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Abstract. In this work we present a super-resolution approach to derive high spatial and temporal resolution ocean colour

satellite datasets. The technique is based on DINEOF (Data Interpolating Empirircal Orthogonal Functions), a data-driven

method that uses the spatio-temporal coherence of the analysed datasets to infer missing information. DINEOF is now used to

effectively increase the spatial resolution of satellite data, and is applied to a combination of Sentinel-2 and Sentinel-3 datasets.

The results show that DINEOF is able to infer the spatial variability observed in the Sentinel-2 data into the Sentinel-3 data,5

while reconstructing missing information due to clouds and reducing the amount of noise in the initial dataset. In order to

achieve this, both Sentinel-2 and Sentinel-3 datasets have undergo the same preprocessing, including a comprehensive, region-

independent, and pixel-based automatic switching scheme for choosing the most appropriate atmospheric correction and ocean

colour algorithm to derive the in-water products. The super-resolution DINEOF has been applied to two different variables

(turbidity and chlorophyll) and two different domains (Belgian coastal zone and the whole North Sea), and the submesoscale10

variability of the turbidity along the Belgian coastal zone has been studied.

1 Introduction

The coastal ocean is a very dynamic region, both in space and time. Coastal regions are subject to strong anthropogenic pres-

sure, and satellite data provide the necessary spatial and temporal coverage to study and monitor these regions. There is a15

need however to measure these areas at both high spatial and temporal resolution, in order to capture the relevant scales of

variability. While “traditional” ocean colour satellites like Sentinel-3 provide daily temporal resolution, the sensors onboard

these satellites do not measure at the necessary high spatial resolution to resolve complex coastal dynamics. High spatial res-

olution sensors, like the MultiSpectral Instrument (MSI) onboard Sentinel-2 (10m-60m resolution), are able to resolve these

small scales, but their temporal revisit time is far from optimal (about 5 days considering the Sentinel-2 A and B tandem).20

Additionally, both high spatial resolution datasets and traditional ones are hindered by the presence of clouds, resulting in a

large amount of missing data.
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Super-resolution approaches aimed at increasing the spatial resolution of geophysical datasets have been developed using

neural network methodologies. For example, Thiria et al. (2023) used a convolutional neural network for increasing the spatial25

resolution of simulated geostrophic ocean currents, helped by simulated sea surface temperature data. Liu and Wang (2021)

also used convolutional neural networks, this time for increasing the spatial resolution of low-resolution bands onboard the VI-

IRS (Visible Infrared Imaging Radiometer Suite) sensor, in order to obtain high spatial resolution ocean colour products. Kim

et al. (2023) and Lambhate and Subramani (2020) increased the spatial resolution of sea surface temperature data using Gen-

erative Adversarial Networks, and Zou et al. (2023) used a transformer model also with sea surface temperature. Barthélémy30

et al. (2022) used a super-resolution data assimilation approach, based on an enhanced deep super-resolution network, to ingest

high spatial resolution observations into a hydrodynamical model. Peach et al. (2023) compared process-based and data-driven

approaches based on neural networks to increase the spatial resolution of wave forecasts, and Buongiorno Nardelli et al. (2022)

used a deep convolutional neural network to infer high spatial resolution ocean dynamics from satellite data. Applications are

very diverse in terms of used methodologies and variables. In this work, we are proposing a data-driven approach based on35

DINEOF (Data Interpolating Empirical Orthogonal Functions, Beckers and Rixen (2003); Alvera-Azcárate et al. (2005)) to

increase the spatial resolution of Sentinel-3 ocean colour data using Sentinel-2 data. The aim is to obtain a unique dataset with

the temporal resolution of Sentinel-3 and the spatial resolution from Sentinel-2, by combining both data streams. DINEOF was

developed to interpolate missing data due to e.g. the presence of clouds, but as it will be shown here it can also, at the same

time, increase the resolution of the final, cloud-free dataset. DINEOF uses a truncated EOF basis to infer missing information40

in satellite datasets hindered by the presence of clouds. The EOF basis extracts the dominant spatio-temporal variability and is

therefore an efficient approach to extract high spatial variability. As a data-driven technique, it is entirely based on the available

data, and does not need any a priori information about scales of variability or signal-to-noise ratio, or other input variables,

which makes its use easy and adaptable to any geophysical variable.

45

A huge challenge when working with several datasets to obtain a unique estimate of an ocean variable is the heterogene-

ity of the different sources: differences in the spectral bands present in each satellite (Blondeau-Patissier et al., 2014; Groom

et al., 2019), different spatial resolutions, and also a difference in the measurement time. This last factor can result in large

differences in dynamic regions, as is the case of the North Sea. In these regions, variables like chlorophyll-a concentration or

turbidity can experience large changes within a few hours due to the influence of strong tidal currents, storms and the wave50

field (Fettweis et al., 2010; Wilson and Heath, 2019; Desmit et al., 2024), an influence that is, in addition, dependent on the

bathymetry. The region of study, the Belgian coast part of the North Sea (figure 1), is a shallow region characterized by a series

of sandbanks and dredging channels that influence water dynamics and bottom sediment resuspension. In this work, we aim at

minimising the differences due to the spectral characteristics of the Sentinel-2 and Sentinel-3, as it will be explained in section

2. The difference in time does not pose a problem in this study, since for a given day only one data source is used (Sentinel-255

if present or Sentinel-3 otherwise), and no merging of the two satellite datasets is performed.
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Figure 1. Bathymetry (m) of the southern North Sea. The black square shows the region used in this study and the white triangle shows the

position of the validation station, RT1.

This work is organized as follows: section 2 describes the region of study, the satellite data and the in-situ data used. This

section is followed by a description of the methodology to produce super-resolution data using DINEOF (section 3). The

results, including the validation and an assessment of the scales resolved by all data sources, are presented in section 4. A60

description of small-scale variability in the southern North Sea using the super-resolution dataset is presented in section 5, and

we conclude this work in section 6.

2 Data used

2.1 Study Area65

This study focuses on dynamics and optically complex waters in the Belgian Coastal Zone (BCZ). The BCZ is a relatively

shallow (<50 m) well-mixed shelf sea, connected to the North Sea in the north and to the English Channel in the west (Rud-

dick and Lacroix, 2006). It is characterized by a relatively high suspended sediment concentration, with a gradient from several

hundreds of g/m3 nearshore to< 1g/m3 in the offshore waters, inversely related to the bathymetry (Nechad et al., 2009, 2011;

Neukermans et al., 2012). Strong tidal currents and the tidal resuspension of sediments is the main cause of the high turbidity70

in the nearshore area (Fettweis and Van den Eynde, 2003; Fettweis et al., 2007). Annually recurring phytoplankton blooms

are observed in spring and summer. These blooms are generally composed of diatoms and Phaeocystis globose (Lacroix et al.,

2007). In recent years, blooms have been occurring earlier, likely in response to sea surface temperature increases and changes

in nutrient outputs (Desmit et al., 2020; Alvera-Azcárate et al., 2021b). The water type is turbid coastal to turbid coastal with

3

https://doi.org/10.5194/egusphere-2024-1268
Preprint. Discussion started: 8 May 2024
c© Author(s) 2024. CC BY 4.0 License.



high organic content. The water at the Research Tower 1 (RT1) near Oostende (51.24643◦N, 2.91933◦E), used in the validation75

of the various datasets in this work, is turbid with tidal variability and with an occasional outflow from the port of Oostende

(Belgium) reaching the site.

2.2 Satellite data

The ocean colour satellite products used in this study are generated following the methodology applied in the Copernicus Ma-80

rine high-resolution service using a multi-algorithm approach which aims at combining the best suited algorithm for different

water types. To facilitate Sentinel-2 and Sentinel-3 product generation, the processor is fully automated and set up in the DIAS

cloud environment CREODIAS (https://creodias.eu/). This processor starts from L1C and L1 data for Sentinel-2/MSI and

Sentinel-3/OLCI respectively and combines atmospheric correction processing (C2RCC + ACOLITE Dark Spectrum Fitting),

IDEPIX pixel classification, ocean colour algorithm application and product quality control (e.g. glint flagging, bottom reflec-85

tion flagging, etc.) to provide Analysis Ready Data Layers (ARDL), i.e. chlorophyll (CHL), turbidity (TUR) and suspended

particulate matter (SPM). A schematic overview of the different processing steps taken is provided in figure 2.

2.2.1 Remote sensing reflectance and pixel classification

In order to obtain high-quality remote sensing reflectance (RRS) spectra for a large number of pixels while maintaining the90

ability to handle both atypical water conditions and challenging atmospheric conditions, the atmospheric correction algorithms

ACOLITE-DSF (https://github.com/acolite/acolite) and C2RCC (https://c2rcc.org/) are combined to process L1C products to

L2R (Level 2 RRS products). While both algorithms have their strengths and weaknesses, they each use different approaches to

estimate RRS. C2RCC uses an underlying water reflectance model to fit the estimated RRS spectrum to a known form within

the boundaries of the training dataset. This method reduces noise in low RRS situations and provides greater retrieval power in95

difficult circumstances, such as sun glinted and highly absorbing waters. On the other hand, ACOLITE-DSF does not assume

a specific water reflectance model, allowing it to return unusual Rrs spectra that correspond to optical properties not found

in typical water reflectance models. This can complement C2RCC where it is less performant, such as dredging plumes and

unusual algae blooms.

100

To combine the two approaches, a comprehensive, region-independent, and pixel-based automatic switching scheme is re-

quired, along with a technique for achieving a seamless transition between the two algorithms. The C2RCC to ACOLITE/DSF

pixel-based switching is described in detail in Van der Zande et al. (2023). Compatibility between the Sentinel-2/MSI products

and the Sentinel-3/OLCI products was ensured by applying the identical processing chain to both datasets.

105

Subsequently, the IDEPIX software (v2.2.10, algorithm update 8.0.3), available as a SNAP processor, is used for pixel clas-

sification, including cloud masking, cloud shadow identification, sea ice, floating vegetation, sub-pixel objects (ships, small
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Figure 2. Processing steps applied for deriving L2 ARDL products, used for both the Sentinel-2/MSI and Sentinel-3/OLCI sensors. The

processor combines the atmospheric correct algorithms ACOLITE and C2RCC, uses SNAP to crop and resample the data to the Region of

Interest, runs IDEPIX for pixel classification after which all the intermediate layers are collocated together to the required resolution. In the

final step, the in water ocean colour products are generated using specialized algorithms.

islands and rocks), and the land-water distinction taking temporary water bodies (e.g. intertidal areas, lagoons) into account.

The IDEPIX processing step is complemented by quality tests coming from the atmospheric correction algorithms and addi-

tional tests (e.g. glint test).110

2.2.2 Turbidity and Suspended Particulate Matter

The SPM and the TUR products were generated using the algorithm described by Nechad et al. (2010). While a single band

can be used for TUR/SPM estimation, the optimal band depends on SPM concentration or TUR levels – if RRS is too low

(e.g. for longer wavelengths in low SPM waters) then TUR/SPM estimation will be significantly affected by noise or errors115

in RRS – If RRS is too high (e.g. for shorter wavelengths in high TUR/SPM waters) then the saturation phenomenon means
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Figure 3. TUR products for 5 April 2020 for the Belgian Coastal Zone region generated using the multi-sensor processor using Sentinel-

3/OLCI (left) and Sentinel-2/MSI (right) source data.

that RRS becomes insensitive to changes in TUR/SPM. This has led to the development of “switching single band algorithms”

(Novoa et al., 2017) using the basic single band formulation of Nechad et al. (2010) but with different wavelengths used at

different SPM concentrations and typically a smooth weighting between two adjacent spectral bands to avoid image artefacts.

The Novoa et al. (2017) approach is applied to both the SPM and TUR products providing a multi-band SPM and TUR product120

using two bands (red: 665 nm and near-infrared: 865 nm). An example of the TUR products for the Belgian Coastal Zone

region is provided in figure 3 showing a good correspondence between both the Sentinel-2/MSI and Sentinel-3/OLCI products

providing information at different spatial and temporal resolutions.

2.3 Multi-sensor chlorophyll data

For the scale assessment described in section 4.3, daily chlorophyll data at a spatial resolution of 1 km is used. These data125

are obtained from the level-3 multi-sensor cmems_obs-oc_atl_bgc-plankton_my_l3-multi-1km_P1D CMEMS product. This

product includes data from different sensors (SeaWIFS, MERIS, MODIS-Aqua, MODIS-Terra, VIIRS-SNPP, VIIRS-JPPS1,

OLCI-S3A and OLCI-S3B) and covers the whole North Sea area (48.46◦N - 55.96◦N; -1.64◦E - 6.15◦E) from 1 February

2022 to 1 November 2022. A total of 271 images are available, with an average amount of missing data, due to cloud cover

and quality control, of 38.17%.130

2.4 In situ data

The RRS products were validated using Pan-and-Tilt Hyperspectral Radiometer system (PANTHYR, Vanhellemont (2020);

Vansteenwegen et al. (2019)) for the period 2019-2022. An autonomous PANTHYR system has been deployed at the Research

Tower 1 (RT1) near Oostende (RT1, 51.24643◦N, 2.91933◦E). The PANTHYR system has two TriOS RAMSES radiometers135

mounted on a pan-and-tilt head, one for up- and downwelling spectral radiances, and one with a cosine collector to measure
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spectral irradiance, enabling to determine the RRS signal. The PANTHYR measures autonomously every 20 min at pro-

grammed relative azimuth angles to the sun. In the present study, measurements were made at a 270◦ azimuth angle. Because

of the hyperspectral measurements, one significant advantage of the PANTHYR datasets when compared to AERONET-OC,

typically used for validating ocean-colour satellites (Zibordi et al., 2009), is that the hyperspectral instrument permits the140

validation of all MSI and OLCI VNIR bands within the 400-900 nm range, including several nearinfrared (NIR) bands not

available with the AERONET-OC instrument. RRS data were finally convolved to the relative spectral response functions of

the MSI and OLCI instruments on Sentinel-3 A and B and Sentinel-2 A and B.

Matchups for PANTHYR stations were extracted from shifted locations near the deployment tower, to avoid platform effects145

such as direct pixel contamination and shadows, as well as in-water wakes. For the match-up extraction, a maximum time dif-

ference of 2 hours between in situ observation and satellite overpass was allowed. However, the high frequency measurement

protocol from the in-situ measurement stations resulted in shorter time differences between in situ and satellite observations.

The matchup validation protocol described by Bailey and Werdell (2006) was applied to remove erroneous matchups from the

analysis. Macro-pixels of 3x3 60m pixels for Sentinel-2/MSI and 3x3 300m for Sentinel-3/OLCI were extracted from the L2150

products.

3 Methodology

3.1 DINEOF

DINEOF (Data Interpolating Empirical Orthogonal Functions, Beckers and Rixen (2003); Alvera-Azcárate et al. (2005)) is155

used to calculate the reconstruction of the data and to enhance the resolution of the combined Sentinel-2 and Sentinel-3

dataset. DINEOF computes the missing data information from a three-dimensional dataset by calculating a truncated Empiri-

cal Orthogonal Function (EOF) basis. These EOFs are calculated increasingly (starting from one until the optimal number of

EOFs is found) and iteratively until a convergence is reached, and at each iteration the estimate of the missing data is updated

using the latest EOF modes. About 3% of valid data (in the form of clouds, Beckers et al. (2006)) is masked at the beginning160

of the procedure, and these data are used to determine the number of EOFs that minimizes the reconstruction error (in terms

of its Root Mean Square Error, RMSE). When three consecutive EOFs provide an increasingly higher RMSE, the procedure is

stopped and the final reconstruction is performed with the optimal amount of EOFs determined by this cross-validation.

In addition to the reconstruction of missing data in several variables (e.g. sea surface temperature (Alvera-Azcárate et al.,165

2005), chlorophyll (Alvera-Azcárate et al., 2021b), turbidity (Alvera-Azcárate et al., 2015), salinity (Alvera-Azcárate et al.,

2016) as well as multivariate reconstructions (Alvera-Azcárate et al., 2007)), DINEOF has been used to detect outliers in

satellite data (Alvera-Azcárate et al., 2012, 2015) and shadows in high spatial resolution satellite data (Alvera-Azcárate et al.,

2021a). DINEOF has therefore shown it can perform a wide range of analysis of satellite data with the aim of improving their
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quality and completeness.170

3.2 Generation of super-resolution data

In order to obtain a super-resolution reconstruction from the combination of Sentinel-3/OLCI and Sentinel-2/MSI data men-

tioned in section 2, the initial gappy matrix is prepared as follows: Sentinel-2 data are used on days when they are available,

and on days with no Sentinel-2 coverage, Sentinel-3 data, linearly interpolated at the Sentinel-2 spatial resolution, are used.175

The matrix consists therefore of a mixture of Sentinel-2 and Sentinel-3 data. The interpolation of Sentinel-3 data onto the

Sentinel-2 grid is done to preserve the size of the matrix, which has to be constant in order to be used in DINEOF, and also to

determine the spatial resolution of the final dataset, but no gain in resolution is done at this step.

On days when both Sentinel-2 and Sentinel-3 data are available, only Sentinel-2 data are used. We could slightly increase180

the spatial coverage on these days by combining both datastreams but we had found the increase to be very small, since cloud

distribution does not change substantially between the Sentinel-3 and Sentinel-2 passes. In addition, depending on the tidal

currents, the difference in turbidity between the two satellite passes can be quite high, and this can lead to discontinuities

between both estimates, which in turn can be reflected in the final dataset. We have decided therefore to avoid this problem by

using a unique data source on a given day.185

The initial dataset with the combined Sentinel-2 and Sentinel-3 data has 210 time steps, of which 63% are Sentinel-3 data

and 37% are Sentinel-2 data. Days with too high cloud coverage (more than 98% of missing data over the study region) are not

used, which brings the final size to 163 days, distributed from 18 January to 17 December 2020.

190

The combined dataset is fed to DINEOF as a unique matrix. As DINEOF performs all calculations on the initial grid, it is

important that the initial data are already interpolated to the final grid that we want to obtain (i.e. the high spatial resolution

grid). Through the EOF basis calculation, the high spatial information of Sentinel-2 is extracted by the EOFs, and this infor-

mation is then projected into the final dataset by the EOF basis, effectively increasing the spatial resolution of the initial dataset.

195

4 Results

4.1 Super-resolution data

Super-resolution DINEOF (section 3) has been applied to the turbidity data in the Oostende region described in section 2. The

initial matrix has 45% of missing data. DINEOF has been applied to the combined Sentinel-2 and Sentinel-3 data for 2020 and

23 EOFs were retained as optimal for the reconstruction, with a cross-validation error of 1.4 FNU. The size of the matrix was200
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Figure 4. First EOF mode of the 2020 turbidity data obtained by DINEOF. Top left: spatial EOF mode. Top right: detail of the spatial mode

on the black spare shown in the left panel. Bottom: temporal EOF mode.

946×789×210 (longitude, latitude and time), and the DINEOF run took 8 hours to complete (on an Intel Core i9-10900X CPU

at 3.70GHz). The only two optional parameters to set in DINEOF are related to the filtering of the temporal covariance matrix

(Alvera-Azcárate et al., 2009) and were fixed to α= 0.01 (the amplitude of the filter) and n= 3 (the number of iterations of

the filter). These result in a filter of about 1.1 days. The first three EOFs explain, respectively, 59.04%, 25.73% and 3.74% of

the total variability of the dataset, and the 23 EOFs retained explain a total of 97.9% of the variability. When analysing the205

spatial and temporal structure of these EOFs, we can observe the influence of small scale variability contained in them. The

first EOF mode (figure 4) displays an inshore-offshore gradient, in which more turbid waters are found in the nearshore region.

An increasing turbidity along the coast is found towards the region of the Scheldt river estuary. The factors responsible for

higher turbidity in this region have been attributed to tides and meteorological conditions (Fettweis and Van den Eynde, 2003),

and show peaks in April, June and September-October 2020. This mode shows large-scale processes, and there is no apaprent210

small-scale variability present in the first spatial EOF.

The second EOF mode (not shown) already displays small-scale spatial variability. We show here the third EOF mode (fig-

ure 5), which shows a northeast-southwest gradient, with high variability in the temporal mode. On the detail panel shown

in the figure we can also appreciate a thin region along the coast with oposite behaviour than the more offshore waters.215

It has been shown (https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2/Near-shore_phytoplankton_
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Figure 5. Third EOF mode of the 2020 turbidity data obtained by DINEOF. Top left: spatial EOF mode. Top right: detail of the spatial mode

on the black spare shown in the left panel. Bottom: temporal EOF mode.

bloom_captured_from_space) that Sentinel-2 is able to capture small scale varibility that was previously unknown, thanks to

its high spatial resolution, a variability that has been captured by the EOF basis to produce the final, super-resolution datasets

that will be shown in this section. The validation of the initial data and the super-resolution reconstruction will be presented in

section 4.2.220

Figure 6 shows the initial turbidity data on 9 May 2020, a day with initially Sentinel-3 data (hence, low resolution data). A

day with low cloud coverage has been chosen in order to show the capability of DINEOF to enhance the spatial resolution.

The initial data (figure 6 top left panel) show a series of high and low turbidity regions, a pattern that is due to the presence of

sandbanks close to the Belgian coast. The changes in depth in this region induce large differences in turbidity from day to day.225

High turbidity values in the east of the figure are due to the Scheldt-Rhine river plume, located to the east of the domain. The

reconstructed image (figure 6 top right panel) is able to retain most of this variability. A north-south transect is also included in

the figure to show the small scale variability that has been included in the reconstruction. The initial data (in blue in the bottom

panel of figure 6) does not contain this small scale variability, and presents instead a step-like nature due to the low spatial

resolution of the initial dataset. This step-like variability is absent from the final, super-resolution data, which instead shows230

smaller-scale variability.
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Figure 6. Top left: initially cloudy data at 300 m resolution, on 9 May 2020. Top right: DINEOF run of the mixed Sentinel-2 and Sentinel-3

dataset, at 100 m resolution. Bottom: north-south transect for the two datasets (blue: initial data at 300 m; black: super-resolution DINEOF

reconstruction). All plots are in logarithmic scale.

Figure 7 shows a similar reconstruction as in figure 6, but this time for a date in which Sentinel-2 data are available (hence,

high spatial resolution data). This example shows that the variability of the super-resolution DINEOF reconstruction is similar

to the one of the initial dataset, and there is only a limited amount of variability lost with the analysis, mostly in regions with235

low values of turbidity (figure 7 bottom panel). The presence of high turbidity regions caused by the presence of sandbanks is

also visible in this image, and a strong inshore-offshore turbidity gradient can be seen, which is well retained by the reconstruc-

tion. Turbid waters in the eastermost part of the domain, close the Scheldt estuary and the shallowest region of the domain, can
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Figure 7. Top left: initially cloudy data at 100 m resolution, on 20 May 2020. Top right: DINEOF run of the mixed Sentinel-2 and Sentinel-3

dataset, at 100 m resolution. Bottom: north-south transect for the two datasets (blue: initial data at 100 m; black: super-resolution DINEOF

reconstruction). All plots are in logarithmic scale.

also be seen.

240

The results shown so far are from images that have good data coverage, but DINEOF also provides super-resolution data on

days with high cloud coverage. An example is shown in figure 8, corresponding to 12 April 2020. The initial data is missing

for most of the domain, but DINEOF is still able to provide a reconstruction with a good spatial variability, as shown both in

the spatial map with the presence of high turbidity associated with the river plume and the sandbanks (top right panel of figure

8) and in the north-south transect in the bottom panel. The reconstrution of the turbidity spatial distribution on days with high245
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Figure 8. Top left: initially cloudy data at 100 m resolution, on 12 April 2020. Top right: DINEOF run of the mixed Sentinel-2 and Sentinel-3

dataset, at 100 m resolution. Bottom: north-south transect for the two datasets (blue: initial data at 100 m; black: super-resolution DINEOF

reconstruction). All plots are in logarithmic scale.

amounts of missing data is possible because of the three-dimensional nature of DINEOF, which exploits the spatio-temporal

coherence of the data and enhances temporal correlations (Alvera-Azcárate et al., 2009).

At some moments, there can be outliers or noise in the initial dataset, despite the strong quality controls applied to the data.

The fact that DINEOF uses a truncated EOF basis to compute the missing data results in a partial loss of variability. However,250

this truncated EOF basis guarantees that the presence of outliers does not influence the overall quality of the reconstruction.

As an example, in figure 9 we can see the turbidity on 28 May 2020, with a region in the northern part affected by the presence
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Figure 9. Top left: initially cloudy data at 100 m resolution, on 28 May 2020, with a noisy region in the northern part of the domain. Top

right: DINEOF run of the mixed Sentinel-2 and Sentinel-3 dataset, at 100 m resolution. Bottom: north-south transect for the two datasets

(blue: initial data at 100 m; black: super-resolution DINEOF reconstruction). All plots are in logarithmic scale.

of noisy data. These are probably due to non-detected thin clouds. The north-south transect shows that the variability of these

data far exceeds normal variability expected for the region. The DINEOF super-resolution results provide a reduced amount of

noise and an improved quality of the final product, while still providing an accurate depiction of small scale variability.255
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4.2 Validation

Using the in-situ data described in section 2.4, a quality assessment of the initial data and the DINEOF results has been realised.

Figure 10 shows the RRS matchups between Sentinel-2/MSI and the PANTHYR in situ instrument installed on RT1. In the

considered deployment period between 2019-12-11 and 2023-08-01, 528 MSI L1C images were available for processing with260

59 matchups with the PANTHYR instrument which passed the quality flagging of the individual ACs (i.e. ACOLITE-DSF

and C2RCC), IDEPIX quality flagging and the match-up quality flagging. When using the merged approach for atmospheric

correction, the best performing bands are 492, 560, 665, and 704nm which are typically used for retrieval of turbidity and

turbid water chlorophyll-a. For these bands the MAPE ranges between 9.88% and 17.20%.

265

Figure 11 shows the RRS matchups between the Sentinel-3/OLCI and the PANTHYR instrument installed on RT1. In the

deployment period between 2019-12-11 and 2023-08-01, 2334 OLCI L1FR images were available for processing with 179

common matchups with the PANTHYR instrument which passed the quality flagging of the individual ACs (i.e. ACOLITE-

DSF and C2RCC), IDEPIX quality flagging and the match-up quality flagging. For the merged approach of atmospheric

correction, the best performing bands are 443, 492, 560, 665, and 709nm which are typically used for retrieval of turbidity and270

turbid water chlorophyll-a. For these bands the MAPE ranges between 10.74% and 19.00%.

Figure 12 provides a graphical overview of the band-specific statistical metrics (i.e. slope, MAPE and RMSE) for the PAN-

THYR matchup analysis for both the Sentinel-2/MSI and Sentinel-3/OLCI matchups illustrating that the identical processing

chain applied to both satellite datasets results in coherent validaton results.275

The accuracy of the DINEOF super-resolution products was validated for the Belgian Coastal Zone region by using the

hyperspectral in situ data set from the autonomous PANTHYR systems deployed at Research Tower 1 (RT1) near Oostende

to generate an in-situ turbidity product which was directly compared with the satellite derived turbidity products. The in-situ

turbidity product was generated with the same algorithm as used for the satellite products. Figure 13 shows the turbidity time280

series for 2020 overlaying the in-situ data, both the Sentinel-2 and Sentinel-3 turbidity products and the final super-resolution

DINEOF gap-filled product showing that the DINEOF product is able to capture the in situ turbidity signal very well between

March and September. In January and February the DINEOF product shows slightly lower values which can be caused by the

fact that in those months the availability of cloud-free satellite products from Sentinel-2 and Sentinel-3 is very scarce.

285

An objective intercomparison was achieved by a match-up analysis. For the match-up extraction, a maximum time differ-

ence of 1 hour between in situ observation and satellite overpass was allowed. The matchup validation protocol described by

Bailey and Werdell (2006) was applied, to remove erroneous matchups from the analysis based on macro-pixels of 3x3 pixels

from the satellite turbidity products. Figure 14 shows the results of the match-up analysis for Sentinel-2, Sentinel-3 and the

gap-filled DINEOF super resolution products. These graphs show that both the Sentinel-2 and Sentinel-3 products show a290
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Figure 10. Validation of remote sensing reflectance (RRS) for Sentinel-2/MSI data. Hyper-spectral in situ stations from the HYPERNET

network in Ostend (Belgium) were used.
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Figure 11. Validation of remote sensing reflectance (RRS) for Sentinel-3/OLCI data. Hyper-spectral in situ stations from the HYPERNET

network in Ostend (Belgium) were used.
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Figure 12. Overview of band-specific statistical metrics (slope, root mean square error -rmse-, mean average percentage error -mape-) for

the RRS matchups comparing Sentinel-3/OLCI (S3) with Sentinel-2/MSI (S2)

Figure 13. Turbidity time series for 2020 at the RT1 Hypernets station generated using the in situ Hyperspectral Panthyr data (green line),

the Sentinel-2 satellite data (orange dots), the Sentinel-3 satellite data (red dots) and the gap-filled DINEOF super resolution satellite product

(blue line).

good agreement with the in-situ observations with mean average percentage differences around 6%. The temporal frequency

of Sentinel-3 overpasses over the region of interest results in more than 3 times more matchups. Considering the DINEOF

super resolution matchups, this number of matchups is increased by another 34% with very similar statistics compared to the

Sentinel-3 matchups, showing DINEOF’s ability to retain the turbidity information provided by the source products. We do see

a slight underestimation of the turbidity values by both satellites, especially for higher values (turbidity > 50 FNU).295
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Figure 14. Matchup results of daily Sentinel-2, Sentinel-3 and DINEOF super resolution TUR products against in situ observations obtained

from the autonomous PANTHYR system at the RT1 station in the Belgian Coastal Zone.

4.3 Scale Assessment

In order to determine which scales are reconstructed in the super-resolution DINEOF approach, a test using the multi-sensor

satellite chlorophyll data at 1km spatial resolution described in section 2.3 was performed. These data are downscaled to 5

km using a near neighbourgh interpolation (to avoid smoothing the data). Following the same procedure as with the combined300

Sentinel-2 and Sentinel-3 turbidity dataset, we intercalate the 1 km spatial resolution data and the 5 km spatial resolution data.

The ratio of this mixed dataset is 1 high resolution image (at 1 km) for every 3 low resolution images (at 5 km), to mimic the

ratio of the Sentinel-2 and Sentinel-3 combination used in the previous section. This allows us to compare the scales recon-

structed on this dataset with the initial 1 km resolution data, both on days in which 1 km data and 5 km data were used. In

addition, we have also made a reference reconstruction of the original, 1 km spatial resolution data, so that we can assess how305

a full high spatial resolution reconstruction compares with the mixed dataset reconstruction.

The DINEOF reconstruction of the mixed dataset used 22 EOFs, and an example of reconstruction is shown in Figure 15. On

this date, 9 July 2022, the initial dataset has a spatial resolution of 1 km. A north-south transect shows that the reconstruction

(in blue in the figure) is able to reproduce the variability of the initial data (in black in the figure). The reconstruction of the310

original dataset (using only 1 km resolution data) is also shown for reference (in green in the figure). The variability observed

in the north-south transect for the reference run and the super-resolution reconstruction are very similar, showing the capability

of the super-resolution approach to retain small-scale variability.

On a day with initially 5 km spatial resolution data (Figure 16 on 28 July 2022), we can see that the initial data shows a315

step-like variability in the bottom panel of Figure 16. The reconstructed data (in blue) is able to increase the variability of the

5 km data to mimic the variability of the reference dataset (in green), effectively increasing the spatial resolution of the results.

The spatial distribution of chlorophyll is similar in all figures shown, and it is difficult to determine any differences between
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Figure 15. Top left: initially cloudy data with a 1 km resolution, on 9 July 2022. Top center: DINEOF reconstruction of the 1 km data

(reference run). Top right: DINEOF run of the mixed dataset. Bottom: north-south transect for the three datasets (black: initial data at 1 and

5 km; green: reference run at 1km; blue: super-resolution run).

the different datasets over this large domain. In order to see the effect of the super-resolution DINEOF approach we need to

look at a small region. Figure 17 shows a detail of the reconstruction on 1 June 2022, in which initially 5 km data are present.320

The super-resolution DINEOF reconstruction (in the right panel of Figure 17) is shown to provide higher spatial resolution

than the initial data, similar to what is obtained with the reference reconstruction at 1 km (shown in the central panel of Figure

17), despite the coarse resolution of the initial field. There are some remaining edge effects showing the initial 5 km grid in

the super-resolution, but this comes from the choice of the near-neighbourgh interpolation. A linear interpolation would avoid

such pattern in the final results.325
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Figure 16. Top left: initially cloudy data with a 5 km resolution, on 28 July 2022. Top center: DINEOF reconstruction of the 1 km data

(reference run). Top right: DINEOF run of the mixed dataset. Bottom: north-south transect for the three datasets (black: initial data at 1 and

5 km; green: reference run at 1km; blue: super-resolution run).

5 Submesoscale variability in the Belgian Coastal Zone

The super-resolution data obtained in this work allow us to analyse the variability of turbidity at the submesoscale in the study

region. The river sediments carried out by the Scheldt and the resuspension of bottom sediments at the along-shore sandbanks

are the two major contributors to small-scale variability of turbidity in this region.330

Sandbank-induced high turbidity patterns in the Belgian coast are influenced by the topography, and horizontal water move-

ment due to tidal currents results in rapid particle deposition outside of these shallow environments. As a result, turbidity is

often high inside the sandbank region and up to about 10 m depth as observed for example in figure 18. We use hourly surface
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Figure 17. Example of super-resolution DINEOF reconstruction. Left panel: initial data downgraded to 5 km spatial resolution on 1 June

2022. Center panel: reconstruction of the reference run at 1 km spatial resolution. Right panel: reconstruction of the 5 km data with DINEOF

using the mixed 1 km and 5 km dataset.

currents obtained from Legrand and Baetens (2021) to assess their influence on turbidity distribution. The intensity of currents335

and their direction in the hours preceding the time of the satellite pass have a large influence on the average turbidity values

over the region, like on 16 October (figure 19) which presents a similar tidal phase than 19 May (top right image) but with

stronger currents, resulting on an overall higher turbidity over the whole region.

The bottom panels in figures 18 and 19 show that there is an overall decreasing turbidity in the offshore direction, with340

similar variability at all depths. The effect of the presence of sandbanks in the resuspension of turbidity is also visible in

these images, with regions of higher turbidity corresponding to the presence of these sandbanks. During weak water currents

periods (Figure 18), the effect of the sandbanks on water turbidity is clearly seen, with sediments depositing at the deeper,

inter-sandbank regions. During strong water current periods (Figure 19), turbidity is higher everywhere, and the effect of the

bathymety is less evident.345

Sandbank-induced high turbidity patterns as in figure 18 are about 2 km wide. Temporal scales of the resuspension-deposition

processes are mainly determined by tidal currents. It is therefore not possible to observe these processes with satellite data as

they only offer one estimate per day and variations at shorter scales are therefore not measured. Fettweis et al. (2023) showed

that in regions with strong tidal regimes, such as in the Belgian coast, the daily sampling from satellites is not enough to cap-350

ture the variability in the deposition-resuspension cycles caused by tidal currents. Satellite data lack the temporal frequency

needed to assess the variability of turbidity at the sandbanks through time, but they provide a relevant tool to analyse the spatial

variability at high spatial resolution. Figure 20 shows a Hövmuller diagram of turbidity variations during the year at the same

transect shown in figures 18 and 19. In addition to the general trend of decreasing turbidity in the offshore direction, we can

appreciate higher turbidity values from January to March. The minimum turbidity is found during June-July in the more off-355
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Figure 18. Top left panel: DINEOF super-resolution reconstruction of turbidity on 19 May 2020. Black lines show the 5 m and 10 m isobath

and the arrows show surface currents at 10AM. The thick black line shows the transect across sandbanks shown in the bottom panel and the

triangles are positioned at the top of some of these sandbanks for reference. Top right panel: hourly surface currents during 19 May at the

light grey triangle. Bottom panel: across-sandbank transect of turbidity. Light grey lines show all DINEOF 2020 data, the thick black line

shows 19 May turbidity, with the triangles shown to ease comparison with the top left panel. The dark red line shows initial turbidity data

and bathymetry is shown in brown.
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Figure 19. Top left panel: DINEOF super-resolution reconstruction of turbidity on 16 October 2020. Black lines show the 5 m and 10 m

isobath and the arrows show surface currents at 10AM. The thick black line shows the transect across sandbanks shown in the bottom panel

and the triangles are positioned at the top of some of these sandbanks for reference. Top right panel: hourly surface currents during 16

October at the light grey triangle. Bottom panel: across-sandbank transect of turbidity. Light grey lines show all DINEOF 2020 data, the

thick black line shows turbidity on 16 October, with the triangles shown to ease comparison with the top left panel. The dark red line shows

initial turbidity data and bathymetry is shown in brown.
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Figure 20. Hövmuller diagram showing variations of turbidity at the transect shown in figure 18 from January to December 2020. The

position of the sandbanks is marked by triangles at the x-axis, following the same colour code as in previous figures.

shore positions, although there is always a higher turbidity signal at the sandbank positions. Closer to the coast, the minimum

in turbidity is found during July-August. Reduced wind-induced mixing can be at the source of this reduction in turbidity. The

coastal region is directly influenced by the Scheldt river plume, and this minimum in turbidity is therefore also probably related

to a minimum in river outflow during the summer months.

360

6 Conclusions

There are several satellite datasets monitoring ocean colour globally, but each of those has different spatial, temporal and spec-

tral characteristics. It is therefore necessary to develop approaches that allow to use these data streams in a synergistic way.

In the case of coastal studies, there is also a need to work at the highest spatial resolution possible, in order to capture the

variability that is typical of these regions. All ocean colour satellite sensors are affected by the presence of clouds, and hence365

these approaches need to also interpolate missing data.

In this work, we have shown an approach to obtain super-resolution cloud-free satellite data using DINEOF. A combina-

tion of Sentinel-2 and Sentinel-3 data representing turbidity in the Belgian coast have been used, and the results show that,
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working on a combined dataset of Sentinel-2 and Sentinel-3 data, we are able to retain most of the spatial variability present370

in Sentinel-2 data, and also to increase the spatial variability of the Sentinel-3 data to mimic the Sentinel-2 spatial resolution.

The results have been validated using independent in situ data and the ability of DINEOF to increase the spatial resolution

has been validated with a chlorophyll dataset covering the whole North Sea. This last example demonstrated that DINEOF is

able to recover high spatial resolution information, as compared to the original, high-resolution data that was hidden from the

analysis. The approach has been tested in different regions (southern North Sea and Belgian coast in this work) and variables375

(turbidity and chlorophyll concentration) and can be applied to any other region and variable.

High spatio-temporal resolution data allow to study the small-scale variability in coastal regions, which has been shown

in this paper through the influence of sandbanks on turbidity distribution in the Belgian coast. Variables like turbidity or

chlorophyll concentration can vary abruptly in a few meters and within a few hours, because of the effect of bathymetry and380

water currents for example. Using several satellite datasets to analyse these changes allows for a better coverage of the spatio-

temporal scales involved.

Super-resolution satellite products obtained from a synergistic use fo several satellite data streams are necessary to study the

coastal ocean. The need for high spatial resolution data decreases at omre offshore locations, and therefore the approach pre-385

sented in this paper could be applied to a multi-resolution dataset with a higher spatial resolution at the most variable regions.

Other future developments include the application of the super-resolution DINEOF approach to variables like sea surface tem-

perature, although the absence of high spatial resolution data streams with the necessary accuracy makes this a challenge.
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