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Abstract. Land use change, particularly deforestation, significantly influences the global 21 

climate system. While various studies have explored how deforestation affects temperature and 22 

precipitation, its impact on drought remains less explored. Understanding these effects across 23 

different climate zones and time scales is crucial for crafting effective land use policies aimed 24 

at mitigating climate change. This study seeks to investigate how changes in forest cover affect 25 

drought across different time scales and climate zones using simulated deforestation scenarios, 26 

where forests are converted to grasslands. The study utilizes data from nine global climate 27 

models participating in the Land Use Model Intercomparison Project. Drought effects are 28 

assessed by examining changes in the Standardized Precipitation Evapotranspiration Index 29 

(SPEI). The results reveal that deforestation leads to negative shifts in global SPEIs, indicating 30 

increased dryness, particularly in tropical regions, while causing wetter conditions in dry 31 

regions. Moreover, the impact on drought indices becomes more pronounced with longer time 32 

scales, underscoring the lasting effects of deforestation on drought. Seasonally, deforestation 33 

exacerbates SPEI03 shifts during autumn and winter, especially affecting tropical and northern 34 

polar regions. Continental zones experience significant seasonal changes, becoming drier in 35 

winter and wetter in summer due to global deforestation, while the northern hemisphere's dry 36 

regions see increased wetter conditions, particularly in autumn. These findings deepen our 37 

understanding of the relationship between vegetation change and climate change, offering 38 

valuable insights for better resource management and mitigation strategies against future 39 

climate change impacts. 40 

 41 

 42 

1.  Introduction 43 

Forests cover approximately 30% of the global ice-free land surface and are distributed widely 44 

from the tropics to boreal regions  (Crowther et al., 2015; Hansen et al., 2013). Forests are one 45 

of the largest carbon storages on the planet and play a crucial role in regulating the Earth’s 46 

climate (Bonan, 2008; Pan et al., 2011). However, global forests are rapidly changing due to a 47 

variety of human activities, including deforestation, forest degradation, and climate change 48 

effects (Hansen et al., 2013; Keenan et al., 2015; Forzieri et al., 2021). In the tropics, 49 

deforestation and conversion to agriculture (mainly pasture) or other land uses are the primary 50 

drivers of forest loss (Vancutsem et al., 2021). In temperate and boreal regions, forest cover 51 

disturbances are often driven by logging and natural disturbances (fires, pests, or wind 52 
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outbreaks) (Ceccherini et al., 2020; Seidl et al., 2017). These changes can have significant 53 

impacts on local and global climate patterns by altering both biogeochemical and 54 

biogeophysical processes (Bonan, 2008; Jia et al., 2022). Biogeochemical processes refer to 55 

the exchange of gases and particles between the atmosphere and forest ecosystems, such as the 56 

absorption and release of carbon dioxide and other greenhouse gases. Biogeophysical processes 57 

encompass modifications in surface energy balance, including the reflection of sunlight, 58 

evapotranspiration, and heat exchange between the land and atmosphere. The loss of forest 59 

cover can alter biogeochemical processes by reducing the amount of carbon dioxide stored in 60 

vegetation and increasing greenhouse gas concentrations in the atmosphere (Harris et al., 61 

2012). Deforestation induces changes in biogeophysical processes, such as increased surface 62 

albedo and reduced surface roughness and evapotranspiration, which result in changes to 63 

regional climate patterns (Alkama and Cescatti, 2016; Bonan, 2008; Davidson et al., 2012). 64 

An increasing amount of observational and modelling studies show that alterations of 65 

forest cover have a significant influence on the climate system (Douville et al., 2021; Jia et al., 66 

2022). The effects are highly spatially heterogeneous. In the tropical region, large scale 67 

deforestation can lead to a decline in annual total precipitation of approximately 30% (Snyder 68 

et al., 2004; Perugini et al., 2017), although the streamflow in the deforested area can increase 69 

(Taylor et al., 2022; Douville et al., 2021), and to an increase in temperatures of around 0.41 ± 70 

0.57 °C or 0.60 ± 0.74 °C according to observational or modelling studies, respectively 71 

(Alkama and Cescatti, 2016; Perugini et al., 2017). At the same time, small scale deforestation 72 

in the tropics may increase precipitation locally (Lawrence and Vandecar, 2014; Douville et 73 

al., 2021). In the boreal region, the conversion of forests to bare land or grassland can lead to 74 

land surface cooling of −0.41 ± 0.57 °C (observational studies) or −2.18 ± 1.08 °C (modelling 75 

studies) (Perugini et al., 2017). There may also be a slight reduction in precipitation following 76 

deforestation in the boreal region (Perugini et al., 2017; Cherubini et al., 2018). In the temperate 77 

area, the impacts of forest change on temperature and precipitation are more uncertain and 78 

variable across regions. Mahmood et al. (2014) found that deforestation can lead to both 79 

warming and cooling effects depending on the region, and Findell et al. (2017) noted that the 80 

spatial variability of the impacts on temperature is high. Observational studies suggest an 81 

annual mean warming of 0.50 °C following deforestation in temperate regions while modelling 82 

studies indicate an average annual cooling of -0.73 ± 0.45 °C (Perugini et al., 2017). Detecting 83 

the signal of forest cover changes on precipitation in the temperate region is challenging due 84 

to the high variability of synoptic scale meteorological systems that impact local-to-regional 85 

circulation and rainfall patterns (Bala et al., 2007; Bonan, 2008; Field et al., 2007). 86 
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Climate models are a valuable tool for investigating the impact of changes in forest cover 87 

on the climate system. However, the results of modelling studies are variable and model-88 

dependent, and a wide range of estimated effects is usually observed. For instance, in the boreal 89 

region, the cooling effect of forest change on the surface air temperature ranges from -4.0 to -90 

0.81 °C, depending on the specific model used, the parameters used to represent forest cover, 91 

the region where the replacement of land cover occurs, and the type of land cover conversion 92 

considered (Perugini et al., 2017). To facilitate a consensus on forest management decisions, 93 

the climate and ecology communities are working towards establishing a unified framework 94 

with standardized settings for assessing forest change impacts. The Land Use Model 95 

Intercomparison Project (LUMIP) (Lawrence et al., 2016), a component of the Coupled Model 96 

Intercomparison Project Phase 6 (CMIP6) (Eyring et al., 2016), is a prominent example of such 97 

an effort. LUMIP aims to address key scientific questions related to the impacts of land use on 98 

climate (Lawrence et al., 2016). The idealized coupled deforestation experiment (deforest-99 

global) is a specific experiment within LUMIP that focuses on the global biogeophysical and 100 

biogeochemical impacts of deforestation on climate. To ensure comparability between models, 101 

participating models were required to use a similar deforestation pattern, even if they employ 102 

different variables to represent the deforestation signal (Lawrence et al., 2016). Researchers 103 

utilized the datasets from LUMIP to examine the responses of temperature (Boysen et al., 104 

2020), precipitation (Boysen et al., 2020; Luo et al., 2022), and carbon storage (Ito et al., 2020; 105 

Li et al., 2022) from global deforestation at both the global and regional scales. 106 

Previous studies primarily focused on the biogeophysical effect of forest change on 107 

individual climate variables such as temperature and precipitation, without considering the 108 

potential impact on meteorological drought conditions (hereafter referred to drought), which 109 

are of greater relevance to decision-makers in shaping policies for sustainable land use and 110 

water management. However, changes in temperature and precipitation can have significant 111 

effects on drought, a natural hazard that has caused extensive economic and social damage 112 

worldwide. Drought is characterized by below-normal rainfall over a period of months to years 113 

(Dai, 2011) and is mainly driven by the combined effect of temperature, precipitation, wind 114 

speed, and solar radiation (Seneviratne, 2012). Understanding the behavior of droughts is 115 

essential for better water resource management and planning. In addition to human wellbeing, 116 

it poses a serious threat to ecosystems by altering soil moisture, forest structure and carbon 117 

content (Nepstad et al., 2007). While several studies have explored the impact of deforestation 118 

on regional drought conditions, these have primarily focused on the Amazon region. For 119 

instance, deforestation can lead to less water being recycled, thereby intensifying regional dry 120 
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seasons (Bagley et al., 2014; Staal et al., 2020), and converting mid-latitude natural forests to 121 

cropland and pastures may increase the frequency of hot-dry summers (Findell et al., 2017). 122 

Furthermore, forest cover change can modulate the impacts of precipitation and temperature 123 

on drought (Li et al., 2024). The impact of forest changes on drought conditions across different 124 

regions and time scales remains largely unexplored.  125 

The main focus of our study is to analyze the response of droughts to deforestation using 126 

idealized experiments with data from nine LUMIP models. We aim to address several key 127 

scientific questions related to this topic: 128 

1. What are the global and regional-scale responses of droughts to idealized deforestation? 129 

By examining the effects of deforestation on drought conditions, we aim to gain insights into 130 

how changes in forest cover impact drought patterns on a broader scale. 131 

2. How does the response of drought vary across different climate zones and time scales? 132 

We will investigate whether the influence of deforestation on droughts differs depending on 133 

the location and time scales. This analysis will help us understand the temporal dynamics of 134 

drought response to changes in forest cover. 135 

3. Does short-term drought exhibit seasonal characteristics in response to changes in forest 136 

cover? We will explore whether the impact of deforestation on droughts shows a seasonal 137 

pattern, particularly in the context of short-term drought events. Understanding seasonal 138 

variations in the response of drought to forest cover changes can provide valuable insights for 139 

managing and mitigating drought risks. 140 

Through our study, we aim to contribute to the scientific understanding of the complex 141 

relationship between deforestation and droughts, shedding light on the spatial and temporal 142 

aspects of this interaction. By addressing these scientific questions, we hope to provide 143 

valuable insights for policymakers and land managers in formulating effective strategies for 144 

drought mitigation and adaptation. This information can also be used to inform forest 145 

management decisions aimed at mitigating the negative impacts of deforestation on water 146 

resources and ecosystems. The paper is structured as follows: Section 1 presents a brief 147 

introduction, while Section 2 provides an overview of the methods and datasets used, including 148 

the experiment design, model introduction, drought index used, climate zoning basis, and the 149 

evaluation of the effect. Section 3 analyzes the changes in meteorological factors (temperature 150 

and precipitation) and droughts in response to deforestation, specifically exploring how 151 

droughts respond in different climate zones and time scales, as well as seasonal changes in 152 
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short-term drought. Section 4 discusses the limitations and potential avenues for future 153 

research, and Section 5 summarizes the main conclusions. 154 

2. Method and Data 155 

2.1 Experiment design and introduction of models 156 

Two experiments from LUMIP are used in this study, i.e. piControl and deforest-global. The 157 

piControl experiment is a standard control experiment, with spatial resolution ranging from 158 

0.7°×0.7° to 2.8°×2.8° (depending on the model) and at 15 to 60 minutes time step, that is 159 

designed to provide a reference state for climate models. It is typically run for several hundred 160 

years to ensure that the model reaches a steady state, and is used to evaluate the performance 161 

of the model (Eyring et al., 2016). The deforest-global experiment is an idealized experiment 162 

designed to investigate the effects of global deforestation on climate. It is branched from the 163 

piControl experiment and uses the same forcing, including CO2 concentration, land-use maps, 164 

and land management (Lawrence et al., 2016). The deforest-global experimental design 165 

involves sorting land grid cells based on their forest area in 1850 and selecting the top 30% of 166 

grid cells for tree replacement and calculating tree plant type loss for each year at each grid cell 167 

by attributing the 0.4 Mkm2 per year forest loss proportionally to their forest cover fraction 168 

across the forest replacement grid cells. Therefore, total 20 Mkm2 of the forest is replaced by 169 

grassland in a linear fashion over 50 years. After forest replacement, the ground biomass is 170 

removed, and the underground biomass is changed to litter pools. The dynamic vegetation 171 

modules can be closed over the deforestation grids to ensure the proper process of carbon 172 

transition, while outside of the deforestation grids, the dynamic vegetation modules can be kept 173 

because the impact of climate change caused by deforestation on tree fraction is small. 174 

Several climate variables are needed to calculate the drought index including 175 

temperature, precipitation, wind speeds, etc (see details in Table S1 in Supplemental Material). 176 

There are nine models covering these variables including BCC-CSM2-MR (Wu et al., 2019), 177 

CMCC- ESM2 (Lovato et al., 2022) , CNRM-ESM2-1 (Séférian et al., 2019), CanESM5 (Swart 178 

et al., 2019), EC-Earth3-Veg (Döscher et al., 2022), GISS-E2-1-G (Kelley et al., 2020), IPSL-179 

CM6A-LR (Boucher et al., 2020), MIROC-ES2L (Hajima et al., 2020) and UKESM1-0-LL 180 

(Sellar et al., 2020). More information regarding the deforestation simulation and the land 181 

surface model for each Earth system model can be found in Table S2 and Supplementary Text 182 

1. All simulation datasets for both the piControl and deforest-global experiments can be 183 
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downloaded from the Earth System Grid Federation (ESGF) at https://esgf-184 

node.llnl.gov/search/cmip6/ (last accessed 6 March 2023) (Balaji et al., 2018). Most models 185 

have only one run member, with the exception of IPSL-CM6A-LR, which has three run 186 

members. To ensure consistency in the results, we selected the first run for all models in our 187 

analysis. As the datasets have varying spatial resolutions, they were interpolated to the N48 lat-188 

lon resolution (i.e. 1.875º × 1.875º) by using bilinear interpolation. 189 

2.2 Introduction of the drought index 190 

In this study, we use the SPEI (Standardized Precipitation Evapotranspiration Index) to 191 

characterize drought, which is well established in the literature (Vicente-Serrano et al., 2010). 192 

Table S1 in the Supplementary lists the climate variables necessary to compute the SPEI. The 193 

SPEI is an extension of the Standardized Precipitation Index (SPI), which maps precipitation 194 

intensity onto a standard Gaussian variable and is based solely on precipitation amounts 195 

(Mckee et al., 1993). Compared to SPI, the SPEI additionally takes the influence of potential 196 

evapotranspiration (PET) into account, which refers to the amount of water that could 197 

evaporate and transpire under specific environmental conditions if water availability is not a 198 

limiting factor. This makes the SPEI a more comprehensive measure of drought than the SPI. 199 

The water deficit (Di) for month i is defined by 200 

                               𝐷𝑖 =  𝑃𝑟𝑖 − 𝑃𝐸𝑇𝑖 ,                                                        (1)  201 

Similar to the calculation of SPI, Di can be aggregated for the desired time scales, e.g. 202 

for k month. The aggregated Di for k months is the series 𝐷𝑖
𝑘. The log-logistic distribution has 203 

been selected as the most appropriate statistical model to characterize 𝐷𝑖
𝑘. Subsequently, the 204 

standardized  𝐷𝑖
𝑘 values are derived from this distribution to calculate the  SPEI (Vicente-Serrano et 205 

al., 2010). The probability density function 𝑓(𝐷𝑖
𝑘 ) and the probability distribution function 206 

𝐹(𝐷𝑖
𝑘 ) for the 𝐷𝑖

𝑘 are expressed as 207 

𝑓(𝐷𝑖
𝑘 ) =  

𝛽

𝛼
(

𝐷𝑖
𝑘  −𝛾

𝛼
)𝛽−1(1 + (

𝐷𝑖
𝑘 −𝛾

𝛼
)𝛽)−2

   (2) 208 

𝐹(𝐷𝑖
𝑘 ) =  (1 + (

𝛼

𝐷𝑖
𝑘

 −𝛾
)𝛽)−1               (3) 209 

where α, β and γ denote the scale, shape and origin parameter, respectively. These 210 

parameters (α, β and γ) can be estimated using unbiased probability weighted moments (’ub-211 

pwm’), plotting-position PWM (’pp-pwm’), or maximum likelihood (’max-lik’). After 212 
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estimating parameters (α, β and γ) based on observed or climate model derived values of 𝐷𝑖
𝑘, 213 

the probability distribution function 𝐹(𝐷𝑖
𝑘)  can be computed for each 𝐷𝑖

𝑘 . Using the 214 

equiprobability transformation (Panofsky and Brier, 1968), the probability distribution 215 

function is then transformed into a standardized normal random variable with a zero mean and 216 

unit variance. The resulting standardized value serves as the SPEI. For a detailed explanation 217 

of this methodology can be found in Edwards and Mckee (1997). 218 

The calculation of SPEI is performed using the R package "SPEI" (https://cran.r-219 

project.org/web/packages/SPEI, last accessed on March 6, 2023). We use the log-logistic, and 220 

unbiased probability weighted moments (’ub-pwm’) for parameter estimation. The PET is 221 

calculated using the FAO-56 Penman-Monteith method (Allen et al., 1998). Here, we calculate 222 

the SPEI for different accumulation time scales, including 3 months (SPEI03, short-term), 6 223 

months (SPEI06, mid-term), 12 months (SPEI12, mid-term), and 24 months (SPEI24, long- 224 

term).  225 

2.3 Climate classification  226 

The latest Köppen-Geiger World map data (http://www.gloh2o.org/koppen/, last accessed 28 227 

March 2023) is used in this analysis to classify the climate regime (Beck et al., 2018). This 228 

classification was formulated by Wladimir Köppen and has undergone several updates over the 229 

years (Peel et al., 2007; Kriticos et al., 2012). The most recent version was introduced by Beck 230 

et al. (2018) and has an unprecedented resolution of 0.0083° (approximately 1 km at the 231 

equator), which provides a more accurate representation of highly heterogeneous regions. To 232 

ensure accuracy and assess uncertainties in map classifications, the authors combined climatic 233 

air temperature and precipitation data from multiple independent sources, including 234 

WorldClim V1 and V2 (Fick and Hijmans, 2017; Hijmans et al., 2005), Climatologies at High 235 

resolution for the Earth’s land Surface Areas (CHELSA) V1.2 (Karger et al., 2017), and 236 

Climate Hazards Group’s Precipitation Climatology (CHPclim) V1 (Funk et al., 2015). These 237 

datasets have been explicitly corrected for topographic effects and, with the exception of the 238 

CHELSA V1.2 temperature dataset, are based on a large number of stations (≥34,542 for 239 

precipitation and ≥20,268 for temperature). The use of multiple data sources allows for an 240 

estimate of uncertainty in the derived classes. The resulting dataset defines 30 possible climate 241 

types, which can be grouped into five main categories: tropical, dry, temperate, continental, 242 

and polar regions (Figure S1 in Supplemental Material). For our subsequent analysis, we 243 

employ the current climate Köppen-Geiger World map to delineate the five core climate zones. 244 
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This choice is based on its remarkable consistency across time scales (Yoo and Rohli, 2016).  245 

Because of the Earth's tilted axis results in significant seasonal differences in solar radiation 246 

between the northern and southern hemispheres. To provide a precise representation of the 247 

seasonal impact of deforestation in these regions, we have classified them into Dry_n and 248 

Dry_s, T_n and T_s, Polar_n and Polar_s, corresponding to dry, temperate, and polar regions 249 

in the northern and southern hemispheres, respectively. 250 

2.4 Evaluation of the effect of forest on droughts 251 

The deforest-global experiment is a branch of the piControl experiment, sharing identical 252 

parameters except for the land cover data. We can assess the climate response to land cover 253 

change by contrasting the outcomes of these two experiments (Lawrence et al., 2016). 254 

However, the SPEI is a Log-logistic distribution index, so we cannot simply subtract the indices 255 

from the two experiments. For calculating changes in SPEI, we utilized datasets from the 256 

piControl experiment as the reference period for each model and subsequently computed the 257 

SPEI values. The last 30 years of the experiment (from year 51 to year 80) are considered the 258 

stabilized period (Boysen et al., 2020; Luo et al., 2022). During this period, the effects of 259 

deforestation have been fully expressed. Consequently, in this study, all analysis, excluding 260 

time-series analysis, are carried out exclusively on data from this specified period. The 261 

subsequent analysis is concentrated solely on land grids and SPEI changes in deforest-global 262 

relative to piControl experiment. We utilize a two-tailed t-test to assess the significance of 263 

changes in SPEI induced by deforestation. 264 

In order to perform a time-series analysis, we use cubic spline regression approach to 265 

obtain smooth curves that allow for effective analysis (Wood, 2017). This method involves 266 

fitting unique cubic polynomials between each data point, resulting in a continuous and smooth 267 

curve. These cubic splines enable the determination of rates of change and cumulative change 268 

over a given interval. The "mgcv" function from the R package was used for this study 269 

(https://cran.r-project.org/web/packages/mgcv/mgcv.pdf, last accessed on 6 March 2023). 270 

3. Results 271 

3.1 Changes in deforestation and meteorological factors 272 

The deforest-global experiment focuses on removing trees from grid cells that were 273 

predominantly covered by forests. Deforestation mainly occurs in selected areas of tropics, 274 
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temperate, and continental regions and the global pattern of deforestation is similar for all 275 

models (Supplemental Material Figure S2). The multi-model ensemble mean (MME) results 276 

reveal that the Amazon basin, Central Africa, eastern North America, and Europe experience 277 

the most significant forest reductions. Large scale deforestation leads to an average global land 278 

reduction in precipitation of -10.15 ± 4.91 mm yr-1 (mean ± standard deviation) from year 51 279 

to year 80 (Figure S3). The tropical region experiences the most significant decrease in 280 

precipitation (-30.21 ± 28.71 mm yr-1), followed by the continental (-13.07 ± 7.04 mm yr-1) 281 

and temperate (-11.60 ± 15.78 mm yr-1) regions, while the polar (-5.42 ± 4.46 mm yr-1) and dry 282 

(-1.64 ± 8.24 mm yr-1) regions have the least decrease in precipitation (Table S3). Nevertheless, 283 

the models show some differences in precipitation variability patterns (Figure S4). UKESM1-284 

0-L is the model with the most substantial decrease in precipitation (except in the dry region, 285 

where GISS-E2-1-G shows the most reduction). BCC-CSM2-MR, CMCC-ESM2, and 286 

MIROC-ES2L show increased precipitation following deforestation, whereas other models 287 

indicate drier conditions.  288 

For temperature, MME shows that deforestation leads to a global land cooling effect of 289 

-0.47 ± 0.13 °C (Table S3). Notably, the continental region has experienced the most significant 290 

cooling (-1.07 ± 0.25 °C) despite not having the highest deforestation rate, while the tropical 291 

region showed the least significant cooling (-0.12 ± 0.11 °C). The dry and polar regions, which 292 

have experienced less deforestation, also showed a cooling effect of -0.32 ± 0.09 °C and -0.32 293 

± 0.27 °C, respectively. Overall, the results of the simulation demonstrate a clear cooling trend 294 

globally and in four regions (excluding the tropical region) compared to the piControl 295 

experiment (Figure S4). Likewise, the temperature response to forest change exhibits inter-296 

model variability in specific regions. For instance, in tropical areas, BCC-CSM2-MR, CMCC-297 

ESM2, and IPSL-CM6A-LR indicate a low-confidence cooling effect, while other models 298 

simulate a warming effect (Figure S5). The substantial divergence in precipitation and 299 

temperature response to forest change in models may arise from variations in parameterization, 300 

particularly in the representation of phenology and evapotranspiration for different land cover 301 

types (Pitman et al., 2009). 302 

Table S3 displays the statistics regarding the average forest fraction, precipitation, and 303 

temperature changes (deforest-global minus piControl) for each model individually over the 304 

course of the analysis time period. Previous studies have shown a similar deforestation pattern 305 

using deforest-global experiment datasets (Boysen et al., 2020; Lawrence et al., 2016), and 306 

have demonstrated similar changes in global precipitation and temperature induced by global 307 

deforestation (Boysen et al., 2020; Luo et al., 2022). Large-scale deforestation tends to reduce 308 
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land surface temperature predominately driven by altering albedo, especially at mid and high 309 

latitude combined with snow cover effect (Boysen et al., 2020; Perugini et al., 2017). It also 310 

reduces precipitation, primarily due to weakened evapotranspiration and atmospheric moisture 311 

convergence (Luo et al., 2022; Perugini et al., 2017). The inconsistent changes in deforestation 312 

and meteorological response patterns are likely due to the non-local biogeophysical impacts of 313 

deforestation (Winckler et al., 2019a; Badger and Dirmeyer, 2016).  314 

Deforestation leads to a reduction in global precipitation and near-surface cooling, but 315 

the magnitude of these changes varies across regions and models (Figure 1). According to the 316 

different model outputs, some models estimate that the tropical region experiences the most 317 

significant decrease in precipitation and the least pronounced cooling. In contrast, the 318 

continental region typically experiences significant cooling, but the decrease in precipitation is 319 

less pronounced. In the temperate region, both precipitation and cooling changes are not very 320 

pronounced. The dry and polar regions, where fewer trees are removed, show slight variability 321 

in precipitation and temperature changes. Interestingly, there is no linear relationship between 322 

deforestation area and precipitation or temperature changes across regions, highlighting the 323 

complex and non-local nature of the biogeophysical effects of deforestation. Global and 324 

regional changes in forest fraction, precipitation, and near-surface temperature for individual 325 

models can be found in Figure S6. 326 

 327 

 328 

Figure 1.  Global (only over land) and regional mean changes (deforest-global minus piControl) in forest 329 

fraction (%), precipitation (mm yr-1), and near-surface temperature (℃). The dots represent the 30 years 330 

(from simulation year 51 to 80) average of multi-model ensemble mean results, and the vertical error bars 331 

represent the range of results from the nine models. 332 

 333 
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3.2 Change in drought indices (SPEIs) 334 

3.2.1 ANALYSIS OF ANNUAL AVERAGED CHANGES IN SPEIS 335 

For short-term drought (SPEI03), seven models indicate a tendency towards drier conditions 336 

in the Amazon and tropical Africa. However, two models (CMCC-ESM2 and EC-Earth3-Veg) 337 

show a significant wet trend in these regions (Figure 2). Most models simulate positive SPEI03 338 

changes in North Africa, the Middle East, Central Asia, and Central North America, which are 339 

classified as dry climate zones in global climate classification, suggesting an increase in 340 

atmosphere moisture. Notably, the CMCC-ESM2 and EC-Earth3-Veg models show a 341 

significant positive change in these areas. The MME also captures the drier Amazon and 342 

tropical Africa, as well as the wetter conditions in dry climate zones.   343 

For long-term drought (SPEI24), models exhibit a similar pattern of changes in dry-wet 344 

conditions as observed for short-term drought. Notably, significant changes in SPEI are evident 345 

in the Amazon and tropical Africa across most models (Figure 3). In specific dry regions such 346 

as North Africa, the Middle East, Central Asia, and Central North America, CMCC-ESM2, 347 

EC-Earth3-Veg, and CNRM-ESM2-1 show a significant tendency towards wetter conditions, 348 

while other models excluded GISS-E2-1-G indicate a slight wet trend that does not pass the 349 

significance test. This highlights the influence of large-scale deforestation on local dry-wet 350 

conditions, with some variability among models. The MME results demonstrate more 351 

agreement with the majority of individual models in capturing the changes. 352 

 353 
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 354 

Figure 2. Changes in the Standardized Precipitation-Evapotranspiration Index calculated over a 3-month 355 

time scale (SPEI03) between the deforest-global and piControl experiment for nine GCMs and the Multi-356 

Model Ensemble mean (MME). Positive values signify increased moisture (wet conditions), while negative 357 

values denote reduced moisture (dry conditions) relative to the pi-Control experiment. The black dots 358 

indicate the changes in SPEI03, with significance tested using a two-tailed t-test at a p-value of 0.05. 359 
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 360 

Fig. 3. Same as Fig.2 but for the SPEI calculated over a 24-month time scale (SPEI24).   361 

 362 

The cubic spline regression analysis reveals that after the main forest is removed, the 363 

global mean short-term drought (SPEI03) shows a negative trend for the next 30 years (Figure 364 

4), with an average value of -0.06 ± 0.02 (mean ± standard deviation) during this period (Table 365 

S4). This negative trend remains relatively constant over the last 30 years. However, our 366 

findings show notable variations in the SPEI03 changes across different climate zones. In the 367 

tropical region, the SPEI03 time series indicates a significant decrease, with the rate of decline 368 

slowing down in the latter 30 years, resulting in a stable average value of -0.19 ± 0.04 (Table 369 

S4). And this region experiences the most significant dryness after deforestation. On the other 370 

hand, the dry region becomes more humid after global deforestation, with an average SPEI03 371 

change of 0.07 ± 0.05. The temperate, continental, and polar regions all experience negative 372 

changes in SPEI03, indicating varying degrees of desiccation. These findings underscore the 373 

crucial role of forests in regulating local and global climate patterns, especially in dry regions. 374 

 375 
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 376 

Figure 4. Global and regional annual averaged changes in SPEI03 due to deforestation are depicted over 377 

time for each model and the MME. Different colors indicate different models. The solid lines denote cubic 378 

spline regression, with significance indicated by shaded areas at a level of 0.05. 379 

  380 
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 381 

Figure 5. Same as Figure 4, but for the SPEI calculated over a 24-month time scale (SPEI24).   382 

 383 

The impacts of deforestation on long-term drought (SPEI24) are more severe and have a 384 

large magnitude, and these changes are evident globally and regionally (Figure 5). However, 385 

there are differences in the simulation results among individual models. For instance, the GISS-386 

E2-1-G model predicts the most severe droughts globally, in the tropics, dry, and continental 387 

regions, while the IPSL-CM6A-LR model produces the largest absolute average value for the 388 

latter 30 years in the temperate region. Additionally, the CanESM5 model shows that the polar 389 

region becomes drier after deforestation most clearly. These differences highlight the 390 

importance of considering multiple models when assessing the impacts of deforestation on 391 

droughts, as the specific outcomes may depend on the modelling approach used. The changes 392 

in spatial and temporal distribution for each individual model and the MME in mid-term 393 

drought can be observed in Figure S7 and S9 for SPEI06, while Figure S8 and S10 showcase 394 

the same for SPEI12.  395 
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 396 

Figure 6. The box plots display the distribution of SPEIs (SPEI03, SPEI06, SPEI12, SPEI24) changes 397 

induced by deforestation averaged from year 51 to 80, globally and over the five climate regions for the 398 

MME. Each box plot represents the spatial variability of a specific SPEI, where the box represents the 399 

interquartile range (IQR) between the 25th and 75th percentiles, and the line inside the box represents the 400 

median. The whiskers extend to the minimum and maximum values within 1.5 times the IQR, and any data 401 

beyond the whiskers are shown as points. Different colors indicate different SPEIs. 402 

 403 

We utilize box plots to offer a comprehensive perspective on the spatial variability of 404 

global and regional impacts resulting from deforestation on various SPEI indices for the MME 405 

(Figure 6). The analysis shows that large scale deforestation tends to lead to drier conditions, 406 

particularly noticeable in the context of long-term droughts. The tropical region is the most 407 

severely affected, followed by the dry, continental, and polar regions. In contrast, the temperate 408 

region seems to be the least affected, with a small mean value and large standard deviation 409 

(Table S4). For a specific model like GISS-E2-1-G, the most significant changes in drought 410 

indices due to large scale forest removal is observed, barring the polar region (Figure S11). 411 

Interestingly, in the polar areas, the CanESM5 model has the most substantial impact. 412 

Conversely, the MIROC-ES2L model demonstrates the slightest change, with a small value 413 

and large standard deviation. To our notice, the GISS-E2-1-G model indicates negative SPEI 414 

values in the dry region, which diverge from the results of other models. 415 

 416 
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 417 

Figure 7. The scatter plot shows the spatial and temporal averages (from year 51 to 80) of SPEIs (SPEI03, 418 

SPEI06, SPEI12, and SPEI24) across global and five climate regions for each model and the MME. Each 419 

model is represented by a different colored marker, while the MME averages are represented by the black 420 

solid circles. 421 

 422 

Large-scale deforestation induces a global mean negative change in SPEIs, indicating 423 

increased global aridity post-deforestation (Figure 7). Among the five climate regions, tropical 424 

and arid areas appear most susceptible to deforestation. Deforestation within the tropical belt 425 

results in a negative SPEI change, signaling heightened aridity in the region. Conversely, 426 

deforestation in arid zones yields a positive SPEI change, indicative of increased moisture. 427 

Despite its lower deforestation rate (Table S3), the polar region displays a more substantial 428 

SPEI change compared to the continental and temperate regions (ranking second and third, 429 

respectively, in deforestation within the deforest-global experiment). These findings suggest 430 

that deforestation's impact extends to global climates, especially in regions with relatively 431 

uniform ecological compositions, such as arid and polar zones. As the time scale increases, the 432 

impact of global forest removal on the drought conditions becomes more pronounced, 433 

suggesting a greater influence on long-term drought conditions compared to the pre-industrial 434 

forest cover (Figure 7).  435 

3.2.2 ANALYSIS OF AVERAGED SEASONAL CHANGES IN SPEI03 436 
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The high-latitude region in northern North America, northern Europe (excluding Greenland), 437 

and northern Asia experience more pronounced seasonal changes in SPEI03 following 438 

deforestation (Figure 8 and 9). Specifically, these regions become drier in December-January-439 

February (DJF, Figure 8) and wetter in June-July-August (JJA, Figure 9). In contrast, there is 440 

no clear seasonal pattern in the SPEI03 variation in the middle and low latitudes, with some 441 

variation depending on the latitude. We also observe that SPEI03 becomes negative in the 442 

tropical region after deforestation, while in the dry region in the northern hemisphere, it 443 

becomes positive, with no significant seasonal variation. Additionally, Supplemental Material 444 

Figures S12 and S13 show the March-April-May (MAM) and September-October-November 445 

(SON) changes resulting from deforestation during the same period. Overall, our results 446 

suggest that deforestation has a significant impact on the seasonal variability of short-term 447 

drought, especially in high-latitude regions. 448 

The simulation results in the effect of deforestation on SPEI03 exhibit model variations, 449 

with some models unable to capture the seasonal changes in drought induced by deforestation 450 

as seen in the MME. The IPSL-CM6A-LR model, for example, shows no significant difference 451 

in SPEI03 variation between DJF and JJA. Furthermore, simulation results for certain regions 452 

in Asia and Europe's high latitudes indicate the opposite result to the MME, with a wetter 453 

winter and drier summer. It is worth noting that the regions with the most significant seasonal 454 

fluctuations in SPEI03 are mainly located in the continental zone. Therefore, a deeper analysis 455 

of the seasonal impact of deforestation on drought in this region is needed.  456 

 457 
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 458 

Figure 8. Changes in the Standardized Precipitation-Evapotranspiration Index calculated over a 3-month 459 

time scale (SPEI03) during December-January-February (DJF) between the deforest-global and piControl 460 

experiment for nine GCMs and the Multi-Model Ensemble mean (MME). Positive values signify increased 461 

moisture (wet conditions), while negative values denote reduced moisture (dry conditions) relative to the pi-462 

Control experiment. The black dots indicate the changes in SPEI03, with significance tested using a two-463 

tailed t-test at a p-value of 0.05. 464 

  465 
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 466 

Figure 9. Same as Figure 8, but during June-July-August (JJA).  467 

 468 

Deforestation impact on continental drought is most significant during DJF and JJA, with 469 

a smaller effect during MAM and SON (Figure 10). The MME results show negative values 470 

for winter SPEI03 time series changes, with an average of -0.20 ± 0.07. Most models, except 471 

for IPSL-CM6A-LR (with an average of 0.00 ± 0.14), can capture the characteristics of a drier 472 

condition tendency in DJF. Similarly, in the northern hemisphere summer (JJA), MME and 473 

most models (except IPSL-CM6A-LR, with an average of -0.06 ± 0.11) indicate positive values. 474 

However, in the MAM and SON seasons, the model outputs display a blend of both positive 475 

and negative values. In contrast, the MME results are predominantly negative, although to a 476 

lesser extent compared to the winter season. More details about the seasonal changes of SPEI03 477 

in different regions are available in Supplemental Material Figure S14-S18.  478 

 479 
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 480 

Figure 10. Seasonal changes in SPEI03 induced by deforestation averaged in the continental region for each 481 

model and the MME. Each model is represented by a different color. The solid lines denote cubic spline 482 

regression, with significance indicated by shaded areas at a level of 0.05.  483 
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 484 

Figure 11. Box plots represent the seasonal (DJF, MAM, JJA, SON) changes in SPEI03 across different 485 

areas (global and eight regions) for the MME. Each box shows the interquartile range (IQR) of the SPEI03 486 

changes within a specific region, with the lower and upper edges corresponding to the 25th (Q1) and 75th 487 

(Q3) percentiles, respectively. Outliers are also displayed and defined as values less than Q1-1.5x(IQR) or 488 

greater than Q3+1.5x(IQR). Different colors are used to represent different seasons. 489 

 490 

Figure 11 highlights the impact of deforestation on SPEI03 across different regions and 491 

seasons. The MME results reveal that deforestation leads to a negative effect on SPEI03 in all 492 

seasons, with the most substantial impact observed in the northern hemisphere's winter half-493 

year (SON and DJF). In the tropical region, deforestation significantly decreases SPEI03 in all 494 

seasons. Conversely, the Dry_n region experiences a positive change in SPEI03 following 495 

deforestation, indicating a wetter climate, with the effect being more pronounced in summer 496 

and autumn. The Dry_s region, however, does not exhibit any significant change in SPEI03. 497 

Notably, the continental region experiences the most significant seasonal change in SPEI03 498 

following deforestation, with a considerable decrease in the northern hemisphere's winter and 499 

a marked increase in northern hemisphere's summer, indicating that the impact of deforestation 500 

differs between the two seasons. These results underscore the region-specific nature of the 501 

impact of deforestation on drought, and understanding the seasonal patterns of these changes 502 

is crucial for developing effective mitigation and adaptation strategies. 503 
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The box plots depict the variability in SPEI03 seasonal changes observed among different 504 

regions and models (Figure S19). The global region, for instance, presents diverse trends in 505 

SPEI03 changes across models. Specifically, while five models (BCC-CSM2-MR, CanESM5, 506 

GISS-E2-1-G, IPSL-CM6A-LR, UKESM1-0-LL) indicate an overall decrease in SPEI03 for 507 

four seasons, one model (MIROC-ES2L) shows an overall increase in SPEI03 for four seasons, 508 

and it suggests that deforestation leads to positive changes in SPEI03 for the tropical and 509 

Polar_n regions, which contradicts the conclusions of most models. These results highlight the 510 

need to account for the variability across multiple models when interpreting the findings of this 511 

study. It is essential to exercise caution when drawing conclusions based on the results of any 512 

individual model and consider a more comprehensive approach that accounts for the variability 513 

across multiple models.  514 

There is a clear distinction among the models in illustrating the global and regional 515 

averaged SPEI03 shifts following deforestation (Figure 12). Overall, the results show that 516 

deforestation leads to a negative shift in average SPEI03 values globally, indicating a drier 517 

climate, particularly during the north hemisphere winter and autumn. This trend is consistent 518 

in the tropical and northern hemisphere polar regions as well. In the continental region, 519 

however, the average changes of SPEI03 are negative during DJF and positive during JJA, 520 

showing an opposing trend. These findings are in line with the box plots presented in Fig. 11. 521 

Furthermore, the comparison among the nine models shows that the GISS-E2-1-G model is 522 

more sensitive to the seasonal effects of deforestation on drought, with results mostly spread 523 

in the lower part of the figure (except for the polar region, where CanESM5 shows the most 524 

fluctuation in SPEI03). Conversely, the majority of SPEI03 outcomes for the EC-Earth3-Veg 525 

and CNRM-ESM2-1 models are positive, suggesting that the world will become wetter 526 

following deforestation. 527 

 528 
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 529 

Figure 12. The scatter plot shows the global and climate regional averaged changes of SPEI03 induced by 530 

deforestation for each season and model, as well as the multi-model ensemble (MME). Each colored marker 531 

represents a different model. 532 

 533 

In general, the global averaged SPEI03 shifts are more prominent in the boreal autumn 534 

and winter seasons following deforestation, which is also observed in both tropical and 535 

northern hemisphere polar regions. The temperate zone is the least affected by deforestation. 536 

Moreover, the continental region experiences the most seasonal change, with a negative 537 

SPEI03 (drier) in winter and a positive SPEI03 (wetter) in summer. In line with the previous 538 

analysis of annual variability, the northern hemisphere dry region is the only area that becomes 539 

wetter following deforestation, and this is most noticeable in the autumn season. 540 

4. Discussion 541 

In this study, we use idealized deforestation experiments (deforest-global) and pre-industrial 542 

control simulation experiments (piControl) conducted by nine global climate models from 543 

LUMIP dataset bank to examine the impacts of global deforestation on droughts across 544 

different climate regions and time scales. Deforestation has been consistently shown by various 545 

model simulations to lead to a decrease in global precipitation, with the tropical region 546 

experiencing the most significant reduction. This concurs with the observed decrease in 547 
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precipitation change attributed to forest loss in tropical regions (Smith et al., 2023). Moreover, 548 

it is expected to cause cooling, particularly in the continental region. Similar findings have 549 

been reported in previous studies (Boysen et al., 2020; Cherubini et al., 2018; Perugini et al., 550 

2017). Biogeophysical mechanisms such as changes in evapotranspiration and atmospheric 551 

moisture convergence play a crucial role in causing changes in precipitation (Zhang et al., 552 

2021), while reduced available energy is primarily responsible for temperature changes (Luo 553 

et al., 2022). The effects of deforestation on the climate vary depending on the location, with 554 

boreal deforestation primarily increasing albedo and tropical deforestation mainly decreasing 555 

evapotranspiration (Chen and Dirmeyer, 2020; Spracklen et al., 2012; Winckler et al., 2019b). 556 

Large-scale deforestation can significantly increase the risk of global droughts, as 557 

droughts are influenced by various factors such as precipitation, temperature, and other 558 

biogeophysical factors. Deforestation has contrasting effects on cloud cover across different 559 

regions: it typically decreases cloud cover in tropical areas while increasing it in dry, temperate, 560 

and continental regions (Figure S20). This reduction in cloud cover in the tropics is primarily 561 

attributed to a decrease in local cloud formation, whereas there is a non-local enhancement of 562 

cloud cover in temperate and boreal regions (Duveiller et al., 2021; Hua et al., 2023). The 563 

changes in cloud cover induced by deforestation are predominantly driven by sensible heating, 564 

with areas of higher sensible heat more likely to experience cloud enhancement, while areas 565 

with lower sensible heat tend to see cloud inhibition over forests (Xu et al., 2022). These 566 

alterations in cloud cover subsequently influence incoming surface radiation. Meanwhile, the 567 

changes of forests also impact on the surface albedo, and then the flux exchange between land 568 

surface and atmosphere, which in turn impacts surface potential evapotranspiration.  569 

Specifically, deforestation tends to increase potential evapotranspiration in tropical regions 570 

while decreasing it in middle-to-high latitudes, particularly in dry regions (Figure S21). Despite 571 

these changes, large-scale deforestation typically results in more precipitation in dry regions 572 

and less precipitation in tropical regions (Figure S3 and S6). In tropical regions, deforestation 573 

leads to a significant reduction in transpiration, which disrupts water recycling processes and 574 

contributes to lower precipitation levels, exacerbating dry conditions (Staal et al., 2020; Staal 575 

et al., 2018; Van Der Ent et al., 2014). Conversely, in dry regions, the increase in precipitation 576 

and decrease in potential evapotranspiration induced by deforestation often result in wetter 577 

conditions. Li et al. (2024) also confirmed that precipitation is the primary factor affecting 578 

droughts in the tropical region, while temperature is the primary factor affecting droughts in 579 

the dry region. The dry region experiences precipitation deficits and cooling effects after the 580 

removal of trees, and the cooling effect could contribute to increased moisture, so global 581 
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deforestation can potentially mitigate droughts in this region, showcasing the non-local impact 582 

of deforestation. In contrast, the temperate and continental regions are the most stable in terms 583 

of droughts following deforestation. 584 

Our study also focuses on analyzing the effects of an idealized deforestation scenario on 585 

seasonal changes in SPEI03, and found that the continental zone is most affected through 586 

variations in drought. The insights into the possible reasons behind this phenomenon is that 587 

deforestation in the continental region has contrasting effects on temperature, causing cooling 588 

in winter and spring but warming in summer, as previously reported in other studies (Alkama 589 

and Cescatti, 2016; Cherubini et al., 2018). Deforestation increases surface albedo in winter by 590 

removing tree cover, which leads to a decrease in the net radiation balance and surface 591 

temperature. Conversely, in summer, the reduced evapotranspiration and surface roughness are 592 

the primary causes of temperature increases. Additionally, using the CCM3-IBIS coupled 593 

atmosphere-biosphere model, Snyder et al. (2004) demonstrated that deforestation leads to a 594 

substantial reduction in precipitation in summer (-0.7 mm day-1) and the least reduction in 595 

winter (-0.2 mm day-1) in the continental region. Removing trees leads to a significant reduction 596 

in transpiration, which is particularly pronounced during summer and to a smaller extent in 597 

winter (Cai et al., 2019). This reduction may contribute to a situation where there is a greater 598 

conflict between reduced precipitation and transpiration during winter compared to summer, 599 

and then leads to a drier winter in the continental region. Therefore, we conclude that the 600 

combined biogeophysical effects of deforestation in the continental region could explain the 601 

wetting effect in summer and the drying effect in winter.  602 

 We investigate the influence of global deforestation on regional drought patterns within 603 

the five main climate zones as classified by the Köppen-Geiger system. However, it is 604 

important to acknowledge that our analysis does not account for sub-climates within these 605 

zones. Instead, we focus on determining the average changes in drought for each climate zone, 606 

providing a broader assessment. Among the climate zones studied, the dry climate zone, 607 

encompassing steppe and desert climates and representing approximately 26% of the Earth's 608 

land area, exhibited heightened vulnerability to changes in drought patterns. Interestingly, our 609 

findings indicate that this region is likely to experience reduced drought occurrences following 610 

forest removal, primarily due to the non-local effects associated with global deforestation. It is 611 

worth noting that the degree of forest replacement with grass was relatively lower within the 612 

dry climate zone in our study. To obtain more precise and specific conclusions, it is advisable 613 

to further subdivide the climate divisions, enabling a more nuanced analysis. This approach 614 

would enhance the accuracy and granularity of our findings, particularly when examining the 615 
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response of different sub-climates within each climate zone to deforestation-induced changes 616 

in drought. Furthermore, our study utilizes models with relatively coarse spatial resolutions, 617 

ranging from 0.7°×0.7° to 2.8°×2.8°, depending on the specific model employed. This coarse 618 

resolution may have resulted in some loss of information, particularly when investigating 619 

regional variations in drought. To address this limitation, future studies could employ higher-620 

resolution models, which would provide a more accurate understanding of how land use 621 

changes impact regional drought patterns. For instance, the integration of data from projects 622 

such as the Land Use and Climate Across Scales Flagship Pilot Study (LUCAS FPS) could 623 

significantly enhance our investigations. LUCAS FPS utilizes regional climate models to 624 

quantify the biogeophysical effects of land cover change in specific regions, such as Europe 625 

(Davin et al., 2020). Incorporating regional climate models and higher-resolution data would 626 

enable a more comprehensive examination of the intricate relationship between land use 627 

changes and drought patterns at the regional level.  628 

Recent observations indicate that changes in dry spells across northeastern South 629 

America and the West Africa/Sahel region are primarily influenced by anthropogenic factors 630 

(Wainwright et al., 2022). Specifically, the lengthening trend of dry spells in South America is 631 

likely linked to deforestation, altering moisture recycling and reducing latent heat flux (Leite 632 

et al., 2019). Changes in forest cover, predominantly due to restoration of forest from cropland, 633 

have significant local climatic impacts in Europe (Huang et al., 2020). Model simulations 634 

reveal that deforestation induces a cooler and drier climate in Europe (Hu et al., 2019; 635 

Cherubini et al., 2018). Furthermore, alterations in forests, including activities like forest 636 

harvesting, modify various surface attributes such as leaf area index and canopy structure, 637 

consequently affecting surface roughness, energy transfer, and solar radiation absorption 638 

(Huang et al., 2023; Anderson et al., 2011). These surface disturbances can potentially 639 

influence the general circulation of the atmosphere (Badger and Dirmeyer, 2016). However, 640 

the extent to which modifications in the general circulation, propelled by changes in forests 641 

and their influence on inter-hemispheric heating, particularly impacting the position of the 642 

intertropical convergence zone (Frierson et al., 2013; Stephens et al., 2022) and the movement 643 

of rainfall belts (Frierson et al., 2013; Dong and Sutton, 2015), remains largely unknown.  644 

This analysis shows a diverse climate response (temperature, precipitation, and SPEIs) 645 

resulting from large-scale forest losses. Although these models share a common framework by 646 

deforesting the top 30% grid cells relative to their forested fraction in the piControl land cover 647 

(Lawrence et al., 2016), there are variations in defining forest fractions within the piControl 648 

stage across models. For instance, the IPSL-CM6A-LR model utilizes the ORCHIDEE land 649 
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surface model, representing vegetation heterogeneity with 15 plant functional types (Boucher 650 

et al., 2020), while the CNRM-ESM2-1 model, coupled with the ISBA-CTRIP land surface 651 

model, incorporates 16 vegetation types (Decharme et al., 2019; Delire et al., 2020). 652 

Differences in the spatial pattern of deforestation among models predominantly stem from 653 

variations in initial forest cover, ranging from 36 to 66 Mkm2 (Boysen et al., 2020). This 654 

disparity underscores the challenges in implementing consistent land use and cover change 655 

scenario (Di Vittorio et al., 2014). Moreover, these models employ distinct land surface models 656 

with varying approaches to vegetation phenology and carbon cycle, further influencing the 657 

climate response to deforestation (Boysen et al., 2020). For example, the terrestrial 658 

biogeochemical processes in CMCC-ESM2 are represented by the Community Land Model 659 

version 4.5 (CLM4.5) in its biogeochemical configuration including key processes concerning 660 

global carbon and nitrogen cycles (Oleson et al., 2013; Koven et al., 2013). Photosynthesis 661 

descriptions vary among plant types, with C3 plants (Farquhar et al., 1980) and C4 plants 662 

(Collatz et al., 1992). These methods differ in leaf-level parameterization of carboxylation and 663 

limiting factors. The resulting photosynthate is allocated into various vegetation carbon pools, 664 

and the transfer of carbon into litter-soil pools follows a dynamic cascade (Parton et al., 1988). 665 

EC-Earth-veg employs LPJ-GUESS land surface model to simulate vegetation dynamics, 666 

management, land use, terrestrial carbon and nitrogen cycles, and incorporating six stand-types 667 

(Natural, Pasture, Urban, Crop, Irrigated Crop, and Peatland). LPJ-GUESS features 668 

competition among plant functional types within each stand-type, with tree establishment 669 

disabled on deforested areas, leaving only herbaceous PFTs in competition. The model 670 

represents global carbon and nitrogen cycles within vegetation, litter, and soil organic matter 671 

pools, influencing soil biogeochemistry, CO2 fluxes, and nitrogen trace gas emissions. The 672 

distinct variations in vegetation phenology across models will also influence aerodynamic 673 

resistance following forest replacement, thereby significantly contributing to changes in 674 

surface temperature (Liu et al., 2023). These temperature changes can subsequently impact 675 

potential evapotranspiration and, consequently, drought conditions. Considering the wide-676 

ranging initial forest cover and the distinct land surface models used, it becomes evident that a 677 

comprehensive approach involving multi-model simulations is crucial. Such an approach 678 

allows for a more comprehensive understanding of the relative realistic climate effects resulting 679 

from large-scale deforestation. 680 

As human societies continue to rapidly develop, it is increasingly important to understand 681 

the impacts of land use changes on both climate and humans. This study utilizes data from nine 682 

models to analyze the responses of droughts at different time scales and across various climate 683 
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zones to deforestation. However, some uncertainties remain in this research. Firstly, while the 684 

models all follow the same experimental setup, the extent and location of deforestation varies, 685 

which may lead to different climate responses. Secondly, the drought index used in this study, 686 

SPEI, primarily considers atmospheric conditions and overlooks the effects of soil drought. 687 

Finally, this study only scratches the surface of the calculated drought indices, and additional 688 

statistical models should be employed to explore the impacts of deforestation on drought across 689 

different time scales and climate zones. Future research can address these gaps and further 690 

investigate the development of natural hazards. 691 

In this paper, we focus on the combined effects of local and non-local effects of 692 

deforestation, and in the future, we can further analyze the different responses (local and non-693 

local) to deforestation and the weight of the different responses in each region. Here, we have 694 

only analyzed the effect of deforestation on the magnitude of the drought, but we can also 695 

analyze the effect on the onset, termination and duration of the drought. Additionally, future 696 

research also could consider incorporating other factors that may influence the response of 697 

drought to deforestation, such as soil characteristics, topography, and vegetation type. 698 

Furthermore, it would be interesting to investigate the potential feedback mechanisms between 699 

the changes in climate and the resulting changes in vegetation cover, as well as the impacts of 700 

deforestation on other hydrological processes, such as runoff and groundwater recharge. Lastly, 701 

further research can be conducted to assess the economic and social impacts of deforestation-702 

induced drought and to explore potential mitigation and adaptation strategies for vulnerable 703 

regions.  704 

5. Conclusions 705 

This study extensively investigates the impact of deforestation on droughts at various time 706 

scales (SPEI03, SPEI06, SPEI12, SPEI24) across different climate regions (tropical, dry, 707 

temperate, continental, and polar regions). We accomplish this by utilizing simulations from 708 

nine models in the pre-industrial control simulation (piControl) of CMIP6 and the LUMIP 709 

global deforestation experiment (deforest-global). Based on our analysis of the results, we draw 710 

conclusions about the effects of deforestation on droughts in different climate regions. 711 

1. The LUMIP global deforestation experiment was conducted with the same framework 712 

requirements. Deforestation primarily occurred in tropical, temperate, and continental regions. 713 

This is because the experimental setup involved deforestation in the grid where the forest area 714 

was among the top 30% largest, meaning that the most heavily forested areas were selected for 715 
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deforestation. The results of the experiment indicate that deforestation on a global scale can 716 

significantly alter precipitation and temperature patterns. Tree removal caused a considerable 717 

reduction in temperature over the land, particularly in the continental regions, while also 718 

resulting in a decrease in global and regional precipitation. The tropical regions are the most 719 

affected by this reduction in precipitation. 720 

2. The analysis reveals that deforestation leads to negative changes in the global average 721 

of SPEIs, resulting in drier conditions. This trend is most pronounced in the tropical region. 722 

However, in the dry region, deforestation results in increased SPEIs. In the temperate and 723 

continental regions, which are major global forest belts, deforestation has a relatively limited 724 

impact. Moreover, our findings indicate that the effect of deforestation on drought indices 725 

increases with longer time scales, suggesting that deforestation has a more significant impact 726 

on the long-term drought index. 727 

3. At the seasonal scale, global average SPEI03 changes are more significant in autumn 728 

and winter following deforestation. This trend is also detected in tropical and northern polar 729 

regions, while the northern hemisphere temperate zone is the least affected. The continental 730 

region experiences the most significant seasonal changes, becoming drier in winter and wetter 731 

in summer due to global deforestation. In the dry northern hemisphere region, deforestation 732 

leads to increased atmospheric moisture, which is most evident in autumn. 733 

In summary, this study provides valuable insights into the impact of large-scale 734 

deforestation on global and regional droughts across different time scales, which serves as a 735 

starting point for further exploration of the complex relationships between land cover change 736 

and climate. Overall, our study could inform the development of climate-oriented land use 737 

policies and increase our understanding of the regional and global climate impacts of land cover 738 

change. Further research in this field could ultimately help us to mitigate the negative effects 739 

of land use change on the environment and society. 740 
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