
1 
 

Anonymous Review 1 

April 18, 2024 2 

 3 

Understanding the Role of Contrails and Contrail Cirrus in Climate Change: A 4 
Global Perspective 5 
 6 

by Dharmendra Kumar Singh, Swarnali Sanyal, Donald J. Wuebbles 7 

The topic of the paper is of high actual interest and well suited for ACP.  8 

As stated in lines 100 ff, the paper aims to provide a comprehensive review of our 9 
understating of contrails… and to address the uncertainties….  10 

Such a comprehensive review does not exist in the literature. It seems that the not all 11 
authors have extensive experiences in contrail research by themselves so many of their 12 
comments may raise critical discussion. The paper reads like a literature study in 13 
preparation of more specific own research by the authors on this topic. 14 

But different from reviews by acknowledged experts, who like their own work most, this 15 
paper is rather unbiased in the selection of materials and assessments, and this is 16 
refreshing.  17 

The coverage is quite good but can be improved. Here I have several additions and offer 18 
comments on detail, see below. The paper is (of course) mostly a  collection of existing 19 
knowledge. The conclusions are not really surprisingly new. I found the comments on 20 
Machine Learning aspects particularly interesting (I think I should try to learn more about 21 
them). Section 7, “Research needs and gaps “ is worthwhile to have though not 22 
objective in all parts and partly hard to validate because of incomplete explanations or 23 
citations. I think it is worthwhile to have estimated numbers on the magnitudes of 24 
uncertainty but presently these number are not well justified. 25 

 26 

The review misses many important publications. That should be improved.  27 

The paper is partly too long to keep me interested in all details, collects lot of materials. 28 
Still the paper is worth to read but it needs amendments before it can be published.  29 

Such a long paper is hard to review, and I can give only a few specific comments. I 30 
would formulate many parts differently. 31 

 32 

Abstract.  33 

Line 12: The sentence “contrail cirrus enhances the impact of natural clouds on the 34 
climate” is misleading, because I read it first as if contrails would have no effect without 35 
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natural cirrus. But that is not the case. Better: Contrail cirrus is similar to natural cirrus in 36 
having an impact on climate.  37 

 38 

Then I would start a new sentence on the uncertainties – without “although” or “however” 39 
or “but”. Simply say that this paper discusses existing uncertainties  40 

 41 

 42 

The statement “there are still unresolved questions” is trivial. There will be always 43 
unresolved questions. In fact, with further research more and new questions may likely 44 
arise. So, you should condition this sentence a bit more, like “presently the state of the 45 
art is insufficient to assess the magnitude of the climate impact of contrails, e.g. on 46 
surface temperature, and its error bounds with high confidence” – or similar. 47 

 48 

Line 16: add “mixing” as one of the issues. 49 

 50 

Line 56: this was known basically since long (see IPCC, 1999).  Other reviews of 51 
relevance are, e.g. (Schumann, 1994; Sassen, 1997; Brasseur et al., 1998; Fahey and 52 
Schumann, 1999; Prather and Sausen, 1999; Sausen et al., 2005; Brasseur et al., 2016) 53 

 54 

 55 

 Line 68: what do you mean with atmospheric warming. It is correct for RF. But the ERF 56 
relates RF to the global mean surface temperature change. 57 

In fact, perhaps you can discuss how reasonable it is to assess the impact of contrails in 58 
terms of global metrics. Contrails are local events, are short lived and have certainly a 59 
very small global mean surface temperature climate impact. Contrails warm mainly the 60 
upper troposphere, not so much the surface. Most contrails occur over continents with 61 
little chance or long-lives effects by heating the oceans.  The regional effects are likely 62 
far larger than global effects and should be easier to be detected and quantified. And 63 
regional effects are of importance for the densely populated latitudes in the Northern 64 
hemisphere where most air traffic occurs.  65 

 66 

Line 78: sentence(s) incomplete and unclear. 67 

Line 81 is biased to one team and one model type only. Other should be included. 68 

Line 85: there is far more literature on this aspect. 69 

Fig 1 caption. “Current best estimate..” The estimate is already no longer the last one. 70 
Several studies have added new estimates. I would suggest:  “Climate forcing estimate 71 
as published in 2021” or similar.  72 
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Fig 2. misses to mention the importance of mixing of the jet exhaust gases with ambient 73 
air. Mixing controls early or late contrail formation and contrail lifetime (Lewellen and 74 
Lewellen, 1996; Gerz and Ehret, 1997; Sussmann and Gierens, 1999; Lewellen, 2014; 75 
Paoli and Shariff, 2016; Schumann and Heymsfield, 2017). 76 

 77 

 78 

 79 

Line 152. These 2 references do not cover this topic sufficiently. There are many more. I 80 
see that you cite them later. But this line is irritating.  See line 178. See e.g. Sassen 81 
(1997). 82 

 83 

Line 197. Further new reference: (Märkl et al., 2024)   . 84 

 85 

Line 246, Contrail formation was observed far earlier. See (aufm Kampe, 1942; 1943; 86 
Weickmann, 1945; Brewer, 1946; Schumann and Wendling, 1990; Schumann, 1994; 87 
Busen and Schumann, 1995). 88 

Line 256. The visible constraint were introduced earlier: Appleman (1953). 89 

 90 

Line268 and Fig 4: a similar figure with a contrail spiral was given earlier in Fig. 11.2  91 
(Schumann, 2002). 92 

Impressive contrail observations were also presented by Laken et al. (2012) and 93 
(Mannstein and Schumann, 2005). 94 

Line 277: it is now pretty clear that the soot acts as condensation nucleus so that liquid 95 
droplets form which then freeze. The resultant ice particles likely do include the soot 96 
particles on which the water condensed. This does not exclude that some ice particle 97 
sublimate or that some soot remains dry throughout the contrail formation process, so 98 
that also dry soot is found inside contrails. See upcoming paper by Dischl et al. 99 
(Egusphere, to be published soon). 100 

Lines 279 to 288 has been taken from Schumann and Heymsfield (2017), but the 101 
reference  is missing. 102 

Line 446: How do we know the current ranges of in-flight soot emission. Here you should 103 
cite papers by the team around Marc Stettler and Roger Teoh and colleagues (Teoh et 104 
al., 2019; Teoh et al., 2020a; Teoh et al., 2020b; Teoh et al., 2022a; Teoh et al., 2022b; 105 
Teoh et al., 2024a; Teoh et al., 2024b). 106 

Lines 462 to 483: For the discussion of the impact of the initial contrail ice particle 107 
number concentration (and hence the soot emissions) on contrails the cross-section 108 
integrated optical extinction and hence on climate forcing you should cite details of the 109 
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study and explanation around Eq. (5) in  Lewellen (2014). See also Section [17] in 110 
(Schumann et al., 2013). 111 

Page 9: The summaries of Urbanek, Kärcher and Wolf read like abstracts from these 112 
papers. The review does not really combine these result critically with related results 113 
from other studies.  This is a serious deficiency of this review and makes me uncertain 114 
whether this is an acceptable review. 115 

Lines 516 ff: Sedimentation. This section misses citations of related literature. See, e.g., 116 
Spichtinger and Gierens (2009) 117 

 118 

Line 563 : 290 m/s, That is nearly speed of sound. I doubt that this value is correct (230 119 
m/s would sound more reasonable). 120 

 121 

Lines 574 to 588: difficult to read. I have not understood what you want to say. 122 

Line 606, replace 2016 by 2017. 123 

 124 

Lines 617: the LES is of course far more expensive than a plume model and hard to 125 
apply globally. We need improved plume models, e.g., based on LES. By the way: Much 126 
work in this respect has been done by Unterstrasser (2016). 127 

Line 732. The comparisons have been done in several follow-up papers of that cited 128 
here. 129 

Line 780: You refer the age of 450 s without comments. To me 450 s is far too long. 130 

Line 83: neither 10 nor 7.5 um is correct. That value varies by large factors. 131 

Line 528 see earlier work, e.g., Sassen (1997). 132 

Line 876: This was first discussed by Meerkötter et al. (1999). 133 

 134 

Line 1122, Overlap effects. See (Schumann et al., 2021; Teoh et al., 2024a) 135 

 136 

Line 1130. Ettenreich observed in 1915, but published in   1919. 137 

Line 1153: Which reference do you refer to with Schumann, 2016? 138 

Line 1158: See the GAIA data set (Teoh et al., 2024b). 139 

Line 1163. See also the development of open access performance codes: (Poll, 2018; 140 
Poll and Schumann, 2022; 2024). 141 
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Line 1252: Limited literature exists”. See, e.g., measurements of ice particles by the 142 
Geophysica aircraft at about 20 km height above tropical convection by measuring its 143 
own contrail  (Schumann et al., 2017). 144 

The paper by Myhre (2009) is certainly outdated There are several recent studies citing 145 
this paper. 146 

Line 1299 How do you come to the value 55 %? It seems too large to me.  147 

Linem1346: Contrail effects on climate will never be “fully” understood. 148 

But also many other things are incompletely understood and nevertheless practically 149 
addressed. (See, e.g., smog in cities, observed in the 1950’s and soon thereafter 150 
regulated by US federal institutions (was it ERL, I forgot the name) and later by ICAO. 151 

Line 1359 Again: ERF is an insufficient climate metric because it does not account for 152 
regional (northern mid-latitudes) phenomena  and other climate changes besides mean 153 
surface temperature.  154 

Line 1503: As said before “Uncertainties persist”´. I must tell you: uncertainties will be 155 
there also in 100 years from now.  The existence of uncertainties is not a sufficient 156 
argument to start mitigation actions soon. We only have to make sure that the actions 157 
reduce and not increase the climate effect. (It is like building a bridge over a river. The 158 
only thing which counts is that the likelihood that the bridge fails is sufficiently small to be 159 
acceptable. That problem was solved at least 2000 years before today, in spite of very 160 
large uncertainties. I suggest to carefully rethink about talking about uncertainties. 161 

 162 

Chapter 7 “Uncertainties and Research Gaps” is certainly an important part of the paper. 163 

Here many questions arise. 164 

You provide number of the uncertainties in percentages. How are these number 165 
derived? That is unclear in most case. Please explain. I assume you will note: there are 166 
not only uncertainties but also uncertainties of how large the uncertainties are.  167 

The quotes percentage values add (linearly) up to a total of more than 100 %. Please 168 
discuss. 169 

 170 

Line 1284: The reference to Myhre et al. (2009) in assessing radiative transfer schemes 171 
is outdated. There are several new discussions. The key parameter is the shortwave to 172 
longwave ratio in contrail radiative forcing. E.g. Newinger and Burkhardt (2012)  used an 173 
outdated Radiation scheme which strongly underestimated the SW/LW ratio. See 174 
discussion in   Schumann and Graf (2013) and the important poster publication  of 175 
Ponater et al. (2013). 176 

 177 

Line 1287: add Forster et al. (2012). 178 

 179 
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Line 1311: Why is the effect of lifetime of lesser importance? I would expect it is very 180 
important (Lewellen, 2014) 181 

Line 1327: add: well assimilated observation are important to setup  good initial 182 
conditions for accurate  weather predictions (Bauer et al., 2015). 183 

 184 

Line 1359: ERF is not a measure for climate change in general. It is a measure of the 185 
RF impact on global mean surface temperature change only. 186 

The bi-model size distribution of soot??? I am not aware of this. Please provide a 187 
reference. See Fig. 4  in (Schumann et al., 2002). 188 

 189 

Line 1402: The word “fully” excludes everything, but see (Teoh et al., 2020a; Teoh et al., 190 
2020b; Molloy et al., 2022; Teoh et al., 2022a; Martin Frias et al., 2024; Teoh et al., 191 
2024a). 192 

 Line 1413: replace “more” by “larger” 193 

 194 

Please note the following comment on Sausen and similar studies. It makes no sense to 195 
avoid formation of all contrails. That would imply that you also avoid cooling contrails 196 
and it overburdens air traffic management. It is sufficient and far more effective to avoid 197 
the warming contrails and to allow for (even more) cooling contrails. I gave several 198 
references for this above, e.g., (Molloy et al., 2022; Martin Frias et al., 2024). 199 

Line 1498: Please delete the word “valuable”. Such an applause should come from the 200 
readers not from the authors. 201 

Line 1505. “Uncertainties persist” that has been said often enough and does not get 202 
more correct by repeating. 203 

Line 1519: replace Berndt by Bernd. 204 

Lien1524 replace “the” by “for ” 205 

In looking to the list of references:  206 

Please consider the important work of (Bickel et al., 2020; Ponater et al., 2021; Bickel, 207 
2023) 208 

Also (Duda et al., 2023). 209 

Very important: (Iwabuchi et al., 2012) 210 

and on ice supersaturation:  (Ovarlez et al., 2000; Jensen et al., 2001; Ovarlez et al., 211 
2002)   212 

Line 1732 and elsewhere: Please list all co-authors. 213 

Line 1916: What does the single “S” mean? 214 
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Line 1949: please set in capitals (here and elsewhere): MSG and SEVIRI  215 

Line 1854 The method’s name is RRUMS not drums. 216 

 217 

 218 

Overall:  A carefully revised version should become interesting, worthy to read, and 219 
acceptable.   220 
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