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Key Points: 39 

Van-Genuchten soil hydraulics significantly affect the long-term Soil Moisture Memory 40 
(SMM) of topsoil. 41 

Surface ponding enhances surface soil moisture in both topsoil and the root zone. 42 

Enhanced infiltration through preferential pathways improves both short-term and long-term 43 
SMM in both topsoil and the root zone. 44 

https://doi.org/10.5194/egusphere-2024-1256
Preprint. Discussion started: 17 May 2024
c© Author(s) 2024. CC BY 4.0 License.



 

2 
 

Abstract 45 
 46 
Soil moisture memory (SMM), which refers to how long a perturbation in Soil Moisture (SM) can 47 
last, is critical for understanding climatic, hydrologic, and ecosystem interactions. Most land 48 
surface models (LSMs) tend to overestimate surface soil moisture and its persistency, sustaining 49 
unexpectedly large soil surface evaporation. In general, LSMs show an overestimation of long-50 
term SMM and an underestimation of short-term SMM. This study aims to 1) identify key soil 51 
hydrological/hydraulic processes that contribute to the amount and persistence of SM and 2) 52 
improve the physical representations of soil hydrology in the widely-used Noah-MP LSM with 53 
optional schemes of soil hydrology/hydraulics. We test the effects of different processes on SMM, 54 
including soil water retention characteristics (or soil hydraulics), soil permeability, and surface 55 
ponding. We compare SMMs computed from various Noah-MP configurations against that 56 
derived from the Soil Moisture Active Passive (SMAP) Level 3 soil moisture and in-situ 57 
measurements from the International Soil Moisture Network (ISMN) from year 2015 to 2019 over 58 
the contiguous United States (CONUS). The results suggest that 1) soil hydraulics plays a 59 
dominant role, and the Van-Genuchten hydraulic scheme reduces the overestimation of the long-60 
term surface SMM produced by the Brooks-Corey scheme, which is commonly used in LSMs; 2) 61 
explicitly representing surface ponding improves SMM accuracy for both the surface layer and the 62 
root zone; and 3) enhanced permeability through macropores improves the overall representation 63 
of soil hydraulic dynamics. The combination of schemes introduced in this study can significantly 64 
improve the long-term memory overestimation and short-term memory underestimation issues in 65 
LSMs. 66 
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Plain Language Summary 95 
 96 

Land surface models (LSMs) represent the physical and bio-geochemical exchanges of mass and 97 
energy between surface and atmosphere. Such exchanges are extensively dependent on the surface 98 
soil moisture amount and its persistence. This study explores the key hydrological processes that 99 
can improve the representation of soil water holding and release capacity in land surface models, 100 
which are important for weather and climate predictions. Through experiments with state-of-the-101 
art model, we found that soil hydraulics (representing how efficiently soil can hold/release water 102 
under variable pressure) is particularly effective in sustaining soil moisture. Additionally, we 103 
found that allowing water to pond on the soil surface helps improve the model's soil moisture 104 
persistency. Furthermore, enhanced soil permeability representation through soil macropores also 105 
regulates the water movement hence improving the soil moisture persistency. Overall, the 106 
combination of the above-mentioned approaches significantly improves the model's accuracy in 107 
representing how quickly the soil dries out and how efficiently it retains the moisture. 108 
  109 
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1. Introduction 110 

 111 
LSM efficacy in simulating climate feedback mechanisms critically depends on the soil retention 112 
capacity and soil moisture persistency. Rainwater that rapidly infiltrates into deeper subsoil strata 113 
is unavailable to be returned to the atmosphere through evaporation, thereby preventing potential 114 
atmospheric feedback loops (Mccoll et al., 2019). The influence of soil moisture on climate 115 
predictions at seasonal-to-sub-seasonal (S2S) scales is well-recognized due to its role in the 116 
exchange of surface energy and water fluxes with the atmosphere (Koster et al., 2002, 2010; 117 
Koster, Guo, et al., 2009; Koster & Suarez, 2001). Water stored in soil and aquifers, which variably 118 
persists from seasons to years, is known to affect precipitation variability (Koster & Suarez, 1999, 119 
2001). This impact is particularly pronounced in regions transitioning from dry to wet conditions, 120 
where evapotranspiration (ET) is highly sensitive to soil moisture levels (Guo et al., 2006; Koster 121 
et al., 2004; Koster & Suarez, 2001; Seneviratne, Koster, et al., 2006). While the nature and scale 122 
of soil moisture-precipitation feedback are still being debated (Findell et al., 2011; Taylor et al., 123 
2013), numerous studies have emphasized the importance of soil moisture initialization and its 124 
persistency for accurate climate predictions (Dirmeyer, 2011; Mei & Wang, 2012; Tuttle & 125 
Salvucci, 2016; Zeng et al., 2010). The degree of soil moisture-precipitation coupling widely varies 126 
across different climate models (Koster et al., 2004; Koster & Suarez, 1999, 2001; Moghisi et al., 127 
2024; Seneviratne & Koster, 2012; Taylor et al., 2012), and discrepancies in the modeled soil 128 
moisture by Land Surface Models (LSMs) for climate modeling are notable (A. Boone, 2004).  129 
 130 
Refinement of soil moisture-precipitation feedback in LSMs is hindered by the lack of large-scale 131 
observational data, challenging the improvement and validation of simulations (Koster et al., 2010; 132 
Koster & Mahanama, 2012; Koster & Suarez, 1999, 2001; Seneviratne & Koster, 2012). This 133 
shortfall highlights the necessity for more detailed representations of land-atmosphere feedback 134 
mechanisms that are crucial for extreme weather event predictions, yet are typically parameterized 135 
rather than explicitly resolved in models (Mccoll et al., 2019; Pastorello et al., 2020). Integrating 136 
extensive observational data is vital for simulating the intricacies of climate and weather and 137 
improving model predictive skill (Koster et al., 2017; Koster, Schubert, et al., 2009a; Mccoll et 138 
al., 2019; Shellito et al., 2018). Recent advancements in remote sensing observations have enabled 139 
analyses of interactions between near-surface soil and the atmosphere. Nonetheless, the paucity of 140 
root zone data complicates the investigation of deep soil dynamics. Numerous studies have utilized 141 
satellite soil moisture products to evaluate and refine models, focusing on the spatial and temporal 142 
patterns of soil moisture variability (Koster, Schubert, et al., 2009b; K. Yang et al., 2020). In 143 
particular, the Soil Moisture Active Passive (SMAP) mission has been extensively employed to 144 
assess model performance (Mccoll et al., 2019; McColl, Wang, et al., 2017a, 2017b; Shellito et 145 
al., 2016, 2018).  146 
 147 
The concept of Soil Moisture Memory (SMM)— the duration required for a perturbation, such as 148 
rainfall, to dissipate—becomes essential for understanding the land-atmosphere interactions. 149 
SMM encapsulates the temporal variations of soil moisture, reflecting the exchange of fluxes 150 
between land and atmosphere. Therefore, SMM is an important metric for evaluating LSMs, since 151 
one of their functions is to provide flux exchange and boundary conditions for atmospheric models 152 
(Guo et al., 2006; Koster et al., 2004; Koster, Schubert, et al., 2009a; Seneviratne, Koster, et al., 153 
2006). SMM also facilitates the comparison of how quickly soil loses water between observations 154 
and various models, providing insights into the mechanisms within LSMs and their 155 

https://doi.org/10.5194/egusphere-2024-1256
Preprint. Discussion started: 17 May 2024
c© Author(s) 2024. CC BY 4.0 License.



 

5 
 

hydrometeorological responses. Moreover, analyzing SMM can yield valuable data on the 156 
configurations and hydrological parameterizations of specific LSMs, thus improving our 157 
understanding of how different configurations impact model performance, particularly in soil 158 
moisture representation. Shellito et al. (2018) measured the drying rate of surface soil moisture, 159 
which they considered as soil moisture memory, using SMAP data and the Noah model during the 160 
initial 1.8 years following SMAP's launch. They concluded that SMAP has faster drying rate 161 
compared with Noah. 162 
 163 
Determining SMM is not straightforward due to the variety of calculation methods proposed by 164 
researchers  (Ghannam et al., 2016; Katul et al., 2007; Koster et al., 2002, 2004; Koster, Guo, et 165 
al., 2009; Koster & Suarez, 1999, 2001; Mao et al., 2020; McColl, Alemohammad, et al., 2017; 166 
Mccoll et al., 2019; McColl, Wang, et al., 2017a; Seneviratne, Koster, et al., 2006; Shellito et al., 167 
2016), each introducing its own level of uncertainty. Traditionally, soil moisture has been 168 
conceptualized as a red noise process, forming the basis for SMM calculations (T. L. Delworth & 169 
Manabe, 1988). This approach has led to the definition of SMM as the e-folding autocorrelation 170 
timescale within such a process (T. Delworth & Manabe, 1989). SMM has also been characterized 171 
using various other autocorrelation-based methods, such as the integral timescale (Ghannam et al., 172 
2016; Nakai et al., 2014), soil moisture variance spectrum (Katul et al., 2007; Nakai et al., 2014), 173 
and the constant time lag autocorrelation (Koster & Suarez, 2001; Seneviratne, Lüthi, et al., 2006). 174 
These methods provide insights into the magnitudes of water and energy flux exchanges between 175 
land surface and atmosphere, indicating that shorter SMM durations can lead to more intense 176 
feedback and larger flux exchanges. Traditionally, these models were applied to monthly datasets. 177 
However, this approach risks overlooking dynamic processes governed by limitations in water and 178 
energy (Mccoll et al., 2019). Consequently, there has been a shift away from their use towards 179 
recent high-resolution observational and modeling data. Therefore, there is a need for further 180 
research to refine SMM measurement that can then be used as a benchmark for assessing LSMs 181 
(Mccoll et al., 2019). 182 
 183 
McColl et al. (2019) categorized soil water loss into two main categories: water-limited (long-184 
term) and energy-limited (short-term). The energy-limited regime is a process where water loss is 185 
constrained by available energy and lasts from hours to a few days. In contrast, the water-limited 186 
regime is a process where water loss depends on the available water and spans longer periods, such 187 
as weeks, months, and seasons. McColl et al. (2019) specified that ET and drainage are the main 188 
controllers of long-term and short-term memories, respectively. Utilizing a two-year dataset from 189 
the SMAP mission and simulations from the Goddard Earth Observing System Model, Version 5 190 
(GEOS-5), McColl et al. (2019) conducted a global analysis under various climatic and land 191 
conditions.  Their analysis revealed that GEOS-5 tends to overpredict the duration of water-limited 192 
memory and underpredicts energy-limited memory compared to SMM inferred from SMAP data, 193 
while the results were not affected by the SMAP sampling frequency of 3 days. Building on this, 194 
He et al. (2023) employed the hybrid memory approach proposed by McColl et al. (2019) to assess 195 
the hydrometeorological response of various LSMs, including GLDAS-CLSM, GLDAS-Noah, 196 
MERRA2, NCEP, ERA5, and JRA55, against SMAP observations for 2015 – 2020. The authors 197 
observed that LSMs generally overestimate memory in water-limited regime and significantly 198 
underestimate it in energy-limited regime. Moreover, their study suggested that discrepancies in 199 
SMM representation within LSMs are more attributable to the physical processes incorporated 200 
rather than factors such as soil layer depth or the nature of model simulations (online/offline).  201 
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 202 
Based on the works of McColl et al. (2019) and He et al. (2023), this study examines subsurface 203 
processes to enhance the Noah-MP model's parametrization, focusing on SMM as a key metric. 204 
We aim to optimize soil hydraulics within the model by evaluating various parametrizations, such 205 
as those by Brooks and Corey (1964), Clapp and Hornberger, and Van-Genuchten, along with 206 
considering preferential flow and surface ponding depth. Our analysis investigates the impact of 207 
these configurations on soil moisture consistency across different ET regimes and drainage, so it 208 
provides insight into physical processes affecting SMM. By comparing SMM in Noah-MP with 209 
SMAP Level 3 data and ISMN observations from 2015 to 2019 over the CONUS, we seek to refine 210 
parametrization schemes and address prevalent SMM overestimations in LSMs. 211 
 212 

2. Materials and Methods 213 

 214 
SMM denotes the duration required for a perturbation to dissipate, or the period from the start to 215 
the end of a perturbation. For instance, following precipitation, the change in near-surface soil 216 
moisture marks the beginning of the perturbation. This excess moisture gradually diminishes due 217 
to flux exchange or percolation to deeper soil layers.  The moisture level of soil plays a critical 218 
role in influencing water loss patterns. Following rainfall, the upper layer of soil initially holds 219 
more moisture than its field capacity (𝜃!"),	causing runoff and drainage (see Figure 1a). 220 
Subsequently, as the soil gradually dries, its moisture content reduces to a range between 𝜃!" and 221 
the critical threshold (𝜃"). This phase leads to consistent water loss at the maximum 222 
evapotranspiration rate, known as Stage-I ET. As this process continues, the soil moisture falls 223 
below 𝜃" (Figure 1a), at which stage evapotranspiration becomes limited by the available water, 224 
termed Stage-II ET or ET at water-limited regime (illustrated in Figure 1a & b). Ultimately, when 225 
the soil moisture drops below the wilting point (𝜃#), water no longer leaves the soil. Therefore, the 226 
whole process of water loss depends on the soil's moisture level and falls into two main types: 227 
energy-limited including unresolved drainage, and Stage-I ET, and water-limited including Stage-228 
II ET (Figure 1b) (Mccoll et al., 2019; He et al. 2023). Energy-limited, green strips, and water-229 
limited regimes, dotted-lines, are shown in soil moisture times series at the Tonzi Ranch station 230 
(Figure 1c).  231 
 232 
 233 
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Figure 1 Schematic diagrams of (a) surface water loss process and (b) soil moisture memory at different soil 
moisture regimes [adapted from (McColl, Wang, et al., 2017b)]. Note that the x-axis in (a) refers to soil moisture 
(m3m−3), and y-axis refers to surface water loss rate, L(𝜃) (mm/s); Emax is the maximum evaporation rate (mm/s 
). In (b), x-axis refers to time (e.g., days) and y-axis to SM content (m3m−3). Panel (c) shows the SM time series 
for the Tonzi Ranch station, with green periods indicating energy-limited regime and dotted lines representing 
water-limited regime. 𝜃c, and 𝜃fc refer to the wilting point, critical point, and field capacity, respectively. 

 234 
 235 

1.1 Soil Moisture Memory of Water-Limited Regime (𝝉𝑳) and Energy-Limited Regime (𝝉𝑺)  236 

 237 
McColl et al. (2019) considered the SMM concept as it relates to two regimes: a) the memory of 238 
water-limited regime (𝜏&), specified by 'L' abbreviation of Long-term, b) the memory of energy-239 
limited regime (𝜏'), specified by 'S’ abbreviation of Short-term. Their model incorporates a 240 
deterministic equation to represent water-limited processes during soil moisture drydown periods. 241 
However, energy-limited processes occur over shorter timescales and present a challenge for 242 
current satellite technologies to provide precise observations. McColl et al. (2019) highlighted that 243 
drainage is not a completely resolved process by satellite observations. To address this gap, 244 
McColl et al. (2019) proposed a stochastic equation to capture the unresolved nature of energy-245 
limited processes. 246 
 247 
The hybrid model is formulated by McColl et al. (2019) as follows: 248 

𝑑𝜃(𝑡)
𝑑𝑡 =

⎩
⎪
⎨

⎪
⎧ −𝜃(𝑡) − 𝜃#

𝜏&
, 𝑃 = 0

−𝜃(𝑡) − 𝜃
𝜏'

+ 𝜀(𝑡), 𝑃 > 0
 (1) 

where, 𝜃 is the volumetric soil moisture, P indicates precipitation, 𝜃# is the minimum soil moisture, 249 
𝜃 is the time-averaged SM, and 𝜀(𝑡) is a random variable with a mean of zero. 𝜏& and 𝜏' are SMM 250 
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for the water-limited and energy-limited regimes, respectively. McColl et al. (2019) solved these 251 
equations, demonstrating that the memories can be expressed as: 252 

𝜃(𝑡) = ∆𝜃𝑒𝑥𝑝 9
−𝑡
𝜏&
: + 𝜃#𝑃 = 0	 (2) 

𝜏' =
−∆𝑡2
𝑙𝑜𝑔 	

(3) 

 253 
∆𝜃 represents the soil moisture changes during drydown, ∆𝑡 is the temporal resolution of the soil 254 
moisture data, 𝛼 is the precipitation intensity, ∆𝑧 is soil layer thickness, and ∆𝜃(AAAAA 	= 	𝜃(t) 	− 	𝜃(t − ∆t) 255 
represents a positive increment in soil moisture. McColl et al. (2017a) defined  ∆*	,∆-!....../

0
  as stored 256 

fraction of precipitation, indicating the average proportion of water that still exists in soil layer ∆𝑡 257 
days after rainfall. McColl et al. (2019) declared that the short-term memory in their hybrid model 258 
is dominated by drainage when the sampling is relatively high (as in the case of SMAP’s sampling 259 
frequency of 3 days). This approach and its rationale are further elaborated in McColl et al. (2017a) 260 
and McColl et al. (2019).      261 
 262 
In the analysis of water-limited memory, we fitted Equation 2 to the soil moisture time series 263 
during specific drydown intervals. Then, 𝜏& was extracted as a parameter from the fitting curve 264 
(black dotted lines in Figure 1c). In contrast, short-term memory was determined directly using 265 
Equation 3, as indicated by the green periods in Figure 1c. Further information about the criteria 266 
for calculating memories can be found in McColl et al. (2019). 267 
 268 

1.2 Description of Datasets 269 
 270 
We use high-resolution atmospheric forcing datasets to drive the Noah-MP LSM. This model is 271 
set up to simulate soil moisture dynamics, featuring advanced infiltration and water retention 272 
processes. Additionally, it includes a precise parameterization for ponding depth. This setup 273 
facilitated five distinct experiments. Then, we used surface and root zone soil moisture data derived 274 
from the Noah-MP experiments, SMAP Level 3 surface soil moisture measurements, and root zone 275 
soil moisture measurements from the International Soil Moisture Network (ISMN) to calculate the 276 
hybrid SMM. The rest of this section describes in detail the forcing and observational datasets, the 277 
Noah-MP LSM configurations, the employed infiltration and water retention schemes, and the 278 
ponding depth threshold criterion. 279 
 280 
 281 

1.2.1 Atmospheric Forcing, Soil and Vegetation Parameters 282 
 283 

For modeling purposes, this study utilized the North American Data Assimilation System Phase 2 284 
(NLDAS-2) near-surface meteorological data at an hourly interval and 0.125° spatial resolution. 285 
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This dataset encompasses a range of variables including air temperature, specific humidity, wind 286 
speed, surface pressure, shortwave and longwave radiation, and precipitation (Xia et al., 2012). 287 
We also used precipitation data from the Integrated Multi-satellite Retrievals for Global 288 
Precipitation Measurement (IMERG-Final) dataset (Huffman et al., 2020), which offers half-289 
hourly measurements across a 0.1° grid extending from 60°S to 60°N. Subsequently, the IMERG-290 
Final data were mapped to the 0.125° resolution of NLDAS-2 using bilinear interpolation. These 291 
precipitation data sources were integrated into the short-term SMM computation process. 292 

To ascertain soil and vegetation parameters, the hybrid State Soil Geographic Database 293 
(STATSGO) with a 1-km resolution and the United States Geological Survey's (USGS) 24-294 
category vegetation classification were employed. The datasets were aggregated to align with a 295 
0.125° resolution, which is consistent with the NLDAS-2 forcing data. This process included 296 
determining the dominant soil and vegetation types for each grid cell. Subsequently, the lookup 297 
tables within the Noah-MP model (G. Niu et al., 2020) were used to assign the relevant parameters 298 
to the corresponding soil and vegetation categories. 299 

1.2.2 SMAP L3 Surface Soil Moisture 300 
 301 
Since its successful deployment on January 31, 2015, the Soil Moisture Active Passive (SMAP) 302 
observatory has consistently provided global volumetric soil moisture estimates every two or three 303 
days (Entekhabi et al., 2010). Its onboard radiometer, operating in the L-band frequency of the 304 
microwave spectrum, senses the top five centimeters of the soil column. In this study, we selected 305 
the SMAP Level 3 morning overpass due to the greater likelihood of air and surface temperature 306 
equilibrium during these hours, a critical condition for the SMAP retrieval algorithm. The L3 307 
SMAP data used here span from 2015 to 2020, have a spatial resolution of 9 kilometers and are 308 
instrumental in calculating SMM across the Continental United States (CONUS). 309 
 310 
In line with established methodologies from previous research (He et al., 2023; Mccoll et al., 311 
2019), a quality control protocol was deemed necessary to refine soil moisture data in regions 312 
affected by dense vegetation, bodies of water, and permafrost, thereby mitigating noise present in 313 
satellite measurements (He et al., 2023; Mccoll et al., 2019; McColl, Wang, et al., 2017b). 314 
However, this study is conducted to determine SMM to deepen our knowledge of physical 315 
processes and to get closer to optimal soil hydraulic parametrizations within Noah-MP. This is 316 
achieved through a comparative analysis of SMM derived from SMAP and Noah-MP datasets. 317 
Given that a specific parametrization within Noah-MP has a pronounced impact on the eastern 318 
region of the Continental United States (CONUS)—a region that also corresponds with a 319 
significant portion of SMAP's low-quality data—we chose not to filter SMAP data to fully capture 320 
the parametrization effects within our study's geographical focus. This approach was intended to 321 
maintain consistency across figures and enhance the presentation of our findings. Furthermore, our 322 
objective is to showcase the physical process involved in SMM, rather than focusing on model 323 
accuracy in comparison with SMAP data.  Note that the SMM maps from McColl et al (2019) and 324 
He et al (2023) demonstrated the effect of removing SMAP low-quality data, and hence we did 325 
not include the map of locations with high-quality SMAP data. Given that the surface water 326 
balance is sensitive to the temporal resolution of the analyzed surface soil moisture data, the SMAP 327 
L3 soil moisture data are resampled to achieve a consistent sampling frequency of one per three 328 
days at each pixel (He et al., 2023; McColl, Wang, et al., 2017a). 329 
 330 
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1.2.3 International Soil Moisture Network (ISMN) 331 
 332 
In evaluating the Noah-MP model's parametrization for the root zone soil moisture, SMM is 333 
computed using both the model's outputs and in situ observations across the CONUS. We obtained 334 
the in situ soil moisture data from the International Soil Moisture Network (ISMN) portal (Dorigo 335 
et al., 2011), which compiles quality-controlled measurements from various sensors across 336 
multiple networks, Figure 2. We exclude stations with less than 90% of their data rated as “good” 337 
quality. Despite the diversity of sensor types within ISMN, its stringent quality assurance protocols 338 
suggests that it is a reliable benchmark for validating soil moisture products (Colliander et al., 339 
2017; Shellito et al., 2016). For the representation of root zone soil moisture, we select only the 340 
data from the top 1 meter of soil flagged as “good” quality. These measurements are averaged, i.e., 341 
hourly data aggregated to daily means, and the daily time series are used to compute both long-342 
term and short-term SMM. 343 

 

Figure 2 ISMN in-situ locations and networks over CONUS. 

 344 

1.3 Noah-MP with Advanced Soil Hydrology 345 
 346 
In this study, we choose Noah-MP (G. Y. Niu et al., 2011; Z.-L. Yang et al., 2011) for its extensive 347 
use within the Weather Research and Forecasting (WRF) model, the Unified Forecast System 348 
(UFS) for weather and short-term climate projections, and the National Water Model (NWM) for 349 
streamflow and water resource forecasting. The "semi-tile" sub-grid methodology of Noah-MP 350 
enables detailed calculation of surface energy and fluxes, differentiating effectively between bare 351 
and vegetated terrains to precisely compute variables such as latent and sensible heat fluxes 352 
(Agnihotri et al., 2023).  353 
 354 
The Noah-MP version used in this study includes additional developments in plant hydraulics that 355 
explicitly represent plant water storage supplied by root water uptake driven by the hydraulic 356 
gradient between the soil and roots (G. Niu et al., 2020) and advanced soil hydrology that solves 357 
mixed-form Richards’ equation and thus explicitly represents surface ponding, infiltration of 358 
surface ponded water, and preferential flow (Niu et al, 2024). As such, current Noah-MP accounts 359 
for water flow driven by the hydraulic gradients from the soil to the vegetation canopy to meet the 360 
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plant transpiration demand. It also accounts for subgrid variability in infiltration capacity through 361 
a fractional area of preferential flow pathways caused by soil macropores in the fields.  362 
 363 

The Mixed-Form Richards’ Equation: Most LSMs solve the mass-based (or θ-based) Richards’ 364 
Equation (RE) for unsaturated soils (Chen & Dudhia, 2001; Oleson et al., 2010) and thus are not 365 
adequate to represent saturated conditions, e.g., surface ponding and groundwater dynamics. The 366 
current Noah-MP adopts the methodology of Celia et al. (1990) to solve the mass-pressure (θ-h) 367 
mixed-form RE (MF). The new solver solves pressure head, h, and conserves mass due to the mass 368 
(θ) constraint. To achieve a more accurate solution of h and mass balance, the solver takes an 369 
adaptive time stepping scheme.  370 

Surface ponding occurs when the pressure head of the surface layer is greater than the air entry 371 
pressure, and the upper boundary condition (BC) shifts from flux BC to head BC. Infiltration-372 
excess runoff occurs when the surface ponding depth, Htop, surpasses a predefined threshold, 373 
Htop,max, at which the surface ponded water at local depressions of a model grid starts to be 374 
connected and runs off. The model extends its vertical domain to the bedrock depth (Pelletier et 375 
al., 2016) at which the lower boundary condition is set up as zero-flux. Groundwater discharge is 376 
represented using the TOPMODEL concept as a function of water table depth, which is determined 377 
by the modeled pressure head and interpolated. 378 

Optional Soil Hydraulics Schemes: The current Noah-MP provides optional hydraulics schemes 379 
of the Van Genuchten-Mualem (VGM) and the Brooks-Corey with Clapp-Hornberger (BC/CH) 380 
parameters. To facilitate quicker convergence, particularly near saturation, we smoothed the 381 
BC/CH water retention curve using a polynomial function following Bisht et al. (2018). 382 

Representing Preferential Flow: To represent preferential flow, current Noah-MP adopts a dual-383 
permeability model (DPM) approach, partitioning the model grid into two domains: one 384 
representing rapid flow with reduced suction head (macropores) and the other for slower matrix 385 
flow, following Simunek and van Genuchten (2008) and Gerke and van Genuchten (1993a,b, 386 
1996). This approach represents subgrid variability in infiltration capacity through a fractional area 387 
of soil macropores in the fields, Fa, (or volumetric fraction of macropores). DPM also represents 388 
water transfer between the two pore domains, which can either be positive (lateral infiltration 389 
during rapid downward flow) or negative (diffusion from micropores to drier macropores). It also 390 
accounts for lateral movement of surface ponded water from the matrix to macropore domains at 391 
the soil surface. The aggregated water content (θ) and vertical water flux (q) for a grid cell are 392 
given by θ	=Fa	θa	+	(1−Fa)	θi, and q	=Fa	qa	+	(1−Fa)	qi, respectively, where q denotes a water 393 
flux and the subscripts a and i respectively indicate macropore and micropore domains. This 394 
approach also extends to other water fluxes, such as Esoil and groundwater recharge. 395 
 396 

Table 1 Noah-MP Options used in this study. 397 

Process  Options Schemes 
Dynamic vegetation DVEG = 2 Dynamic vegetation 
Canopy stomatal resistance OPT_CRS = 1 Ball-Berry type 
Moisture factor for stomatal resistance OPT_BTR = 1 Plant water stress 
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 398 

1.4 Model Experiments 399 
 400 
We conducted five experiments using the current Noah-MP driven by the hourly NLDAS-2 forcing 401 
data at a spatial resolution of 0.125 degree, starting with the same uniform initial conditions—402 
namely, soil moisture at 0.3 m3m–3 and soil temperature at 287K—spanning 2014 to 2019 for six 403 
iterations. The initial five iterations were dedicated to the model's spin-up phase, and the resulting 404 
surface and root zone soil moisture from the last iteration were used for SMM analysis. Parameters 405 
were adopted per the updates by Niu et al. (2020), with adjustments to the dynamic vegetation 406 
module to align with Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index 407 
observations. This study refrained from parameter calibration related to dual-domain schemes for 408 
preferential flow (Šimůnek & Genuchten, 2008) and ponding depth.  409 
 410 
The five experiments are conducted with Noah-MP configurations with different water retention 411 
and infiltration schemes. Table 1 lists optional schemes that were the same for all these 412 
experiments. for other processes, including surface layer turbulent exchange, radiation transfer, 413 
phase changes between snow and rain, and the permeability of frozen soil. For this study, we 414 
selected only those schemes that have a direct impact on the simulation of soil moisture dynamics 415 
(as detailed in Table 2). All these experiments are set with the same number of soil layers, which 416 
vary spatially from 5 – 15 vertical layers with fixed layer thicknesses: ∆𝑧1 =0.05, 0.3, 0.6, 1.0, 2.0, 417 
2.0, 4.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, and 5.0 m down to 49.0 m to match the maximum bedrock 418 
depth data of Pelletier et al. (2016) with a minimum bedrock depth of 4.0 m. The model was 419 
customized using a combination of three soil moisture solver variants, two soil hydraulics schemes, 420 
and two ponding depth thresholds. 421 
 422 
To explore the influence of surface ponding on SMM, we designed two distinct experimental 423 
conditions. The first condition, designated as MF_VGM0, excluded the ponding effect by setting 424 
Htop,max to 0 mm. Conversely, the second condition, identified as MF_VGM200, incorporated a 425 
significant ponding depth of 200 mm. Both conditions utilized the mixed-form RE solver alongside 426 
the Van-Genuchten (VGM) model (refer to Table 2). Furthermore, we conducted comparative 427 
analyses to assess the role of soil hydraulic properties by conducting experiments with the Brooks-428 

Runoff and groundwater OPT_RUN = 1 TOPMODEL with groundwater 

Surface layer exchange coefficient OPT_SFC = 1 Monin-Obukhov similarity 
theory (MOST) 

Radiation transfer OPT_RAD = 1 Modified two-stream 

Ground snow surface albedo OPT_ALB = 3 Two-stream radiation scheme 
(Wang et al., 2022) 

Precipitation partitioning  OPT_SNF = 5 Wet bulb temperature (Wang et 
al., 2019) 

Lower boundary condition for soil  
temperature OPT_TBOT = 2 2-m air temperature 

climatology at 8m 
Snow/soil temperature time scheme OPT_STC = 1 Semi-implicit 
Surface evaporation resistance OPT_RSF = 1 Sakaguchi and Zeng (2009) 
Root profile OPT_ROOT = 1 Dynamic root (Niu et al., 2020) 
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Corey/Clapp-Hornberger (BC/CH) model (MF_CH) and the VGM model (MF_VGM), each with 429 
a ponding depth threshold of Htop,max = 50 mm. 430 

An additional experiment employs the Dual-Permeability model (DPM) within the VGM 431 
framework, maintaining the same ponding threshold of Htop,max = 50 mm, referred to as 432 
DPM_VGM (see Table 2).  The comparison of DPM_VGM with the MF_VGM setup aimed to 433 
shed light on the effects of preferential flow channels on soil moisture forecasting, and runoff 434 
forecasting in future studies, thereby enhancing our comprehension of the complexities inherent 435 
in hydrological modeling. 436 

 437 
To define the macropore volume fraction, we used the modeled Soil Organic Matter (SOM), which 438 
is computed from Noah-MP with a microbial-enzyme model (Zhang et al., 2014) prior to the major 439 
experiments conducted in this study through a long-term (120 years) spin-up simulation from 1980 440 
– 2019 driven by the NLDAS data. The modeled SOM shows a pattern of more SOM in wet 441 
regions and less in arid regions due to more active microbial activities (decomposition and 442 
respiration) in wetter regions. The resulting macropore volume fraction ranges from 0.05 – 0.15 443 
changing with spatially-varying SOM. 444 
 445 
Table 2 Model experiment configuration. 446 

Experiment ID Models Htop,max  (mm) Soil Hydraulics 

MF_VGM0 Mixed Form RE 0 Van-Genuchten  

MF_VGM200 Mixed Form RE 200 Van-Genuchten  
MF_CH Mixed Form RE 50 Brooks-Corey/Clapp-Hornberger 

MF_VGM Mixed Form RE 50 Van-Genuchten  

DPM_VGM DPM  50 Van-Genuchten  
 447 

2 Results 448 
 449 
In Sections 2.1 and 2.2 of our study, we focus on computing the SMM for both the surface (5 cm) 450 
and root zone (up to 1m) layers, respectively. This dual-layer analysis is fundamental to our 451 
experiments as it allows us to understand the differential impacts of various parameterizations on 452 
soil moisture. By comparing and analyzing the SMM values across these two distinct layers, we 453 
can identify specific physical processes that influence soil moisture dynamics. This comparative 454 
approach not only elucidates how these processes affect SMM but also helps in understanding the 455 
interaction between surface characteristics and subsurface moisture dynamics, which are critical 456 
for improving hydrological modeling and prediction. 457 
 458 

2.1 Long- and Short-Term Soil Moisture Memory of the Surface Layer 459 
 460 
Figure 3 illustrates the spatial distribution of median long-term memory, derived from the five-461 
year soil moisture dataset. Analysis of the SMAP data revealed that long-term memory (𝜏&) is 462 
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significantly higher in the energy-limited and humid regions of the eastern US, and lower in the 463 
arid western regions. These findings are consistent with those of He et al. (2023) and McColl et 464 
al. (2019).  465 
The MF_CH experiment displays a spatial pattern that contrasts with the SMAP data, with a longer 466 
memory in the arid western regions but a shorter memory in the wet northeastern regions. Further 467 
examination reveals that models using the Van-Genuchten scheme reflect SMAP's patterns. 468 
Specifically, the eastern regions display higher 𝜏& values, while the western regions show lower 469 
values (see Figure 3b-f). DMP_VGM demonstrates a lower memory in the eastern CONUS 470 
compared to MF_VGM (refer to Figures 3c, d, and S1). VGM scenario with zero ponding depth 471 
shows shorter memory compared with MF_VGM200 in the eastern United States (Figures 3e and 472 
f), where surface ponding happens more frequently and with greater depth. Figure S2 shows a 473 
better match of data points with the agreement line in the DPM_VGM versus SMAP scatterplot. 474 
In contrast, the MF_CH versus SMAP scatterplot lacks this alignment, a correlation of -0.10. The 475 
correlation values have risen from –0.10 to 0.15 with VGM, a sign of progress, but they are still 476 
not strong. 477 
 478 
 479 
 480 

 

Figure 3 Long-term SMM derived from various datasets from 2015 – 2019 for soil surface layer: 
(a) SMAP; (b) MF_CH; (c) DMP_VGM; (d) MF_VGM; (e) MF_VGM0; and (f) MF_VGM200. 
SMM = Soil Moisture Memory 

 481 
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To assess the influence of plant water storage on SMAP soil moisture data and the resultant SMM, 482 
we employed the MODIS NDVI to categorize the entire CONUS into wet (NDVI > 0.45) and dry 483 
regions (NDVI < 0.45). In the dry areas (see Figure 4a), the probability distribution function (PDF) 484 
of the surface SMM from MF_CH differs from that of SMAP and exhibits a higher median of 485 
10.53 days compared to SMAP's 8.47 days (overestimation). Other model scenarios using van 486 
Genuchten (VG) hydraulics, with an SMM median of around 8.6 days, show a distribution PDF 487 
like SMAP. Note that the VGM scenarios effectively tackle the problem of long-term memory 488 
overestimation, a point emphasized by He et al. (2023). This improvement is due to the refined 489 
parametrization of physical processes within the VGM experiments. 490 
  491 
In the wet regions with dense vegetation (refer to Figure 4b), the SMM PDF of MF_CH (median 492 
of 8.03 days) significantly varies from SMAP PDF (median of 10.71 days), showing an 493 
underestimation of 𝜏&. However, due to plant water storage affecting SMAP's soil moisture 494 
retrieval (commonly on eastern CONUS), our focus here is on model sensitivity to process 495 
representations rather than on model accuracy relative to SMAP data. Other models with van 496 
Genuchten (VG) scheme display greater variability among themselves in wet areas than in dry 497 
ones (Figure 4b). MF_VGM0 (with a zero ponding depth threshold) shows a decreased long-term 498 
SMM, with a median of 10.72 days, compared to MF_VGM200 (with a 200 mm threshold), with 499 
median of 12.05 days, and MF_VGM (with 50 mm ponding threshold), with a median of 12.03. 500 
Changing the ponding depth threshold from 50 mm (MF_VGM) to 200 mm (MF_vGM200), has 501 
a marginal effect on 𝜏&, suggesting that the response does not proportionally increase with higher 502 
values. With the same 50 mm ponding threshold, DPM_VGM produces a shorter SMM, with a 503 
median of 11.73 days, than MF_VGM. 504 
 505 
 506 
 507 

 
Figure 4 Violin plot of surface 𝜏& estimated from SMAP and Noah-MP scenarios for dry 
regions with less vegetation (NDVI < 0.45) and wet regions with more vegetation (NDVI > 
0.45).  

 508 
For the short-term SMM, all the scenarios produce an overall spatial pattern similar to that of the 509 
SMAP-derived 𝜏', showing a longer memory in the drier western US than in the wetter eastern 510 
(Figure 5). However, MF_CH shows a shorter memory in the northwestern US than that derived 511 
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from SMAP (Figure 5a & b). MF_CH with a median of 1.9 days underestimates SMAP with a 512 
median of 2.02 days, while VG scenarios have median 𝜏' around 2.09 days over dry regions. This 513 
effectively rectifies the underestimation in short-term memory by LSMs, as reported in previous 514 
studies (He et al., 2023). He et al. (2023) highlighted that most LSMs tend to underestimate 𝜏2, 515 
which is strongly affected by soil water drainage as specified by McColl et al. (2019). Note that 516 
higher 𝜏2 values indicate slow drainage, whereas lower values suggest faster drainage; this is 517 
exemplified by Figure 5a, which exposes a more rapid drainage in the eastern CONUS in contrast 518 
to the western. The incorporation of surface ponding and DPM (2.08 days) has shown less effects 519 
on short-term memory than the soil hydraulics for the dry region (more macropores are available 520 
in wet regions and hence DPM would have more effect in those regions). The introduction of 521 
surface ponding (comparing MF_VGM0 (2.11 days) to MF_VGM200 (2.108 days) in Figure 5 522 
and Figure 6) contributes to more persistent surface soil moisture and a bit faster drainage. The 523 
pdf of SMM from all the VGM models more closely resembles the SMAP pdf in the western 524 
United States than in the eastern part of the country.  525 
 526 
For wet regions, MF_CH with a median of 1.26 days underestimate SMAP with a median of 1.56 527 
days. DPM_VGM with faster drainage of surface soil water produces a median 𝜏2 of 1.43, shorter 528 
than does MF_VGM with a median of 1.48 days. The DPM model accelerates the drainage of 529 
water from the topsoil. This effect is more significant in the eastern CONUS. As a result, it lowers 530 
the short-term memory in areas where the soil has macropores. 531 
 532 

 
Figure 5 Short-term SMM derived from various datasets from 2015 – 2019 for soil surface 
layer: (a) SMAP; (b) MF_CH; (c) DMP_VGM; (d) MF_VGM; (e) MF_VGM0; and (f) 
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MF_VGM200. SMM = Soil Moisture Memory. 

 533 

 
Figure 6 Same as Figure 4 for short-term memory.  

 534 

2.2 Long- and Short-Term Soil Moisture Memory of the Root Zone Layers 535 
 536 
We use the International Soil Moisture Network (ISMN) soil moisture dataset as the benchmark 537 
and compute SMM at the ISMN stations as illustrated in Figure 2. We compute the long-term 538 
SMM across 654 sites within CONUS for the period from 2015 – 2019. The median values of 539 
these computations indicate that the root zone SMM (Figure 7 & Figure 9) is generally higher than 540 
the surface SMM (Figure 3 & Figure 5). Analysis of ISMN data reveals that the root zone 𝜏& (Figure 541 
7) generally exceeds surface 𝜏& (Figure 3), particularly longer in the western US. Some eastern 542 
locations also exhibit longer 𝜏&, whereas the central region demonstrates lower values.  543 
 544 
MF_CH produces a shorter root-zone 𝜏& across nearly all the sites in CONUS (Figure 7 & Figure 545 
8). The Van-Genuchten scheme mirrors the ISMN-derived 𝜏&, albeit with slightly higher values 546 
(Figure 7 & Figure 8). An increase in surface ponding depth raises the 𝜏&. This is particularly true 547 
in the eastern US, where surface ponding occurs more often, and its impact on soil moisture is 548 
more substantial. Figures S3 and S4 illustrate this effect. Additionally, DMP_VGM (Figure 7c and 549 
Figure 8) reduces the root-zone long-term SMM across most of CONUS relative to the other 550 
models (Figure 7c, d, e, & f and Figure S3).  551 
 552 
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Figure 7 Long-term root-zone SMM derived from various datasets from 2015 – 2019: (a) 
ISMN; (b) MF_CH; (c) DMP_VGM; (d) MF_VGM; (e) MF_VGM0; and (f) MF_VGM200. 
SMM = Soil Moisture Memory. 

 553 
 554 

 
Figure 8 Violin plot of root zone 𝜏& estimated from ISMN and Noah-MP scenarios for dry 
regions with less vegetation (NDVI < 0.45) and wet regions with more vegetation (NDVI > 
0.45). 
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As for the surface layer, we use the MODIS NDVI to classify all the stations into wet and dry 555 
regions. In the dry regions (Figure 8a), MF_CH has a different probability distribution function 556 
and a lower median of 19 days compared to that of ISMN (median of 23 days). All the other 557 
scenarios using VG schemes exhibit a similar SMM PDF to each other, yet they are somewhat 558 
different from the one derived from ISMN.  Also, the presence of macropores reduces long-term 559 
SMM, with a median of 25 days, and results in the closest median to the ISMN (Figure 8a). ISMN, 560 
however, shows a large range of long-term SMM compared with all the Noah-MP experiments, 561 
indicating the complex nature of the observed SMM needs further investigation (Figure 8a & b). 562 
Note that the analyses were conducted at a limited number of locations, presenting challenges in 563 
fully capturing the impacts of different parameterizations on SMM. 564 
 565 
In the wet regions, MF_CH shows smaller 𝜏& values (median of 9.8 days) than that from ISMN 566 
(median of 18 days) together with a noticeable pdf difference. The effect of dual permeability 567 
decreases the soil moisture and long-term memory compared with the other model experiments, 568 
resulting in a median (19 days) close to ISMN (18 days), Figure 8b. However, it seems that the 569 
ponding depth does not show a noticeable impact on 𝜏&. It should be noted that the effect of ponding 570 
depth, which slightly increases the long-term memory in RTZ, can be observed in Figure S3 and 571 
Figure S4 when we take a close look into them.  572 
 573 
Further investigation reveals an enhancement in the model's ability to capture soil hydraulic 574 
dynamics when shifting from the Clapp-Hornberger to the Van-Genuchten scheme, with an 575 
improvement in 𝜏&values from 0.05 to 0.12 (Figure S5). Also, The Dual Permeability model with 576 
Van-Genuchten (DPM_VGM) demonstrates superior performance with a correlation of 0.15, 577 
compared to all other scenarios tested. 578 
 579 
 580 
 581 
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Figure 9 Same as Figure 7 but for short-term. 

 582 

The findings show that 𝜏' in most Noah-MP scenarios are comparable to those observed in the 583 
ISMN data, as shown in Figure 9b to f. However, there is a consistent underestimation in some 584 
eastern locations. Figure 10 highlights this pattern, showing that wet regions tend to underestimate 585 
𝜏', with ISMN reporting a median of 2.5 days and Noah-MP experiments a median of around 2 586 
days. Conversely, dry regions tend to overestimate, with ISMN at a median of 2.1 days and Noah-587 
MP experiments at approximately 2.7 days. 588 
 589 
Although distinguishing between MF_VGM0 and MF_VGM200 in Figure 9 and Figure 10 is 590 
challenging, Figure 11 (Figure 11c and d) reveals that an increase in ponding depth leads to a slight 591 
decrease in short-term memory in the eastern CONUS. Comparing Figure 9 with Figure 11 592 
indicates that ISMN stations partially reflect the spatial pattern of long-term and short-term 593 
memory in the root zone across CONUS. It may be concluded that the spatial patterns of long-594 
term and short-term memory (Figure 11 and Figure S7) of the root zone are quite similar to those 595 
of the surface layer (Figure 3 and Figure 5). Hence, long-term memory is more prevalent in the 596 
eastern CONUS and mountainous areas, while longer short-term memory occurs predominantly 597 
in western areas. However, this conclusion is not totally true and further investigation is needed. 598 
 599 

https://doi.org/10.5194/egusphere-2024-1256
Preprint. Discussion started: 17 May 2024
c© Author(s) 2024. CC BY 4.0 License.



 

21 
 

 
Figure 10 Same as Figure 8 but for short-term. 

 600 
 601 

 
Figure 11 Spatial distribution of root zone 𝜏2 estimated from (a) MF_CH; (b) MF_VGM; (c) 
MF_VGM0; and (d) MF_VGM0. 

3 Discussion 602 

3.1 How Do Different Parametrizations Affect SMM? 603 
 604 
The efficacy of LSMs in simulating climate feedback mechanisms critically depends on the soil's 605 
ability to retain moisture and how fast the soil releases the moisture up to the atmosphere through 606 
soil surface evaporation and plant transpiration and down to the aquifers through recharge. The 607 
rapid infiltration of incident water (rainfall and snowmelt) into deeper subsoil strata reduces the 608 
soil's capacity to return moisture to the atmosphere through evaporation and transpiration. Thereby 609 
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disrupting potential atmospheric feedback loops in LSMs (Mccoll et al., 2019). Conversely, If 610 
LSMs lose water too quickly through evapotranspiration, they provide feedback to the atmosphere 611 
faster than they should. Thus, the concept of SMM becomes essential in LSMs, as it can provide 612 
information about the rate at which moisture disappears from soil. Hence, understanding the effects 613 
of various physical processes on SMM is vital for enhancing the representation of these processes 614 
in LSMs, thereby improving their overall performance in simulating the complex interactions 615 
between the land surface and the atmosphere. 616 
 617 
The water retention curve characteristics of the BC/CH hydraulics scheme are characterized by a 618 
strong suction force that is more pronounced than in the Van-Genuchten model for various soil 619 
types (Niu et al, 2024). This stronger suction promotes moisture transfer from the deeper layers to 620 
the surface layer, causing the surface soil to retain more moisture (Figure S6) and has a longer 621 
𝜏&(Figure 3, 4), a common issue in LSMs according to He et al. (2023). Moreover, the higher 622 
suction reduces the root zone moisture and consequently, it would have a shorter 𝜏&(Figure 7, 8). 623 
Conversely, the VG scheme, with weaker suction, transfers less moisture from the root zone to the 624 
surface, resulting in a drier surface layer and a shorter 𝜏& for the surface, but a longer 𝜏& for the root 625 
zone, as depicted in Figures 7 and 8. 626 
 627 
Short-term memory is inversely related to moisture availability; thus, the more wet soil has the 628 
shorter 𝜏', while a drier layer has a longer 𝜏'. The VG scheme produces a drier surface layer and a 629 
moister root zone, leading to a longer surface 𝜏' and a shorter root zone 𝜏' compared to the BC 630 
scheme, shown in Figures 5, 6, and 11. 631 
 632 
As indicated in a previous study by He et al. (2023), a common issue in LSMs is the overestimation 633 
of the long-term memory of surface soil over dry regions. This could be because of an 634 
underestimation of evaporation within LSMs using CH parametrization (Figure S7a), resulting in 635 
overestimation of soil moisture. However, a shift towards the Van-Genuchten (VG) 636 
parametrization increases the evaporation (Figure S7b, Figure S8), and hence it overcomes the 𝜏& 637 
overestimation (Figure 3, 4).  638 
 639 
The presence of soil macropores promotes infiltration at the soil surface and preferential flow from 640 
the surface to the root zone (Mohammed et al., 2021), consequently reducing the moisture retained 641 
in the surface layer. Moreover, macropores lead to reduced suction of the soil, hence less water 642 
from subsurface soil was pulled up to the surface, causing the topsoil to have less moisture (Figure 643 
S6). Therefore, macropores lead to a decrease of surface 𝜏&(Figure 3d, 4b). Moreover, the presence 644 
of macropores increases root zone soil moisture and consequently, it should prolong the root zone 645 
𝜏&. However, the even distribution of macropores throughout the soil profile in current Noah-MP 646 
configuration, DPM_VGM, increases water infiltration into deeper layers, resulting in faster 647 
recharge of the deep soil and drier root zone. As a result, macropores reduce the root-zone long-648 
term SMM (Figure 7d, e, & f and Figure S8) of DPM_VGM. This highlights the importance of 649 
calibration of macropore profile in DPM_VGM for better representation of macropores and soil 650 
hydrohalic dynamics. 651 
 652 
While the soil matrix typically allows for only slow water movement due to the pressure gradient, 653 
macropores enable rapid gravitational flow (Mohammed et al., 2018). These macropores facilitate 654 
quicker infiltration to the root zone (Mohammed et al., 2021). Therefore, they increase the drainage 655 
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rate to these deeper layers, which consequently slightly reduces the short-term soil moisture 656 
memory in the surface (Figures 5, 6). Additionally, as water moves from the surface to the root 657 
zone, the increased moisture content there leads to quicker drainage (we speculate that this occurs 658 
in the real world; however, in the current DPM_VGM, the deep soil is wetter than root zone, 659 
indicating a need for calibration of the macropore profile as we have stated). Consequently, this 660 
process further decreases the short-term moisture memory in the root zone due to the higher 661 
drainage rates of wetter soil.  662 
 663 
Finally, the ponding threshold allows water to remain on the surface before turning into runoff. 664 
This provides water with more time to percolate into the soil. The consequent increase in ponding 665 
depth allows extended water infiltration, thus enhancing soil moisture and lengthening moisture 666 
retention through the soil profile (Figure S6e, f). So as discussed before, wetter soil leads to 667 
prolong 𝜏& and shorten 𝜏' (Figure 5, 6, 7, 11). 668 
 669 

3.2 Limitation of Our Study 670 
 671 
Some sources of uncertainty may affect our results in this study, including uncertainties in input 672 
data, and models. SMAP reliability is affected by plant water storage change (in the eastern part 673 
and some mountainous sites), introducing uncertainties into SMM values for the benchmark. 674 
While the SMAP observation over some eastern parts and mountainous areas may not be reliable 675 
(e.g., due to dense vegetation), it still serves our objective of deepening our understanding of the 676 
physical process involved in soil hydrohalic/hydrology. Furthermore, the SMM patterns captured 677 
from SMAP can be insightful in understanding regional variabilities in SMM. 678 
 679 
Another concern is the influence of ISMN spatial representation on SMM analysis. ISMN stations 680 
are point-based, and it is assumed that one point represents a 1/8-degree grid area. It is possible 681 
that the point measurements cannot be representative of the Noah-MP spatial grids. Therefore, 682 
discrepancies in capturing values or spatial patterns might be attributed to the scale difference 683 
between point and grid data. Additionally, the limited number of stations could be a contributing 684 
factor.  685 
 686 
Additionally, certain model assumptions may require further investigation. The DPM_VGM 687 
scheme uses vertically constant macropore volume fraction, which means macropores generated 688 
due to wormhole and tree roots are fixed down to the bedrock. However, in nature, these 689 
macropores would reduce after a few meters from the soil top. Because the existence of macropores 690 
in nature drains the surface layer and increases the root zone soil moisture, to better represent the 691 
actual physical process, it is necessary to calibrate macropore volume fraction within Noah-MP. 692 
Such calibration is anticipated to further advance the fidelity of soil moisture simulations, 693 
enhancing the model's utility in various hydrological and climatological applications. 694 
 695 
Concerning surface water ponding, a constant ponding threshold may not be justified, and a 696 
spatially variable surface ponding may lead to improved model accuracy. We expect calibration 697 
of this parameter to achieve a more realistic representation of the soil hydraulic process. 698 
 699 
There are additional factors, such as lateral flow, that may affect SMM but were not considered in 700 
our analysis. The primary focus of our study was to understand the underlying processes in SMM 701 
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and utilize this understanding to guide the selection of parameterizations in the Noah-MP model. 702 
Consequently, we narrowed our examination to those parameters and processes represented within 703 
Noah-MP. Future research could further evaluate the impact of lateral flow and other processes on 704 
SMM, expanding our understanding of these dynamics and their implications for land surface 705 
modeling. 706 
 707 

4 Conclusion 708 
 709 
In this study, we have explored the effects of soil hydraulic parameterizations on SMM using the 710 
Noah-MP land surface model. Our research was driven by a desire to understand the physical 711 
processes that influence SMM and to address the commonly observed 712 
overestimation/underestimation of long-term/short-term SMM in LSMs. With these insights, we 713 
aimed to improve the representation of soil hydrology within Noah-MP, utilizing the knowledge 714 
gained from our analysis of SMM. We designed and implemented five scenarios to assess the 715 
impacts of different parametrizations.  These scenarios include two soil hydraulic models (Clapp 716 
and Hornberger and Van-Genuchten), a dual permeability infiltration scheme, and three variations 717 
of surface ponding depth. Utilizing soil moisture datasets from SMAP and ISMN for surface and 718 
root zone measurements, respectively, we conducted a comprehensive analysis of the effects of 719 
different Noah-MP parameterizations on soil moisture memory. 720 
 721 
Our findings demonstrate that the soil retention curve has an important effect on SMM, due to its 722 
influence on the existing suction in the soil. We have demonstrated that the adoption of the Van-723 
Genuchten (VG) parameterization considerably mitigates the long-standing issue of 724 
overestimating SMM in LSMs employing Brooks-Corey/Clapp-Hornberger (BC/CH) models. The 725 
Van-Genuchten model, with its reduced suction effect attributable to a drier surface layer, leads to 726 
a more accurate depiction of moisture transfer from the root zone to the surface, which is important 727 
for realistic soil moisture dynamics.  728 
 729 
Moreover, incorporating surface ponding allows for extended soil water infiltration, thus refining 730 
both surface and root zone moisture conditions. This leads to an increase in long-term memory 731 
and a decrease in short-term memory. The inclusion of a dual permeability approach fine-tunes 732 
soil moisture representation by accounting for preferential flow paths, marking a step forward in 733 
the enhancement of soil moisture memory and the overall fidelity of hydrological simulations. 734 
Macropores lead to a decrease in short-term memory due to their effects on the enhancement of 735 
drainage. Furthermore, macropores lead to a decrease in long-term memory, due to its effects on 736 
draining and decreasing surface soil moisture. Nevertheless, our analyses underscore the necessity 737 
for calibration of the macropore fraction and ponding depth to further refine the soil hydraulic 738 
dynamics within the Noah-MP model. Given these compelling advancements, it is our strong 739 
recommendation that LSMs adopt VG hydraulics to advance the prediction of hydrological and 740 
climatic phenomena. 741 
 742 
 743 
 744 
 745 
 746 
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