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Abstract. Cold regions present unique challenges for land surface models simulating deep percolation or potential ground-

water recharge. Previous model evaluation efforts often overlooked these regions and did not account for various sources of

uncertainties influencing model performance and its evaluation. This work addresses these limitations using high-resolution

integrated lysimeter measurements to assess the performance of the SVS land surface model in a cold climate. SVS showed

promise in the simulation of snowmelt and rainfall-driven deep percolation events. It also simulated daily snow depth well,5

with a correlation coefficient (r) greater than 0.94 and a mean-bias-error (MBE) smaller than 3.0 cm for most of the simulation

period. The newly implemented soil-freezing scheme reasonably simulated the near-surface soil temperature (r = 0.89) with

a slight cold bias (MBE = -0.8 ◦C). However, the model’s inability to represent frozen soil infiltration and preferential flow

resulted in a significant underestimation of percolation (r: 0.35, MBE: -0.8 mm·day−1) and near-surface soil moisture during

cold months (MBE: -0.058 m3·m−3). Those findings highlight the importance of a comprehensive model evaluation for im-10

proving deep percolation modeling in cold regions. Such improvements can lead to more informed decision-making regarding

groundwater resource management in a changing climate.

1 Introduction

Groundwater is a vital resource facing increasing pressure globally, with declining recharge rates threatening its sustainability

(Noori et al., 2023; Wada et al., 2010; Gleeson et al., 2012; Dalin et al., 2017; Nygren et al., 2021). Physics-based numerical15

models are important for estimating (potential) groundwater recharge or deep percolation (Cao et al., 2016; Dash et al., 2019).

However, a key question remains: Can we trust these models, particularly in cold environments where water and energy fluxes

are intricately linked (Wheater et al., 2022; Cordeiro et al., 2017; Pomeroy et al., 2022)? Physics-based numerical models such

as land surface models (LSMs) can simulate these complex interactions (Arora et al., 2023; Fisher and Koven, 2020). LSMs

can explore ’what if’ scenarios, enhance understanding of physical processes, and provide process-based predictions with20

explanatory power (Willcox et al., 2021). For example, they help quantify how changing precipitation patterns impact ground-

water recharge (Trenberth, 2011; Wu et al., 2020). This is particularly important in regions where fluctuations of groundwater

resources heavily influence ecosystem water availability (Huang et al., 2019; Orellana et al., 2012). Beyond natural systems,

LSMs can guide the design of landfill final covers. Designers can optimize the covers by simulating how prospective covers
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interact with local hydrometeorological conditions (Ho et al., 2004) to minimize leachate production. This pre-construction25

analysis saves time and resources.

Robust process-based model evaluation is integral to assessing a model’s ’fit-for-purpose’ (Beven and Young, 2013) of

LSMs and identifying areas for targeted improvement (Wilson et al., 2021). Evaluating deep percolation simulations goes

beyond assessing the final output. Examining how well the model represents the key physical processes influencing deep

percolation is crucial. Several factors complicate such evaluations. First, direct measurements of deep percolation are difficult,30

costly, and scarce (Li and Shao, 2014). But they substantially minimize errors compared to indirect methods and can be used

to calibrate them (Benson et al., 2001; Meissner et al., 2008; Ouédraogo et al., 2022). Indirect methods such as those using soil

water content data are critically limited in accounting for deep percolation due to preferential flow (Khire et al., 1997; Benson

et al., 2001). Second, pinpointing limitations in models’ structure and parameterization requires accounting for uncertainties

in forcing data and parameter values (Oreskes et al., 1994). Finally, choosing an appropriate temporal resolution for model35

evaluation is crucial. High-resolution observations, such as those obtainable from lysimeters at daily or hourly time steps, help

identify the strengths and weaknesses of how specific processes are represented in the model. Coarse-resolution (annual or

total) evaluation may hide compensating errors in simulating different processes.

We performed a literature search (Scopus) to assess previous model evaluation studies comparing simulated deep percolation

with lysimeter measurements. The search yielded 57 articles, published between 1998 and 2024. Figure 1-c maps the location40

of these case studies. Figures 1-a and 1-b provide the frequency of climate types (Köppen classification (Peel et al., 2007))

and evaluation time scales, respectively. Most studies evaluated models’ deep percolation at coarser-than-daily resolutions.

HYDRUS (Simunek et al., 2005) was the most common model (28 out of 57), followed by UNSAT-H (Fayer, 2000). Only two

LSMs were evaluated: ISBA (Sobaga et al., 2023) and HTSVS (Mölders et al., 2003). A key finding is the lack of attention to

strategies accounting for different sources of uncertainty. None of the studies accounted for the uncertainty in forcing data and45

observations, and only four accounted for parameter uncertainty (Schwemmle and Weiler, 2024; Selim et al., 2023; Graham

et al., 2018; Ogorzalek et al., 2008). This is an important limitation, particularly in the context of cold regions, because small

biases in forcing data can significantly impact process simulations (Wheater et al., 2022). Snow and soil freezing processes

were rarely considered (only one study analyzed their influence (Mölders et al., 2003)). This is likely due to the geographical

distribution of the case studies (limited snow influence) and model limitations. In some instances, the latter necessitated the50

removal of snowy periods from analysis (Mijares and Khire, 2012) or simplifying approaches like a degree-day snowmelt

constant (Stumpp et al., 2012).

This study aims to improve deep percolation simulation, specifically for cold environments, through a comprehensive evalu-

ation of the Soil, Vegetation, and Snow (SVS, Alavi et al. (2016); Husain et al. (2016)) LSM. Environment and Climate Change

Canada (ECCC) developed and operationally uses SVS for hydrological forecasting (Gaborit et al., 2017). By addressing the55

identified shortcomings in previous model evaluation efforts, we evaluated SVS’s ability to simulate deep percolation using

high-resolution data from a large, experimentally constructed plot (soil enclosure) in Southeastern Quebec, Canada. The plot

was equipped with two pan lysimeters and a network of soil moisture and soil temperature sensors. We used an ensemble

simulation strategy, accounting for uncertainties in forcing data and (a subset of) the model’s soil hydraulic parameters. Our
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Figure 1. The distribution of climate types across the case studies within the reviewed works (a), including their range of average annual

precipitation, and the frequency of temporal resolutions for evaluating deep percolation model outputs (b). Case study locations from the

reviewed literature, distinguished by Köppen climate classification and average annual precipitation. Sites marked in red indicate missing

precipitation data (c).

assessment explicitly accounted for uncertainties due to measurement errors and soil heterogeneity. The uncertainties were60

factored into the calculation of performance metrics. Additionally, we implemented a simple soil-freezing scheme for SVS,

which is assessed for the first time in the scientific literature.

2 Case study

2.1 Experimental plots

Figure 2-d indicates the location of the experimental plot within the St-Nicéphore landfill site (’Study Site’) in Drummondville,65

Quebec, Canada. An aerial view of the 280 m2 plot post-construction is provided in Figure 2-a. Figure 2-b shows the plot one

month after construction. The soil configuration and dimensions of the pan lysimeters, namely the L1 and L2 lysimeters, are

illustrated in Figure 2-c. The lysimeters measured deep percolation hourly using tipping counters (KIPP-100, METER Group

Inc.; 100 ml per tip). Soil water content and soil temperature are monitored half-hourly by dielectric sensors (METER Group

Inc., 5TM), represented by blue dots in Figure 2-c. Figure 2-c shows the 15 cm topsoil layer atop the cover material (a sandy70

3

https://doi.org/10.5194/egusphere-2024-1277
Preprint. Discussion started: 22 May 2024
c© Author(s) 2024. CC BY 4.0 License.

Reviewer
Highlight
According to Figure 2, L1 and L2 appear to have different heights.  Is this correct and, if so, it deserves a brief mention?  What other features distinguish the two lysimeters?



Québec
Canada

Drummondville

Study SiteSaint-G Station

13 km

2.
10

 m

4 m

1.50 m

4 mlysimeter
0.2 m

Cover MaterialL1 L2

drainage layer

0.15 m Topsoil

(a) (b)

(c)

(d)

Figure 2. Experimental plot at the St-Nicéphore landfill. (a) Aerial view at completion. (b) Plot after one month. (c) Cross-section showing

soil layers, pan lysimeters, and soil moisture/temperature sensors (blue dots at 75, 225, 1750, and 1850 mm depths). (d) Map showing the

study site and the Saint-Germain-de-Grantham (Saint-G) weather station.

to silty soil commonly used as final cover at this landfill site). The configuration sits above a 20-cm sand-and-gravel drainage

layer within each lysimeter. Table 1 outlines the properties of the topsoil and cover material. We used sieve and hydrometer

analyses to determine sand and clay content. The soil’s (vertical) saturated hydraulic conductivity (Ksat) was obtained using

KSAT and Mini Disk Infiltrometer (Naik et al., 2019) devices (METER Group, Inc.). The soil water retention (SWR) model’s

empirical parameters, namely the air-entry suction and the slope of the SWR curve (ψae, and b), were derived in the laboratory75

using the HYPROP (METER Group, Inc.) technique proposed by Schindler and Müller (2017); Schindler et al. (2015).

2.2 Data

The study site receives over 1050 mm of precipitation annually, with an average snowfall of 227 cm. Historically (1982–2017),

the location experiences 109 days annually with more than 3 cm of snow on the ground. While we had two on-site weather

stations, their data was unsuitable due to large gaps and a significant underestimation of precipitation. Therefore, the meteo-80

rological forcing for SVS was mainly obtained from the Saint-Germain-de-Grantham (Saint-G in Figure 2-d) weather station,

located 13 km from the site. No elevation correction was applied since the station is roughly at the same elevation (85 m

for Saint-G. and 110 m for our study site). Shortwave and longwave radiation fields, unavailable at the weather station, were

sourced from the ERA5 reanalysis (Hersbach et al., 2020). We estimated specific humidity using the dew point temperature and

atmospheric pressure. The Saint-Germain-de-Grantham station uses a double Alter Shield precipitation gauge. Precipitation85

measurements were adjusted for wind bias using the formula suggested by Kochendorfer et al. (2017). Rainfall and snow-

fall were distinguished using the equation proposed by Jennings et al. (2018) based on relative humidity and air temperature

(Equation 1):
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Soil Type Parameter N Min Max Median Ens-Min Ens-Max

Topsoil Sand (%) 6 37.0 92.0 75.0

Clay (%) 6 0.0 0.0 0.0

Ksat (m·s−1) 58 1.0× 10−6 2.1× 10−4 1.4× 10−5 5.1× 10−7 5.0× 10−6

ψae (m) 4 0.24 0.51 0.39 0.05 0.45

b (-) 4 0.4 2.4 1.0 1.0 2.0

θsat (m3·m−3) 0.39 0.44

θfc (m3·m−3) 0.08 0.17

θunf (m3·m−3) 0.06 0.10

Cover M. Sand (%) 5 55.0 78.0 68.0

Clay (%) 5 6.0 12.0 7.0

Ksat (m·s−1) 64 2.0× 10−6 1.3× 10−4 1.8× 10−5 1.0× 10−6 5.0× 10−6

ψae (m) 7 0.32 0.40 0.35 0.6 0.8

b (-) 7 1.3 2.1 1.9 1.0 3.5

θsat (m3·m−3) 0.35 0.37

θfc (m3·m−3) 0.20 0.28

θunf (m3·m−3) 0.03 0.05

Table 1. Descriptive statistics of laboratory-estimated physical and hydraulic soil properties for topsoil and cover material. Parameters include

percentages of sand and clay, saturated hydraulic conductivity (Ksat), saturated water content (θsat), field capacity (θfc), unfrozen residual

water content (θunf ), and the empirical parameters related to the soil water retention model: air-entry pressure (ψae), and the b coefficient.

’Ens-Min’ and ’Ens-Max’ indicate parameter ranges for ensemble construction.

Psnow =
1

[1 + expc1 + (c2Ta) + (c3Rh)]
(1)

where Ta is air temperature (°C), Rh is the relative humidity (%), and c1, c2, c3 are empirical coefficients equal to -10.04,90

1.41, and 0.09, respectively. Precipitation is recognized as snow if Psnow is greater than 0.5 and rain otherwise.

3 Methods

3.1 SVS land surface model

This study used the SVS land surface model, developed and maintained by ECCC (Alavi et al., 2016; Husain et al., 2016;

Leonardini et al., 2021). SVS requires seven hourly meteorological inputs: air temperature, shortwave and longwave radia-95

tion, wind speed, specific humidity, atmospheric pressure, and precipitation. For snow-free conditions, initial values for soil

moisture (volumetric liquid water content) and soil temperature within each model’s soil layer must be provided. Information
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about vegetation temperature and intercepted liquid water content is also required. SVS divides each grid cell into four tiling

components: 1) bare ground; 2) low or high vegetation; 3) snow over bare ground and low vegetation; and 4) snow under high

vegetation. It uses a force-restore approach (Bhumralkar, 1975; Blackadar, 1976) for energy budget calculations and uses a100

one-layer representation of snow and vegetation canopy. A detailed overview of the SVS snow accumulation and melt routine

can be found in Leonardini et al. (2021). The Richards equation governs vertical water movement in the soil, solved using

a finite difference scheme (Verseghy, 1991). SVS uses Brooks and Corey’s equations (Clapp and Hornberger, 1978; Brooks,

1965) to model soil water retention curve (SWRC) and vertical hydraulic conductivity (Kv):

θ = θsat

(
ψ

ψae

)−b−1

(2)105

and

Kv =Kv,sat

[
θ

θsat

]2b+3

(3)

where ψ is soil suction (m), θsat is soil moisture at saturation (m3·m−3), and Kv,sat is the saturated vertical hydraulic con-

ductivity of the soil (ms−1). In Equations 2 and 3, b (unitless) and ψae (m) are empirical parameters related to the slope of the

water retention curve and the air-entry-value suction, respectively. SVS, by default, calculates percolation at the bottom of the110

soil column only when the soil moisture exceeds field capacity. Surface runoff is simulated when the precipitation rate exceeds

the first layer’s Kv,sat or when the soil pores are saturated with water. Notably, the current operational SVS version does not

simulate soil freezing and thawing and its impact on infiltration (Alavi et al., 2016). We implemented a simple soil-freezing

scheme based on the heat-conduction algorithm of Hayashi et al. (2007) to address this limitation. Appendix A describes this

scheme in detail.115

3.2 Experiment design

The experimental plot was constructed in 2018. Due to the potential impact of plot stabilization, we excluded the first year

of field data (deep percolation, soil temperature, and moisture) from the model’s performance evaluation. Meteorological

data from July 2018 to September 2019 is used for model spin-up, with simulations considered for evaluation running from

September 2019 to October 2022. To ensure a more accurate representation of processes at the near-surface and the base, the120

190 cm soil column had a varying vertical discretization. The top and bottom 15 cm segments were divided into 2.5 cm layers,

while the middle section used 5 cm layers (totaling 44 layers). The lower hydraulic boundary was set as a seepage face to

simulate the capillary barrier effect at the cover material/drainage layer interface (Scanlon et al., 2002, 2005). Median sand and

clay content values (Table 1) are assigned to each layer. An ensemble simulation strategy was used to address uncertainties

in model parameter values and meteorological data. Thirty different scenarios were constructed for each, resulting in a 900-125

member ensemble. Simulations were done using a developed Python wrapper (https://github.com/Alireza-Amani/svspyed) and

the ECCC’s high-performance computing (HPC) cluster.
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3.3 Constructing the ensemble

3.3.1 Model parameters

We selected sampling intervals for six model parameters that influence the movement and storage of water in the soil column:130

saturated vertical hydraulic conductivity (ksat), volumetric liquid water content at saturation (θsat) and field capacity (θfc),

unfrozen residual water content (θunf , see A), ψae, and the b coefficient (Equation 2). We used a combination of laboratory

measurements, field observations, and inverse modelling to determine the sampling range for these parameters. Soil moisture

observations during the winter of 2019 helped to establish the θunf range. The initial sampling ranges for ksat, ψae, and b

were informed by the laboratory measurements (Table 1), and for θsat by soil moisture measurements. For each perturbation135

scenario, we used suction threshold values ranging from 1.0 to 3.4 m (10 to 33 kPa) to determine θfc. For example, a specific

combination of ψae and b along with a randomly chosen suction value from this range would be used in Equation 2 to calculate

θfc for that scenario. Following the definition of initial sampling intervals for the parameters (ksat, θsat, θfc, ψae, and b), we

further refined the sampling ranges using inverse modeling. This process involved a five-dimensional grid search (a total of

10,000 different combinations) using soil moisture data from April to September 2019. For each combination, we calculated140

errors between hourly simulated and observed soil moisture from sensors in both soil types. The combinations with the lowest

errors for each soil type helped refine the final sampling ranges. We chose this period because it followed the first winter, when

freeze-thaw cycles likely impacted soil hydraulic properties. The final parameter ranges are indicated in Table 1 (under the

’Ens-Min’ and ’Ens-Max’ columns). Finally, Latin hypercube sampling (Loh, 1996) was used to create ensemble members,

ensuring a well-distributed sample across the parameter space.145

3.3.2 Meteorological forcing

We constructed the 30 meteorological scenarios by randomly perturbing the input variables according to the approach suggested

by Charrois et al. (2016). This approach ensures physically consistent temporal variations in the perturbed data. We used a first-

order autoregressive (AR1) model to calculate the perturbations:

Pt = ϕPt−1 + ϵt (4)150

In Equation 4, Pt is the perturbation value at time t, ϕ is the parameter for the autoregressive model, and ϵ is a white

noise process with zero mean and σ2 variance. ϕ is obtained by fitting the AR1 model to the time series of each variable,

and variance (σ2) is computed using the standard deviation of the residuals between the variables from the Saint-Germain-de-

Grantham station and the corresponding variables from the on-site measurements (average of two stations) following Equation

5.155

σ2 = σres(1−ϕ2) (5)
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Different perturbations were applied depending on the variable: additive perturbations for air temperature, dew point tem-

perature, wind speed, and atmospheric pressure, and multiplicative perturbations for shortwave radiation and relative humidity

(limited to [0.8, 1.2] to avoid extremes), following Charrois et al. (2016). Longwave radiation values are perturbed within ±
25 (W·m−2) based on Raleigh et al. (2015). Rainfall is perturbed within ±5 %, according to the World Meteorological Orga-160

nization’s recommended range of uncertainty for automatic tipping-counter rain gauges (Lanza et al., 2005; Colli et al., 2013).

Finally, the precipitation phase was determined after the perturbations were applied to air temperature and relative humidity.

3.4 Performance Assessment

The performance of the SVS ensemble for simulating soil moisture, soil temperature, snow depth, and deep percolation was

evaluated using the Continuous Ranked Probability Score (CRPS, Grimit et al. (2006); Matheson and Winkler (1976)). We165

used the formulation proposed by Stein and Stoop (2022) which evaluates the distance between the simulation CDF (F) and

the observation CDF (G) based on the following formulation (Baringhaus and Franz, 2004; Székely and Rizzo, 2005):

+∞∫

−∞

[F (x)−G(x)]2 dx= EX,Y (|X −Y |)− 1
2
[EX,X′(|X −X ′|) + EY,Y ′(|Y −Y ′|)] (6)

where X , X ′ (Y , Y ′) represent independent copies of a random variable with a CDF given by F (G). For a given time step,

we can calculate the CRPS of the SVS ensemble by (Stein and Stoop, 2022):170

CRPS(Fx,Gy) =
1
N

1
M

M∑

i=1

N∑

j=1

|xi− yj | −
1

2M2

M∑

j=1

M∑

k=1

|xj −xk| −
1

2N2

N∑

j=1

N∑

k=1

|yj − yk| (7)

where x(j) with j = 1, ...,N corresponds to the simulated values for an ensemble with N members, and y(i) with i=

1, ...,M corresponds to the observed values for an observation ensemble of sizeM . The observation ensembles for soil moisture

and soil temperature took into account both potential sensor errors and variability due to soil heterogeneity. Two sensors at each

depth within the experimental plot made the latter possible. The manufacturer-reported sensor accuracies are ± 0.03 m3·m−3175

and± 1 ◦C for soil moisture and soil temperature measurements, respectively. To construct the ensembles for soil moisture and

soil temperature at each depth, we randomly perturbed the nominal values of each sensor a total of 30 times using a uniform

distribution, resulting in an ensemble of size 60. Similarly, we applied random perturbations within the reported accuracy

of ± 1 cm for snow depth observations, creating a 60-member ensemble. Regarding the calculation of CRPS concerning

deep percolation, where both lysimeters provided deep percolation measurements, we used both values; if one lysimeter had180

missing data, only the available measurement was used. Additionally, to compare the ensemble mean of simulated and observed

variables, we used Pearson’s correlation coefficient and mean-bias-error (MBE). The MBE was calculated by subtracting the

observations from the simulated values. The evaluation metrics were calculated for cold (from November to March) and warm

months, allowing us to assess seasonal variations in model performance.
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4 Results185

4.1 Snow depth

Figure 3 compares the measured and simulated daily snow depth from SVS and the weather station across three periods. The

shaded area shows the 95% confidence interval of the ensembles, with lines representing the ensemble mean. The vertically

shaded areas highlight periods with potential rain-on-snow events. These periods (hours) are characterized by near- or above-

zero (◦C) air temperature and non-zero precipitation. The rain-on-snow events are important as they can significantly impact190

snowpack properties (Cohen et al., 2015; Juras et al., 2017; McCabe et al., 2007). Manual snow measurements taken on 10

different days at two locations (one near the enclosure, shown as squares, and one elsewhere on the site) are included in Figure

3 for comparison. Each one of those 10 measurements is the average of 10 samples (SWE and snow depth) along a path, taken

with a Federal snow sampler. The close agreement between the weather station data and the manual measurements near the

enclosure (MBE of -1.6 cm) suggests a reasonable agreement between the two measurements. Figure 3 also shows that the195

spread of observations is relatively low compared to the SVS ensemble. This narrow spread is because the uncertainty we have

considered in the observations was limited to the sensor’s expected accuracy range. It did not include spatial variability, which

can be significant, as indicated by the manual snow measurements in the figure.

Figure 3 reveals a significant overlap between the SVS and snow depth observation ensemble. This agreement is reflected

in the overall CRPS of 2.5 cm for the combined periods. The correlation coefficient (r) between the ensemble means is high200

for November 2019 to April 2020 (0.94) and November 2020 to April 2021 (0.99), indicating close agreement between the

simulated and observed snowpack evolution. However, the period between November 2021 and April 2022 shows a substantial

overestimation of snow depth starting February 17, 2022. The snow depth for the SVS ensemble increases by 9 cm on average

between February 17 and 18, while this increase is only 3 cm based on observations. This divergence greatly impacted the

evaluation metrics. Before February 17th, r is 0.98 with a slight positive bias (MBE +1.5 cm). The overestimation coincides205

with a potential rain-on-snow event (February 17th), with temperature fluctuating above and below freezing and substantial

precipitation (24.9 mm). This suggests that the overestimation was likely due to a misclassification of the precipitation phase

within the SVS ensemble. Figure 3-c highlights that this issue adversely affected model performance during late winter, a

critical period with substantial snowmelt. The calculated CRPS and correlation coefficient for March 2022 (8.3 cm and 0.94)

are noticeably worse than those for March 2020 (3.1 cm, 0.98) and March 2021 (3.8 cm, 0.98).210

4.2 Near-surface soil temperature and soil moisture

Figure 4 compares the simulated and observed daily soil temperatures at 75 mm depth, divided into two periods (Figure 4-a:

from September 2019 to November 2020 and Figure 4-b: from November 2020 to November 2021) for clarity. The SVS model

performs well in simulating near-surface soil temperature across the entire period, with a CRPS of 0.8 (◦C) and a slight cold

bias (-1.2 ◦C). The scatter plot in Figure 6-a further supports this, showing good performance during warm and cold months215

(from November to March). The low observed variability in soil temperature in Figure 4 reflects both the low spatial variability

within the enclosure and the sensors’ accuracy.
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Figure 3. Daily snow depth (cm) for (a) November 2019 to April 2020, (b) November 2020 to April 2021, and (c) November 2021 to April

2022. The lines represent the ensemble mean of SVS and observation at the Saint-Germain-de-Grantham weather station, and the shaded

area shows the 95 % confidence interval. The points represent manual snow measurements from two locations at the study site. The vertically

shaded areas are indicators for periods with potential rain-on-snow events.

Figure 5 compares the simulated and observed daily soil moisture at 75 mm depth. The model exhibits acceptable agreement

with observations for most of the period, with a CRPS of 0.02 m3·m−3. However, we observe a consistent pattern of under-

estimation during February 2020, as well as January and February 2021. This issue is illustrated in Figure 6-b, with a bias of220

-0.06 (m3·m−3) during cold months. During these periods, the SVS ensemble consistently assumed that the soil moisture was

at the residual unfrozen water content due to the simulated soil freezing.
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Figure 4. Daily averaged soil temperature at 75 mm (◦C) for (a) September 2019 to November 2020 and (b) November 2020 to November

2021. The lines represent the ensemble means of SVS and observation, and the shaded area represents the 95% confidence interval.
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Figure 5. Daily averaged soil moisture at 75 mm (m3m−3) for (a) September 2019 to November 2020 and (b) November 2020 to November

2021. The lines represent the ensemble means of SVS and observation, and the shaded area represents the 95% confidence interval.
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Figure 6. Scatter plot comparing daily simulated and observed ensemble means over the entire simulation period for (a) soil temperature at

75mm, (b) soil moisture at 75 mm, (c) deep percolation rates, and (d) soil moisture at 1850 mm below the surface.

4.3 Deep subsurface soil moisture

Figure 7 compares the simulated and observed daily soil moisture at 1850 mm depth, with Figure 6-d breaking down model

performance by warm and cold months. From September 2019 to November 2020, the SVS ensemble closely matches the225

observations. This is reflected in the CRPS of 0.01 (m3·m−3). The model slightly underestimated (MBE: -0.02 m3·m−3) soil

moisture during this period, most notably during the summer of 2020. SVS maintained a good performance until the summer of

2021, where Figure 7-b visualizes a substantial divergence between the simulated and observed ensembles. This is reflected in

the considerably worse CRPS (0.04 m3m−3) and MBE (-0.05 m3m−3) values for November 2020 to November 2021. Figure

6-d further emphasizes this underestimation bias during warm months. During cold months, however, Figure 6-d demonstrates230

a better performance for SVS with MBE equal to -0.019 m3·m−3. Importantly, the negative correlation coefficients associated

with cold and warm months may suggest a mismatch between the modelled and actual lower boundary conditions within the

soil profile.

4.4 Deep percolation

Figure 8 compares the simulated and observed daily deep percolation rates from September 2019 to November 2022, with235

Figure 6-c further examining warm and cold months performances. Overall, SVS demonstrates a good agreement with ob-

servations, supported by CRPS values of 0.6 (mm·day−1) from September 2019 to November 2020, 0.2 (mm·day−1) from

November 2020 to November 2021, and 0.8 (mm·day−1) from November 2021 to November 2022. The model captured

the major percolation events reasonably well, including those driven by snowmelt (e.g., April 2020) and significant rainfall

(e.g., 83.4 mm on August 3 and 4, and 50.3 mm on August 29, 2020). While there is a minor negative bias until November240
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Figure 7. Daily averaged soil moisture at 1850 mm (m3m−3) for (a) September 2019 to November 2020 and (b) November 2020 to November

2021. The lines represent the ensemble means of SVS and observation, and the shaded area represents the 95% confidence interval.

2021 (MBE: -0.2 mm·day−1), this underestimation increased significantly after November 2021 (MBE: -1.5 mm·day−1). This

change is largely attributed to SVS missing several deep percolation events during the winter of 2022, as also evident in Figure

6-c, where SVS simulates zero percolation on days with large observed values. This leads to a notably better performance

during warm months (r: 0.62, MBE: -0.3 mm·day−1) compared to colder months (r: 0.34, MBE: -0.8 mm·day−1). It is worth

noting that missing observations due to equipment issues impacted 36% of the days in the initial period (Sept. 2019–Nov.245

2020).

5 Discussions

The results highlight the potential of SVS to simulate key hydrological processes influencing deep percolation. Yet, they also

revealed important discrepancies with field data. These discrepancies raise questions such as: (i) Why is there a slight cold

bias in near-surface soil temperature? (ii) What are the underlying reasons limiting the ability of the model to represent the250

dynamics of near-surface soil moisture during winter? (iii) What limits the model’s ability to simulate subsurface soil moisture?

(iv) How do these limitations influence deep percolation? In this section, we further investigate these questions.

5.1 Cold bias in SVS during snow-free conditions

A potential limitation within SVS is its underestimation of near-surface soil temperature during snow-free conditions with

below-freezing air temperatures. This cold bias is evident in December 2019 and 2020 in Figure 4. This is likely due to the255
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Figure 8. Daily deep percolation rates (mm day−1) for (a) September 2019 to November 2020, (b) November 2020 to November 2021, and

(c) November 2020 to November 2022. The lines represent the ensemble means of SVS and observations from the L1 and L2 lysimeters,

and the shaded area represents the 95% confidence interval (SVS) and the range of two lysimeter observations.

model’s simplified handling of soil temperature dynamics under such conditions. Currently, the soil freezing scheme in SVS

uses as an upper boundary condition the surface temperature from a force-restore (FR) approach. The FR approach in SVS

neglects the latent heat release that occurs during soil freezing and thawing (Husain et al., 2016), which can significantly

impact soil temperature profiles. As shown by Boone et al. (2000), incorporating these latent heat effects into force-restore

schemes leads to improved soil temperature simulations during freezing periods. Therefore, neglecting this aspect in SVS260

likely contributes to underestimating surface soil temperature in early winter snow-free conditions. This, in turn, affects the

ground heat flux calculations used by the soil freezing scheme, potentially leading to an overestimation of frost depth.

5.2 Limitations of SVS in simulating soil moisture and deep percolation in winter

While potential limitations in SVS’s soil freezing scheme exist, these may not fully explain the discrepancy in near-surface

soil moisture during the winter of 2021 (Figure 5-b). Despite accurate soil temperature simulations (CRPS of 0.3 ◦C), soil265

moisture simulation significantly deviated in this period (CRPS of 0.05 m3·m−3). This highlights potential shortcomings in
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representing hydrological processes under freezing conditions. Currently, SVS lacks the representation of water infiltration

due to macropores in frozen soil, a complex process that can largely impact soil moisture dynamics (Watanabe et al., 2013;

Jiang et al., 2020). This limitation is likely the main factor explaining the aforementioned discrepancy. It could also explain

the missed deep percolation events during the winter of 2022 (Figure 8). In freezing conditions, snowmelt or rainfall can270

infiltrate and bypass frozen near-surface soil through preferential flow paths (macropores), directly reaching deeper soil layers

(Demand et al., 2019; Watanabe and Kugisaki, 2017). Without accounting for this process, the model might underestimate

deep percolation while overestimating surface runoff during freezing periods.

To further illustrate the model’s limitations and their potential impacts, we examined a specific event in December 2019 (the

9th through the 12th) where SVS did not simulate deep percolation. Figure 9 presents the relevant data. Figure 9-a shows a275

likely rain-on-snow event with potentially considerable snowmelt infiltration during a warmer period. Figure 9-b reveals that

the near-surface soil was likely frozen during the snowmelt event. It also indicates a good agreement between the simulated

(ensemble mean) and observed (on top of the L2 lysimeter) soil temperatures. Interestingly, Figures 9-c and -d show that

the infiltrated water bypassed the surface soil, directly reached the lysimeters (L2) base, and generated a significant deep

percolation volume (18.2 mm). This hints at water movement through preferential flow paths. In contrast, the SVS model280

(ensemble mean) simulated no significant percolation and instead generated a considerable amount of surface runoff (29.2

mm).

5.3 Influence of Capillary Barrier on Simulated Subsurface Soil Moisture

Figure 6-d reveals a negative correlation coefficient between simulated and observed subsurface soil moisture (1850 mm) for

both cold and warm months. This limitation in accurately simulating the dynamics of the soil moisture at the bottom of the285

soil column is potentially related to the choice of the lower hydraulic boundary condition in the model. We adopted a seepage

face boundary condition as it is often suggested in studies involving lysimeters to approximate the capillary barrier effect

induced by the inclusion of the drainage layer at the bottom of the lysimeters (Scanlon et al., 2002, 2005). The capillary barrier

increases water storage in the finer layer situated just above, potentially keeping this finer layer close to saturation (Mancarella

and Simeone, 2012; Abdolahzadeh et al., 2011). Our results suggest that a more sophisticated boundary condition is required290

to more accurately reproduce the temporal variation of soil moisture close to a capillary barrier (Gao et al., 2023; Hübner

et al., 2017; Kahale and Cabral, 2024). Despite the negative correlation, Figure 7 reveals that the simulated ensemble has a

relatively high overlap with the observations during the cold months where the movement of water in the soil is predominantly

downward, reflected in a small CRPS value of 0.007 m3·m−3. However, a notable underestimation occurs during warm months,

particularly during the summers of 2020 and 2021, with CRPS equal to 0.036 (m3·m−3), significantly worse than 0.007.295

To further analyze the summertime underestimation, Figure 10 compares simulated (ensemble mean) and observed (sensors

inside and outside the L1 lysimeter) soil moisture at different depths from May to September 2020. Figure 10-c reveals the

underestimation becomes increasingly pronounced during the warmer months. Figure 10-b shows a similar, though less severe,

underestimation at 1750 mm. Interestingly, the simulated soil moisture at 1750 mm agreed better with the sensor located outside

(’ext’ in Figure 10-b) the lysimeter, where no capillary barrier effect was present. The sensor’s data revealed a drying pattern300
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L2 lysimeter (mm/hr) and simulated surface runoff (mm/hr)

similar to the model, hinting at the influence of the lysimeter on the upward movement of water (the drying front) from deeper

soil layers (Oldecop et al., 2017). This finding resonates with those of McCartney and Zornberg (2010), who investigated the

zone of influence of a (geosynthetic) capillary barrier at the bottom of a laboratory-constructed 1350 mm soil column. During a

three-month evaporation stage (using heat lamps), their soil moisture measurements did not show a significant decrease beyond
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700 mm below the surface. In other words, the drying front only progressed 700 mm into the soil layer. This analysis raises305

important questions for future research. Could the lysimeter’s influence explain the near-surface soil moisture disagreement in

Figure 10-a? Did the capillary barrier alone, or other lysimeter characteristics (e.g., no-flux boundary walls), contribute to this

effect? We also need more integrated data (deep percolation and soil moisture) during summer periods to fully evaluate the

impact on deep percolation simulations.

6 Conclusions310

Robust process-based evaluation of land surface models is critical for understanding and improving their ability to simulate

deep percolation, particularly in cold regions where complex hydrological processes interact. Previous model evaluation stud-

ies often neglected the potential influence of uncertainties in forcing data, parameter values, and observations. Evaluations

frequently relied on data with coarse temporal resolution and rarely included processes such as snow and soil freezing. This

study aimed to address these critical gaps. We comprehensively evaluated the Soil, Vegetation, and Snow (SVS) land surface315
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model using high-resolution data from a large instrumented experimental plot built in the St-Nicéphore landfill site in south-

eastern Quebec, Canada. Our performance assessment approach accounted for uncertainty in meteorological inputs, a subset

of the model’s hydraulic parameters, and observations. Furthermore, we evaluated a newly implemented soil freezing scheme

implanted within the SVS model for the first time.

The results showed that the simulated and observed daily snow depth correlated well for most of the simulation period,320

with a correlation coefficient (r) greater than 0.94 and a mean-bias-error (MBE) smaller than 3.0 cm. This suggests a good

representation of snow accumulation and ablation processes within SVS. The soil freezing scheme simulated near-surface daily

soil temperature very well in cold months (r: 0.89), with a slight cold bias (MBE: -0.8 ◦C) due to potential shortcomings in

representing the latent heat exchange during freezing and thawing cycles. SVS showed promise in capturing deep percolation

events driven by spring snowmelt and heavy summer and fall rainfall events. However, the model struggled to simulate per-325

colation events during cold months (r: 0.35) and under freezing conditions due to a lack of representation for infiltration in

frozen soil and the influence of preferential flow pathways. These limitations also negatively impacted SVS’s ability to simulate

near-surface soil moisture during winter (MBE: -0.058 m3·m−3).

Our findings underscore challenges and important considerations for accurately simulating cold-region deep percolation

dynamics. Future studies can focus on improving the representation of frozen soil infiltration and preferential flow pathways330

within SVS and potentially other land surface models. Prioritizing the collection and subsequent open-access sharing of long-

term, high-resolution integrated field measurements can facilitate such model improvements. Expanding model evaluations to

include other cold regions, longer periods, and diverse land covers is essential for developing robust cold region hydrological

models. This approach can further improve deep percolation simulation by land surface models and enhance our understanding

of cold region hydrology and its response to a changing climate.335

Data availability. The data presented in this study, including deep percolation, soil temperature, and moisture, and the laboratory measure-

ments is included in an open repository accessible at Cabral et al. (2024).

Appendix A: Soil freezing module in SVS

SVS uses a hybrid approach that combines Force Restore schemes to compute the surface energy budget of bare ground, veg-

etation, and snow (Husain et al., 2016) with a multi-layer hydrological module solving the Richards equations for unsaturated340

flow in a porous media (Alavi et al., 2016). This hybrid approach initially prevented the simulation of soil freezing and thawing

by the model. To overcome this limitation, a new module has been developed.

The representation of soil freezing in SVS relies on the soil freezing/thawing module available in the Versatile Soil Budget

Model (VSMB, Mohammed et al., 2013). This module is based on the simple heat-conduction algorithm of Hayashi et al.

(2007) and simulates the evolution of soil temperature and associated phase changes without the computationally expensive345

iterative solution of coupled non-linear equations. In SVS, soil temperature, and phase changes are solved on the same vertical
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grid as the hydrological processes using upper boundary conditions provided by the force restore schemes solving the multiple

energy budgets at the surface (Husain et al., 2016).

A1 Heat conduction algorithm

In the soil temperature algorithm, the heat conduction between two adjacent soil layers (upper to lower) is given by:350

qh =−λs
∆zT

∆z
(A1)

where qh is the soil heat flux (W m−2), ∆zT is the difference in soil temperature between adjacent layers (lower minus

upper) (K), ∆z is the distance between the centers of the layers (m) and λs is the bulk thermal conductivity given by the

thickness-weighted harmonic mean conductivity of the two layers (W K−1 m−1).

For a given soil layer j, the net heat flux (∆zqh,j) is then computed as:355

∆zqh,j = qh,j−1− qh,j (A2)

The soil temperature algorithm assumes then that the change in net heat flux corresponds to a change in heat stored as

sensible and latent heat in layer j:

∆zqh,j = (∆tTjcs,j + ∆twi,jρwLf )dj (A3)

where ∆tTj (K) and ∆twi,j (kg kg−1) are the changes in soil temperature and liquid equivalent ice content of layer j,360

respectively, with time, ρw is the density of water (kg m−3), Lf is the latent heat of fusion (J kg−1), dj is the layer thickness

(m), and cs,j is the volumetric heat capacity of the soil layer (J m−3 K−1).

The VSMB soil freezing scheme assumes that water in soil pores freezes at Tref = 273.15 K and ignores the freezing-point

depression (Kurylyk and Watanabe, 2013). It accounts for the presence of unfrozen water that remains in the soil at sub-zero

temperatures and co-exists with ice. The default VSMB algorithm assumes that the residual unfrozen water content, wl,r, is365

constant and equals 0.06 by default. This option has been used in the work since it corresponds well to local observations of

residual liquid water content in frozen conditions. Another option in SVS allows the unfrozen residual water content to depend

on the soil texture based on Niu and Yang (2006). If a soil layer j is completely thawed or frozen with no liquid water above

the residual frozen water content (i.e., Tj ̸= Tref ), ∆zqh,j is converted to sensible heat until Tj reaches Tref and any residual

is converted to latent heat (melting of freezing). If the soil is already frozen (Tj=Tref ), ∆zqh,j is first used for phase change370

of all available liquid water above wl,r and any residual is converted to sensible heat. Calculations are performed sequentially

from the top to the lowest soil layer.

The thermal heat capacity, cs, and thermal conductivity, λs, of the soil layers are parameterized following Peters-Lidard

et al. (1998) as functions of soil moisture and texture (percentage of sand and clay) and account for the effect frozen soils
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as described in Boone et al. (2000). The dry soil thermal conductivity and soil thermal conductivity are taken from He et al.375

(2021) and Johansen (1975), respectively.

A2 Lower boundary condition

The heat flux at the bottom of the lowest soil layer is specified using an annual mean deep soil temperature, Tbtm, and an

appropriate scaling depth, zbtm. It is written as:

qh,N = λs,N
TN −Tbtm

(zbtm− zN )
(A4)380

where N corresponds to the deepest soil layer. In this study, Tbtm was set to 7.5 (°C) and zbtm set to 5 m.

A3 Upper boundary condition

The upper boundary condition accounts for the surface tiling use in SVS. It includes contributions from: (i) snow-free bare

ground, (ii) snow-free low and high vegetation, (iii) snow over bare ground and low vegetation, and (iv) snow below high

vegetation. The heat flux at the top of the superficial soil layer is written as:385

qh,0 = fgrndHgrnd + fvegHveg + fsnwHsnw + fsnwvHsnwv (A5)

Where fgrnd and fveg are the fractions of snow-free bare ground and snow-free low and high vegetation, respectively.

fsnw and fsnwv represent the fraction of low vegetation and bare ground covered by snow and the fraction of soil under high

vegetation covered by snow, respectively. Hgrnd, Hveg , Hsnw and Hsnwv are the heat flux (W m−2) from snow-free bare

ground, snow-free vegetation, snow over bare ground and low vegetation and snow below high vegetation.390

For bare ground, the heat flux depends on the difference between the skin-temperature Tgs simulated by the force-restore

approach for bare ground and the temperature of the upper soil layer (j=1). It is written as:

Hgrnd =
Tgs−T1

Rg
withRg =

d1

2λs,1
(A6)

In its current version, the soil freezing scheme has no feedback on the force restore scheme used for bare ground. Therefore,

the prognostic temperature variables of the force restore scheme used for bare ground lack the effect of latent heat release due395

to soil freezing and thawing. This can lead to an underestimation of soil temperature during soil freezing and an overestimation

of soil temperature during soil thawing.

For snow-free low and high vegetation, SVS relies on the thermal coupling approach used in the EC-Land scheme (Boussetta

et al., 2021). It uses the concept of skin conductivity to compute the heat exchanges between the vegetation tile and the soil.

The heat flux between the snow-free low and high vegetation and the upper soil layer is written as:400

Hveg = (Tvs−T1)Λv (A7)

where Tvs is the vegetation skin temperature simulated by the force-restore approach and T1 the temperature of the upper soil

layer. Λv is the skin conductivity (W K−1 m−2) for the vegetation. A first option in the code used a constant value of 10 W
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K−1 m−2 for low and high vegetation as in the default version of EC-Land (see Table 1.2 in the supplementary material of

Boussetta et al. (2021)). A second option, used in this work, takes into account the effects of stable and unstable stratification405

as in Trigo et al. (2015).

The force restore schemes used for the snowpack over bare ground and low vegetation and the snowpack below high veg-

etation do not provide information on the temperature at the interface between the ground and the snow. Therefore, the deep

snow temperature, Tsnw,d, from the force restore scheme is used to estimate the heat flux between the superficial soil layer and

the snow. It is written as:410

Hsnw =
Tsnw,d−T1

Rsnw
withRsnw =

htherm

λsnw
+

d1

2λs,1
(A8)

where λsnw is the snow thermal conductivity (W m−1 K-−1) and htherm the thickness used to compute the thermal ex-

changes between the snowpack and the ground (m). htherm depends on the snow damping depth, dsnw, used to characterize

the diurnal variation of temperature close to the snow surface in the Force Restore scheme (Leonardini et al., 2021). htherm is

computed as htherm = max(hsnw/2,hsnw − dsnw) where hsnw is the total snow depth. The heat flux between the superficial415

soil layer and the snowpack below high vegetation,Hsnwv , is derived in the same way asHsnw using the simulated information

for the snowpack below high vegetation.

An accurate estimation of the fraction of the soil covered by snow is an important component of the soil freezing scheme.

Indeed, it affects the estimation of the surface heat flux and strongly controls soil freezing in the fall and soil thawing in

springtime. Two approaches can be used for snow cover fraction in the soil freezing scheme. For the first option, the fraction is420

computed as fsnw= max(1., ρsnwhsnw

Wcr
) with Wcr = 1 kg m−2. The same formulation is used for fsnwv . With this formulation,

the snow cover fraction reaches the value of 1 as soon as the snow is present on the ground. Such formulation is mainly suitable

for point-scale applications of the soil freezing scheme and was used in the study. A second option, recommended for gridded

simulations, relies on the formulation of Niu and Yang (2007):

fsnw = fsnwv = tanh


 hsnw

2.5z0
(

ρsnw

ρref

)m


 (A9)425

where ρref = 100 kg m−3 and m = 1.6 are the default values from Niu and Yang (2007). In the soil freezing scheme, z0 is set

to 0.01 m to preserve a rapid increase of the snow cover fraction with snow depth. The term
(

ρsnw

ρref

)m

in the denominator aims

at roughly representing the hysteresis associated with the snow cover fraction (Niu and Yang, 2007).

A4 Hydrological impact

The presence of frozen soil (wi > 0) modifies the hydraulic conductivity at saturation and the soil porosity in the SVS soil430

hydrology scheme. The saturated hydraulic conductivity in the presence of frozen soil is written as ksatc = ficeksat where

ksat is the hydraulic conductivity at saturation that depends on soil texture. fice is a parameter that aims are reducing ksat in

presence of frozen water in the soil (e.g., Kurylyk and Watanabe, 2013). It is computed as in the CLASS land surface scheme
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(Ganji et al., 2017):

fice =
[
1−max

(
0,min

(
wsat− 0.001

wsat
,
wi

wsat

))]2

(A10)435

where wsat is the saturated volumetric water content.

The volumetric liquid water content at saturation is also reduced assuming that frozen water becomes part of the soil matrix

(Zhao et al., 1997):

wsatc = max(0.001,wsat−wi) (A11)

Evapotranspiration is also indirectly impacted due to the change in the liquid water content when freezing and thawing occur.440
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