Supporting Information for

Unravelling Landslide Failure Mechanisms with Seismic Signal Analysis for Enhanced Pre-Survey Understanding

Jui-Ming Chang^{1,2}, Che-Ming Yang³, Wei-An Chao^{1,2}, Chin-Shang Ku⁴, Ming-Wan Huang^{3,5}, Tung-Chou Hsieh², Chi-Yao Hung⁶

¹Department of Civil Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

²Disaster Prevention and Water Environment Research Center, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan

³Department of Civil and Disaster Prevention Engineering, National United University, Miaoli 36063, Taiwan

⁴Institute of Earth Sciences, Academia Sinica, Taipei 11529, Taiwan

⁵He Yu Engineering Consultants Co. Ltd., Taichung 40642, Taiwan

⁶Department of Soil and Water Conservation, National Chung Hsing University, Taichung 40227, Taiwan

Correspondence to: Che-Ming Yang (stanleyyangcm@nuu.edu.tw)

Contents of this file

Tables S1-S3 Figures S1 to S7

Photos	Sources	Announced time
Figure 1(c), (d), (e)	https://thbu4.thb.gov.tw/News_Content_table.aspx?n=5066&s=198478	15:27 on 18 October, 2022
Figure 1(f)	https://thbu4.thb.gov.tw/News_Content_table.aspx?n=5066&s=198469	17:41 on 17 October, 2022.
Figure 1(g)	https://thbu4.thb.gov.tw/News_Content_table.aspx?n=5066&s=198468	14:46 on 17 October, 2022.
Figure 1(h), (i), (j)	https://thbu4.thb.gov.tw/News_Content_table.aspx?n=5066&s=198460	15:52 on 16 October, 2022.
	Last accessed: 4 April 2024	

Table S1 Source of field photos for landslides

Table S2 Weighting coefficient for grid-based single force by different signal-to-noise ratio (Chao et al., 2017)

Signal-to-noise ratio (SNR)	Weighting Coefficient
SNR≥5.0	1
4.5≤SNR <5.0	0.8
4.0≤SNR <4.5	0.6
3.0≤SNR <4.0	0.4
SNR<3.0	0.1

Table S3 Seismometers for this research

Stations	Sensor	Maintained institute
LATB, NNSB, YHNB, NACB, HGSD	Trillium 120PH, Trillium 240, STS-2, CMG3TB	Academia Sinica
ENT	Short-period Seismometer Model S-13	Central Weather Administration, Taiwan
V03G	4.5 Hz 3-component-geophone	National Yang-Ming Chiao Tung University

Figure S1 Video caption at different moments of the CL. (<u>https://www.youtube.com/watch?v=cNz_Jlid5aI</u>; last accessed: 2 April 2024)

媒體報導台7甲線大面積崩塌,經查證為台7線86.5K~86.9K上方坡地崩塌,該路段已實施緊急性封路

公告期限:112-11-16 18:39

分類	重大新聞
公告日期	111-10-16 18:39
公告單位	第四區養護工程處-交通管理及控制中心
內容	受尼莎颱風外圍環流影響,宜蘭縣大同鄉英士路段二日已降下逾9百毫米超大豪雨,造成台7線 86.5K~86.9K上方坡地集水區大量逕流水致土石流崩塌災情,公路總局於(16)日上午動員大型機具進場搶 修,原預計今(16)日17時搶通,惟坡地受持續性逕流水沖蝕,位址坡地於下午4時再度滑落大量土石泥 流,並新增臨近台7線87.3k、86.7k二處坍方災點,影響增援機具挺進,道路雙向阻斷,3處災點搶災機具 仍持續清坍搶修中,惟重現性土石泥流不斷淹沒道路,預估將延至明日中午12時搶通。公路總局呼籲用路 人,東北部入秋後好發東北季風降雨,為防範行車風險,行駛山區道路請事先作好行程規劃,有豪雨警訊 避免進入山區公路,並請多利用公路總局省道即時路況系統(http://168.thb.gov.tw)並隨時注意收聽廣播 訊息。 承辦單位:獨立山工務段 路況查詢電話:03-9962683 聯絡人:段長林士智(03-9809601)

Figure S2 Announcement shown in Chinese of the exact landslide location from the Directorate General of Highways, Taiwan (<u>https://thbu4.thb.gov.tw/News_Content_table.aspx?n=5066&s=198462;</u> (Last accessed: 4 April 2024)

Figure S3 Spectrograms and waveforms of (a) spike 1 and (b) spike 2.

Figure S4 Location determination by amplitude source location of horizontal and vertical components data for Event 1 and Event 2.

Figure S5 Particle motion of Event 1 for different sliding phases with vertical (Z) and radial(R) components.

Figure S6 Particle motion of Event 2 rotating different back azimuths to radial components. (a) 228° , (b) 188° , (c) 168° , and (d) 148° .

Figure S7 Satellite images before and after the CL.