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Abstract. Overland flow is a critical aspect of the hydrological cycle, and understanding its dynamics is crucial for managing 

water-related issues such as flooding and soil erosion. This paper investigates the impact of various roughness estimation 

methods on simulating overland flow during intense rain events, with a specific focus on the influence of vegetation. The study 

assesses various approaches to vary roughness as a function of water sheet thickness and vegetation height, including two 

different constant Manning's coefficients, a linear approach, an exponential function, a power law function, an empirical 10 

formula, and a physics-based approach. The investigation emphasizes the importance of accurate roughness estimation for 

improving the reliability of hydrological models and enhancing flood prediction capabilities. Experimental data from artificial 

rainfall experiments on 22 different natural hillslopes in Germany are used to calibrate the OpenLISEM hydrological model, 

adjusting parameters such as saturated hydraulic conductivity and soil suction at the wetting front. Subsequently, various 

Manning's coefficient estimation methods are applied, and the model's performance is evaluated numerically.  15 

Preliminary results indicate satisfactory calibration outcomes, with NSE values ranging from 0.75 to 0.95 in most cases for 

various sites. To validate the models, 100 different experimental rainfall events are used for each roughness method. Validation 

findings suggest that the physics-based approach, the linear function, and constant Manning roughness, demonstrate the best 

performance based on NSE values. According to our results, areas with more vegetation coverage demonstrate higher saturated 

hydraulic conductivity value, indicating that, for two sites with the same soil type, the locations with dense vegetation exhibit 20 

higher infiltration parameters. Consequently, it is crucial to evaluate the influence of vegetation on runoff, considering not 

only its effects on Manning's coefficient but also on saturated hydraulic conductivity. 

1 Introduction 

Catchment vegetation plays a key role in the hydrological cycle (Peel, 2009). Flow-vegetation interactions effect on the runoff 

by increasing the roughness, modifying flow patterns, and providing additional drag (Vargas-Luna et al., 2015). Numerous 25 

field, experimental and analytical studies have been conducted to explore the effects of submerged or emergent vegetation on 

runoff (Aberle and Järvelä, 2015; Freeman et al., 2000; Nepf, 2012; Nicosia and Ferro, 2023). The velocity profile is typically 

consistent throughout the depth in cases of emergent vegetation, whereas for submerged vegetation, the velocity profile 

exhibits an approximately S-shaped pattern. This results in a Kelvin-Helmholtz instability between the upper flow and the flow 

between the vegetation (D’Ippolito et al., 2021). Nepf, (2012) stated that the flow behavior of the submerged grassland can be 30 

categorized into two limits, based on the relative significance of bed shear and grassland drag. Based on Järvelä’s study the 

primary factors influencing the Darcy-Weisbach friction factor were relative roughness, flow velocity, and flow depth (Järvelä, 

2002). The significance of these factors varied based on whether the flow was submerged or not. Additionally, Järvelä 

introduced an approach to assess the Darcy-Weisbach friction factor caused by rigid and flexible woody vegetation in situations 

non-submerged flow (Järvelä, 2004). Oberle et al. (2021) investigated flow depth-dependent roughness relationships using 35 

some experimental data on homogeneous artificial grass (Ruiz Rodriguez, 2017). They found roughness coefficient values 

varied with different water depths. Hinsberger et al. (2022) conducted laboratory experiments involving both submerged and 

emergent vegetation, along with solid surfaces. Determined roughness coefficients were then used to assess how water depth 

and slope impact roughness. In the case of submerged vegetation, changes in water depth demonstrated a reduction in 

roughness as submergence increased. Conversely, for emergent vegetation, greater submergence resulted in heightened 40 
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roughness. These results are in agreement with Oberle et al. (2021). Their findings demonstrated that the relationship between 

roughness and water depth for the intermediate area can be effectively characterized using a linear method. A Review of recent 

studies indicates that a variety of surface roughness equations have been developed to formulate the relevant roughness caused 

by vegetation (D’Ippolito et al., 2021). The uncertainty of resistance coefficient values leads to varying results in surface runoff 

accumulation. Dalledonne et al., (2019) introduced an approach to evaluate uncertainty in floodplain hydrodynamic models 45 

influenced by vegetation, testing four resistance formulas. Meanwhile, Kiczko et al., (2020) compared advanced process-based 

methods with practical divided channel techniques for estimating discharge in vegetated river channels. Their findings 

indicated the superiority of complex process-based methods over the Manning-based divided channel method, consistent with 

Dalledonne et al., (2019)'s observations of narrower uncertainty estimates associated with complex models. Feldmann et al. 

(2023) proposed a framework to estimate Manning roughness dependent on shallow water depth. First, the partitioning of 50 

runoff and infiltration was calculated during the descending limb of the hydrograph to determine the minimum infiltration rate. 

Then, they reduced the solution space by comparing experiments conducted at one site and by comparing sites with similar 

properties. The framework's robustness was tested using three different depth-dependent roughness equations and a constant 

Manning coefficient using artificial rainfall experiments conducted by Ries et al. (2020). 

Utilizing flow resistance models in vegetated areas holds immense value in evaluating the potential for flooding and 55 

formulating flood mitigation strategies grounded in scientific principles (Green, 2005). However, evaluating these equations 

to calculate overland flows continues to be a staple area of research within hydrology. To test the effect different roughness 

calculation methods, they need to be included into a complete surface runoff  model. OpenLISEM (Open LImburg Soil Erosion 

Model) was chosen for its modular structure, open source code and physics-based approach. It allows to see, modify, and 

distribute the code by users. It is an event-based and spatial hydrological model suitable for different sizes of catchments. It 60 

focuses on simulating runoff, sediment dynamics, and infiltration during heavy rainstorms, allowing for detailed assessments 

of land use changes and conservation measures (Jetten, 2002). With the development of OpenLISEM by roughness estimation 

models, it is possible to calculate the effects of flow through or over the vegetation.  

To develop and evaluate runoff models in the absence of real measurement, artificial sprinkling studies present an opportunity 

to investigate roughness coefficients. Ries et al. (2020) collected one of the most extensive datasets accessible in southwest 65 

Germany. By utilizing the experimental dataset from Ries et al. (2020) and hydrodynamic simulation, our study takes a 

significant step forward in assessing the accuracy of roughness coefficient estimations. This assessment covers a variety of 

scenarios involving different levels of vegetation coverage and vegetation height and varying rainfall intensities.  

The scope of our study encompasses the following objectives: 

- Investigation of vegetation effects on overland flow 70 

- Modelling the overland flow to compare and validation of different approaches of Manning’s coefficient estimation 

- Investigation of initial and boundary condition effects on modeling 

By comparing observed and simulated discharge, we evaluate the effectiveness of different approaches to estimate Manning's 

coefficient. Furthermore, our study provides clear insights into initial condition effects on overland flow hydrodynamics and 

the relationship between vegetation and runoff depth. 75 

2 Materials and methods 

2.1 Model 

To explore the impact of roughness on overland flow simulations, it's crucial to integrate the relationship between roughness 

and water depth into the model. For this purpose, OpenLISEM version 6.873 has been utilized which employs Manning's 

approach to calculate the runoff velocity. While the original software employed a constant Manning's coefficient as a raster 80 

map for roughness, a new feature called the dynamic Manning's n function has been introduced into the software to implement 
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different Manning's coefficient estimation methods in simulations. This feature enables users to select from various methods 

of roughness estimation, including not only a constant value but also methods dependent on the depth of runoff. Detailed 

information about these extensions can be found in the ‘Code availability.’ section. The elevation model is generated with a 

cell size of 1 × 1 meter, providing information about the gradient of each specific location in the database (Table 1). It's worth 85 

noting that micro depressions are considered by Manning's coefficient. At the outlet, located at the lower end of the terrain, 

discharge data is recorded for more analysis (Figure 1). 

 

Figure 1: 1 × 1-meter digital elevation model applied for simulations, incorporating the specific slope of each site. 

 90 

Time resolution was 1s and the total simulation time was chosen based on observation runoff data. 

Overland flow is computed by the kinematic wave method. For the distributed routing of overland flow, a four-point finite-

difference solution of the kinematic wave is together with Manning's equation (Jetten, 2002). To estimate the infiltration, 

Green-Ampt method was used (Rawls et al., 1983). This method contains variables that are measured in the field, porosity and 

the initial soil moisture content, or estimated by using the software package SPAW (Saxton and Willey, 2006), like as saturated 95 

hydraulic conductivity (Ksat) and average soil suction at the wetting front (Psi). Prior studies, including those by Jetten, (2002), 

Hessel et al. (2003) and Starkloff and Stolte (2014), have highlighted the primary sensitivity of OpenLISEM to Ksat and Psi 

parameters. 

2.2 Surface roughness functions 

The shape of a hydrograph is influenced by various factors related to rainfall, land characteristics, and drainage patterns. 100 

Therefore, by changing the Manning roughness coefficient, the shape of the output hydrograph changes. In this study, two 

depth-independent Manning's roughness coefficients and five depth-dependent roughness functions were introduced to 

OpenLISEM to quantify the effect of the vegetation on Manning’s roughness coefficient. 

2.2.1 Constant Manning’s coefficients 

The initial approach assumes a constant value for Manning's roughness coefficient based on Chow (1959), while in the other 105 

methods, the coefficient varies based on the water depth. The values of Manning's roughness coefficient using Chow's method 

for each site of the artificial rainfall experiments are given in Table 1. 

In the study conducted by Feldmann et al., (2023), the Manning values were directly iterated within the framework they 

established. The authors reported that the most robust results, characterized by high Nash-Sutcliffe Efficiency (NSE) values, 

were achieved with constant Manning values, as presented in Table 1. 110 
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Table 1: Properties of experimental sites and the values of constant Manning's roughness coefficient. 

Site* 
Slope* 

% 
Vegetation* 

Veg_height* 

(m) 

Plant 

coverage* 

% 

soil type 
n 

(Chow) 

n 

(Feldmann) 

1 12 Pasture 0.15 100 Clay 0.05 0.58 

2 18 Pasture 0.1 100 Silty loam 0.05 0.60 

3 16 pasture 0.1 90 Loam 0.05 0.70 

4 16 mustard 0.15 40 Clay loam 0.04 0.45 

5 14 triticale (seeded) 0 0 Silty loam 0.03 0.18 

6 21 pasture 0.05 100 Silty loam 0.04 0.65 

7 14 winter barley 0.3 80 Silty loam 0.05 0.38 

8 16 corn (seeded) 0.05 15 Sandy loam 0.035 0.13 

9 21 pasture 0.1 100 Sandy loam 0.05 0.58 

10 32 pasture 0.15 100 Sandy clay loam - - 

11 18 pasture 0.1 80 Silty clay 0.045 0.68 

12 19 pasture 0.15 100 Silty clay 0.05 0.65 

13 11 alfalfa 0.2 40 Silty clay 0.04 0.28 

14 27 pasture 0.15 100 Silty clay 0.05 0.70 

15 14 winter barley 0.05 0 Clay loam 0.03 0.50 

16 12 pasture 0.1 100 Clay loam 0.05 0.40 

17 14 pasture 0.05 100 Silty loam 0.05 0.48 

18 12 alfalfa and clover 0.2 60 Clay 0.045 0.38 

19 21 pasture 0.15 100 Sandy clay loam 0.05 0.98 

20 9 corn (harvested) 0 0 Clay loam 0.03 0.05 

21 14 green manure 0.15 50 Silty clay loam 0.04 0.35 

22 12 pasture 0.2 100 Silty clay 0.05 0.38 

23 14 corn (harvested) 0 0 Clay 0.03 0.08 

 * Data from Ries et al. (2020) 

   Pair sites 
 

 

 

2.2.2 Linear method 

Oberle et al. (2021) investigated flow depth-dependent roughness relationships using some experimental data on homogeneous 115 

artificial grass (Ruiz Rodriguez, 2017). Similar to Hinsberger et al. (2022), they found Strickler coefficient, 𝑘𝑆𝑡𝑟, values varied 

with different water depths in the presence of grass. Based on their results, there are three zones to specify roughness within 

the data range, categorized according to the submergence ratio: 

A linear function of relative submergence can be described for the roughness coefficient between emergent and fully 

submergence zones (1 <
ℎ

ℎ𝑣𝑒𝑔
< 5 to 7) (Hinsberger et al. 2022). 120 

These relationships are summarized in equation 1:  

𝑛𝑀𝑎𝑛𝑛𝑖𝑛𝑔 =

{
 
 

 
 
𝑘𝑆𝑡𝑟
5
                                                  𝑓𝑜𝑟  0 < ℎ < ℎ𝑣𝑒𝑔             

𝑘𝑆𝑡𝑟
5
+ 𝑘𝑆𝑡𝑟

ℎ − ℎ𝑣𝑒𝑔

5
             𝑓𝑜𝑟 ℎ𝑣𝑒𝑔 < ℎ < 5. ℎ𝑣𝑒𝑔     

𝑘𝑆𝑡𝑟                                               𝑓𝑜𝑟 ℎ > ℎ𝑣𝑒𝑔                        

 (1) 

In this study, the parameter Strickler’s k is estimated based on the inverse of the roughness coefficient above the vegetation 

using Chow, (1959). Then Manning’s coefficient is calculated from Eq.1, depending on the submergence ratio. 
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2.2.3 Luhar and Nepf’s method 

Another method to investigate vegetation effect on roughness was proposed by Luhar and Nepf (2013). They suggested the 125 

following relationships between the Manning roughness caused by vegetation and blockage factor, Bx, for both submerged and 

emergent vegetation.  

 

𝑛𝑀𝑎𝑛𝑛𝑖𝑛𝑔−𝑣𝑒𝑔 =

{
 
 
 
 
 

 
 
 
 
 𝐾ℎ

1
6

𝑔
1
2

 (
𝐶𝑓

2
)

1
2
(1 − 𝐵𝑥)

−
3
2                          𝑓𝑜𝑟  ℎ ≤ ℎ𝑣𝑒𝑔 and 𝐵𝑥 < 0.8  
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𝑔
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 (
𝐶𝑑𝑎𝐻

2
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1
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2
+ (
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)

1
2
(
ℎ𝑣𝑒𝑔
ℎ
)

            𝑓𝑜𝑟 ℎ > ℎ𝑣𝑒𝑔

 (2) 

 

where 𝑛𝑀𝑎𝑛𝑛𝑖𝑛𝑔−𝑣𝑒𝑔  is the vegetation component of Manning’s 𝑛, 𝑎 is the frontal area per unit volume parameter, Cd is the 130 

drag coefficient, Cf (= 0.015 - 0.19) is a coefficient to parameterize the shear stress at the interface between vegetated and 

unvegetated regions and the constant 𝐾 = 1 
𝑚
1
3

𝑠
 is required to make the equation dimensionally correct. 

2.2.4 Exponential method 

Feldmann et al., (2023) suggested an exponential correlation between the Manning coefficient and water depth (Eq. 3). 

𝑛 =
1

𝑐+𝑒𝑑ℎ
                                                                                                                                                                             (3) 135 

This exponential equation describes the relationship between 𝑛 and ℎ in terms of the variables 𝑐 and 𝑑. In this investigation, 

the optimum values of the 𝑐 and 𝑑 parameters, as calculated by Feldmann et al., (2023), are employed. 

2.2.5 Kadlec’s method 

Based on experimental studies on shallow overland flow, Kadlec’s power law was simplified by Jain et al., (2004) (Eq. 4).  

𝑛 = 𝑛0 (
ℎ

ℎ0
)
−𝜀

                                                                                                                                                                     (4) 140 

where ℎ₀ establishes the minimum flow depth, beyond which the roughness coefficient 𝑛₀ is assumed to remain constant. 

𝜀 represents the influence of vegetation drag. The study utilized the optimal values for the parameters 𝑛₀ and ε as outlined in 

Feldmann et al., (2023). Nevertheless, they do not provide information on the ℎ₀ value. Consequently, this parameter is assumed 

to be 5 times the plant height for each experimental site. This assumption is confirmed by previous studies (Hinsberger et al., 

2022; Oberle et al., 2021).   145 

2.2.6 Fu’s equation 

Fu et al., (2019) developed an equation to calculate Manning’s n based on plant basal cover and flow depth (Eq. 5). 

𝑛 = (𝑎 + 𝑏(1 − 𝑒−0.061𝐶𝑣)1.668)ℎ0.604−0.710𝑒
−0.219𝐶𝑣

                                                                                                        (5)  

Where variable 𝐶𝑣 is the ratio between the area covered by stems and the flume bed. It is considered as plant coverage in Ries 

et al. (2020). The parameters 𝑎 and 𝑏 vary with vegetation type. In this study, the values of 𝑎 and 𝑏 parameters obtained by 150 

Feldmann et al., (2023) are used.  

All of these equations were incorporated into the source code of OpenLISEM in order to assess the impact of various roughness 

methodologies. 
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2.3 Study site 

Ries et al. (2020). conducted 132 sprinkling experiments on natural hillslopes at 23 sites with different soil types and land use 155 

in Baden-Württemberg (Germany). The experiments conducted at Site 10 were not included in this analysis as they did not 

produce any runoff. Table 1 provides information about land use, vegetation properties, and soil characteristics for each site. 

The experimental area was a 10-meter-wide square, with slopes ranging from 9% to 32%. These experiments aimed to simulate 

a 100-year or locally observed maximum rainfall intensity event with different durations. The sequence of rainfall experiments 

commenced with Run.1 on the first day, which lasted for 60 minutes with a 100-year return period. Subsequently, Runs 2–4 160 

were conducted on the following day, each lasting for durations of 60, 30, and 15 minutes, respectively, all with a 100-year 

return period. The experiments of the second day were concluded with Run.5, lasting for 180 minutes and representing an 

extreme scenario. Finally, on the third day, Run.6 was carried out, lasting for 60 minutes under an extreme scenario.  

Simultaneously, discharge at the outlet, rainfall intensity, and initial soil moisture were measured at a temporal resolution of 1 

minute. Out of the 23 sites surveyed, 12 locations are paired sites, highlighted in bold in Table 1. This arrangement facilitates 165 

a direct comparison between the effects of two different land uses on runoff and infiltration. The deliberate choice of these 

paired sites is underscored by their proximity, with distances maintained within the threshold of less than 100 meters. To the 

comprehensive details of these experiments can be referred to Ries et al. (2020). 

3 Calibration 

To calibrate the model, the results of Run.2 of the rainfall experiment for all sites was used, except for sites 1 and 14. In site 170 

1, Run. 4 represents results for rainfall 100 years and a duration 60 minutes. Since Run. 2 in site 14 does not have any runoff, 

Run.6 is selected for calibration. The reason for choosing Run. 2 for calibration was that the soil moisture conditions during 

this test were neither excessively dry nor fully saturated. Additionally, the duration of the rainfall was moderate, indicating an 

average condition. Therefore, Run. 2 is more representative of the soil conditions expected in the study area. In this study, our 

calibration efforts were exclusively directed toward the Ksat and Psi parameters due to the sensitivity of the model to these 175 

specific parameters.  

The parameter space was sampled with 5000 parameter sets drawn from Latin Hypercube Sampling with SPOTPY (Statistical 

Parameter Optimization Tool), an open-source Python package developed by Houska et al., (2015). For this process, the range 

considered for Ksat values spanned from 0.5 to 100, while the range for Psi extended from 0.25 to 3 times the initial value. 

The objective function to calibrate is the max value of Nash Sutcliff efficiency (NSE) which is commonly used to assess the 180 

performance of hydrological models (Nash and Sutcliffe, 1970). 

Once the calibration process was completed, we determined the optimal Ksat and Psi values for each site and roughness method 

based on the best result of NSE. Figure 2 displays a framework illustrating the calibration and simulation process of models. 

Furthermore, to investigate whether calibrating Manning's n alongside Ksat and Psi can lead to improved model performance 

or not, we repeat the calibration with three parameters: 𝐾ₛₐₜ, Psi, and Manning's 𝑛. It is referred to as "3-parameter" in this 185 

paper. Using this method helps us to understand the effect of interactions among calibrated parameters on model performance. 

After calibrating the values of Ksat and Psi for each site and roughness method, the model validation is conducted for the 

remaining experiments: Run. 1 and Run. 3 through 6. Key performance metrics including NSE, percentage bias, and Kling-

Gupta efficiency are computed to provide a thorough assessment of the model's performance and validation. The results from 

various analyses are compared with the measured runoff values, facilitating the assessment of the different roughness methods. 190 

Additionally, by comparing the results for paired sites, it is possible to investigate the impact of vegetation cover on overland 

flow.  
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Figure 2: Framework for calibration and validation of the models. 195 

4 Result 

4.1 Calibration of different roughness methods 

Regarding the calibration using various Manning's coefficient methods, the hydrograph from the calibration generally matches 

well with the observed hydrograph at most of the locations. For example, Figure 3 shows the different calibrated hydrographs 

in site 6 with the measured hydrograph. The calibrated hydrographs closely resemble the patterns seen in the measured 200 

hydrograph. The NSE values for calibration at this location have a range of 0.7-0.9. The NSE values from calibration results 

for all sites are outlined in Table 2, featuring color-coded representations. NSE values below 0.35 are highlighted in dark gray, 

those between 0.35 and 0.75 in mild gray, and values exceeding 0.75 in light gray. Fu's method exhibited inadequate calibration 

outcomes for sites 5, 15, 20, and 23, indicated by negative NSE values. The unfavorable calibration results were observed in 

site 16 with the 3-parameter method, represented in Table 2. Conversely, all other methods yielded satisfactory results. 205 

Excluding the dark gray cells, the calculated NSE values maintained a high average of 0.86 across other cells, underscoring 

their acceptable performance. 
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Figure 3: Comparison of the hydrograph computed using OpenLISEM with various roughness coefficient methodologies against 

the observed discharge. 210 

 

Table 2:  Maximum model performance (Nash-Sutcliffe-Efficiency) for parameters calibration of the different roughness models, 

separated for each site. Rainfall simulation run 2 has been used for calibration, except for sites 1 and 14 (see section 3). The grey 

scale indicates the NSE value with values below 0.35 in dark grey and 1 as white. 

Site 

No 

Run 

No 

NSE 

Chow Linear Nepf Feldmann Exp Kadlec Fu 3-param 

1 run4* 0.88 0.84 0.88 0.68 0.76 0.29 0.84 0.88 

2 run2 0.71 0.74 0.71 0.75 0.76 0.76 0.76 0.67 

3 run2 0.82 0.89 0.84 0.90 0.91 0.91 0.91 0.67 

4 run2 0.87 0.94 0.90 0.95 0.94 0.94 0.94 0.73 

5 run2 0.98 0.98 0.99 0.93 0.92 0.95 -5.80 0.98 

6 run2 0.87 0.91 0.89 0.82 0.81 0.72 0.84 0.81 

7 run2 0.87 0.92 0.89 0.91 0.76 0.92 0.87 0.67 

8 run2 0.93 0.87 0.94 0.89 0.90 0.94 0.80 0.92 

9 run2 0.81 0.94 0.83 0.99 0.99 0.99 0.99 0.71 

11 run2 0.78 0.87 0.79 0.95 0.96 0.94 0.90 0.66 

12 run2 0.78 0.95 0.86 0.95 0.90 0.91 0.95 0.31 

13 run2 0.77 0.86 0.81 0.87 0.88 0.80 0.86 0.30 

14 run6* 0.96 0.97 0.97 0.90 0.85 0.92 0.96 0.96 

15 run2 0.72 0.73 0.76 0.83 0.67 0.84 -4.04 0.70 

16 run2 0.03 0.41 0.02 0.26 0.05 0.47 0.54 -26.65 

17 run2 0.85 0.94 0.87 0.96 0.96 0.95 0.96 0.68 

18 run2 0.69 0.81 0.75 0.85 0.86 0.88 0.88 0.64 

19 run2 0.69 0.83 0.71 0.97 0.97 0.97 0.97 0.55 

20 run2 0.92 0.93 0.94 0.94 0.94 0.94 -5.41 0.86 

21 run2 0.88 0.97 0.93 0.96 0.94 0.97 0.71 0.75 

22 run2 0.95 0.88 0.95 0.80 0.80 0.19 0.84 0.92 

23 run2 0.98 0.98 0.98 0.97 0.95 0.96 -5.54 0.98 

 215 

The bias percentage is computed for each hydrograph, utilizing the calibrated Ksat and Psi values, as detailed in Table 3. 

Analogous to the NSE values, the location 16 exhibits the highest bias percentage using the 3-parameter method. Additionally, 

employing the Fu equation for locations 5, 15, 20, and 23 yields a bias percentage of -100. In the remaining cells of the table, 

0

10

20

30

40

50

60

70

80

90

1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

R
a

in
fa

ll (m
m

/h
r)O

v
er

la
n

d
fl

o
w

 (
m

m
)

Time (min)

Site 6

Rainfall

Observation

Chow

Linear

Nepf

Feldmann

Exponential

Kadlec

Fu

3param

https://doi.org/10.5194/egusphere-2024-1276
Preprint. Discussion started: 30 May 2024
c© Author(s) 2024. CC BY 4.0 License.



9 

 

a transition from darker gray to lighter gray indicates bias percentages approaching zero. A more significant deviation from 

zero suggests that the calibration process is not well-executed. 220 

Table 3: Percentage of Bias values for parameters calibration of the different roughness models, separated for each site. Rainfall 

simulation run 2 has been used for calibration, except for sites 1 and 14 (see section 3). The grey scale indicates the absolute pBias 

value with values above 100% in dark grey and no bias as white. 

Site 

No 

Run 

No 

pBias 

Chow Linear Nepf Feldmann Exp Kadlec Fu 3-param 

1 run4* 8.04 5.73 2.08 12.03 9.12 22.42 4.09 1.08 

2 run2 -11.96 -9.51 -10.96 -8.24 -8.30 -5.34 -7.08 -3.29 

3 run2 -11.16 -8.79 -10.15 -5.97 -4.97 -4.72 -4.85 13.95 

4 run2 -5.15 -4.69 -4.96 -0.30 1.25 -5.09 0.78 12.33 

5 run2 -0.55 -0.20 -0.09 2.22 2.85 1.22 -100.00 0.16 

6 run2 -2.54 0.26 -2.21 6.76 7.11 8.85 6.51 7.14 

7 run2 -2.20 -0.13 -1.87 1.60 9.36 -1.35 4.77 19.43 

8 run2 -1.10 0.94 -1.26 0.82 1.10 -0.95 -2.16 3.89 

9 run2 -6.96 -3.45 -6.16 -0.58 0.78 -0.77 1.13 3.94 

11 run2 -14.17 -11.09 -13.76 -5.43 -1.86 -4.56 -10.16 10.58 

12 run2 -2.57 1.07 -6.29 5.35 10.61 7.70 -2.14 52.67 

13 run2 -0.98 -1.75 0.01 1.32 1.31 0.23 2.31 35.06 

14 run6* -0.58 -0.33 0.37 5.94 8.29 3.28 1.23 -5.39 

15 run2 -0.93 -1.81 -1.56 7.94 9.73 3.53 -100.00 3.23 

16 run2 9.56 4.78 15.01 15.87 19.89 1.53 4.68 326.29 

17 run2 -8.47 -3.18 -7.57 -1.10 0.22 -0.97 -2.16 15.64 

18 run2 -12.10 -9.36 -12.56 -7.54 -5.68 -4.64 -4.54 4.01 

19 run2 -7.43 -4.52 -7.11 -0.15 -0.10 -0.04 -0.02 5.14 

20 run2 -2.89 -2.94 -2.45 -2.72 -2.22 -2.53 -100.00 4.94 

21 run2 -4.93 -1.90 -3.27 0.70 0.31 -2.07 -5.83 3.86 

22 run2 1.62 5.41 1.31 7.51 7.18 12.29 6.46 -1.23 

23 run2 -0.16 -0.40 0.19 0.49 0.87 1.02 -100.00 -0.54 

 

Site 16 displayed a comparatively lower NSE compared to other locations, while the remaining monitoring sites demonstrated 225 

effective calibration. At site 16, the recorded runoff is exceptionally low, with a cumulative measurement of only 1.049 mm, 

while the target intensity of rainfall is 69.3 mm/hr. These low runoff values pose a significant challenge for model calibration, 

resulting in a relatively lower NSE score compared to other sites. Figure 4 and Figure 5 display the calibrated values of 

saturated hydraulic conductivity and average soil suction at the wetting front, respectively, calculated using different methods 

across all sites. Notably, in Fu's method, the values of Ksat for sites 20 and 23 significantly differ from those obtained with 230 

other methods. Similarly, the values of Psi for sites 5 and 15 exhibit notable differences compared to values obtained through 

other methods.  
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Figure 4: Different values of calibrated Ksat for various roughness estimation methods. 

 235 

 

 

Figure 5: Different values of calibrated Psi for various roughness estimation methods. 

 

4.2 Validation of different roughness methods 240 

After calibrating the Ksat and Psi, models were developed for the rest experiments. We calculated NSE and bias parameters 

to assess its performance for each model. The simulations were iteratively repeated, considering all methods of roughness 

estimation. A total of 104 models were simulated, each corresponding to different sites or rainfalls. However, models 

associated with Run.2 and 3 at Site 14, as well as Run.1 at Sites 12 and 16, were excluded from our investigation due to the 

absence of runoff in these specific experiments. The outcomes reveal that the maximum NSE range is 0.97-0.99 for different 245 

methods. Depending on the type of method, the number of models with negative NSE varies between 27 and 43. In these cases, 

the model has not performed well. Given that negative NSE values indicate the inefficiency of the model in simulating runoff, 
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we focused our investigation on the distribution of positive NSE values by excluding these underperforming models. Figure 6 

illustrates the distribution of NSE for values greater than zero. On the other hand, Chow, Nepf, constant n of Feldmann, 

Exponential, Kadlec, Fu, and the 3-parameter methods have 29, 35, 17, 12, 20, 10, and 28 models, respectively, with NSE 250 

values greater than 0.8. The Linear method stands out with the maximum number of models, 37, having NSE greater than 0.8. 

In these cases, the model has performed excellently. 

 

 

Figure 6: Distribution of the absolute values of NSE for each method of roughness for the validation runs. 255 

The percentage bias results for the simulated hydrograph compared to the measured hydrograph exhibit a broad range from  

-100% to 100%. Notably, methods such as Feldmann, Exp, and Kadlec have 12 models with biases exceeding 100%. The 

Linear and 3-parameter methods each account for 10 such models, while Nepf and Fu methods have 9 models each. The Chow 

method is associated with 8 models exhibiting a bias greater than 100%. For a clearer representation, Figure 7 focuses on the 

percentage bias results within the range of -100% to 100%. Based on the analysis presented in Figure 7, it is evident that all 260 

the methods exhibit almost a consistent trend, with the majority showcasing model bias consistently below zero. This suggests 

a systematic underestimation across various roughness estimation techniques. 

 

 

Figure 7: Distribution of the percentage bias for each method of roughness for the validation runs. 265 
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To classify the simulation results, NSE criteria established by Motovilov et al., (1999) are applied, as outlined in Table 4. 

Additionally, bias percentage values are interpreted based on the criteria in Table 4. High positive NSE values (close to 1) 

indicate that the model's predictions are in excellent agreement with the observed data. 

Table 4: Criteria of NSE value (Motovilov et al., 1999) and Bias. 

NSE value Bias% value Interpretation 

0.75<NSE -10%<Bias<10% Good 

0.36<NSE<0.75 -50%<Bias<-10% or 10%<Bias<50% Qualified 

NSE<0.36 Bias<-50% or 50%<Bias Not-Qualified 

The analysis reveals that the Nepf, Linear, and Chow methods exhibit the most favorable performance, with 44, 42, and 38 270 

models falling into the "Good" category based on NSE values. Conversely, for the 3-parameter, Kadlec, constant n by 

Feldmann, exponential, and Fu methods, 33, 26, 25, 22, and 15 models respectively meet the "Good" NSE criteria. 

Interestingly, bias values across different methods are relatively comparable. Linear, Kadlec, Nepf, and Chow demonstrate 

particularly robust performance, each with 42, 40, 39, and 39 models falling within the -10% to 10% bias range. This 

consistency in bias values suggests a commendable performance by these models based on bias percentage criteria. 275 

The validation results of the models are visually presented in Figure 8 and Figure 9, highlighting their adherence to both NSE 

and bias criteria. These figures provide a comprehensive overview of the model’s performance, emphasizing the importance 

of considering both NSE and bias values for a thorough evaluation of simulation outcomes. The comparison of these criteria 

aids in discerning the models that not only achieve high efficiency in reproducing observed data (NSE) but also demonstrate 

minimal bias in their predictions. 280 

 

Figure 8: Distribution of the percentage bias for each method of roughness estimation. 

 

Figure 9: Distribution of the percentage bias for each method of roughness estimation. 
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To provide further insight, Figure 10 illustrates a comparison of the simulated falling limb of hydrographs using different 285 

roughness estimation methods for all experiments conducted at site 9. Site 9 is specifically chosen because its hydrographs 

were featured in Feldmann et al.'s, (2023) study, and the calibration for the four methods employed therein is superior to that 

of the Linear and Nepf methods, as depicted in Table 2. Figure 10 demonstrates that Kadlec, Feldmann, Exponential, and Fu 

methods approximate the falling limb of the hydrograph more closely to the observed hydrograph compared to the Linear, 

Nepf, and Chow methods. It's essential to note that the base of optimization in Feldmann et al., (2023) study is on the falling 290 

limb of the hydrograph, where it shows superior performance. However, the NSE results for the entire hydrograph are better 

for Nepf, Linear, and Chow. 

 

 

NSE 

 

NSE 

Chow= 0.43 Chow= 0.85 

Linear = 0.47 Linear = 0.85 

Nepf= 0.46 Nepf= 0.87 

Feldmann= 0.44 Feldmann= 0.68 

Exp= 0.38 Exp= 0.61 

Kadlec= 0.44 Kadlec= 0.72 

Fu= 0.37 Fu= 0.57 

3param= 0.43 3param= 0.76 

 

NSE 

 

NSE 

Chow= 0.84 Chow= 0.58 

Linear = 0.83 Linear = 0.68 

Nepf= 0.87 Nepf= 0.60 

Feldmann= 0.62 Feldmann= 0.61 

Exp= 0.53 Exp= 0.56 

Kadlec= 0.65 Kadlec= 0.63 

Fu= 0.46 Fu= 0.52 

3param= 0.71 3param= 0.66 

 

NSE 

 

Chow= 0.75 

Linear = 0.68 

Nepf= 0.76 

Feldmann= 0.48 

Exp= 0.41 

Kadlec= 0.52 

Fu= 0.36 

3param= 0.57 

Figure 10: Comparison of validated and observed falling limb of hydrographs at site 9. NSE values are calculated for the entire 

hydrograph. 295 
 

4.3 Effect of initial condition and pre-event soil moisture 

The validation outcomes of the roughness methods revealed a notable association between most models exhibiting NSE values 

below zero and Runs.1 and 5, with frequencies of approximately 50% and 30%, respectively. For example, among the 28 

models exhibiting negative NSE values in the Nepf method, 12 and 8 models correspond to Runs.1 and 5, respectively, 300 

suggesting unsatisfactory performance compared to the other runs. Bias analysis reveals that most models in Run.5 exhibit 
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negative bias, indicating a tendency to underestimate runoff. Conversely, most models in Run.1 show positive bias, indicating 

a tendency to overestimate runoff. 

Exploring the underlying reasons for these observations’ sheds light on the impact of initial soil moisture conditions on model 

performance. In Run.1, soil conditions during the rainfall experiment exhibited lower moisture levels compared to subsequent 305 

runs. This difference is attributed to the drier state of soil moisture in Run.1 compared to Run.2, which was utilized for 

calibration. Notably, the duration and target intensity of these two runs are similar. Consequently, the majority of locations 

within Run.1 experienced minimal runoff occurrences due to the diminished soil moisture content. This phenomenon resulted 

in Run.1 exhibiting the least favorable performance on average, as indicated by the evaluation outcomes. In contrast, the soil 

conditions in the other runs were characterized by higher moisture levels, influenced by the retention of moisture from 310 

preceding runs. For Run.5, despite the rainfall intensity being similar to Run.2, the rainfall duration is three times longer, 

implying distinct soil moisture conditions during the experiment. According to Ries et al., (2020), Run.2 was conducted as the 

first experiment on the 3rd day, while Run.5 was the 4th experiment on the same day. This sequential rainfall event may affect 

infiltration. Antecedent moisture conditions, representing soil moisture content before rainfall events, can impact runoff. 

Therefore, most of Run.6, as a first experiment on 5th day with higher intensity, showed a lower mean surface runoff coefficient 315 

compared to Run.5 in the study by Ries et al., (2020).  

4.4 Result of different vegetation coverage 

The spatial proximity between the paired experimental sites offers a unique advantage in the research, providing an 

environment where variations in soil characteristics can be minimized, enhancing the validity of the comparative analysis. In 

Figure 11, a comparative analysis between vegetation cover and Ksat, as determined by the Chow method, is presented. Except 320 

for sites 17 and 18, which feature different soil types, making them non-comparable, the remaining pairs reveal an increase in 

Ksat corresponding to more vegetation coverage. Notably, the contrast in Ksat is particularly pronounced between sites 15 and 

16. Site 15, characterized as devoid of vegetation cover, displays a stark difference from site 16, boasting 100% vegetation 

coverage. The calibration results underscore this disparity, indicating a substantial Ksat difference of approximately 60 mm/hr. 

Conversely, for sites 8 and 9, this difference in Ksat is minimum. Specifically, for the Chow method, the values are nearly 325 

identical for these two sites. Considering alternative roughness methods, it becomes apparent that the Ksat of site 9 is 

marginally lower than that of site 8, despite site 9 featuring a higher level of vegetation. It's noteworthy that, although Ksat 

values may show only slight differences, another critical parameter influencing infiltration, Psi, exhibits a substantial contrast 

between sites 8 and 9, as displayed in Figure 5. Specifically, Psi is higher for site 9 than site 8, resulting in an enhancement in 

infiltration. This highlights the relationship between various parameters and their combined impact on the overall dynamics of 330 

infiltration. 
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Figure 11: Saturated hydraulic conductivity values for various land uses in paired sites. * Sites 17 and 18 are not comparable 

because of different types of soil. ** The vegetation cover images are from Ries et al., (2020). There is no picture for Site 13. 

5 Discussion 335 

5.1 Validation of different roughness methods 

Our study on validation of different roughness estimation methods demonstrated that the models constructed using Fu's 

function display weaker simulation results compared to alternative methods. This aligns with Feldmann et al. 's, (2023) 

findings, who observed that Fu’s equation tends to yield lower NSE values, primarily due to the limited adaptability of the 

formula. Furthermore, they noted that significantly lower results, in comparison to Kadlec’s Power Law, are obtained on sites 340 

where roughness visibly decreases with water depth. Linear, Chow, and Nepf, in that sequence, demonstrate the highest 

frequency of models exhibiting good performance in evaluating the hydrograph of runoff. Subsequent calibrations with the 3-

parameter and then the Kadlec method showcase improved performance compared to the Exponential and Fu’s formula. These 

findings are consistent with the results of Feldmann et al. 's, (2023) study, supporting the overall superiority of Kadlec’s Power 

Law over the Exponential and Fu methods on average. Feldmann et al., (2023) attribute the enhanced performance of Kadlec’s 345 

formula to its superior reflection of vegetation variability, effectively capturing the nuances associated with increasing or 

decreasing roughness.  

The experimental study on vegetated surfaces conducted by Hinsberger et al., (2022) shows that roughness is significantly 

influenced by water depth. They emphasize the importance of considering water depth-related roughness for precise catchment 

modeling. However, our findings indicate that the deviation in Manning's n value recommended by Chow is not substantial 350 

when the model is calibrated. Employing the Linear and Nepf relationship for estimating roughness can enhance accuracy. 

This concurs with previous studies advocating for roughness determination based on the degree of vegetation submergence 

(Hinsberger et al., 2022; Scheres et al., 2020; Wilson and Horritt, 2002). Wilson and Horritt, (2002) concluded that Manning's 

n increases significantly as the flow depth approaches the depth of vegetation, converging towards a consistent value at higher 

levels of submergence. This trend aligns with hydraulic behavior explained by Oberle et al., (2021) and Luhar and Nepf, 355 

(2013). 

On the other hand, the comparison with Exponential and Kadlec's equations reveals more deviation. In Feldmann et al.'s, 

(2023) assessment of roughness methods, including Kadlec, Feldmann’s constant Manning, Fu, and exponential, stand out for 
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providing a more robust roughness solution, particularly based on the falling limb of the hydrograph when infiltration remains 

nearly constant. However, our findings indicate that vegetation not only influences roughness coefficient values but also 360 

impacts saturated hydraulic conductivity, thus affecting infiltration dynamics. Our results reveal that the roughness values 

derived from Feldmann et al.'s, (2023) approach exhibit more significant variation compared to other methods, potentially due 

to its neglect of the vegetation's effect on infiltration. 

 

5.2 Effect of initial condition and pre-event soil moisture 365 

The pivotal role of antecedent conditions in shaping a catchment's response to rainfall events has been extensively discussed 

in the literature. Beven, (2012) underscores the significance of antecedent conditions in determining the mechanisms governing 

catchment response. Our study delves into this aspect, revealing notable discrepancies in model outcomes between different 

runs, particularly evident in Runs.1 and 5. In Run.5, characterized by intense rainfall events following Runs 2-4, and Run 1, 

where initial soil moisture conditions were notably drier compared to other runs, we observed considerable deviations from 370 

measured data. This inconsistency echoes findings from Feldmann et al., (2023), who explored the influence of rainfall 

intensity on roughness variability. Notably, they observed a decrease in median deviation from the roughness mean in Run.5 

during longer rain events, suggesting a potential influence of flow path formation on roughness values. However, in Run.6, 

the deviation from the mean increased once more, indicating it may be due to antecedent rainfall's impact on runoff response 

rather than the effect of rainfall intensity on roughness. The discrepancy in antecedent rainfall between Run 2, used for 375 

calibration, and Runs 1 and 5, which experienced extreme soil moisture conditions, likely contributed to the divergent 

validation results. Previous research, including studies by Zehe et al., (2010); Zwartendijk et al., (2023); Tobón and Bruijnzeel, 

(2021), highlights the profound impact of antecedent wetness conditions on runoff behavior. Brocca et al., (2008) emphasized 

the influence of initial soil moisture conditions on runoff characteristics, further corroborating our findings. 

Our study suggests that infiltration and runoff dynamics during extreme events, such as those observed in Run.5, may be 380 

significantly influenced by antecedent rainfall. This aligns with existing literature indicating the crucial role of antecedent 

conditions in modulating runoff depth and coefficients. Castillo et al., (2003) observations underscore the dominance of 

infiltration excess overland flow during intense rainfall events or in less permeable soils, emphasizing the influence of initial 

soil moisture conditions on runoff responses. The limitations of the applied infiltration model, particularly evident under 

extreme soil moisture conditions, warrant attention. The Green-Ampt method's assumption of initially dry soil may not 385 

accurately capture infiltration dynamics during extreme rainfall events when the soil is near saturation. This highlights the 

need for improved models that account for varying antecedent conditions to enhance predictive accuracy. The findings of Zehe 

and Blöschl, (2004) further underscore the challenges in predicting hydrological responses accurately, particularly under 

uncertain initial soil moisture conditions. While extreme states, extremely dry or wet, exhibit better predictability, intermediate 

values pose challenges due to threshold processes governing the transition from matrix to macropore flow. However, the results 390 

of our study indicate that extreme states show poor predictability in hydrological response. This indicates that understanding 

the interaction between rainfall attributes and antecedent wetness is essential for accurately predicting runoff responses. 

Similarity in soil moisture conditions between the validation and calibration models may cause in more accurate outcomes. 

However, Zehe and Blöschl, (2004) stated, despite assuming perfect knowledge of the processes involved, the extent to which 

one can measure initial conditions in detail, combined with the inherent nonlinearity of the system, imposes constraints on 395 

both the repeatability of experiments and the predictability of models. 
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5.3 Result of different vegetation coverage 400 

The findings presented in our study validate previous research, which has emphasized the significant differences in near-

surface saturated hydraulic conductivity across various land covers (Zwartendijk et al., 2023). These differences result in 

different shaping perched water table dynamics and overland flow responses (Ghimire et al., 2020; van Meerveld et al., 2021; 

Zwartendijk et al., 2020, 2023). The study conducted by Wu et al., (2024) on the temporal variability of Ksat throughout the 

growing season revealed the significant influence of root growth. It seems, that due to the root growth and consequent 405 

improvement in soil pore connectivity, there is an increase in Ksat. Consequently, top-soil infiltration rates typically experience 

improvement, resulting in reduced overland flow and a decrease or delayed runoff response to rainfall events (van Meerveld 

et al., 2019). Jarvis et al., (2013) identified land use as one of the top three most significant predictors for Ksat. Intensive 

cultivation of arable land significantly diminishes topsoil hydraulic conductivity compared to perennial agriculture, natural 

vegetation, and forests, by approximately 2–3 times. They attributed this reduction to the disruptive effects of tillage on 410 

macropores, including faunal and root biopores. 

Our research indicates that in the presence of vegetation, not only is surface roughness important in hydrological processes,  

but the increase in Ksat also significantly influences the response of hydrological models to runoff. This highlights the critical 

importance of incorporating vegetation-induced changes in hydraulic conductivity when modeling runoff responses. A great 

difference to the related studies by Feldmann et al., (2023)and Hinsberger et al., (2022) is the use of a model with an integrated 415 

infiltration model. Classical engineering models for surface runoff like HEC-RAS and most commercial models deal with 

infiltration as a process that can be determined a priori and subtracted directly from the rainfall. But the ability of the soil to 

absorb water is dynamic in its nature and often oversimplified and inaccurate (Beven, 2021). In our investigation, we utilized 

the dynamic Green-Ampt Infiltration model from OpenLISEM, and we managed to replicate the infiltration process in the 

majority of cases. However, while we observe the strong effect of vegetation on infiltration capacity, our data set is not 420 

sufficient to come up with a robust estimate to quantify this effect.  

6 Conclusion 

Our study provides the evaluation of various roughness estimation methods and their impact on hydrological modeling using 

OpenLISEM. Through model calibration and validation, we have gained valuable insights into the performance of each 

roughness method. Our findings reveal that certain methods, such as Linear, constant Manning’s n proposed by Chow, and the 425 

physical base method proposed by Luhar and Nepf (2013), demonstrate favorable performance in reproducing observed 

hydrological data, as evidenced by high NSE values and minimal bias. Methods like Fu's equation exhibit weaker simulation 

results, attributed to its limited adaptability and lower NSE values. 

Our study highlights the significance of incorporating vegetation-induced changes in hydraulic conductivity when modeling 

runoff responses. We observed notable differences in near-surface saturated hydraulic conductivity across various land covers. 430 

The differences observed in model outcomes between various runs in one site highlight the need for improved models that 

accurately account infiltration for varying antecedent conditions. Surface runoff models use vegetation solely as a parameter 

of surface roughness and rainfall runoff models as a transpiration parameter. For the effect of storm events in developed 

landscapes, vegetation is an important regulator of infiltration, yet this effect is not well represented in current models. Future 

studies should investigate which rainfall events yield better results when included in the calibration process. Selecting the most 435 

representative rainfall event should consider both dry and saturated soil moisture conditions, enhancing the accuracy of 

hydrological modeling. 
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