dynamics models and matrix inversion to estimate the annual C inputs necessary to 

reach these targets in the long term. 410 

Interrogating the realism of target SOC stocks is of particular importance when deeper soil horizons are considered. Another 

concept used to define target SOC stocks is to focus on the mineral associated carbon, considered to be more stable, by using 

the clay and fine silt fraction as a proxy of the amount of carbon that can be theoretically stored in a soil in the long term 

(Hassink 1997, Cotrufo et al., 2019, Georgiou et al., 2022). However, applying this concept over the whole soil profile leads 

to unrealistically high targets, and therefore unrealistic C inputs at depth (Appendix L).  415 

Modelled SOC accrual in scenario 3 ranged from 8.5 to 26 tC ha-1 after 25 years, with a rapid decrease of SOC accrual rates 

with depth driven by decreasing C inputs. The deeper horizons of the soil provide limited opportunity for additional storage 

over short timescales using current land management practices. Furthermore, the proportion of new carbon inputs that is 

allocated to the fast carbon pool exceeds 85% at all depths in the soil profile (Appendix D): this implies that even in the deeper 

soil horizons, the majority of new C inputs is quickly mineralized, as also simulated by Sierra et al. (2024). The mean residence 420 

times (MRT) in the fast pool remain similar near the surface and at depth (17 – 38 years and 11 - 47 years respectively), but 

increase with depth in the slow pool (from 477 - 1100 years to 1744 - 5817 years). The greater contrast in mean residence 

times between the fast and slow pools at depth challenges our understanding of SOC dynamics.   

 

across soil types are not sufficient to have a significant impact after 25 years, especially in the fast pool (Appendix D). It is 425 

rather the land use that affects SOC accrual by controlling the quantity and vertical repartition of inputs (Appendix E). 

However, soil type has a strong influence on current SOC stocks to preserve by categorizing soils based on profile depth, rock fragment 

content and other physico-chemical properties. Hydromorphic soils in particular have total SOC stocks up to three times higher 

Mis en forme : Police :Gras, Couleur de police : Texte 1,
Français (France)



22 

 

than in other soil types, making their preservation particularly critical. These high SOC stocks are due to waterlogged 

conditions strongly limiting decomposers activity (Sahrawat, 2004), notably for energetic reasons (Keiluweit et al., 2016).  430 

Our model provides a widely-applicable tool to assess the effect of different soil types and initial distributions of SOC stocks 

on SOC dynamics at decadal timescales. It, but has yet to be validated with measures of SOC accrual using repeated sampling campaigns. The model also does not cover all processes relevant to organic matter dynamics in soils. For instance, the model does not account for vertical transfer, but Balesdent et al (2018) showed that 13C 

incorporation in subsoil after a change in vegetation is slow and affects only long-term carbon dynamics. We can therefore consider that this process is negligible at decadal timescales.. Sierra et al. (2024) 

also found that transport may only play a secondary role in the formation of soil carbon profiles according to simulation 

examples and measurements from carbon and radiocarbon profiles. Finally, the pPriming effect is not taken into consideration in our model, 435 

even though it is expected to occur when C inputs to the soil increase, which could cause simulated results to overestimate 

SOC accrual (Guenet et al., 2018). PButpriming is difficult to include in predictive models because the processes involved are still 

poorly understood (Bernard et al., 2022). Current explorations of the priming effect use either mechanistic models centred on 

microbial processes (Schimel, 2023), or theoretical models fitted to laboratory experiments, which do not fit the scope of our 

study.   440 

Testing for the effect of temperature increase on mineralization rates led to an attenuation of SOC accrual by 2050 of 7 to 50 

% depending on the climate scenario considered. We did, but our model could not account holistically for the effects of climate change on SOC 

dynamics in this study:as they t. Those.The combination of changes in temperature, CO2 concentration and precipitation can drive a myriad of 

responses in net primary production, SOC input repartition and mineralization processes (Rocci et al., 2021; Bruni et al., 

2021). In forests for instance, increased drought conditions may increase tree mortality, but might also enhance deeper roots 445 

prospection for water, thereby changing the vertical repartition of C inputs (Schlesinger et al., 2016). Different soil types are 

also expected to respond differently to climate change, due for instance to the impact of soil texture on soil moisture regimes 

(Bormann, 2012; Hartley et al., 2021). Here, we have considered a simplified case where humidity conditions do not change 

from the 2009-2019 period and dot not affect soil carbon dynamics. The scientific community needs to improve its 

understanding of the priming effect, of SOC dynamics processes driven by climate change, and to further explore how soil 450 

type influences organic matter decomposition dynamics over decadal timescales. 

4.2: Implications for stakeholders: what levels of C accrual are achievable after 25 years? 

Increasing soil organic carbon (SOC) stocks in soils has the potential to provide global benefits, but its successful 

implementation requires regional scale information on land use and soil type. An important aspect of this work is to provide 

relevant SOC storage targets to stakeholders. The maximum SOC accrual can be used as a theoretical, long-term target value, 455 

but is not representative of how much carbon can realistically be added to soils over decadal timescales. In the region of study, 

total SOC accrual after 25 years under a realistic scenario of C inputs was found to be five times lower than the maximum 

theoretical SOC accrual (0.57 MgC versus 2.5 MgC), assuming no changes in the implemented practices increasing plant inputs. Nevertheless, we observe potential for SOC accrual over 25 years in all our studied soils. Our simulation of rising temperatures following RCP4.5 (+1.0 °C) and 

RCP8.5 (+1.3°C) attenuated this SOC accrual by 7 - 38% and 10 - 50% respectively over 25 years through the increase of 

mineralization rates. This shows that increasing organic matter inputs to the soil remains worthwhile, since SOC accrual 460 
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remains significant even in an extreme scenario (highest projected increase in temperature but no change in humidity 

conditions). Tu peux peut etre mettre ici la notion evoquée précédemment sur l’effet humidité 

Maps of SOC stocks are efficient tools to synthetize scientific results at the regional scale for stakeholders. Crucially, they 

highlight areas where soil degradation would lead to the greatest release of CO2. Maps of SOC stocks are efficient tools to synthetize scientific results at the regional scale for stakeholders. Crucially, they highlight areas where soil degradation would lead to the greatest release of CO2. The current SOC stocks have been built over 

timescales of centuries to millennia, especially in the deeper soil horizons, but can be rapidly lost due to land use change and 465 

other disturbances. Therefore, as highlighted by Sierra et al. (2024), the priority should be to preserve the existing SOC stocks, 

even as we attempt to implement innovative land management practices to maximize these SOC stocks where possible. Despite 

the high uncertainties associated with regional-scale estimations of SOC stocks (Appendix I-J), our mean SOC stock values of 

87 tC ha-1 in the first 30 cm are in accordance with national-scale estimates that found SOC stocks of 75 – 100 tC ha-1 in the 

North-East of France (Pellerin et al., 2021).  470 

Maps of SOC stocks are efficient tools to synthetize scientific results at the regional scale for stakeholders. Crucially, they 

highlight areas where soil degradation would lead to the greatest release of CO2. The map of maximum SOC accrual was found to be of limited interest because it does not provide a timescale for when that 

maximum SOC stock might realistically be reached. Reaching the theoretical maximum SOC stocks by the 2050 horizon for 

carbon neutrality would require prohibitively high annual C input rates. We therefore recommend maps of prospective SOC 

accrual to be time-specific, with C input rates within realistic ranges.  475 

Our time-specific SOC accrual map is an improvement from simple representation of maximum theoretical SOC stocks, but 

remains a simplification of what can realistically be implemented. The map implies a uniform increase in C input rates for 

each land use in the entire region of study, but this would likely be hindered by practical and socio-economic factors. The SOC 

stock and time-specific SOC accrual maps should be used as part of a wider set of decision support tools for land planners. In 

some circumstances, adding organic carbon to soils might not even be the best solution for mitigating climate change: biomass 480 

harvest not returned to the soils can instead be used as a source of food, biosourced energy or biomaterials (Derrien et al., 

2023). These alternate uses of carbon biomass offer a mean of substituting fossil carbon, which should be verified 

quantitatively by life cycle analysis. 

Finally, soil type information provided to stakeholders should not be limited to the current or prospective SOC stocks. Soil-

type specific physico-chemical properties are an important but as of yet poorly considered factor for land planning. Soil type 485 

affects numerous soil functions such as water retention, resistance to erosion and nutrient cycling (Adhikari & Hartemink, 

2016). These soil functions should be considered in addition to the SOC dynamics to choose management strategies adapted 

to each soil type. 

 

Informing stakeholders on soil management strategies to preserve and maximise maximize existing soil organic carbon (SOC) 490 

stocks is a pressing concern to the scientific community. It is critical to communicate on the effects of soil type, depth and 

land-use on SOC accrual in soil over time periods compatible with the roadmap for C neutrality. This study explored how 
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whole-profile SOC accrual over decadal timescales differs from the SOC maximum additional storage capacity as estimated by current methods: according to texture (Hassink equation, 1997), or based on the top percentiles of regional stocks (data-driven), taking into consideration soil depth, soil type and land use., and to explore the C inputs necessary to reach these targets. 

The Hassink equation provided unrealistic profiles of SOC maximum additional storage capacity distribution at depth below 

30 cm, as the equation only accounts for soil texture and does not consider the biotic controls on C inputs and SOC 495 

decomposition rates. Depth-dependent profiles of maximum SOC stocks estimated from the data-driven approach were more 

in line with what is known of root distribution and therefore C input distribution with depth.  

We note a greater contrast of SOC mean residence times at depth, which invites further investigation: while a fraction of the 

new C inputs added to the deep soil horizons can remain stable over millennial timescales, the majority is mineralized within 

two decades. Simulating a rise in temperatures of 1.3°C over 25 years following RCP8.5 attenuated SOC accrual by 10 to 500 

50%. 

The effect of soil type on SOC mineralization rates was not visible over the decadal timescales considered. However, soil type 

plays an important role on the spatial repartition of the current SOC stocks that need to be preserved. Studies of SOC stocks 

and storage capacities should be complemented by more holistic explorations of soil functioning and ecosystem services which 

incorporate pedological knowledge. 505 

This study provided a set of maps that give ato give a more complete picture of the issues related to carbon storage in soils 

(carbon stocks, maximum SOC accrualadditional storage capacities, and realisticpotentials for SOC accrual over decadal 

timescales). Such maps have the potential to facilitate communication with land planners and stakeholders by highlighting 

areas most worthy to preserve, and where carbon storage practices are likely to be the most efficient over decadal timescales. 

The efficacy of such maps as decision support tools should be explored via collaboration projects with stakeholders. 510 
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Appendices 

Appendix A: List of soil properties collected at each soil profile and their measurement protocol 

Study type Soil Property Unit Method 

Field observation 

Slope % In situ operator's assessment 

Soil depth Cm In situ operator's assessment 

Horizon Textural Class Type In situ operator's assessment completed by NF X 31-107 

Horizon Compacity Type knife test (ISO 25177: 2008) 

Horizon Rock Fragment Content % In situ operator's assessment 

Horizon Hydromorphic Features Type In situ operator's assessment 

Lab 

Agronomical 

Analysis 

Horizon pH - NF ISO 10390 

Horizon OM g/kg NF ISO 10694 

Horizon CaCO3 g/kg NF ISO 10693 

 670 

Appendix BTable 2: List of descriptors used to plot the SOC content curves for each soil type and land use: Ω1 the SOC content of 

the soil type at maximal depth, Ω2 the SOC content at the surface, and Ω3 the depth at half maximum of the SOC content (based on 

Mathieu et al.et al. (2015) and Jreich (2018)) 

Land use Soil type (WRB) Soil type (RPF) 

Ω1 

Bottom SOC 

(g/kg) 

Ω2 

Top SOC 

(g/kg) 

Ω3 

Depth at half 

maximum of the 

carbon content (cm) 

Cropland Calcaric rendzic leptosol Rendosol 17 31 17 

Forest Calcaric rendzic leptosol Rendosol 22 74 16 

Grassland Calcaric rendzic leptosol Rendosol 12 53 15 

Cropland Calcaric cambisol Calcosol 14 33 21 

Forest Calcaric cambisol Calcosol 17 62 18 

Grassland Calcaric cambisol Calcosol 14 54 15 

Cropland Hypereutric epileptic cambisol Rendisol 19 38 13 

Forest Hypereutric epileptic cambisol Rendisol 16 60 12 

Cropland Hypereutric cambisol Calcisol 10 24 17 

Forest Hypereutric cambisol Calcisol 22 64 21 

Grassland Hypereutric cambisol Calcisol 14 54 15 

Cropland Eutric cambisol Brunisol 8 18 21 
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Forest Eutric cambisol Brunisol 8 45 16 

Grassland Eutric cambisol Brunisol 5 23 21 

Forest Dystric cambisol Alocrisol 4 31 15 

Cropland Stagnosol Rédoxisol 10 21 19 

Forest Stagnosol Rédoxisol 9 46 17 

Grassland Stagnosol Rédoxisol 9 40 14 

Cropland Gleysol Réductisol 16 26 16 

Grassland Gleysol Réductisol 21 68 18 

 

 675 

Appendix C1: Details of model functioning  

A depth-dependent SOC dynamic model using multilayer soil modules was built to establish the time needed to reach different 

levels of carbon storage in the soil. SOC is allocated to three boxes (fast, slow, stable) corresponding to different SOC 

mineralization rates defined by Balesdent et al.et al. (2018) based on a meta-analysis of changes in stable carbon isotope 

signatures at 55 grassland, forest and cropland sites, in the tropical zone. The mineralization rates were obtained using a C3/C4 680 

approach, which is typically efficient to follow carbon dynamics over timescales ranging from one to one thousand years. 

Compared to the 14C method, which covers timescales of several thousand years, the C3/C4 approach is relevant for land 

planning by exploring the impact of land use change on SOC dynamics (Verma et al., 2017).  

The mineralization factors associated with each box were then corrected for temperate soils using correction factors defined 

for the AMG model to account for the difference in environmental conditions (temperature and humidity) between tropical 685 

and temperate, but also to account for the differences in pH, clay content and CaCO3 between soil types. The correction factors 

linked to temperature and humidity were are based onbased on Andriulo et al. (1999) and Saffih-Hdadi and Mary (2008)Mary 

et al. (1999). The correction factors linked to pH, clay content and CaCO3 were previously established by Clivot et al.et al. 

(2017) based on the monitoring of N mineralization in 65 bare fallow soils representative of arable cropping systems in France, 

over a depth up to 150cm. These corrections are in accordance with recommendations from Rasmussen et al.et al. (2018), for 690 

whom SOM stabilization not only depends on clay content, but also on pH and exchangeable calcium for alkaline soils. The 
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correction factors for the temperature (T), humidity (H), clay content (A), pH and CaCO3, as used in the 2019 AMG model, 

were as follows: 

• 𝑓𝑇 =  
25

1+(25−1) ∗  𝑒0.12∗15 ∗ 𝑒−0.12∗T    [Appendix Equation C1] 

• 𝑓𝐻 =  
1

1+0.03∗𝑒−5.247∗(P−PET)/1000    [Equation C2Appendix Equation 2] 695 

• 𝑓𝐴 =  𝑒−2.519 ∗ 10−3 ∗ Clay     [Equation CAppendix Equation 3] 

• 𝑓𝑝𝐻 =  𝑒−0.112 ∗ (pH−8.5)2
     [Equation CAppendix Equation 4] 

• 𝑓𝐶𝑎𝐶𝑂3 =  
1

1+(1.5∗10−3 ∗ CaCO3)
    [Equation CAppendix Equation 5] 

With T the mean annual temperature, P the mean annual precipitation and PET the potential evapotranspiration.  

The total correction factor f = fT * fH * fA * fpH * fCaCO3, was calculated for both the 55 tropical sites from Balesdent et 700 

al.et al. (2018) and for the temperate conditions in the OPE region of the study (, fBAL and fOPE respectively). The corrected 

mineralization factors k1corr and k2corr were obtained with the following equations: 

• k1corr = k1 *  fOPE / fBAL    [Equation CAppendix Equation 6] 

• k2corr = k2 *  fOPE / fBAL    [Equation CAppendix Equation 7] 

For each soil type and land use, the initial carbon stocks every 10 cm (Cinit) was again obtained by data interpolation with the 705 

Jreich method (2018); they were distributed between the three boxes pools based on the depth-dependent allocation factors 

defined by Balesdent et al.et al. (2018) (a1 and a2), as follows: 

• C1init(i) = Cinit(i) * a1(i)    [Equation CAppendix Equation 8] 

• C2init(i) = Cinit(i) * a2(i)    [Equation CAppendix Equation 9] 

• C3init(i) = Cinit(i) * (1-(a1(i)+a2(i)))   [Equation CAppendix Equation 10] 710 

With Cinit the initial carbon stock, and a1 and a2 the allocation factorsproportion of carbon in to pool 1 and 2 at each depth i. 

The incorporated soil carbon inputs at each depth i and timestep t were added as follows:  

• C1in(t,i) = INPUT(i) * α(i)    [Equation CAppendix Equation 11] 

• C2in(t,i) = INPUT(i) * (1-α(i))   [Equation CAppendix Equation 12] 
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with α the proportion of new carbon inputs that is allocated to the fast carbon pool, calculated from the steady-state input 715 

equations (see Equations C19-22 below).  

With 𝛼(𝑖) =
a1∗k1corr

𝑎2∗𝑘2𝑐𝑜𝑟𝑟

1+(
a1∗k1corr

𝑎2∗𝑘2𝑐𝑜𝑟𝑟
)
      [Appendix Equation 13] 

• C1out(t,i)=C1(t,i) * ( 𝑒−k1𝑐𝑜𝑟𝑟(i)∗timestep - 1)  [Equation C13Appendix Equation 14] 

• C2out(t,i)=C2(t,i) * ( 𝑒−k2𝑐𝑜𝑟𝑟(i)∗timestep - 1)  [Equation C14Appendix Equation 15] 

The change in soil carbon stock at each depth i between t and t+1 was defined as follows: 720 

• dC1(t,i)=C1out(t,i) + C1in(t,i)   [Equation C15Appendix Equation 16] 

• dC2(t,i)=C1out(t,i) + C2in(t,i)   [Equation C16Appendix Equation 17] 

The soil carbon stocks at t+1 were therefore defined as:  

• C1(t+1,i) = C1(t,i) + dC1(t,i)   [Equation C17Appendix Equation 18] 

• C2(t+1,i) = C2(t,i) + dC2(t,i)   [Equation C18Appendix Equation 19] 725 

The corrected mineralization rates also led to the definition of carbon mean residence times as a function of depth for each soil 

type (MRT = 1/k, see Appendix BTable 2). SOC mean residence times at the steady state depend on the physico-chemical 

properties of the studied soil types: in our study site, they range from 50 – 100 years in the topsoil and from 145 – 453 years 

underneath.  

The model was initialized under the assumption that the carbon stocks calculated at the different depths in 2018 were at steady 730 

state. This assumption is justified on average by a land occupation map from 1830 showing limited changes in land use over 

the past 200 years (Dupouey et al.et al., 2008). Inversing the model at the steady state yielded the vertical repartition of yearly C 

inputs necessary to keep the input and output fluxes equal across the full profile (Derrien & Amelung, see Appendix table 2 and Appendix Figure 1). We defined INPUTeq the repartition of 

incorporated C inputs every 10 cm at the steady state, as follows: 

• 𝐶1𝑒𝑞(𝑖) = 𝐼𝑁𝑃𝑈𝑇(𝑖) ∗  
𝛼(𝑖)

𝑘1𝑐𝑜𝑟𝑟
   [Equation CAppendix Equation 1920] 735 

• 𝐶2𝑒𝑞(𝑖) = 𝐼𝑁𝑃𝑈𝑇(𝑖) ∗  
(1−𝛼)

𝑘2𝑐𝑜𝑟𝑟
   [Equation CAppendix Equation 201] 

The two previous equations are used to define α as follows: 
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• 𝛼(𝑖) =
a1∗k1corr

𝑎2∗𝑘2𝑐𝑜𝑟𝑟

1+(
a1∗k1corr

𝑎2∗𝑘2𝑐𝑜𝑟𝑟
)
      [Equation C21] 

 

assumed that there was no vertical redistribution of SOC between the layers following this initial allocation (Balesdent et al.et 740 

al., 2018). Then, the allocation and mineralization rates of these inputs were used at each depth layer to infer the mean residence 

time of the C inputs per land use: this second definition of the mean residence time depends on both the physico-chemical 

properties of the soil and on the vertical repartition of inputs. 

 

Appendix Table 1: List of soil properties collected at each soil profile and their measurement protocol 745 

 

 

Depth  

(cm) 

a1α 

0.98 

0.92 

0.86 

a20.

86 

0.88 

0.90 

0.91 

α 
0.91 

0.91 

0.92 

Average Mean Residence Time MRT (y) 

 
   Soil 1 Soil 2 Soil 3 Soil 4 Soil 5 Soil 6 Soil 7 Soil 8 

 
   MRT1 MRT2 MRT1 MRT2 MRT1 MRT2 MRT1 MRT2 MRT1 MRT2 MRT1 MRT2 MRT1 MRT2 MRT1 MRT2 

0- – 10 0,61 0,34 0.98 22 628 20 563 22 630 20 566 26 742 38 1100 23 664 17 477 

10- – 20 0,29 0,67 0.92 31 777 27 696 31 779 28 701 36 918 37 948 32 822 23 591 

20- – 30 0,11 0,85 0.86 13 643 14 676 26 1284 23 1121 29 1422 24 1190 21 1031 15 741 

30- – 40 0,07 0,86 0.86 13 863 13 908 25 1724 22 1505 28 1910 25 1727 14 977 13 892 

40- – 50 0,07 0,83 0.88   11 1013 26 2321 23 2026 29 2571 22 1943 15 1315 14 1200 

50- – 60 0,07 0,80 0.90   13 1317   44 4654 30 3198 24 2526 16 1710 15 1561 

60- – 70 0,07 0,75 0.91       47 5171 32 3553 25 2807 17 1900 16 1734 

70- – 80 0,05 0,71 0.91       42 5817 29 3997 23 3158 14 1948 14 1951 

80- – 90 0,04 0,65 0.91       37 5817 26 3997 20 3158 12 1948 11 1744 

90- – 

100 
0,04 0,60 0.92           22 3501 12 1948 11 1744 

Average MRT above 

30 cm 
62 57 69 62 81 100 70 50 

Average MRT below 

30 cm 
145 155 309 453 418 384 226 206 
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Appendix ETable 4: Vertical repartition in % of yearly C inputs at the steady state (stationary C inputs) for each soil type, land use 750 
and depth layer every 10 cm. The bottom of the table provides the total inputs in tC ha-1 y-1 needed to stay at the steady state, or to 

reach the maximum SOC stocks estimated by the 75th percentile data-driven method. C = Cropland; F = Forest; G = Grassland.  

Depth (cm) 

Calcaric rendzic 

leptosol 

Calcaric cambisol 

Hypereutric 

epileptic 

cambisol 

Hypereutric 

cambisol 

Eutric cambisol 

Dystric 

cambisol 

Stagnosol Gleysol 

 C F G C F G C F C F G C F G F C F G C G 

0 0.672 0.709 0.737 0.701 0.700 0.764 0.739 0.772 0.705 0.699 0.743 0.668 0.738 0.760 0.629 0.499 0.651 0.630 0.489 0.606 

10 0.173 0.167 0.158 0.148 0.155 0.128 0.184 0.172 0.164 0.171 0.154 0.160 0.157 0.151 0.174 0.130 0.149 0.142 0.108 0.141 

20 0.116 0.096 0.082 0.082 0.083 0.060 0.045 0.034 0.054 0.055 0.046 0.061 0.049 0.045 0.061 0.066 0.060 0.060 0.056 0.061 

30 0.039 0.028 0.023 0.033 0.031 0.023 0.030 0.020 0.032 0.032 0.025 0.037 0.023 0.020 0.025 0.058 0.041 0.044 0.043 0.037 

40    0.020 0.018 0.014 0.003 0.002 0.024 0.023 0.018 0.023 0.012 0.010 0.019 0.047 0.026 0.030 0.038 0.026 

50    0.015 0.013 0.011   0.008 0.007 0.005 0.017 0.008 0.005 0.013 0.038 0.017 0.021 0.033 0.019 

60         0.007 0.006 0.005 0.015 0.006 0.004 0.011 0.034 0.013 0.017 0.030 0.016 

70         0.006 0.005 0.004 0.013 0.005 0.003 0.009 0.030 0.010 0.014 0.026 0.013 

80         0.002 0.002 0.001 0.006 0.002 0.001 0.009 0.029 0.009 0.013 0.028 0.013 

90               0.008 0.027 0.009 0.012 0.027 0.013 

100               0.009 0.030 0.010 0.013 0.031 0.014 

110               0.009 0.012 0.004 0.005 0.031 0.014 

120               0.009    0.031 0.014 

130               0.009    0.028 0.013 

140               0.009      

Total inputs 

to stay at 

the steady 

state  
(tC ha-1 y-1) 

1.34 2.75 1.91 1.84 2.83 2.73 1.47 1.97 1.36 2.26 2.51 0.98 2.02 1.19 1.03 1.50 2.33 1.92 2.79 4.59 

Total inputs 

to reach 

Max SOC 

(tC ha-1 y-1) 

3.15 3.61 2.20 3.14 2.26 1.44 3.22 5.99 3.15 3.61 2.20 3.14 2.26 1.44 3.22 5.99 3.15 3.61 2.20 3.14 
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Appendix F: Local uncertainty of SOC linked to the non-explicit repartition of soil types within the cartographic units. As an 755 
example, in zone 1, which is under forest, the represented soil types are 80% Eutric cambisol (157 tC ha-1) and 20% Stagnosol (172 

tC ha-1). In zone 2, which is under grassland, the represented soil types are 80% Stagnosol (161 tC ha-1) and 20% Gleysol (333 tC 

ha-1). For this reason, the local variability of SOC stocks is higher in zone 2 than zone 1. 
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 760 

Appendix GTable 5: SOC stocks and maximum storage capacity above and under below 30 cm (under below 30 cm represented in 

bold) 

 

 

 765 

 

 

 

 

 770 

 

 

 

 

 
Median SOC stocks in 2018 (tC ha-

1) 

 

   

 

Cropland 

Median SOC stocks in 2018 (tC ha-

1)Grassland 

Forest 

Theoretical  

maximum SOC 

stocks  

(75th percentile) 

Theoretical  

maximum SOC  

stocks  

All land uses(88th 

percentile) 

Cropland 

Maximum SOC accrual (tC ha-

1)Grassland 

Forest 

 Cropland Grassland Forest All land uses All land uses Cropland Grassland Forest 

Calcaric Rendzic 
Leptosol 

70 

8 

155 

1295 

6 

138 

11 
155 

12 
155170 

132 

85 

5 

60 

6 

17 

2 

Calcaric 

Cambisol 

81 

19 

155 

36114 

20 

123 

24 
155 

36 

18055 

4236 

75 

17 

41 

16 

32 

12 

Hypereutric 
Epileptic 

Cambisol 

78 

14 
112 

17 

97 

10 
112 

17 

12212 

187 

34 

3 
 

15 

7 

Hypereutric 

Cambisol 

63 

40 

142 

86113 

54 

104 

56 
142 

86 

18042 

10986 

78 

46 

28 

32 

38 

30 

Eutric Cambisol 

59 

43 

130 

6471 

19 

119 

38 
130 

64 

14630 

7264 

71 

22 

59 

45 

11 

27 

Dystric 

Cambisol 

 101 

68 

76 

44 

101 

68 

11701 

7968 
  

25 

24 

Stagnosol 

64 

101 

142 

14392 

69 

76 

44 
142 

143 

18042 

18243 

76 

42 

50 

74 

28 

85 

Gleysol 

78 

202 

187 

289156 

177 

114 

58 
187 

289 

209187 

324289 

110 

87 

32 

111 
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Mis en forme : Police :Gras, Anglais (Royaume-Uni)
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Mis en forme : Anglais (Royaume-Uni)

Mis en forme : Normal

Mis en forme : Normal
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Years 

Calcaric rendzic 

leptosol 

Calcaric cambisol 

Hypereutric 

epileptic 

cambisol 

Hypereutric 

cambisol 

Eutric cambisol 

Dystric 

Cambisol 

Stagnosol Gleysol 

 C G F C G F C F C G F C G F F C G F C G 

1 1.5 1.0 0.5 1.5 1.0 0.5 1.5 0.5 1.5 1.0 0.5 1.5 1.0 0.5 0.5 1.5 1.0 0.5 1.5 1.1 

10 12.6 8.6 4.6 12.5 8.6 4.6 12.9 4.6 12.6 8.7 4.5 13.1 8.8 4.6 4.6 12.8 8.8 4.6 12.3 8.9 

25 23.7 16.2 8.7 22.9 15.8 8.4 24.5 8.6 23.7 16.2 8.5 26.0 17.3 9.1 9.4 23.6 16.4 8.7 21.3 15.5 

50 32.6 22.2 11.9 30.6 21.0 11.2 34.3 11.9 32.2 21.9 11.5 37.5 24.8 13.0 14.4 33.1 23.1 12.2 27.6 20.1 

100 39.1 26.3 14.0 36.0 24.4 13.0 40.9 14.0 38.2 25.7 13.5 46.5 30.3 15.9 18.8 40.6 27.9 14.6 32.7 23.3 

200 45.5 30.0 16.0 41.8 27.8 14.9 46.7 15.7 44.2 29.4 15.4 54.0 34.5 18.0 22.1 49.1 32.7 16.8 40.1 27.6 

5000 84.5 52.1 27.4 78.9 48.4 26.4 92.4 27.6 98.5 60.1 32.1 133.8 69.6 36.2 50.0 142.3 77.9 36.1 118.5 64.1 

 SOC accrual after 25 years under temperature increase of 1.0 °C by 2050 (RCP 4.5 scenario) 

25 21.5 13.6 5.5 20.2 12.5 5.3 22.1 6.2 21.4 13.0 5.8 24.1 15.5 6.5 8.0 21.3 13.8 5.9 17.8 10.5 

 SOC accrual after 25 years under temperature increase of 1.3 °C by 2050 (RCP 8.5 scenario) 

25 20.8 12.9 4.5 19.4 11.4 4.3 21.4 5.5 20.7 12.1 5.0 23.5 14.9 5.8 7.5 20.5 13.0 5.1 16.7 9.0 

 780 
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Appendix IFigure 3: SOC stocks and maximum SOC additional storage capacity, with lower and upper confidence intervals as 

estimated by the bootstrap method. The SOC stock in the region of study ranges from 2.4 – 5.3 MtC and the maximum SOC 

additional storage capacity 1.2 - 4.1 MtC. 785 
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Appendix JFigure 4: SOC accrual after 25 years under a scenario of additional C inputs dependent on land use, (a) with 

temperatures staying at their 2018 level, and (b) with a 1.0 °C increase in temperature over 25 years, increasing the C mineralization 

rates according to the correction factors of the AMG model. The attenuation in SOC accrual due to increased mineralization rates 

is (0.49 – 0.57) / 0.57 = 14%. The 1.0 °C increase in temperature was obtained from model simulations of mean annual temperatures 790 
by the Meteo France ALADIN63_CNRM-CM5 model under scenario RCP4.5, within an 8 km radius area around Bure (55087), 

comparing the year intervals 2046-2055 and 2009-2019. Source: Drias, données Météo-France, CERFACS, IPSL. 
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Appendix Figure K1: Estimation of the current incorporated C inputs in croplands via a yield-based allocation coefficients method 795 
from Bolinder et al.et al. (2017) using agricultural yield and amendment values based on compiled reports from 2010-2019 in the 

region of study. The allocation coefficients were derived from the literature (harvest index and carbon content in plant parts from 

Bolinder et al.et al. (2007), organic matter content in manure from Houot et al.et al. (2014), root:shoot ratios in croplands from 

Jackson et al.et al. (1996), incorporation coefficients form Girard et al.et al. (2011)). Estimated C inputs in the croplands in the region 

of study are 1.4tC ha-1 y-1, with a mean winter wheat yield value of 5.53 tDM ha-1 y-1 and an amendment value of 2.13 tDM ha-1 y-1.  800 
The average C inputs at the steady state obtained via model inversion in the croplands of the region of study, weighted by the 

proportion of each soil type in the cropland areas, amount to 1.7 tC ha-1 y-1.  
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Appendix L: Carbon saturation curves from Hassink as a function of depth. The Hassink equation was established empirically on 805 
the basis of 20 Dutch grassland soils considered to be at the stationary state, as follows: Csat = 4.09 +0.37 * (Clay + fineSilt) (%) 

where Csat is the theoretical carbon saturation concentration in the fine fraction in g kg-1. The Hassink equation provides unrealistic 

profiles of maximum SOC content distribution in the fine fraction at depth below 30 cm, especially in the Hypereutric Cambisol, 

Eutric Cambisol and Stagnosol, as the equation only accounts for soil texture and does not consider the biotic controls on C inputs 

and SOC decomposition rates. As comparison, the 75th percentile fit represents a theoretical maximum SOC content in both the fine 810 
fraction and the particulate organic matter. 
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