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Abstract. R1-1The polarimetric phase difference between the horizontal and vertical components of GNSS radio signals is

correlated with the presence of ice and precipitation in the propagation path of those signals.Polarimetric Radio Occultations

(PRO) of the Global Navigation Satellite System are able to characterize precipitation structure and intensity. Prior studies have

shown the relationship between precipitation and water vapor pressure columns, known as the “precipitation pickup.” Less is

known about the relationship between the vertical distributions of temperature and moisture globally within precipitating scenes5

as measured from space. This work uses cluster analysis of PRO to explore how the vertical distributions of temperature and

moisture—combined into PRO refractivity—relate to vertical distributions of precipitation and moisture variables. We evaluate

the ability of kk-means clustering to find relationships among R1-1PRO polarimetric phase difference, refractivity, liquid water

path (LWP), ice water path (IWP), and water vapor pressure using over two years of data matched between the Global Precipi-

tation Measurement (GPM) mission andfrom the Radio Occultations R1-1(RO) and Heavy Precipitation demonstration mission10

onboard the Spanish Paz spacecraft (ROHP-PAZ). A cluster hierarchy is introduced across these variables. A R1-1polytropic

potential refractivity model for polytropic atmospheres is introduced to ascertain how different vertical thermodynamic pro-

files that can occur during different precipitation scenarios are related to changes in the polytropic index and thereby vertical

heat transfer rates. The clustering analyses R1-1uncoversuggest a relationship between the amplitude and shape of deviations

from the potential refractivity model and water vapor pressureR1-1. R1-1andThese analyses also confirm the expecteda positive15

correlation between R1-1vertical shapes of polarimetric phase difference and both LWP and IWP. For certain values, the coeffi-

cients of the R1-1polytropic potential refractivity model R1-1flag physical vs. non-physical retrievals, and indicate when a profile

has little to no moistureR1-1, and t. The study reveals a similar relationship between the clustering for these coefficients and

different water vapor pressure profiles. R1-1The study also confirms the relationship between the integrated polarimetric phase

difference and water vapor pressure columns, known as the “precipitation pickup,” globally (ρs = 0.971 after averaging) and20

over different latitudinal ranges (> 50◦, ≥ 20◦, and < 20◦, with different ρs for each).
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1 Introduction

R1-1General circulation models need to represent the spatiotemporal structure of precipitation for accurate predictions of climate

variability and deep convective structures. R1-1,R2-10Models and observations show a relationship in the probability densities

between the precipitation and column water vapor relationship known as the precipitation pickup. Emmenegger et al. (2022)25

conclude that the majority of the models’ convection onset statistics display some degree of temperature dependence in the

column water vapor value of the pickup and collapse approximately to a common critical column relative humidity value across

saturation mixing ratio bins. However, prior results suggest that the onset of convective instability has a complex dependence

on temperature. The vertical structure of temperature and moisture, as well as the entrainment of free tropospheric air, affect the

buoyancy of a rising convective plume, yielding an onset moisture-temperature dependence slightly different than that of bulk30

saturation. This work explores how the vertical structure of temperature and moisture, combined into refractivity measured by

RO, relates to distributions of precipitation and moisture variables.

GNSS (Global Navigational Satellite System (GNSS) refers to the collection of satellites orbiting Earth that periodically

send circularly polarized radio signals indicating their positions globally. As these satellites occult from a low Earth-orbiting

satellite with a GNSS receiver, the radio signal they receive has been refracted and bent by the atmosphere. The bending angle is35

caused by the atmospheric refractivity gradient in the region where the signal traveled. The degree of bending can be calculated

using the geometry between the emitting satellite and a receiver, and the shift in frequency of the signalsignal phase between

when itthe signal is emitted and received. Hence, these GNSS radio occultations (RO) can provide us with the refractivity,

N , which is related to pressure (p, in hPa), temperature (T , in K), and water vapor pressure (e, in hPa) as follows (e.g., Smith

and Weintraub, 1953; Kliore et al., 1974) for an atmospheric air composition with approximately 78 percent nitrogen and 2140

percent oxygen containing water:

N =
k1p

T
+

k2e

T 2
, (1)

where k1 = 77.6 and k2 = 3.73×105R2-1 are typically given without dimensions. However, N is expressed in refractivity units,

N-units; hence, k1 would be understood in N-units·K/hPa, and k2 in N-units·K2/hPa.

Quantities derived from RO have demonstrated high accuracy and resolution in space (e.g., Kursinski et al., 1997; Huang45

et al., 2010; Son et al., 2017). RO temperatures derived from refractivity have been shown to be of similar quantitative accuracy

as temperatures directly measured by radiosondes, which are mostly limited to land (e.g., Nishida et al., 2000; Randel et al.,

2003; Schmidt et al., 2004; Kim and Son, 2012).

One of the most powerful applications of RO has been in understanding climatic variability and trends—including intraseasonal-

to-interannual atmospheric modes of variability such as the quasi-biennial oscillation (QBO), Madden–Julian oscillation50

(MJO), and El Niño–Southern Oscillation (ENSO)—as they relate to atmospheric structure over the tropics (Scherllin-Pirscher

et al., 2021), especially in the upper-troposphere–lower-stratosphere (UTLS) region R1-14(Schmidt et al., 2004; Schmidt et al., 2011)(Schmidt

et al., 2004; Lackner et al., 2011; Johnston et al., 2018, 2022). R1-13 RO observations have also been used to uncover and mea-

sure the upper-level thermal structures of deep convection in tropical storms both alongside and without precipitation radar

data (Biondi et al., 2012; Xian and Fu, 2015; Scherllin-Pirscher et al., 2021). R1-14In the context of precipitation events, John-55
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ston et al. (2018, 2022) studied the impacts of deep convection and precipitation on the thermodynamic structure of the UTLS

region by collocating RO temperature profiles with data from the Global Precipitation Measurement (GPM) Mission and Trop-

ical Rainfall Measuring Mission (TRMM) in both the tropics and mid-latitudes.

Eq.Equation (1) shows that using RO refractivity data to retrieve thermodynamic variables such as temperature, pressure,

and water vapor remains underconstrained. Water vapor information is extracted from refractivity by assuming that the temper-60

ature profiles offrom a given weather analysis, ECMWF—typically either the European Centre for Medium-Range Weather

Forecasts (ECMWF) or NCEP, the National Centers for Environmental Prediction (NCEP)—are correctaccurate at the location

of each RO profile, even in cases where the RO and model refractivity may differ (e.g., Kursinski et al., 1997; Kuo et al., 2001).
R1-2,R2-2Two common methods for extracting water vapor information from RO refractivity are the 1D-Var method (Wee et al.,

2022), which iteratively refines retrievals by combining RO data with background atmospheric model information through a65

variational data assimilation process, and the direct method (Hajj et al., 2002), which derives retrievals based on hydrostatic

equilibrium and an assumed model or background temperature profile. To avoid relying on model water vapor pressure as an

assumed background a priori, this study uses the direct retrieval method assuming temperature profiles provided by NCEP.

An inaccurate refractivity profile from the analysis will lead to erroneous water vapor retrievals. Because RO has a more

valuable contribution to model improvement precisely in the profiles where the weather analysis and RO differ, the relationship70

between water vapor and refractivity has a higher error bar, particularly in the most useful profiles. Moreover, GNSS RO

measurements are sensitive to variations in temperature and water vapor within clouds (Kuo et al., 2001; Huang et al., 2010),

but require other observables to confirm the presence of clouds and understand their structure.

Polarimetric Radio Occultation (PRO) provides a way to expand the applications of standard RO. PRO usesmeasures the

response of circularly polarized GNSS radio signals to measure atmospheric anisotropies like precipitating droplets and ice75

crystals, as these induce a phase difference between the horizontal (H) and vertical (V) components of the GNSS radio signal.

In particular, tThe polarimetric phase difference, ∆Φ, between H and V is related to the amount of R1-15precipitationrain drops

or ice R1-15crystals in the atmosphere (Tomás et al., 2018; Cardellach et al., 2019; Wang et al., 2022; Padullés et al., 2023) using

∆Φ and has promising applications in weather model assimilation (Ruston and Healy, 2021; Wang et al., 2022; Hotta et al.,

2024), climate monitoring (Cardellach et al., 2019; Gleisner et al., 2022), and atmospheric research (Turk et al., 2021; Padullés80

et al., 2023). Datasets from GNSS- PRO contain data on refractivity and ∆Φ, both as functions of height. Unlike infrared

instruments, PRO gives data even inside clouds with a higher vertical resolution than microwave (e.g. Turk et al., 2019).

Statistical correlations as a function of height between R2-14CloudSat integrated water content (or water path) R2-14from

CloudSat—a NASA satellite mission to survey the vertical structure of clouds and their water content via a radar that launched

on April 28, 2006, and ended on December 20, 2023 (NASA, 2024)—along the radio occultationRO ray path and ∆Φ85
R2-14arewere shown to be strongR2-14 (Padullés et al., 2023). There are models for how a given thermodynamic state of the

atmosphere will affect a propagating RO signal and cause a ∆Φ (e.g., Padullés et al., 2023, and references therein). However, a

precise formula is missing for how a measured ∆Φ relates to thermodynamic atmospheric states. R2-3,R2-4Part of the challenge

is that a givenGNSS PRO is generally insensitive to non-dipolar and to spherically symmetric particles, such as aerosols and

non-precipitating cloud droplets (Padullés et al., 2023; Hotta et al., 2024). CloudSat-based water content measurements tend90
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to be more sensitive to these smaller particles and cloud tops (Padullés & Turk, private communication). ∆Φ at a specific

height R1-15may be caused by both ice orcould result from precipitation R1-15,R2-3,R2-4of liquid water, ice water, or both—and

may still be influenced by non-precipitating features, such as anisotropic ice crystals (Padullés et al., 2023). It remains an open

question whether, or to what extent, differentiating between liquid and ice water precipitation—let alone non-precipitating

hydrometeors—is possible using PRO data alone. Therefore, we explore if different vertical distributions of precipitation- or95

moisture-related variables—∆Φ, liquid water path (LWP), ice water path (IWP), and water vapor pressure—are interrelated.
R2-5Cluster analysis is a family of methods used to group and separate populations into different groups or “clusters”

within a dataset based on some measure of similarity or hierarchy. One of the most popular clustering techniques is k-means

clustering—a flexible, established unsupervised learning method that has been used to classify and analyze the different dis-

tributions of physical variables present in climatic and atmospheric datasets (e.g. Jakob and Tselioudis, 2003; Rossow et al.,100

2005; Yokoi et al., 2011; Wilks, 2019; Govender and Sivakumar, 2020; Nidzgorska-Lencewicz and Czarnecka, 2020).

This study R2-5looksuses cluster analysis to look at how the vertical shape of ∆Φ along the RO ray correlates with that

of other thermodynamic variables such as refractivity, water vapor pressure, liquid water path (LWP), and ice water path

(IWP) along the ray as functions of height at given latitudes and longitudes. A k-means cluster analysis is performed to see

howif cluster centroids relate to physical phenomena across different variables, the variables being the aforementioned ones105

and a physically interpretable model for potential refractivity similar to the one introduced in (Bean and Dutton, 1966; de la

Torre Juárez et al., 2018, e.g.). This analysis also looks at how the vertical integral of ∆Φ relates to total column water vapor,

and how well this confirms results and observations from prior studies. We explore if vertical profiles of ∆Φ and refractivity can

help to distinguish possible thermodynamic states and even the contributions from ice vs. liquid water precipitation. Through

new statistical and graphical analyses below, it is hopedthis study hopes to help understand and quantify these relationships.110

To this end, in SectionSect. 2, we describe the dataset; in SectionSect. 3, we outline how we classify different thermodynamic

states from refractivity profiles alone and provide an overview of how we apply k-means clustering to different variables R1-16,

from PRO-derived refractivity and ∆Φ, to model-inferred water vapor, water path, and ice path; in SectionSect. 4, we use our

cluster analysis to search for a classification of disparate vertical structures and cross-correlate interpretations of clusters for

different variables; and in SectionSect. 5, we summarize the aims and results of our study.115

2 Data

The two datasets analyzed and used to train the data classification and R2-15model (3)potential refractivity model are Level
R2-621C Global Precipitation Measurement (GPM) R2-6satellite data from the NASA Goddard Space Flight Center and Level

2 Radio Occultations and Heavy Precipitation data from the PAZ satellite (ROHP-PAZ) (Cardellach et al., 2019). From the

former, we retrieveobtain the R1-2,R2-2,R2-6pressure (hPa), water vapor pressure (hPa), Liquid Water Path (LWP, kg/m2), and120

Ice Water Path (IWP, kg/m2)R2-6, while the latter using Emissivity Principal Component (EPC) profiling retrievals at each

pixel across the scan of the GPM passive microwave (PMW) satellite radiometer. The EPC data have a spatial resolution of

0.1◦ × 0.1◦, temporal resolution of 30 minutes, and 0.25-km height levels, as described in Appendix A of Turk et al. (2018)
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Figure 1. Sampling distributionR1-4 in the dataset acrosss for the collocations between the GPM and ROHP-PAZ datasets at different a)

latitudes and b) timesmonths.

and in Table 1 and Sect. 3 of Turk et al. (2021). Meanwhile, ROHP-PAZ gives refractivity (N -units, measured) and ∆Φ (mm),

all as functions of height at different latitudes, longitudes, and times. R1-2, R1-8,R2-2Temperature (K) in turn is derived from125

Eq. (1).Using refractivity and assuming temperature from NCEP, the direct method (Hajj et al., 2002) is applied to derive

the pressure (hPa) and water vapor pressure (hPa), whence the temperature (K) used in this study is derived from Eq. (1). For

morefurther details on how the aforementioned variables are retrieved from Level 0 and Level 1the datasets, we refer the reader

to Turk et al. (2021) and the references therein for the GPM dataset and Cardellach et al. (2019) for the ROHP-PAZ dataset.
R1-8,R1-12The direct method relies on the ancillary model refractivity agreeing with that of the RO, and with its having the130

correct temperature distribution for that refractivity profile. While an agreement between the ancillary model and observation

should yield reliable retrieved values, using the model temperature profile may introduce retrieval errors when the ancillary

model and RO profile refractivities differ significantly (due to, e.g., collocation errors, RO bias, or limited model resolution).

The direct method results in negative or otherwise unrealistic water vapor pressure values serve as quality control flags.

The GPM and ROHP-PAZ profiles are matched across different latitudes, longitudes, and times whenever they coincided135

within a given spatiotemporal rangeR1-3,R1-4,R2-6 We have. As described in Sect. 2 of Turk et al. (2021), the collocation criteria

were that the GPM PMW satellite overpass had to occur within ±15 minutes of the ROHP-PAZ observation, and the ROHP-

PAZ observation location had to fall within the PMW satellite’s swath. For each ROHP-PAZ observation, the tangent point—the

point closest to the Earth’s surface along the ray path—was selected from the lowest level RO. This gives

– 2362 coincidences from July 26th, 2018 to December 31st, 2018 (inclusive);140
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– 2943 coincidences from March 1st, 2019 to December 31st, 2019;R1-5,R2-71 and

– 1401 coincidences from January 1st, 2020 to August 22nd, 2020;

which yieldsthereby yielding a total of 6706 coincidences from July 26th, 2018 to August 22nd, 2020. R2-6At the latitude and

longitude of each coincidence, the collocated data are interpolated onto a grid with equally spaced height intervals of 0.1 km.

Most of the aforementioned coincidences lie poleward of 40◦ N or S, as shown in Figure 1(a), enabling good statistics in145

those regions. There was a low number of coincidences in the tropics (within 15◦ of the equator) which constrains our analysis

in low-latitude regions. Furthermore, as Figure 1(b) shows, there is also a slightly higher number of coincidences in the last

four months of the year vs. the first eight, but this poses less of a problem as we do not assess seasonality.

Turk et al. (2021) computed LWP and IWP by integrating the condensed water content (kg/m3)—estimated via emissivity

principal componentsEPC passive microwave precipitation profiling (Turk et al., 2018; Utsumi et al., 2020)—along each RO150

ray path in the ROHP dataset coinciding with GPM data. Integrating the condensed water content along the ray paths ensures

that their values are related to ∆Φ, which is also computed by integrating along each ray path. R1-6By checking when the

retrieved temperature is above or below 273 K, we partition this integrated water content into LWP and IWP, respectivelyAs

a first approximation, we partition the integrated water content into LWP and IWP based on whether the retrieved or model

temperature is above or below 273 K, respectively (Turk et al., 2021). Since non-precipitating supercooled water is not expected155

to be asymmetric, it should induce little to no polarimetric phase difference (Padullés et al., 2023; Hotta et al., 2024). Hence,

this approach misclassifies some supercooled water as ice, in which case this misclassification would predict ∆Φ associated

with ice when no ∆Φ is measured. Finally, as with ∆Φ, the values of the LWP and IWP at a given latitude, longitude, and

height are given according to where the lowest level tangent point for the given ray path lies.

To compute the total column water and ice paths from the aformentionedaforementioned data for each profile, the water and160

ice paths are integrated, respectively, from 1 km to 10 km only if a profile has data at 1 and 10 km.2 For computing the vertical

integral of ∆Φ, since the error associated with this variable in the ROHP-PAZ dataset is roughly ±2 mm at each height, ∆Φ is

integrated from 2.5 km to 10 km after rounding ∆Φ to the nearest multiple of 2 mm if there exist data from 2 to 2.5 km and at

10 km. The latter condition ensures that the endpoints of the integral are correct and we exclude faulty retrievals which tend to

deteriorate near the bottom of the profiles before the data become corrupted or missing.165

Finally, for computing the total column water vapor, the water vapor pressure is integrated from 2.5 km and 10 km, excluding

profiles whichthat feature no data at 2.5 km or 10 km, negative water vapor pressure values, or R2-8unrealistically high water

vapor pressure valuesR2-8 above 300 hPa—these situations are unphysical and likely result from ancillary model and/oror

retrieval errors. R1-8,R2-8The profiles with unrealistically high water vapor pressure values were identified by running an initial

1R1-5,R2-7Technical issues with the processing of ROHP-PAZ retrievals were encountered in January and February 2019. Although these issues have since

been resolved in the currently available ROHP-PAZ dataset, the collocated dataset described in Turk et al. (2021) and analyzed in this study was created before

then.
2While requiring path data down to 1 km may seem too stringent, requiring this only ends up excluding six profiles at most for both water and ice path, or

under 0.1% of all the profiles in the dataset. Thus, it is not too stringent unless these six profiles happen to be rather extreme cases. The analysis at hand aims

at finding general trends and associations rather than specific, individualatypical cases.
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k-means cluster analysis with k = 8—as explained later in Sects. 3.2 and 3.3—but on every water vapor pressure profile in170

the dataset. For the dataset, only one cluster contained profiles with unrealistically large water vapor pressure values—at least

above 250 hPa at some height in all profiles—while the other clusters contained profiles with water vapor pressure values

below 150 hPa. Hence, all profiles in the anomalous cluster were excluded from analyses that relied on water vapor pressure,

particularly in the final water vapor pressure cluster analysis.

The number of profiles where these conditions were not met are as follows:175

– For total column water vapor: 33 profiles (0.49% of all profiles in the dataset);

– For total column water path: 1 profile (0.01%);

– For total column ice path: 6 profile (0.09%);

– For total column water+ice path: 6 profiles (0.09%); and

– For the vertical integral of ∆Φ: 923 profiles (13.76%).180

For all cases, the integration is implemented in Python using the composite trapezoidal rule (Atkinson, 1988).

3 Methods

The PRO observables are ∆Φ and refractivity as functions of height, latitude, and longitude. Hence, this study explores how

far one can get with PRO observables while remaining as independent from externally derived weather analyses as possible.

To this end, we develop a model for potential refractivity as a function of height assuming a constant lapse rate (which can be185

non-adiabatic), hydrostatic balance, and a constant water vapor mixing ratio.

3.1 Potential refractivity in a polytropic atmosphere

A first classification criterion organizes profiles based on the differences between observed refractivity profiles and those

expected for polytropic atmospheres in whichwhere air can expand and compress with adiabatic and non-adiabatic heat transfer.
R1-13 If an air parcel moving vertically through the atmosphere follows a polytropic process—a polytropic atmosphere—and190

the ideal gas law holds, then p/ρm and therefore p1−mTm are constant, where m is the polytropic index of the atmosphere.

Hence, wWe define K
.
= p1−m (z)Tm (z) = p(z0)

1−mT (z0)
m for some reference height z0. In hydrostatic balance, we

have ∂p
∂z =−ρg, and polytropy also implies that ∂p

∂z = ∂(Kρm)
∂z =mKρm−1 ∂ρ

∂z . Balancing these two equations necessitates that

−ρg =mKρm−1 ∂ρ
∂z , and after multiplying both sides by m−1

mKρ , one gets

g
1−m

mK
=

∂ρm−2

∂z
.195

At constant m ̸= 0,1, the solution is

ρm−1(z) = ρ(z0)+ g
1−m

m
(z− z0). (2)
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At m= 0, the pressure is constant and cannot satisfy hydrostatic equilibrium unless ρ= 0, while at m= 1, the density decays

exponentially, typical of an isothermal atmosphere. When m= γ, where γ = 5/3 is the adiabatic index, the change of temper-

ature incurred by air parcels moving vertically in this atmosphere follows an adiabatic process—an adiabatic atmosphere.200

Using Eq. (2) for the vertical profile of an ideal gas, where p(z)
ρ(z) =RT (z), and by polytropy again, p(z) =Kρm(z) =

Kρ(z)ρm−1(z) implies that

RT (z) =
p(z)

ρ(z)
=Kρm−1(z) =K

[
ρ(z0)+ g

1−m

m
(z− z0)

]
.

This shows that an ideal gas atmosphere in hydrostatic equilibrium and with constant polytropic index m ̸= 0 with height has

a linear temperature profile T (z) = T̂ (z0)− Γ̂(z− z0), where T̂ (z0) =
Kρ(z0)

R and Γ̂ =−Kgm−1
mR . When m= 1, the solution205

holds with Γ̂ = 0 and a constant temperature with height. At constant m and R, Γ̂ =−∂T
∂z , and hence, the lapse rate is constant.

When including water vapor processes, one can characterize the temperature profiles in a polytropic atmosphere as 1) a

completely dry atmospherewith (virtually) no water,or 2) an unsaturated moist atmosphere (i.e., containing non-negligible

water but not saturated). Additionally, one can approximate temperature via a linear relationship with height for 3) a saturated

moist atmospheric layer where the expansion and contraction of air isare reversible, or 4) an atmosphere in which water that210

condenses in an air parcel is instantaneously removed via precipitation—a pseudoadiabatic atmosphere (e.g., Emanuel, 1994).

The lapse rate, Γ, is nearly constant and called a dry adiabatic lapse rate in the first case, a moist-unsaturated adiabatic lapse rate

in the second, a reversible moist-adiabatic lapse rate in the third, and a pseudoadiabatic lapse rate in the fourth. The temperature

profile is precisely linear with height for only the first case and close to linear in the others. Each of the four thermodynamic

cases above would be represented by a different conservation law (Emanuel, 1994): dry adiabatic (for 1), moist adiabatic (for215

2 and 3), pseudoequivalent potential temperatures (for 4), and, by analogy, via a different type of potential refractivity profile.

These conserved quantities can be used to define different types of potential refractivity, N̂ , based on fitting data to physical

laws describing adiabatic and pseudoadiabatic processes (e.g. de la Torre Juárez et al., 2018).

N̂ is derived here for an atmosphere with the following properties: 1) Eq. (1); 2) the ideal gas law; 3) a linear temperature

profile with height representative of a polytropic atmosphere; 4) a constant specific humidity representative of a subsaturated220

atmosphere; and 5) in hydrostatic equilibrium. Deviations between the measured refractivity N and the fit to the model N̂

signal the presence of changes in mixing ratio, precipitation, or non-equilibrium physics (e.g., gravity waves or turbulence).

From the above assumptions, we derive in Appendix A the model for N̂ :

N̂ (z) = N(z0)

[1−c1(z−z0)]
2 ×{(1− c2) [1− c1 (z− z0)]

c0 + c2} , (3)

where c0 =
g

RΓ̂
+1 = 2m−1

K(m−1) , c1 = Γ̂

T̂0
= g(m−1)

mρ(z0)
, and c2 =

k2ê0
N(z0)T̂ 2

0

are coefficients which must be fit to a given refractivity225

profile and provide information about the polytropic index. T̂0
.
= T (z0) & ê0

.
= e(z0) are the temperature and water vapor

pressure, respectively, at reference height z0. In particular, for m= 1, N̂ has an exponential relationship with z (e.g. Bean and

Dutton, 1966). We initialize z0 = 2.5 km, since this height is in the domain for every profile we are considering and should

be part of the range of heights where we would expect the model assumptions to hold approximately. The fit coefficients c=

(c0, c1, c2) are defined in terms of the following physical parameters: the acceleration due to gravity on Earth g = 9.81 m ·s−2,230
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specific gas constant of dry air R= 287.05 J · kg−1 ·K−1, mean tropospheric lapse rate Γ̂ (in K · km−1), and constants k1 and

k2 defined in SectionSect. 1.

The lapse rate can change with height across moist and dry sections, e.g., in the transition between the boundary layer and the

free atmosphere (von Engeln et al., 2005; Ao et al., 2012), in the transition from the mid-troposphere to the tropical tropopause

layer (TTL) (Fueglistaler et al., 2009), or when clouds are present in a real atmosphere (e.g., Peng et al., 2006; Mascio et al.,235

2021). Based on these three examples, the fits for N̂ are made in an altitude range that is likely to have a constant lapse rate

under the five assumed properties from the last subsectionR1-7: 2.5 km to 200 m below the estimated tropopause. For this study,

t. We set the lower limit of the fit at z0 = 2.5 km, which is mostly above the boundary layer. Furthermore, we set the upper

limit to ensure that the fit remains below changes of sign in the lapse rate, such as those caused by gravity waves, stratospheric

intrusions, and thermal inversions. Specifically, the R1-7tropopause was estimated by finding where
∣∣∂T
∂z

∣∣ is minimized for all240

heights above 5 kmupper limit to the fit is 200 m below the lowest height above 5 km where
∣∣∂T
∂z

∣∣ is minimized—which defines

a local minimum or a maximum in temperature, as expected for either the cold point tropopause, large gravity waves, or for the

bottom of the TTL (Fueglistaler et al., 2009)—and where the temperature is within 10 K of the minimum temperature below

25 km, i.e., within 10 K of the temperature at the cold-point tropopause. Second-order central differences wereare used to

estimate ∂T
∂z across all of the heights for each given profile (Atkinson, 1988). WFor this purpose, we use the GPMRO-derived245

temperature to estimate T to establish a rigorous criterion across all of the profiles and ensure that the fit N̂ is consistently

being used where it would be expected to hold, especially for accurate clustering in N − N̂ .

More details on the numerical fitting of Eq. (3) are given in Appendix B.

3.2 Time series k-means clustering

Across the profiles in the merged dataset described above, we apply k-means clustering with k = 8 clusters for each of the250

following variables:

– RO measured variables: ∆Φ (2.5 to 10 km), N − N̂ (2.5 to 8 km), the three fit coefficients for N̂ (the vector c), and

– Variables from ancillary data: RO+model-derived water vapor pressure (e, 2.5 to 10 km) and GPM+RO ray path com-

puted liquid water path (LWP, 1 to 10 km), ice water path (IWP, 1 to 10 km), and total (liquid+ice) water path (TWP, 1

to 10 km).255

In all cases aside from the clustering for coefficients (in which case we use standard k-means clustering with the standard Eu-

clidean distance), a variation of naive k-means clustering called time series k-means with dynamic time warping (DTW) (Iza-

kian et al., 2015) is applied. As with naive k-means, the dataset is partitioned into k clusters, but instead of measuring the

distances between profiles using the Euclidean distance, DTW is used. R1-13 The numerical procedure for running k-means

clustering on the aforementioned variables is described in Appendix C.260

We introduce quality-control criteria for each of the variables informed by how k-means clustering detected outliers and

other physical considerations, e.g.,. For instance, for the ∆Φ clustering, we excluded ∆Φ profiles whenwhere the retrieval

for ∆Φ cut off above 2 km or, and for the e clustering, we excluded e clusters featuring profiles with nonunphysically high
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Figure 2. A visual comparison (Tavenard, 2021) showing the difference between Euclidean distance and the DTW measure. Time series

are shifted vertically in the visualization, but assume that the y-axis values match. Thus, between the two time series shown, the Euclidean

distance would be nonzero but the DTW measure would be zero.

water vapor pressure valuesR2-8 (> 300 hPa, identified using the same clustering technique described in Sect. 2 for excluding e

profiles used in the total column water vapor calculations. Including these faulty profiles affects the accuracy when we compare265

the shapes of the ∆Φ profiles for clustering and compute the integral of ∆Φ. In particular,We found that faulty retrievals tend

to deteriorate near the bottom of the profiles before the data become corrupted or missing. The percent of profiles excluded

ranged from 0.01% (for LWP clustering) to 13.76% (for ∆Φ clustering). See Appendix D for more details on the precise

quality-control criteria used for each clustering variable.

3.3 Dynamic time warping270

DTW is a technique originating in time series analysis that measures the similarity between two signals which are functions of

time (or some analogous variable—in this case, height) by finding an optimal alignment between the two signals by “warping”

the sample points of each signal such that the measurements in each signal are matched to their nearest point(s) in the other

signal as measured by the Euclidean norm, regardless of the times at which each point was measured (Müller, 2007). We still

assume that the start and end points match in each case, that the ordering of measurements (with time) within each profile stay275

the same, and that each point in one signal is matched to at least one point in the other. This ensures the following:

1. For cases of missing or uneven data points within a given profile, we can still compare the rough shape of this profile

with others, and

2. For translations in sampling (e.g., when two measurements are out of phase or when recorded heights are imprecise),

DTW can make up for this by shifting the heights at which measurements are taken when comparing two profiles.280

See Tavenard (2021) or Müller (2007) for more details on how DTW is calculated.

Figure 2 features an intuitive visualization of how DTW works when comparing time series. The featured example is taken

from Tavenard (2021) and shows two signals consisting of horizontal lines combined with one period of a sinusoid. Note how
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DTW matches the patterns and overall shape of each time series, which intuitively should result in a more sound similarity

assessment than when using the Euclidean distance, since the latter matches timestamps (or heights for this study) regardless285

of when they were sampled.

4 Results and analysis

Clustering provides an initial classification for the types of atmospheric profiles that can occur across the dataset by looking at

the centroids in different clustering variablesR2 as in. Fig.Figure 3R2. The clustering centroids represent the general magnitude

and shape of the profiles belonging to each cluster shows the results of k-means cluster analysis when applied to the following290

variables in the dataset: (a) N − N̂ , (b) ∆Φ, (c) IWP, (d) LWP, (e) TWP, and (f) water vapor pressure. In particular, tThe plots

in Fig. 3 show the eight clustering centroids for each variable. Each centroid is an average profile representing the general

shape and magnitude of the indicated variable for profiles within its cluster.

A second step in the analysis uses frequency histograms of different cluster groupsR2—Tables 1, 2, and 3— to summarize the

relationships between clustersR2 in. Tables 1, 2, and 3 are frequency histograms that compare clustering in different variables:295

N − N̂ with water vapor pressure, the N̂ coefficients c with water vapor pressure, and ∆Φ against the path variables (LWP,

IWP, and TWP)R2, respectively. These tables gaugelook for patterns in the ability of N−N̂ to predict different distributions of

vertical water vapor pressure and ∆Φ to predict different types of water path profiles across the vertical profiles in the dataset.
R2Percentages in the topmost row and leftmost column reflect the total number of profiles that meet the clustering requirements

for each specified clustering variable. Green and red indicate the maximum and minimum percentages within each respective300

row. Note that since profiles were excluded from the cluster analyses for certain variables, the weighted averages for each

column or row will not always add up as expected from the law of total probability.

4.1 Total column ∆Φ and total column water vapor

Bretherton et al. (2004) showed aR1-9,R2-9n exponentially increasing relationship between precipitation and total column rel-

ative humidity over the tropics. Later studies (Muller et al., 2009; Holloway and Neelin, 2010; Emmenegger et al., 2022)305

demonstrate a R2-9similar and related positive relationship between precipitation and total column water vapor (TCWV) in the

tropics, where under a certain total column water vaporTCWV value, precipitation is generally R2-9negligiblenear-zero in a

given profile, and above a “pickup” threshold R2-9in TCWV, precipitation may become non-negligible and increaseR2-9s expo-

nentially. To R1-9testevaluate the R1-9statistical representativity of our dataset, we tested the validity of R1-9using the magnitude

of ∆Φ as a proxy for R1-9the magnitude of precipitation (Padullés & Turk, private communication), we lookby looking for310
R1-9,R2-11a monotonic relationship—and in particular, the precipitation pickup pattern (Holloway and Neelin, 2010)R1-9,R2-11in

the relationship— between the total column water vaporTCWV and the total column of the PRO observable ∆Φ.
R1-9,R2-11,R2 (generally)Figure 4 presents scatter plots of accumulated ∆Φ vs. TCWV for all profiles in the dataset at (a) all

latitudes, (b) upper mid-latitudes (above 50◦), (c) subtropics and mid-latitudes (between 20◦ and 50◦), and (d) tropics (below

20◦), with overlaid moving averages. These moving averages were done using the filter1d tool Generic Mapping Tools315
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(c) Ice water path centroids
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(d) Liquid water path centroids
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(e) Total (ice+liquid) water path centroids
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(f) Water vapor pressure centroids

Figure 3. Cluster analysis centroids computed by applying time series k-means clustering across all variables of interest (excluding the N̂

coefficients c).
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Table 1. Percentage of profiles in each e cluster (column) for each N − N̂ cluster (row). Cluster numbers are ordered from smallest (most

negative/zero) to largest (most positive) value by comparing their corresponding centroids in Fig. 3. Bold R2corresponds to percents higher

thanvalues indicate percentages that fall outside 1.5 times the R2the weighted standard deviation (STDR2weighted by the percentage of

N − N̂ corresponding to each case (6.66%, 5.34%, 7.06%, etc.) greater or less than) above or below the mean percentage R2in thefor each

given rowR2; the STD is weighted by the percentage of N − N̂ corresponding to each case (6.66%, 5.34%, 7.06%, etc.). R2Since there were

profiles which were excluded from our cluster analyses for certain variables, the weighted averages for each column or row will not always

add up as expected from the law of total probability. The percents in the topmost row and leftmost column percents were computed out of the

total number of profiles that passed the clustering requirements for the clustering variable shown. Green and red correspond to the maximum

and minimum percentages for each row, respectively.

N − N̂ : → 6.66% 5.34% 7.06% 16.97% 3.75% 38.69% 18.12% 3.41%
e: ↓ 3 2 6 8 7 4 1 5

21.35% 3 0.00% 0.29% 0.00% 5.09% 0.00% 30.86% 41.19% 0.90%
20.53% 7 0.46% 1.73% 0.66% 14.45% 2.88% 27.63% 31.66% 23.98%
19.63% 2 8.56% 10.12% 0.66% 35.45% 8.23% 23.05% 14.81% 23.53%
12.87% 8 14.35% 24.57% 2.18% 21.91% 12.76% 11.12% 7.15% 28.51%
10.89% 6 30.09% 32.66% 7.42% 15.91% 29.22% 4.90% 3.91% 14.93%
7.27% 4 30.56% 20.52% 19.43% 6.09% 24.28% 1.59% 0.60% 7.69%
6.16% 1 14.35% 8.96% 55.46% 0.82% 18.52% 0.36% 0.09% 0.00%
1.29% 5 1.16% 0.87% 14.19% 0.09% 3.70% 0.00% 0.00% 0.45%

N − N̂ : most negative · · · most positive

e:driest
···

w
ettest

Table 2. Percent of profiles in each e cluster (column) for each c cluster (row). e cluster numbers are ordered roughly from smallest to largest

value by comparing their corresponding e centroids in Fig. 3(f) while the c cluster numbers are merely listed in numerically increasing order

(arbitrarily). Bolding and coloring isare for each row as in Table 1.

c: → 21.73% 24.13% 16.19% 19.89% 7.60% 0.07% 4.82% 5.57%
e: ↓ 1 2 3 4 5 6 7 8

21.35% 3 3.37% 43.54% 34.65% 11.55% 2.75% 40.00% 34.67% 3.75%
20.53% 7 9.34% 29.13% 29.49% 18.98% 8.06% 0.00% 35.91% 8.85%
19.63% 2 19.78% 16.57% 15.21% 27.23% 22.59% 0.00% 15.79% 16.09%
12.87% 8 15.73% 6.12% 9.31% 16.05% 22.40% 40.00% 6.50% 21.18%
10.89% 6 17.17% 2.66% 6.54% 11.18% 27.11% 20.00% 1.86% 18.50%
7.27% 4 16.21% 1.24% 3.13% 6.30% 12.57% 0.00% 1.55% 11.26%
6.16% 1 15.11% 0.37% 0.46% 6.98% 3.34% 0.00% 0.62% 18.23%
1.29% 5 3.09% 0.19% 0.65% 1.58% 0.20% 0.00% 0.62% 1.88%

e:driest
···

w
ettest
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Table 3. Percent of profiles in each cluster for the column variable listed—liquid water path (LWP), ice water path (IWP), and liquid+ice

water path (TWP), respectively— for each ∆Φ cluster indicated by the row. Cluster numbers are ordered from smallest (most negative/zero)

to largest (most positive) value by comparing their corresponding centroids in Fig. 3. Bolding and coloring isare for each row as in Table 1.

∆Φ: → 5.20% 25.32% 34.62% 23.45% 3.87% 5.74% 1.56% 0.24%
LWP: ↓ 3 5 1 7 8 4 2 6

89.14% 1 96.35% 95.70% 95.25% 91.22% 66.07% 54.52% 17.78% 7.14%
5.34% 6 3.32% 3.28% 3.15% 6.05% 11.61% 15.96% 6.67% 0.00%
2.85% 8 0.33% 0.75% 1.25% 1.99% 12.05% 15.96% 7.78% 28.57%
1.51% 3 0.00% 0.20% 0.15% 0.44% 8.04% 11.14% 22.22% 7.14%
0.81% 2 0.00% 0.00% 0.20% 0.22% 2.23% 2.11% 27.78% 28.57%
0.28% 5 0.00% 0.00% 0.00% 0.07% 0.00% 0.30% 14.44% 14.29%
0.04% 7 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.22% 7.14%
0.03% 4 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.11% 7.14%

∆Φ: most negative/zero · · · most positiveLW
P:driest

···
w

ettest

∆Φ: → 5.20% 25.32% 34.62% 23.45% 3.87% 5.74% 1.56% 0.24%
IWP: ↓ 3 5 1 7 8 4 2 6

85.78% 1 94.68% 94.26% 93.91% 85.03% 63.39% 29.82% 3.33% 0.00%
7.31% 8 2.99% 4.78% 4.80% 9.88% 18.75% 19.58% 3.33% 7.14%
3.75% 5 1.99% 0.75% 0.85% 4.06% 8.93% 32.23% 10.00% 14.29%
1.72% 3 0.33% 0.14% 0.35% 0.88% 7.14% 13.25% 21.11% 7.14%
0.75% 6 0.00% 0.00% 0.05% 0.07% 0.00% 4.22% 31.11% 14.29%
0.49% 2 0.00% 0.00% 0.05% 0.00% 1.34% 0.90% 22.22% 28.57%
0.13% 4 0.00% 0.00% 0.00% 0.07% 0.45% 0.00% 7.78% 0.00%
0.07% 7 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.11% 28.57%

∆Φ: most negative/zero · · · most positiveIW
P:driest

···
w

ettest

∆Φ: → 5.20% 25.32% 34.62% 23.45% 3.87% 5.74% 1.56% 0.24%
TWP: ↓ 3 5 1 7 8 4 2 6

84.55% 1 93.02% 92.96% 93.26% 84.14% 60.71% 28.92% 3.33% 0.00%
8.46% 6 4.98% 5.81% 5.09% 12.09% 15.63% 24.40% 3.33% 0.00%
3.99% 5 1.99% 1.09% 1.15% 2.88% 17.41% 29.82% 12.22% 14.29%
1.79% 3 0.00% 0.07% 0.45% 0.66% 5.36% 14.46% 25.56% 7.14%
0.82% 2 0.00% 0.00% 0.05% 0.15% 0.45% 2.41% 35.56% 42.86%
0.22% 7 0.00% 0.00% 0.00% 0.00% 0.45% 0.00% 12.22% 14.29%
0.09% 8 0.00% 0.00% 0.00% 0.07% 0.00% 0.00% 4.44% 7.14%
0.07% 4 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 3.33% 14.29%

∆Φ: most negative/zero · · · most positiveT
W

P:driest
···

w
ettest

(gmt) Version 6.3 (Wessel et al., 2019). Averaging was done with a Gaussian filter of width 2 hPa·km (option -Fg2) excluding

outputs where the input data has a gap exceeding 0.2 (option -L0.2) and including ends of the time series in the output (option

-E).
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(b) |latitude|> 50◦
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(c) |latitude| ≥ 20◦ and |latitude| ≤ 50◦
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(d) |latitude|< 20◦

Figure 4. Moving averages (blue) of accumulated ∆Φ vs. accumulated water vapor pressure over scatter plots (red) across all latitudes

and in different latitudinal ranges. These moving averages were done using the filter1d tool Generic Mapping Tools (gmt) Version

6.3 (Wessel et al., 2019). Averaging was done with a Gaussian filter of width 2 hPa · km (option -Fg2) excluding outputs where the input

data has a gap exceeding 0.2 (option -L0.2) and including ends of the time series in the output (option -E). Dashed portions of the moving

averages correspond to where each bin had less than 34 data points.

R1-9,R2-11The sparse statistics and high variability across higher moisture profiles within the dataset make it difficult to filter

out outlier profiles that could significantly bias the moving averages. Thus, Fig. R1-9,R2-114(d)4 shows insufficient data R1-9for320

higher moisture cases R1-9in the tropics to replicate R1-9their resultsthe precipitation pickup pattern with much fidelityR1-9

(rp = 0.708 for latitudes < 20◦) compared to the higher latitudes shown in Fig. 4(b), as shown by the dashed lineR1-9s in

Fig. R1-9,R2-114(d)4.3 Nonetheless, R1-9theafter averaging, a positive correlation between accumulated ∆Φ and total column

water vaporTCWV was found across all latitudes (rp = 0.940) and for the three latitudinal ranges separately; see Table 4(b).

334 counts per bin was chosen as a consistent threshold for all plots in Fig. 4 to show where the density of data falls below a given reference value.
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Table 4. Pearson’s correlation coefficient (r), Spearman’s rank correlation coefficient (ρ), and Kendall’s rank correlation coefficient (τ ) on

all pairs of the accumulated ∆Φ vs. total column water vapor for the raw dataset (Table 4(a)) and for the moving averages (Table 4(b)) across

varying latitudinal ranges. Each correlation coefficient has a p-value below 10−9, indicating a high statistical significance for all coefficients.

Lat. range: → All > 50◦ ≥ 20◦ and < 20◦

Cor. coef.: ↓ ≤ 50◦

Pearson’s rp 0.332 0.315 0.349 0.375
Spearman’s ρs 0.216 0.223 0.206 0.287
Kendall’s τk 0.147 0.151 0.139 0.194

(a) Correlation tests on the raw dataset

Lat. range: → All > 50◦ ≥ 20◦ and < 20◦

Cor. coef.: ↓ ≤ 50◦

Pearson’s rp 0.940 0.901 0.921 0.708
Spearman’s ρs 0.971 0.964 0.947 0.683
Kendall’s τk 0.864 0.847 0.803 0.508

(b) Correlation tests on the moving averages

R1-9,R2-12There is also an apparent total column water vapor threshold after which ∆Φ, the PRO signature of precipitation, starts325

increasing at a faster rate for latitudes poleward of 50◦; c.f. Bretherton et al. (2004); Bretherton et al. (2009) for the tropics.

Due to sparse data, this threshold is difficult to identify in the tropics, as the dashed lines in Fig. suggest, but still weakly

present.

The strength of the correlation between accumulated ∆Φ and total column water vaporTCWV also depends on which data

the correlation analyses ran. The correlation coefficients in Table 4(a) indicate a low positive correlation between accumulated330

∆Φ and total column water vaporTCWV in the raw datasetR1-9—i.e., on the individual profiles. After applying the Gaussian

filter with results in Fig. 4 and running correlation analyses on the filtered data, we find a high positive correlation between the

same two quantities in Table 4(b). This suggests R1-9that, on average, there is a R1-9global positive relationship between the total

column ∆Φ and water vapor pressure R1-9, but this relationship is weak across individual profiles. Hence, when classifying

individual profiles, accumulated ∆Φ does not appear to be a good proxy for precipitation on a single profile; Sect. 4.2 gives a335

more useful way to predict water vapor pressure profiles using RO observables.
R1-9Similarly, Figures 4(b) and 4(d) show R1-9the roughthat, even when using running means, the limited data and high

variability across individual profiles only weakly suggest a threshold pastat which the total column water vapor inducesTCWV

begins to induce precipitation,—i.e., the critical level at which the R1-9CWVprecipitation pickup startsR1-9, is around half of

what it isThis threshold appears to be notably lower in the upper mid-latitudes than in the tropicsR1-9 (roughly 12-13 hPa · km340

vs. 25-26 hPa · km): the accumulated ∆Φ moving averages reach similar magnitudes at approximately 12-13 hPa · km in high

latitudes vs. 25-26 hPa · km in the tropics. However, particularly for tropical profiles, significantly more data are needed to

robustly confirm how accurately polarimetry can capture the precipitation pickup pattern from accumulated ∆Φ averages.

4.2 N − N̂ and water vapor pressure

We represent the deviations of N from a profile with the properties outlined in SectionSect. 3.1 by looking at overlaid graphs of345

N and N̂ as functions of height and by plotting N − N̂ as a function of height. R1-11,R2-13Figure 5 shows two examples—Figs.

5(a) and 5(b)—where N−N̂ does not correlate strongly with ∆Φ, whereas Fig. 5(c) highlights a profile in which a small bump

in N − N̂ and in water vapor correlate with a large ∆Φ. This supports the interpretation of ∆Φ as caused by an ice cloud.

Figures 5(a) and 5(b), instead, demonstrate the ability of the deviation from potential refractivity N − N̂ to predict moisture
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distributions, even when ∆Φ shows little to no correlation with these moisture changes as a function of height. For example,350

the profile in Fig. 5(b) shows negligible ∆Φ, suggesting that the water vapor profile likely indicates ice crystal-free clouds

from approximately 7.5 km down to near 5.5 km (see, e.g., the method in Peng et al., 2006).

Hence, Fig. 5(b) shows that differences in N from N̂ tend to correspond with altitudinal excursions from a near-exponential

water vapor pressure as expected for a constant c2 in Eq. (B). Table 1 verifies this by measuring the frequency with which

different N − N̂ clusters agree with specific e clusters; their centroids are shown in Figs. 3(a) and 3(f), respectively. For355

example, Cluster 1 for N − N̂ is the most flat and occurs most frequently, correlates most strongly, to Clusters 3 and 7 for e,

the latter of which correspond to profiles with little to no moisture. Conversely, Cluster 6 for N − N̂ correlates well with the

highest-moisture profiles in Clusters 1 and 5 for e and contains almost none of the low or no moisture profiles (Clusters 3, 7,

2, and 8 for e).

The N − N̂ centroids in Fig. 3(a) tend to largely deviate from non-zeroa constant value, primarily in the negative di-360

rectiondel—particularlyfor N − N̂ clusters which correlateassociated with higher moisture, e.g., N − N̂ Cluster 6—which

suggests. This indicates that N < N̂ within a profile correlates with the presence of moisture. This is because, as a higher
R1-17relativespecific humidity generally induces a higherincreases refractivity (Friehe et al., 1975; Takamura et al., 1984, also

see Eq. (1)), and hence, since. Hence, because the potential refractivity N̂ is fit toacross both moist and dry regions of a profile

both with and without moisture, the background measured refractivity N (i.e., in regions without moisture ) would be may fall365

below the vertically representative N̂ .

On the other hand, as shown in Table 1, Cluster 3 for N − N̂ features larger values of
∣∣∣N − N̂

∣∣∣ than Cluster 6 for N − N̂

yet does not correlate with profiles that have a higher water vapor pressure (i.e., Clusters 1 and 5 for e). The examples in

Fig. 5 also demonstrate this; in particular, Fig. 5(c) features a profile with a notably higher value of e than the one in Fig.

5(b) yet exhibits smaller values of
∣∣∣N − N̂

∣∣∣ overall. This suggests that the actual magnitude of deviations of N from N̂ does370

not necessarily correspond with the magnitude of water vapor pressure. Nonetheless, the clustering indicates a weak inverse

relationship between the N − N̂ and e—the upper-left and bottom-right corners of Table 1 consist mostly of red values while

the bottom-left and upper-right corners consist mostly of green ones.

The aforementioned observation raises two possible hypotheses for why the relationship between the magnitudes of N − N̂

and e are not more direct. Firstly, it is possible that the relationship between e and N − N̂ is between the derivatives of375

one or both. Furthermore, N̂ is fit acrossto most of the troposphere down to 2.5 km. Hence, R1-10the difference between the

measured refractivity, N , and the potential refractivity model, N̂R1-10, is most R1-10effectively sensitive topronounced when

there are concentrated moisture anomalies within narrow bands of the troposphere. R1-10TConversely, the sensitivity toof the

derivatives R1-10of N and N̂ with respect to height impliessuggests that there could be cases where a profile is moist, yet the

model N̂ is still a close fit forclosely matches the observed N , e.g.,. This can happen when a moist-unsaturated adiabatic lapse380

rate (Emanuel, 1994) holds acrossthroughout most of the profile. For theseIn such cases, N − N̂ could be close to zero, even

when the water vapor pressure R1-10is non-negligibleremains elevated, provided that the water vapor pressure gradients remain

small. As an example, the centroid for N − N̂ Cluster 7 is relatively flat (Fig. 3(a)), but Table 1 shows that e Clusters 4 and 6,

—both moderately high moisture cases (Fig. 3(f)), —are the most commonly represented e clusters in N − N̂ Cluster 7.
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(a) Low moisture and no apparent precipitation
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(b) Some moisture but no apparent precipitation
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(c) High moisture and precipitation

Figure 5. Three examples of thermodynamic profiles at various times and locations with different moisture and precipitation contents at

various times and locations. For each, we show the height on the y-axes and the following on the x-axes: e (left); N in blue and N̂ in red

(center); and ∆Φ (right).
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(b) All latitudes (linear scale)

Figure 6. Scatter plots of the best-fit values of T̂0 vs. Γ̂ across all latitudes in the dataset using a) logarithmic scaling and b) linear in Γ̂ to

make the separation in Γ̂ more apparent for small values of Γ̂. The colors and symbols correspond to the associated N̂ coefficient (c) clusters

for each point, as indicated by the color bars on the right-hand sides.

R2-13Fig. 5 shows three examples where N − N̂ does not correlate strongly with ∆Φ. Instead, these cases demonstrate the385

ability of the deviation from potential refractivity N − N̂ to predict moisture distributions. For instance, the profile in Fig. 5(b)

exhibits no precipitation but the water vapor profile would indicate clouds from around 7.5 km down to somewhere near 5.5

km (see e.g. method in Peng et al., 2006).

4.3 N̂ model coefficients and cluster groups

The N̂ coefficients c= (c0, c1, c2) tend to only exhibit two degrees of freedom across the profiles in the dataset. Figure 6 shows390

how projecting the c clusters onto the
(
Γ̂, T̂0

)
-plane leads to a clear partitioning across different c clusters. This suggests that

the dominant clusters for ê (and therefore e) in the dataset are related to changes in Γ̂ and T̂0. Note that changes in Γ̂ and T̂0

are related to changes in the polytropic index m and therewith the underlying heat transfer thermodynamics.

The clustering across c was generally able to partition the physical and nonphysical fits. Clusters 2, 3, 7, and 8 for c feature

physical values of T̂0 and Γ̂ while the other clusters feature nonphysically extreme values of T̂0 (mainly Cluster 6), Γ̂ (Clusters395

1 and 4) or both (Cluster 5). Such nonphysical fits indicate where the assumed physics is not reflective of the actual physics in

those profiles. Sometimes, we observed that faulty retrievals fell within these clusters with unphysical profiles, suggesting (and

perhaps identifying) retrieval issuesR1-8,R1-12 —e.g., those discussed in Sect. 2—rather than physical phenomena. Although,

since isothermal atmospheres (Γ≈ 0) are a subset of polytropic atmospheres, Clusters 1 and 4 for c could identify some of

those as well and thereby still represent physically meaningful coefficients.400
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(a) Liquid water path clusters

10 3 10 2 10 1 100 101

Fit for  [K/km]

100

150

200

250

300

350

400

450

Fi
t f

or
 T

(z
0

=
2.

5 
km

) [
K]

Ice path clusters
1

2

3

4

5

6

7

8

(b) Ice water path clusters

Figure 7. LWP and IWP clusters over T̂0 vs. Γ̂ across all profiles and latitudes.

Fig.Figure 6 shows a moderately negative linear correlation between T̂0 and Γ̂ for the fits which feature physically realistic

values of Γ̂. Between T̂0 and Γ̂ across all latitudes for Γ̂> 0.1, we have a Pearson correlation coefficient of −0.697, a Spearman

rank correlation coefficient of −0.676, and a Kendall rank correlation coefficient of −0.497. Each correlation coefficient has a

p-value below machine epsilon (i.e., at least below 2.22× 10−16), thereby showing the statistical significance of this negative

correlation. This correlation reflects that the moist adiabatic lapse rate has a negative relationship with temperature for profiles405

with sufficient moisture. Since the moist adiabatic lapse rate approaches the dry adiabatic lapse rate for temperatures roughly

below 230 K, a higher lapse rate can be observed for colder profiles.

Fig.Figure 7 R2showsfeatures two scatter plots that show how the fit coefficient vector c relates to the path variablesLWP

and IWP as a function of height. The fit values of Γ̂ and T̂0 generally do not correlate with path clusters. However, when

Γ̂> 10−1 K/km and T̂0 > 280K for a given profile, that profile has little to no precipitation, as shown by the near-uniformity410

of Cluster 1 (turquoise) for either LWP or IWP in that region, as indicated by Figs. 7(a) and 7(b), respectively. That is, c is not

too informative in confirming the presence of R1-15ice or precipitation, but it; however, c can sometimes rule out the presence

of moisture, and therebyR1-15 ice and, precipitation. Similar yet weaker relationships between c and particular precipitation

regimes can also be seen across other ranges of Γ̂ and T̂0 in Fig. 7, e.g., Γ̂> 10 K/km tends to also correlate with low or no

moisture cases.415

As the aforementioned relationship between N−N̂ and e suggests, c also exhibits an apparent relationship with e. Fig.Figure

6 suggests that Cluster 2 for c tends to contain profiles where ê is near-zero. This tends to correspond to cases when e is too low

for there to be precipitation; as seenconfirmed in Fig. 4, R1-15for low e, there cannot be precipitation or ice formationwhen the

water vapor pressure is too low, precipitation cannot form. The relationship between c and e may be analyzed more precisely by
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looking at Table 2, which demonstrates the predictive power in using c clusters to predict representative water vapor pressure420

profiles, i.e., the centroids for e clusters shown in Fig. 3(f).

4.4 ∆Φ and both liquid & ice water path

Table 3 supportsexplores the correlation of PRO ∆Φ profiles with precipitation in a given profile. Clusters with large ∆Φ tend

to correlate with those of large LWP or IWP, and inversely, those with small ∆Φ also relate to profiles with little to no LWP

and IWP. This should already be expected, as prior studies (e.g., Cardellach et al., 2019; Wang et al., 2022; Padullés et al.,425

2023) already indicate relationships between ∆Φ and both water precipitation and ice.

Despite how Clusters 2 and 6 for ∆Φ feature large values of ∆Φ (> 4 mm) quite deep into the atmosphere—up to around

9 km according to their respective centroids—Table 3 shows that ice precipitation is not necessarily deep for those cases. In

particular, Clusters 2 and 6 for ∆Φ both correlate well with Clusters 2 and 6 for IWP, but the centroids for the latter two drop

to zero near 7 and 5 km, respectively. This could be because ∆Φ across different heights need not correspond one-to-one with430

the LWP nor the IWP at those heights, and also because LWP and IWP do not necessarily signal precipitation right at the time

they are measured.

Even though the height of a particular onset or peak in ∆Φ might not correlate with onsets or peaks, respectively, in the

path cluster centroids, the shapes of the ∆Φ and total path cluster centroids appear to correlate in both precipitating and non-

precipitation cases, as demonstrated in Table 3. This consistency in shape but not in height is a property of the DTW measure435

used for the clustering. Hence, the lack of height correlations in our clusters does not contradict the model predictions of

Padullés et al. (2023) since their model directly matches features in ∆Φ and precipitation as a function of height.

5 Conclusion

In summary, k-means clustering has been used to evaluate its ability at identifying different types of correlations between

the vertical distributions of precipitation- and moisture-related variables. Our work shows the application and physical inter-440

pretability of using an unsaturated polytropic potential refractivity fit, N̂ , when there is a linear temperature profile with height,

aswhich is expected in a polytropic atmosphere. Deviations from N̂ relate to the presence of water vapor pressure anomalies at

given latitudes, longitudes, and times (SectionSect. 4.2). In particular, Table 1 demonstrates a visibly strong yet non-monotonic

relationship between the shapes and amplitudes of N − N̂ vs. e. For instance, the moderately negative Cluster 6 for N − N̂

corresponds well with very moist profiles, yet the more negative Clusters N−N̂ correspond to only moderately moist profiles.445

Inversely, the mostly flat Cluster 1 for N − N̂ corresponds to profiles with little to no moisture (Clusters 3 and 7 for e) yet the

most positive Cluster 5 for N − N̂ corresponds to profiles with low to moderate moisture. This can be explained by how the

deviation of N from N̂ will be muted if N̂ has been fit to a profile which is moist overall, and thereby
∣∣∣N − N̂

∣∣∣ will be largest

when the moisture is large and relatively localized (e.g., in the presence of clouds).

N̂ coefficient (c) clusters can flag physical vs. nonphysical values of observed and derived variables (SectionSect. 4.3,450

Figure 6). As shown in Figure 6, Clusters 5-7 for c generally correspond to temperature values whichthat are far too low,
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indicating either a problem with the data from the retrievals or a profile which does not satisfy the physical assumptions made

in deriving N̂ (see SectionSect. 3.1). Inversely, the values of c for a given profile can identify when a profile has no moisture

or precipitation with very high accuracy—as shown in Figure 7, profiles with Γ̂> 10−1 K/km and T̂0 > 280K have little to

no precipitation. Related correlations between different c and e clusters are also shown in Table 2, where we see that different455

clusters for c correspond to profiles with low, medium, and high water vapor pressure throughout.

Similarly, vertical distributions of ∆Φ are found to correlate to specific vertical profiles of liquid and ice precipitation. In

particular, the amplitude and shape of ∆Φ centroids correlate with the amplitudes and shapes of LWP and IWP centroids,

respectively (SectionSect. 4.4, Table 3). This correlation persists across low and high levels of LWP, IWP, and both combined,

thereby demonstrating a strong one-to-one relationship between ∆Φ and water path.460

In conclusion, the clustering centroids (i.e., “representative” profiles) correlate with the general magnitude of a variable

for a given profile and also the general shape of that variable as a function of height. The latter is especially evident for

variables whichthat correlate with water content: ∆Φ and the path variables. As a demonstration of how the centroids capture

the magnitude of profiles in their associated clusters, consider the ice water path (IWP) clusters shown in Figure 4(c): Clusters

4 and 7 for IWP both correspond to higher-than-average ice content in their respective profiles, and a similar comparison can465

be drawn between Clusters 2 and 6 for IWP. Relatedly, as a demonstration of how the centroids capture the shape, consider

the liquid water path (LWP) clusters shown in Figure 4(d): Clusters 2 and 5 for LWP both correspond to non-negligible

water precipitation, but Cluster 5 features profiles with deeper precipitation than those in Cluster 2. Thus, clustering in the

manner introduced in this study confirms its value as a tool for quality control of profiles and automates the classification

of—and condenses information on— physical phenomena found across large datasets, thereby avoiding the need to inspect470

and compare profiles individually.

Appendix A: Derivation of N̂

Combining the equation for hydrostatic equilibrium and the ideal gas law, we have

p(z) = p(z0)exp

− g

R

z∫
z0

ds

T (s)

 (A1)

where g = 9.8 g/m2 is the acceleration due to gravity on Earth and R= 287 J·kg−1·K−1 is the specific gas constant for dry475

air. In a polytropic atmosphere, T (z) = T (z0)−Γ(z− z0) for a lapse rate Γ to be determined by a fit to the data together with

T (z0). The integral in Eq. (A1) for this temperature profile can be computed as

− g

R

z∫
z0

ds

T (s)
=

g

RΓ
log

[
1− Γ(z− z0)

T (z0)

]
which in turn implies that (e.g., Dutton, 1976)

p(z) = p(z0)

[
1− Γ

T (z0)
(z− z0)

] g
RΓ

(A2)480
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Substituting Eq. (A2) and T (z) = T (z0)−Γ(z− z0) into Eq. (1) and putting a hat on N since N̂ is the idealized model, we

have

N̂ (z) =
k1p(z0)

T (z0)
[
1− Γ(z−z0)

T (z0)

]2 ×

{[
1− Γ(z− z0)

T (z0)

] g
RΓ+1

+
k2e

k1p(z0)T (z0)

}
(A3)

While p(z0) might not be available directly in a typical PRO profile (which only contains refractivity and ∆Φ), there will be

data for N (z0), and h. Hence, we solve for p(z0) in terms of T (z0) and N (z0) to constrain the number of fitting parameters.485

Rewriting Eq. (1) at z = z0, we have

k1p(z0) = T (z0)

[
N (z0)−

k2e

T (z0)
2

]
(A4)

Substituting Eq. (A4) into Eq. (A3) for a constant, representative, ê0, and rewriting in terms of the fit coefficients c0, c1, and

c2, leads to Eq. (3).

Appendix B: Numerical fitting procedure for N̂490

Once Eq. (3) has been fit to a given profile, we can use c0 to solve for Γ̂, then use this and c1 to solve for T̂0, and finally,

use c2 and T̂0 to solve for the representative value of ê. To do this fitting routine in practice, since k2, ê,N ≥ 0, we im-

pose the constraint c2 ≥ 0 and use the curve-fitting utility optimize.least_squares from the SciPy package (version

1.7.3) in Python 3.7.4 with the initial conditions c0 = 4.5, c1 = 0.01 m−1, and c2 = 0 to fit Eq. (3) to each N profile for all

cases. For reasons which are generally internal to the default optimize.least_squares algorithm, the nonlinear fitting495

procedure either did not always converge within the preset maximum number of iterations, 10000, with prescribed error tol-

erances ftol=xtol= 10−12, or the profile in question was missing too much data for the model coefficients to be uniquely

determinable—this only occurred in 5 profiles out of the 6706 in the dataset, or 0.07%. The latter could have either occurred

because there were not enough data overall or because there were no refractivity data at z0 = 2.5 km.

Appendix C: Clustering algorithm for k-means500

For the numerical implementation of time series k-means clustering, we use version 0.6.2 of the Python package tslearn,

which provides machine learning tools for the analysis of time series data and builds on the scikit-learn, scipy,

and numpy libraries (Tavenard et al., 2020). To run time series k-means clustering for all variables in the dataset, we use

tslearn.clustering.TimeSeriesKMeans with k = 8 clusters, the DTW metric, a maximum of 30 iterations of the

algorithm, and we fix the random state to 0 to ensure that the cluster labels stay consistent upon each run.505

There are ways to estimate the most “statistically meaningful” number of clusters for a given dataset, even when not using

the Euclidean metric—e.g., the average silhouette method (Rousseeuw, 1987) or the gap statistic method (Tibshirani et al.,

2001)—which could give different numbers of clusters for each variable. However, to keep a consistent number of clusters for
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each variable, and to give some semblance of the same hierarchy in magnitude across clustering in each variable, this study

uses the same number of clusters for all variables and defers to using a number whichthat is possibly too large rather than too510

small.

Appendix D: Quality-control criteria for clustering

Profiles are excluded from each cluster according to the quality-control criteria listed below.

– ∆Φ (923 profiles excluded, or 13.76%): Files are excluded by the same criteria used for the vertical integral of ∆Φ.

– c0, c1, and c2 (5 profiles excluded, or 0.07%): The fit for N̂ must converge, i.e., the algorithm for computing the best-515

fit coefficients c0, c1, and c2 must converge, which means that there must be refractivity data at 2.5 km, there must

be enough refractivity data between 2.5 km and the estimated lapse-rate tropopause (the latter of which was explained

earlier), and the fit must converge within 10000 iterations for tolerance conditions ftol=xtol= 10−12.

– N − N̂ (223 profiles excluded, or 3.33%): Along with the same criteria related to N̂ used for the coefficient clusters,

cases where the tropopause is below 8.2 km are skipped and three files from clustering for N−N̂ are taken out manually520

and excluded. These three files contained unphysically large values of N (N > 600) and likely indicate an issue with

retrieving the refractivity for the RO dataset.

– Water vapor pressure (33 profiles excluded, or 0.49%): Files are excluded by the same criteria used for the total column

water vapor described in Sect. 2. It should be noted that the three files with unphysically large values of N that were

manually excluded from clustering for N − N̂ also had R2-8unrealisticallyunphysically large water vapor pressure val-525

uesR2-8(> 300 hPa), and h. Hence, theyse profiles were also excluded from the clustering for water vapor pressureR1-8,

thereby showing that at least some of the erroneous water vapor pressure retrievals were caused by issues with the

retrieved RO refractivity.

– LWP (1 profile excluded, or 0.01%): Files without LWP data from 1 to 10 km are excluded.

– IWP (6 profiles excluded, or 0.09%): Files without IWP data from 1 to 10 km are excluded.530

– TWP (6 profiles excluded, or 0.09%): Files without LWP or IWP data from 1 to 10 km are excluded.

Code and data availability. The datasets associated with this study have been uploaded to the Jet Propulsion Laboratory’s

GENESIS (Global Environmental & Earth Science Information System) site: https://genesis.jpl.nasa.gov/ftp/paz_pol/. Further

ROHP data are available at https://paz.ice.csic.es. GPM level 1C passive MW radiometer data are openly available via the

Precipitation Processing System (PPS) at NASA Goddard Space Flight Center: https://pps.gsfc.nasa.gov/.535

24

https://genesis.jpl.nasa.gov/ftp/paz_pol/
https://paz.ice.csic.es
https://pps.gsfc.nasa.gov/


Author contribution. Conceptualization: JK, MTJ, KNW; Data curation: JT, KNW, RP; Formal analysis: JK, MTJ, TK; Funding

acquisition: MTJ; Investigation: All; Methodology: JK, MTJ, TK, KNW; Project administration: MTJ; Resources: MTJ, KNW;

Software: All; Supervision: MTJ, TK, JT; Validation: All; Visualisation: JK, MTJ, TK; Writing – original draft preparation:

JK, MTJ, TK; Writing – review & editing: JK, MTJ, TK, JT, RP

Competing interests. The authors declare that they have no conflict of interest.540

Acknowledgements. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology under the

JPL Visiting Student Research Program with support from NASA’s NH19ZDA001N-GNSS program, under a contract with

the National Aeronautics and Space Administration (80NM0018D0004), and with a stipend and teaching fellowship from the

Yale Graduate School of Arts and Sciences. The authors would like to thank Joe Turk for collecting and preparing the GPM

dataset, Kuo-Nung Wang and Ramon Padullés for preparing and managing the ROHP-PAZ dataset and collocations between545

the GPM and ROHP-PAZ datasets, and various technical support staff at the Jet Propulsion Laboratory for their tireless help

with data, equipment, and account access. We would also like to thank Chi O. Ao for helping to manage and prepare the data

and software resources used in this study.

25



References

Ao, C. O., Waliser, D. E., Chan, S. K., Li, J.-L., Tian, B., Xie, F., and Mannucci, A. J.: Planetary boundary layer heights from GPS radio oc-550

cultation refractivity and humidity profiles, Journal of Geophysical Research: Atmospheres, 117, https://doi.org/10.1029/2012JD017598,

2012.

Atkinson, K. E.: An Introduction to Numerical Analysis, Wiley, New York, 1988.

Bean, B. and Dutton, E.: Radio Meteorology, no. 92 in (National Bureau of Standards), U.S.Govt.Print.Off., https://api.semanticscholar.org/

CorpusID:124549052, 1966.555

Biondi, R., Randel, W. J., Ho, S.-P., Neubert, T., and Syndergaard, S.: Thermal structure of intense convective clouds derived from GPS radio

occultations, Atmospheric Chemistry and Physics, 12, 5309–5318, https://doi.org/10.5194/acp-12-5309-2012, 2012.

Bretherton, C. S., Peters, M. E., and Back, L. E.: Relationships between Water Vapor Path and Precipitation over the Tropical Oceans, Journal

of Climate, 17, 1517–1528, https://doi.org/10.1175/1520-0442(2004)017<1517:rbwvpa>2.0.co;2, 2004.

Cardellach, E., Oliveras, S., Rius, A., Tomás, S., Ao, C. O., Franklin, G. W., Iijima, B. A., Kuang, D., Meehan, T. K., Padullés, R., de la560

Torre Juárez, M., Turk, F. J., Hunt, D. C., Schreiner, W. S., Sokolovskiy, S. V., Hove, T. V., Weiss, J. P., Yoon, Y., Zeng, Z., Clapp, J., Xia-

Serafino, W., and Cerezo, F.: Sensing Heavy Precipitation With GNSS Polarimetric Radio Occultations, Geophysical Research Letters,

46, 1024–1031, https://doi.org/10.1029/2018gl080412, 2019.

de la Torre Juárez, M., Padullés, R., Turk, F. J., and Cardellach, E.: Signatures of Heavy Precipitation on the Thermodynamics of Clouds

Seen From Satellite: Changes Observed in Temperature Lapse Rates and Missed by Weather Analyses, Journal of Geophysical Research:565

Atmospheres, 123, 13,033–13,045, https://doi.org/10.1029/2017JD028170, 2018.

Dutton, J.: The Ceaseless Wind: An Introduction to the Theory of Atmospheric Motion, McGraw-Hill, https://books.google.com/books?id=

9CxRAAAAMAAJ, 1976.

Emanuel, K.: Atmospheric Convection, Oxford University Press, https://books.google.com/books?id=VdaBBHEGAcMC, 1994.

Emmenegger, T., Kuo, Y.-H., Xie, S., Zhang, C., Tao, C., and Neelin, J. D.: Evaluating Tropical Precipitation Relations in CMIP6 Models570

with ARM Data, Journal of Climate, 35, 6343 – 6360, https://doi.org/10.1175/JCLI-D-21-0386.1, 2022.

Friehe, C. A., Rue, J. C. L., Champagne, F. H., Gibson, C. H., and Dreyer, G. F.: Effects of temperature and humidity fluctua-

tions on the optical refractive index in the marine boundary layer, Journal of the Optical Society of America, 65, 1502–1511,

https://doi.org/10.1364/JOSA.65.001502, 1975.

Fueglistaler, S., Dessler, A. E., Dunkerton, T. J., Folkins, I., Fu, Q., and Mote, P. W.: Tropical tropopause layer, Reviews of Geophysics, 47,575

https://doi.org/10.1029/2008RG000267, 2009.

Gleisner, H., Ringer, M. A., and Healy, S. B.: Monitoring global climate change using GNSS radio occultation, npj Climate and Atmospheric

Science, 5, https://doi.org/10.1038/s41612-022-00229-7, 2022.

Govender, P. and Sivakumar, V.: Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review

(1980–2019), Atmospheric Pollution Research, 11, 40–56, https://doi.org/10.1016/j.apr.2019.09.009, 2020.580

Hajj, G., Kursinski, E., Romans, L., Bertiger, W., and Leroy, S.: A technical description of atmospheric sounding by GPS occultation, Journal

of Atmospheric and Solar-Terrestrial Physics, 64, 451–469, https://doi.org/10.1016/S1364-6826(01)00114-6, 2002.

Holloway, C. E. and Neelin, J. D.: Temporal Relations of Column Water Vapor and Tropical Precipitation, Journal of the Atmospheric

Sciences, 67, 1091 – 1105, https://doi.org/10.1175/2009JAS3284.1, 2010.

26

https://doi.org/10.1029/2012JD017598
https://api.semanticscholar.org/CorpusID:124549052
https://api.semanticscholar.org/CorpusID:124549052
https://api.semanticscholar.org/CorpusID:124549052
https://doi.org/10.5194/acp-12-5309-2012
https://doi.org/10.1175/1520-0442(2004)017%3C1517:rbwvpa%3E2.0.co;2
https://doi.org/10.1029/2018gl080412
https://doi.org/10.1029/2017JD028170
https://books.google.com/books?id=9CxRAAAAMAAJ
https://books.google.com/books?id=9CxRAAAAMAAJ
https://books.google.com/books?id=9CxRAAAAMAAJ
https://books.google.com/books?id=VdaBBHEGAcMC
https://doi.org/10.1175/JCLI-D-21-0386.1
https://doi.org/10.1364/JOSA.65.001502
https://doi.org/10.1029/2008RG000267
https://doi.org/10.1038/s41612-022-00229-7
https://doi.org/10.1016/j.apr.2019.09.009
https://doi.org/10.1016/S1364-6826(01)00114-6
https://doi.org/10.1175/2009JAS3284.1


Hotta, D., Lonitz, K., and Healy, S.: Forward operator for polarimetric radio occultation measurements, Atmospheric Measurement Tech-585

niques, 17, 1075–1089, https://doi.org/10.5194/amt-17-1075-2024, 2024.

Huang, Y., Leroy, S. S., and Anderson, J. G.: Determining Longwave Forcing and Feedback Using Infrared Spectra and GNSS Radio

Occultation, Journal of Climate, 23, 6027–6035, https://doi.org/10.1175/2010jcli3588.1, 2010.

Izakian, H., Pedrycz, W., and Jamal, I.: Fuzzy clustering of time series data using dynamic time warping distance, Engineering Applications

of Artificial Intelligence, 39, 235–244, https://doi.org/10.1016/j.engappai.2014.12.015, 2015.590

Jakob, C. and Tselioudis, G.: Objective identification of cloud regimes in the Tropical Western Pacific, Geophysical Research Letters, 30,

https://doi.org/10.1029/2003GL018367, 2003.

Johnston, B. R., Xie, F., and Liu, C.: The Effects of Deep Convection on Regional Temperature Structure in the Tropical Upper Troposphere

and Lower Stratosphere, Journal of Geophysical Research: Atmospheres, 123, 1585–1603, https://doi.org/10.1002/2017JD027120, 2018.

Johnston, B. R., Xie, F., and Liu, C.: Relationships between Extratropical Precipitation Systems and UTLS Temperatures and Tropopause595

Height from GPM and GPS-RO, Atmosphere, 13, https://doi.org/10.3390/atmos13020196, 2022.

Kim, J. and Son, S.-W.: Tropical Cold-Point Tropopause: Climatology, Seasonal Cycle, and Intraseasonal Variability Derived from COSMIC

GPS Radio Occultation Measurements, Journal of Climate, 25, 5343–5360, https://doi.org/10.1175/jcli-d-11-00554.1, 2012.

Kliore, A., Cain, D. L., Fjeldbo, G., Seidel, B. L., and Rasool, S. I.: Preliminary Results on the Atmospheres of Io and Jupiter from the

Pioneer 10 S-Band Occultation Experiment, Science, 183, 323–324, https://doi.org/10.1126/science.183.4122.323, 1974.600

Kuo, Y.-H., Sokolovskiy, S., Anthes, R., and Vandenberghe, F.: Assimilation of GPS Radio Occultation Data for Numerical Weather Predic-

tion, Terrestrial, Atmospheric and Oceanic Sciences, 11, 157–, https://doi.org/10.3319/TAO.2000.11.1.157(COSMIC), 2001.

Kursinski, E. R., Hajj, G. A., Schofield, J. T., Linfield, R. P., and Hardy, K. R.: Observing Earth’s atmosphere with radio occul-

tation measurements using the Global Positioning System, Journal of Geophysical Research: Atmospheres, 102, 23 429–23 465,

https://doi.org/10.1029/97JD01569, 1997.605

Lackner, B. C., Steiner, A. K., Hegerl, G. C., and Kirchengast, G.: Atmospheric Climate Change Detection by Radio Occultation Data Using

a Fingerprinting Method, Journal of Climate, 24, 5275–5291, https://doi.org/10.1175/2011jcli3966.1, 2011.

Mascio, J., Leroy, S. S., d’Entremont, R. P., Connor, T., and Kursinski, E. R.: Using Radio Occultation to Detect Clouds in the Middle

and Upper Troposphere, Journal of Atmospheric and Oceanic Technology, 38, 1847–1858, https://doi.org/10.1175/JTECH-D-21-0022.1,

2021.610

Muller, C. J., Back, L. E., O’Gorman, P. A., and Emanuel, K. A.: A model for the relationship between tropical precipitation and column

water vapor, Geophysical Research Letters, 36, https://doi.org/10.1029/2009GL039667, 2009.

Müller, M.: Dynamic Time Warping, in: Information Retrieval for Music and Motion, pp. 69–84, Springer Berlin Heidelberg, Berlin, Hei-

delberg, https://doi.org/10.1007/978-3-540-74048-3_4, 2007.

NASA: CloudSat, https://eospso.nasa.gov/missions/cloudsat, 2024.615

Nidzgorska-Lencewicz, J. and Czarnecka, M.: Thermal Inversion and Particulate Matter Concentration in Wrocław in Winter Season, Atmo-

sphere, 11, https://doi.org/10.3390/atmos11121351, 2020.

Nishida, M., Shimizu, A., Tsuda, T., Rocken, C., and Ware, R. H.: Seasonal and Longitudinal Variations in the Tropical Tropopause

Observed with the GPS Occultation Technique (GPS/MET), Journal of the Meteorological Society of Japan. Ser. II, 78, 691–700,

https://doi.org/10.2151/jmsj1965.78.6_691, 2000.620

Padullés, R., Cardellach, E., and Turk, F. J.: On the global relationship between polarimetric radio occultation differential phase shift and ice

water content, Atmospheric Chemistry and Physics, 23, 2199–2214, https://doi.org/10.5194/acp-23-2199-2023, 2023.

27

https://doi.org/10.5194/amt-17-1075-2024
https://doi.org/10.1175/2010jcli3588.1
https://doi.org/10.1016/j.engappai.2014.12.015
https://doi.org/10.1029/2003GL018367
https://doi.org/10.1002/2017JD027120
https://doi.org/10.3390/atmos13020196
https://doi.org/10.1175/jcli-d-11-00554.1
https://doi.org/10.1126/science.183.4122.323
https://doi.org/10.3319/TAO.2000.11.1.157(COSMIC)
https://doi.org/10.1029/97JD01569
https://doi.org/10.1175/2011jcli3966.1
https://doi.org/10.1175/JTECH-D-21-0022.1
https://doi.org/10.1029/2009GL039667
https://doi.org/10.1007/978-3-540-74048-3_4
https://eospso.nasa.gov/missions/cloudsat
https://doi.org/10.3390/atmos11121351
https://doi.org/10.2151/jmsj1965.78.6_691
https://doi.org/10.5194/acp-23-2199-2023


Peng, G., de la Torre-Juárez, M., Farley, R., and Wessel, J.: Impacts of upper tropospheric clouds on GPS radio refractivity, in: 2006 IEEE

Aerospace Conference, pp. 6 pp.–, https://doi.org/10.1109/AERO.2006.1655899, 2006.

Randel, W. J., Wu, F., and Ríos, W. R.: Thermal variability of the tropical tropopause region derived from GPS/MET observations, J. Geophys.625

Res., 108, 4024, https://doi.org/10.1029/2002JD002595, 2003.

Rossow, W. B., Tselioudis, G., Polak, A., and Jakob, C.: Tropical climate described as a distribution of weather states indicated by distinct

mesoscale cloud property mixtures, Geophysical Research Letters, 32, https://doi.org/10.1029/2005GL024584, 2005.

Rousseeuw, P. J.: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis, Journal of Computational and Applied

Mathematics, 20, 53–65, https://doi.org/10.1016/0377-0427(87)90125-7, 1987.630

Ruston, B. and Healy, S.: Forecast Impact of FORMOSAT-7/COSMIC-2 GNSS Radio Occultation Measurements, Atmospheric Science

Letters, 22, e1019, https://doi.org/https://doi.org/10.1002/asl.1019, 2021.

Scherllin-Pirscher, B., Steiner, A. K., Anthes, R. A., Alexander, M. J., Alexander, S. P., Biondi, R., Birner, T., Kim, J., Randel, W. J., Son,

S.-W., Tsuda, T., and Zeng, Z.: Tropical Temperature Variability in the UTLS: New Insights from GPS Radio Occultation Observations,

Journal of Climate, 34, 2813–2838, https://doi.org/10.1175/jcli-d-20-0385.1, 2021.635

Schmidt, T., Wickert, J., Beyerle, G., and Reigber, C.: Tropical tropopause parameters derived from GPS radio occultation measurements

with CHAMP, Journal of Geophysical Research: Atmospheres, 109, https://doi.org/10.1029/2004jd004566, 2004.

Smith, E. K. and Weintraub, S.: The Constants in the Equation for Atmospheric Refractive Index at Radio Frequencies, Proceedings of the

IRE, 41, 1035–1037, https://doi.org/10.1109/JRPROC.1953.274297, 1953.

Son, S.-W., Lim, Y., Yoo, C., Hendon, H. H., and Kim, J.: Stratospheric Control of the Madden–Julian Oscillation, Journal of Climate, 30,640

1909–1922, https://doi.org/10.1175/jcli-d-16-0620.1, 2017.

Takamura, T., Tanaka, M., and Nakajima, T.: Effects of Atmospheric Humidity on the Refractive Index and the Size Distribution of

Aerosols as Estimated from Light Scattering Measurements, Journal of the Meteorological Society of Japan. Ser. II, 62, 573–582,

https://doi.org/10.2151/jmsj1965.62.3_573, 1984.

Tavenard, R.: An introduction to Dynamic Time Warping, https://rtavenar.github.io/blog/dtw.html, 2021.645

Tavenard, R., Faouzi, J., Vandewiele, G., Divo, F., Androz, G., Holtz, C., Payne, M., Yurchak, R., Rußwurm, M., Kolar, K., and Woods, E.:

Tslearn, A Machine Learning Toolkit for Time Series Data, Journal of Machine Learning Research, 21, 1–6, http://jmlr.org/papers/v21/

20-091.html, 2020.

Tibshirani, R., Walther, G., and Hastie, T.: Estimating the Number of Clusters in a Data Set Via the Gap Statistic, Journal of the Royal

Statistical Society Series B: Statistical Methodology, 63, 411–423, https://doi.org/10.1111/1467-9868.00293, 2001.650

Tomás, S., Padullés, R., and Cardellach, E.: Separability of Systematic Effects in Polarimetric GNSS Radio Occultations for Precipitation

Sensing, IEEE Transactions on Geoscience and Remote Sensing, 56, 4633–4649, https://doi.org/10.1109/tgrs.2018.2831600, 2018.

Turk, F. J., Haddad, Z. S., Kirstetter, P.-E., You, Y., and Ringerud, S. E.: An observationally based method for stratifying a priori

passive microwave observations in a Bayesian-based precipitation retrieval framework, Quart. J. Roy. Meteor. Soc., 144, 145–164,

https://doi.org/10.1002/qj.3203, 2018.655

Turk, F. J., Padullés, R., Ao, C. O., Juárez, M. d. l. T., Wang, K.-N., Franklin, G. W., Lowe, S. T., Hristova-Veleva, S. M., Fetzer, E. J.,

Cardellach, E., Kuo, Y.-H., and Neelin, J. D.: Benefits of a Closely-Spaced Satellite Constellation of Atmospheric Polarimetric Radio

Occultation Measurements, Remote Sensing, 11, https://doi.org/10.3390/rs11202399, 2019.

Turk, F. J., Padullés, R., Cardellach, E., Ao, C. O., Wang, K.-N., Morabito, D. D., de la Torre Juárez, M., Oyola, M., Hristova-Veleva, S., and

Neelin, J. D.: : Interpretation of the Precipitation Structure Contained in Polarimetric Radio Occultation Profiles Using Passive Microwave660

28

https://doi.org/10.1109/AERO.2006.1655899
https://doi.org/10.1029/2002JD002595
https://doi.org/10.1029/2005GL024584
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/https://doi.org/10.1002/asl.1019
https://doi.org/10.1175/jcli-d-20-0385.1
https://doi.org/10.1029/2004jd004566
https://doi.org/10.1109/JRPROC.1953.274297
https://doi.org/10.1175/jcli-d-16-0620.1
https://doi.org/10.2151/jmsj1965.62.3_573
https://rtavenar.github.io/blog/dtw.html
http://jmlr.org/papers/v21/20-091.html
http://jmlr.org/papers/v21/20-091.html
http://jmlr.org/papers/v21/20-091.html
https://doi.org/10.1111/1467-9868.00293
https://doi.org/10.1109/tgrs.2018.2831600
https://doi.org/10.1002/qj.3203
https://doi.org/10.3390/rs11202399


Satellite Observations, Journal of Atmospheric and Oceanic Technology, 38, 1727 – 1745, https://doi.org/10.1175/JTECH-D-21-0044.1,

2021.

Utsumi, N., Turk, F. J., Haddad, Z. S., Kirstetter, P.-E., and Kim, H.: Evaluation of precipitation vertical profiles estimated by GPM-era

satellite-based passive microwave retrievals, J. Hydrometeor., 22, 95–112, https://doi.org/10.1175/JHM-D-20-0160.1, 2020.

von Engeln, A., Teixeira, J., Wickert, J., and Buehler, S. A.: Using CHAMP radio occultation data to determine the top altitude of the665

Planetary Boundary Layer, Geophysical Research Letters, 32, https://doi.org/10.1029/2004GL022168, 2005.

Wang, K.-N., Ao, C. O., Padullés, R., Turk, F. J., de la Torre Juárez, M., and Cardellach, E.: The Effects of Heavy Precipitation on

Polarimetric Radio Occultation (PRO) Bending Angle Observations, Journal of Atmospheric and Oceanic Technology, 39, 149–161,

https://doi.org/10.1175/jtech-d-21-0032.1, 2022.

Wee, T.-K., Anthes, R. A., Hunt, D. C., Schreiner, W. S., and Kuo, Y.-H.: Atmospheric GNSS RO 1D-Var in Use at UCAR: Description and670

Validation, Remote Sensing, 14, https://doi.org/10.3390/rs14215614, 2022.

Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., and Tian, D.: The Generic Mapping Tools Version 6, Geochemistry,

Geophysics, Geosystems, 20, 5556–5564, https://doi.org/10.1029/2019gc008515, 2019.

Wilks, D. S.: Statistical methods in the atmospheric sciences, Elsevier Science Publishing, Philadelphia, PA, 4 edn., 2019.

Xian, T. and Fu, Y.: Characteristics of tropopause-penetrating convection determined by TRMM and COSMIC GPS radio occultation mea-675

surements, Journal of Geophysical Research: Atmospheres, 120, 7006–7024, https://doi.org/10.1002/2014jd022633, 2015.

Yokoi, S., Takayabu, Y. N., Nishii, K., Nakamura, H., Endo, H., Ichikawa, H., Inoue, T., Kimoto, M., Kosaka, Y., Miyasaka, T., Oshima, K.,

Sato, N., Tsushima, Y., and Watanabe, M.: Application of Cluster Analysis to Climate Model Performance Metrics, Journal of Applied

Meteorology and Climatology, 50, 1666 – 1675, https://doi.org/10.1175/2011JAMC2643.1, 2011.

29

https://doi.org/10.1175/JTECH-D-21-0044.1
https://doi.org/10.1175/JHM-D-20-0160.1
https://doi.org/10.1029/2004GL022168
https://doi.org/10.1175/jtech-d-21-0032.1
https://doi.org/10.3390/rs14215614
https://doi.org/10.1029/2019gc008515
https://doi.org/10.1002/2014jd022633
https://doi.org/10.1175/2011JAMC2643.1

