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Abstract. Climate change affects the climatology of surface precipitation in spatially in-homogeneous ways and it is challeng-

ing to identify and quantify the contribution of atmospheric circulation changes to this pattern. Various methods have been

developed to characterize the large-scale atmospheric circulation and assess its changes, e.g., by classifying the flow into so-

called weather regimes or circulation types. Several studies have then related frequency changes of these regimes due to global

warming to changes in surface weather parameters. However, even without regime frequency changes, the climatology of sur-5

face parameters may change due to so-called regime intensity changes (e.g., a particular regime becomes on average wetter or

drier). In this study, the question of how relevant frequency changes of weather regimes are for understanding climate change

signals in surface precipitation is addressed with a novel conceptual framework. For every regime i, a spatially varying parame-

ter γi(P ) is introduced, which corresponds to the ratio of the contributions from regime frequency vs. regime intensity changes

to the climate change signal of precipitation P . Conceptual considerations show that γi(P ) is (i) proportional to the relative10

change of regime frequency, (ii) proportional to the regime-specific anomaly of precipitation, and (iii) inversely proportional to

the climate change effect on regime intensity. The combination of these independent and competing factors makes the study of

γi(P ) interesting and insightful. As a specific example application of this framework, we consider a 7-category weather regime

classification in the North Atlantic-European sector and large ensemble simulations with the CESM1 climate model under the

RCP8.5 emission scenario for the periods 1990-1999 and 2091-2100. Considering γi(P ) for surface precipitation P in this15

simulation setup reveals that (1) γ values are typically less than 0.3 and therefore, to first order, frequency changes of WRs are

of secondary importance for explaining climate change signals in P – in contrast, the intensity changes dominate, which are

to a large degree, but not entirely, related to the so-called thermodynamic effects of global warming; (2) the main reason for

the generally low values of γ are the comparatively small WR frequency changes and the limited regime-specific anomalies of

P , in particular over continental Europe; and (3) γ values tend to be slightly larger for precipitation variables that are less con-20
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strained by thermodynamic arguments, i.e., γ for the number of wet days is larger than γ for the number of heavy precipitation

days. In summary, this study provides a generally applicable framework to quantify climate change effects of regime frequency

changes on surface parameters, it illustrates the key conditions that must be fulfilled such that these frequency changes can

become relevant, and, at least in our application, it shows that these conditions are generally not fulfilled.

Copyright statement. TEXT25

1 Introduction

Given the complex chaotic nature of the large-scale atmospheric flow with the repeated occurrence of similar flow patterns, over

many decades meteorologists and climatologists have attempted to sort the daily flow patterns into distinct categories. Early

examples are the so-called “Grosswetterlagen” by Hess and Brezowsky (1952) with 30 types for Europe and the weather types

by Schüepp (1959) for the European Alps with 6 classes and 33 types (Bader and Richner, 2018). Namias (1968) discussed30

the role of “weather typing” for extended and long-range forecasts of daily precipitation in the US and the history of these

ideas that go back to the late 19th century. These early classifications were, as any classification of atmospheric flows, based

on specific choices of the region of interest, the variables and vertical levels to be considered, and the number of categories to

be determined.

While these early classification schemes were based on mainly subjective criteria, more objective methods, for instance35

based on principle component analysis (sometimes combined with clustering analysis), were developed in the last decades

(e.g., Barnston and Livezey, 1987) and led to many flow classifications. Different names have been used for the flow cat-

egories, e.g., circulation types/regimes or weather types/regimes. The COST Action 733 compared 71 such circulation type

classifications for Central Europe, which illustrates the multitude of existing approaches (Tveito and Huth, 2016). An important

example is the classification by Vautard (1990) with four weather regimes (WRs) identified for the North Atlantic-European40

region in winter, based on low-pass-filtered geopotential height at 700 hPa (i.e., with the transient synoptic variability filtered

out). This classification has been extended recently by Grams et al. (2017), identifying seven WRs in all seasons based on

low-pass-filtered geopotential height at 500 hPa and in a similarly large domain. Addressing the fundamental question whether

WRs represent physical modes of the atmosphere, or are merely useful statistical categorizations, Hochman et al. (2021) used

concepts from dynamical systems theory and found evidence that most WRs identified by Grams et al. (2017) are physi-45

cally meaningful and suitable for addressing circulation responses in a changing climate. For a broader discussion about the

usefulness of circulation regimes the interested reader is referred to the review by Hannachi et al. (2017).

One of the key properties of these classic WRs is that they characteristically link the lower-frequency and thus more pre-

dictable evolution of the large-scale circulation to regional surface weather. They have thus become a popular tool in weather

and climate science in recent years. In the context of today’s climate, WRs are used to understand and classify the variability50

of regional surface weather and related socio-economic parameters in various regions around the world. For instance, they
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have been shown to modulate, in certain regions, the occurrence of extreme temperature, extreme precipitation, or surface

wind speed (Yiou and Nogaj, 2004; Pasquier et al., 2019; Mastrantonas et al., 2020; Coe et al., 2021; Zhang and Wang, 2021;

Madonna et al., 2021), renewable energy production (Jerez and Trigo, 2013; Grams et al., 2017; van der Wiel et al., 2019;

Drücke et al., 2021), aerosol transport and concentration (Gaetani et al., 2021), air pollution (Maddison et al., 2021), or hu-55

man excess mortality (Huang et al., 2020). WRs are thus increasingly identified in operational weather forecasts – particularly

on subseasonal-to-seasonal lead times, on which predictability arises from slowly varying planetary-scale phenomena that

modulate WR variability on multi-daily to weekly timescales (Palmer, 1999; Lang et al., 2020). Categorical WR forecasts as

predictors for regional surface weather can thus be beneficial at these lead times compared to direct model output of surface

weather variables on a grid-point level (Vigaud et al., 2018; Bloomfield et al., 2021).60

In the context of past and future climates, WRs are often used to understand the relative contributions of changes in large-

scale variability (i.e., in WR occurrence) and of thermodynamic changes to surface weather changes between different climate

conditions. For instance, Yiou et al. (2012) showed that pattern or frequency changes of the four main North Atlantic-European

WRs are too small to explain the substantial temperature changes Europe experienced between the Medieval Warm Period (10th

to 13th centuries) and the Little Ice Age (16th to 19th centuries). Likewise, Horton et al. (2015) argued that more recent trends65

in Northern Hemisphere extreme surface temperature were primarily driven by thermodynamic changes, although changes in

WR frequency and duration were important for specific regions. Nevertheless, applying such a distinction of thermodynamic

and dynamic climate change effects does not only improve our physical understanding but also helps in assessing how robust

the projected regional surface weather changes might be based on their contributing processes. For instance, future changes

in the frequency and intensity of Northern Hemisphere cold extremes in winter will result from a complex superposition70

of – among others – changes in global mean temperature, in cold air outbreak intensity due to Arctic amplification, in the

frequency of stratospheric polar vortex disruptions due to changes in stratospheric dynamics, and in midlatitude Rossby wave

activity due to changes in baroclinicity. The last of these processes is directly related to WR occurrence. However, there is

rather low consensus on future changes in WR occurrence and their role for surface weather changes. For instance, for the

positive and negative phases of the North Atlantic Oscillation (NAO), which are considered as distinct WRs in several North75

Atlantic/European WR classifications, Cattiaux et al. (2013) found an increasing frequency of the negative NAO phase in

CMIP5 projections, while Fabiano et al. (2021) detected more positive phases of the NAO in CMIP6 projections. Huguenin

et al. (2020), considering a WR classification over central Europe, found that most WR frequency changes towards the end

of the 21st century are small and not consistent across different climate models. The relative contribution of these future WR

frequency changes to surface weather changes has also been shown to differ, depending on the region, season, and surface80

parameter. While Riediger and Gratzki (2014) and Santos et al. (2016) found, next to a likely thermodynamic background

signal, a relatively important contribution of future WR changes to changes in surface temperature and precipitation in western

and central Europe, Cattiaux et al. (2013) attributed a rather minor role to these changes.

This study aims at contributing to this research theme, which connects climate change, WRs, and surface weather, by

introducing a conceptual framework that provides insight into why, where and when WR frequency changes can matter for85

understanding climate change effects on surface weather. The conceptual framework will be illustrated with a particular choice
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of WRs in the North Atlantic-European region, climate simulations, and surface weather parameters. Importantly, we do not

attempt to provide a “final answer” regarding the role and relevance of WR frequency changes for understanding climate

change signals, but rather develop a framework that allows quantitatively analysing the factors that determine this role. To be

more specific, the main objectives of this study are to:90

1. provide a conceptual view on the conditions that determine whether WR frequency changes are relevant for explaining

climate change signals of a specific parameter ϕ, in comparison to intensity changes. To quantitatively asses this rele-

vance, we will introduce a field γi(ϕ), which can be calculated for any choice of WR classification with regimes i= 1...n

and parameter ϕ.

2. quantify γi(ϕ) for mean precipitation ϕ= P , the number of wet days ϕ=Nwet, and the number of heavy precipitation95

days ϕ=Nheavy , based on large ensemble climate simulations and a specific WR classification.

We first introduce, in Sect. 2, the climate simulation data sets and the WR classification used in this study, and then, in

Sect. 3, the field γi(ϕ), which serves to address the above objective 1. Example applications of this concept to climate change

signals in surface precipitation are presented in Sect. 4 (objective 2), and in Sect. 5 the main conclusions are summarized and

critically discussed.100

2 Climate simulations and WR identification

This study uses global large ensemble climate simulations for a historic and future period under the RCP8.5 emission scenario

(Sect. 2.1), and a 7-category all-season WR classification for the North Atlantic-European region is applied to output from

these simulations (Sect. 2.2 and 2.3).

2.1 CESM1-LE climate simulations105

The coupled ocean-atmosphere climate simulations used in this study were performed with version 1 of the Community Earth

System Model (CESM1) (Hurrell et al., 2013). Six-hourly fields of geopotential height at 500 hPa, Z500, and surface precipi-

tation P , on a regular grid with a horizontal resolution of approximately 1◦, were obtained through reruns of the CESM1-LE

simulations (Kay et al., 2015), that are described in more detail in Röthlisberger et al. (2020). In this study, data from simula-

tions with external forcing from two specific decades are investigated separately, one period covering the years 1990–1999 and110

the second one covering the years 2091–2100, henceforth referred to as historical and future (or end-of-century) simulations,

respectively. For both periods, the data sets consist of 35 ensemble members, each 10 years long, yielding 350 years with

historical and future climate conditions, respectively. Note that due to the coupled nature of these simulations, the individual

members only share the same external forcing but are independent in terms of their evolution of sea surface temperatures and

the phases of, for instance, the El Niño Southern Oscillation. Therefore, the 350 years in each climate period yield a very large115

sample of possible atmospheric responses to the external forcing that is specific for the respective decade. As this study will

focus on climate change effects on seasonal-mean P , model output was accumulated over the standard seasons December-
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February (DJF), March-May (MAM), June-August (JJA), and September-November (SON), and values of P are given in

units of mm d−1. In addition to P , we will also consider the seasonal number of wet days Nwet (defined with a threshold of

1 mm d−1) and of heavy precipitation days Nheavy (defined with a threshold of the 99th percentile of daily precipitation values120

in the respective season in the historical simulations).

2.2 Year-round North Atlantic-European WRs

The 7-category all-season North Atlantic-European WR definition by Grams et al. (2017) is used in this study. The main reason

for this specific choice is that this classification can be applied to all days of the year, providing a year-round categorization

of the large-scale flow pattern in the North Atlantic-European sector. Grams et al. (2017) identified the WRs in the region125

extending from 80◦W to 40◦E and 30◦N to 90◦N. They are based on an empirical orthogonal function (EOF) analysis of

six-hourly low-pass filtered anomaly fields of Z500, taken from ERA-Interim reanalysis data (Dee et al., 2011) from 1979 to

2015, and subsequent k-means clustering in the EOF space yielding the 7 WRs (i.e., 7 clusters). Further details about this WR

classification and how it can be applied to data from model simulations can be found in Grams et al. (2017) and Büeler et al.

(2021), respectively.130

The names of the WRs are based on the main flow pattern they represent and are as follows: Zonal Regime (ZO), Atlantic

Trough (AT), Atlantic Ridge (AR), Scandinavian Trough (ScTr), Greenland Blocking (GL), European Blocking (EuBL), and

Scandinavian Blocking (ScBL). The seven WRs explicitly capture different flavors of (strong) zonal flows and the occurrence

of atmospheric blocking over Greenland, Central Europe, and Scandinavia, respectively. If a Z500 anomaly field does not meet

the classification criteria for any of the seven WR patterns, it is classified into a “no-regime category” (no). The interested135

reader finds illustrations of the average sea level pressure field and near-surface wind speed anomalies over Europe associated

with these WRs in Grams et al. (2017, their Fig. 2). The no-regime is very close to the overall climatology. For the time period

1979-2015, Grams et al. (2017) reported averaged annual WR frequencies of 31.5% for the no-regime, and between 9.0% (AT)

and 10.9% (ScBL) for the seven main WRs.

2.3 Identification of WRs in CESM1-LE140

The WR classification introduced in Sect. 2.2 was applied to output from CESM1-LE, both for the historical and future

periods. Importantly, when attributing a daily Z500 anomaly field from CESM1-LE to one of the WRs, we used the original

ERA-Interim-based cluster mean Z500 patterns of the WRs identified by Grams et al. (2017), i.e., no separate EOF analysis

was performed with fields from CESM1-LE. This pragmatic approach has the advantage that WR patterns remain unaltered

and climate change can only modify the frequency of these patterns [this is further justified by theoretical argumentation that145

climate change will primarily change the frequency rather than the structure of quasi-stationary regimes, see Palmer (1999)].

If separate EOF analyses were performed for the two climate simulation periods, then WRs would change both their pattern

and frequency, making the interpretation of the results from the decomposition approach (Sect. 3) less straightforward.

In this paragraph we provide additional technical information about how the WR classification, originally developed for

reanalysis data, was applied to climate model data. For more details, the reader is referred to Sect. 4.2.4 in Fischer (2021)150
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and Sect. 2.2 in Büeler et al. (2021). The key step is the projection of a simulated daily Z500 anomaly field to the seven Z500

patterns of the ERA-Interim WRs, which in essence corresponds to the spatial correlation of the two fields. The anomalies of

Z500 are computed relative to the climatology in the respective climate period. Following the approach by Michel and Rivière

(2011), we then computed, for each daily Z500 anomaly and for each regime i= 1...7, a non-dimensional regime index Ii.

This index corresponds to normalized anomalies of the projection for each regime i relative to the mean projection in the155

respective climate period, and the normalization is done with the climatological standard deviation of the projection in the

respective climate period. Eventually, to determine the active weather regime at a given time, a set of so-called life-cycle

criteria is applied to the time series of the regime indices. A regime i is considered “active” if its Ii(t) is maximum among all

seven indices at time t and equal to or above a threshold value of 0.98 for at least five consecutive days. This threshold value

differs very slightly from the value of 1.0 used by Grams et al. (2017) in their ERA-Interim study. We decided to modify the160

threshold value such that we obtain the same percentage of no-regime days in the CESM1-LE historic simulation as we find

in ERA-Interim for the years 1990-1999 (30.8% averaged over all seasons). The fact that with such a soft tuning, we could

obtain the same projection rate to any of the 7 regimes (almost 70%) in CESM1-LE as in ERA-Interim, serves as a qualitative

confirmation that the North Atlantic-European flow variability in the historic simulations compares favourably with reanalyses.

For identifying WRs in the future climate simulations, the same procedure and the same threshold value of 0.98 are applied,165

leading to a slight reduction in the no-regime frequency (30.0%).

Figure 1 shows the WR frequencies in DJF and JJA in the historic and future climate simulations. Note that these values differ

from the ones reported in Fischer (2021, their Table B.2), as those were found to be affected by a programming error. In DJF, the

regimes AT, ZO, and ScTr are more frequent (about 11-15%) than the “blocked regimes” EuBL, ScBL, and GL (about 6-9%),

whereas the opposite is true in JJA (3-8% vs. 11-18%). These seasonal differences are consistent with the reanalysis-based170

results in Grams et al. (2017). Note that we expect some quantitative differences of fhist,i in CESM1 compared to ERA-

Interim, as CESM1 data for the historic period is only representative of the external forcing in the 1990s but not necessarily for

the modes of decadal variability in this period, see discussion in Sect. 2.1. Most of the WR frequency changes from historic to

future climate conditions (∆fi = feoc,i − fhist,i) are modest. Relatively large values of ∆fi occur in DJF for the regimes AT

(+1.7%, corresponding to a relative increase of 12.6%) and AR (−1.2%, corresponding to a relative decrease of 12.0%), and175

in JJA for the no-regime (−3.3%, corresponding to a relative decrease of 10.1%) and in particular for the regime AR (+1.8%,

corresponding to a relative increase of 24.7%).

3 Quantifying WR-contributions to climate change signals

In this section, as the key methodological novelty of this study, we introduce a conceptual framework that serves quantifying

the relevance of climate change effects on WR frequencies for understanding climate change signals in a surface weather180

variable ϕ, such as precipitation. The starting point is to decompose this signal into contributions from changes related to WR

frequency, ∆fi, and from changes related to what we call WR intensity, ∆ϕi, for instance the change in precipitation during

WR i. This idea is written out explicitly in the following equations.
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Figure 1. WR frequencies (in %) in DJF and JJA, respectively, in the CESM1 historic and future simulations (fhist,i and feoc,i), computed

with 6-hourly Z500 fields. Also listed are the values of the climate change effect on WR frequencies, ∆fi.

Let ϕp be the climatological value of the variable of interest (e.g., seasonal mean precipitation) in period p ∈ {hist,eoc},

and ϕp,i the climatological mean value of ϕ at all time steps in WR i in period p. The climate change signal on ϕ, i.e. the185

difference ∆ϕ= ϕeoc −ϕhist can then be written as

∆ϕ=

n∑
i=1

(feoc,iϕeoc,i − fhist,iϕhist,i), (1)

where fp,i is the frequency of WR i in period p and the summation is over all n WRs of a certain WR classification. Introducing

the notation ∆ϕi = ϕeoc,i−ϕhist,i and ∆fi = feoc,i− fhist,i to denote the climate change effect on the WR-specific intensity

ϕi and on the frequency of WR i, respectively, Eq. (1) can be re-written as190

∆ϕ=

n∑
i=1

[
(fhist,i +∆fi)(ϕhist,i +∆ϕi)− fhist,iϕhist,i

]
(2a)

=

n∑
i=1

[
fhist,i∆ϕi︸ ︷︷ ︸

(i)

+∆fiϕhist,i︸ ︷︷ ︸
(ii)

+∆fi∆ϕi︸ ︷︷ ︸
(iii)

]
(2b)

Considering for instance precipitation, then the three terms in Eq. (2b) represent (i) the “contribution from the WR-specific

precipitation intensity change to the climate change signal in precipitation”, (ii) the “contribution from WR frequency change

to the climate change signal in precipitation”, and (iii) a “residual” term due to concurrent changes in WR-specific precipitation195

intensity and WR frequency. It is important to mention that such decompositions were used in several previous studies and most

likely the first time by Cassano et al. (2007), who quantified the role of frequency changes of synoptic flow patterns for global

warming related changes in precipitation. Similar decompositions using circulation patterns or WRs were applied, for instance,
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by Horton et al. (2015) to temperature trends, and by Cattiaux et al. (2013) to biases in climate models. And last but not least,

this climate change partitioning method can also be applied to a specific weather system (e.g., extratropical cyclones), by using200

a binary classification of days influenced by the weather system or not (Zappa et al., 2015). Several of the previous studies

used the terminology introduced by Cassano et al. (2007) and referred to terms (i) and (ii) as the thermodynamic and dynamic

(or circulation) change components, respectively.

Here, we further decompose term (ii), by considering the deviation of the mean WR-specific pattern from the climatology:

ϕ∗
hist,i = ϕhist,i −ϕhist, thus ϕ∗

hist,i is the WR-specific anomaly. Note that
∑n

i=1ϕ
∗
hist,i = 0 by design. The interpretation of,205

e.g. a positive value of ϕ∗
hist,i is that during an active WR i, the variable ϕ is on average larger than in the climatology. Clearly,

a WR-based analysis of a variable ϕ is particularly insightful if the values of ϕ∗
hist,i differ significantly from zero, at least for

some i.

The second term on the right hand side of Eq. (2b) can thus be written as

∆fiϕhist,i =∆fi(ϕhist +ϕ∗
hist,i) (3a)210

=∆fiϕhist +∆fiϕ
∗
hist,i (3b)

Inserting this in Eq. (2b), the decomposition of the climate change signal on ϕ reads

ϕeoc −ϕhist =

n∑
i=1

[
fhist,i∆ϕi︸ ︷︷ ︸

(i)

+∆fiϕhist︸ ︷︷ ︸
(iia)

+∆fiϕ
∗
hist,i︸ ︷︷ ︸

(iib)

+∆fi∆ϕi︸ ︷︷ ︸
(iii)

]
(4)

Terms (i) and (iii) in Eq. (4) are the same as in Eq. (2b), and the other two terms in the square brackets of Eq. (4) represent

(iia) the “effect of the WR frequency change on the climate change signal in precipitation independent of the WR-specific215

deviation from the climatology”, (iib) the “effect of the WR frequency change on the climate change signal in precipitation

due to the WR-specific deviation from the climatology”.

There are two benefits of this additional decomposition: Firstly, the term (iib) can take either sign irrespective of the sign

of ∆fi, which makes this term more easily interpretable than term (ii). For instance, if a particularly dry weather regime

(ϕ∗
hist,i < 0) becomes more frequent (∆fi > 0) then term (iib) is negative, while term (ii) is always positive for a positive ∆fi.220

Secondly, the term (iia), i.e. ∆fiϕhist, which can be significantly larger than the other terms, cancels to zero when summed

over all WRs (because
∑n

i=1∆fi = 0). Making the assumption that the residual (term iii) is small (to be verified a posteriori),

Eq. (4) can be reduced to

ϕeoc −ϕhist ≈
n∑

i=1

[
fhist,i∆ϕi︸ ︷︷ ︸

(i)

+∆fiϕ
∗
hist,i︸ ︷︷ ︸

(iib)

]
(5)

The objective of this paper can now be formulated mathematically. It is to investigate the contribution of the frequency225

change term (iib) compared to the intensity change term (i), for each WR i. The modulus of this ratio is denoted as γi(ϕ) and

given by

γi(ϕ) :=

∣∣∣∣∣∣
∆fi

fhist,i

∆ϕi

ϕ∗
hist,i

∣∣∣∣∣∣ . (6)
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We consider the modulus of this ratio as we are interested in how the magnitudes of frequency and intensity changes compare,

while the sign of the ratio would indicate whether frequency and intensity changes share the same sign or oppose one another.230

Note that γi(ϕ) is a field and can be calculated at every model grid point. The question, whether frequency changes of WR i

are important for explaining climate change signals in ϕ, can now be posed more precisely as “how large are the fields γi(ϕ)?”,

where i= 1, ....n. A large γi(ϕ) indicates a greater importance of frequency changes of WR i for explaining climate change

signals in ϕ than a small γi(ϕ). Interestingly, γi(ϕ) depends on three independent factors (see Eq. 6):

1. ∆fi
fhist,i

, which is the relative frequency change of WR i due to climate change. Since climate change does not completely235

alter the large-scale circulation, it is reasonable to assume that this factor has values on the order of 0.1, i.e., if a certain

WR occurs with a frequency of 10% in the historical climate it will occur with a frequency in the range of 9-11% in the

end-of-century climate. γi is directly proportional to this factor.

2. ∆ϕi, which is the climate change effect on the intensity of the parameter ϕ in the WR i. It corresponds to the average

value of ϕ on days in WR i in the end-of-century climate, ϕeoc,i, minus the same average in the historical climate, ϕhist,i.240

γi is inversely proportional to this factor, and therefore γi becomes larger when this factor is small, i.e., if climate change

does not affect the WR-specific intensity of parameter ϕ. It is difficult to estimate the magnitude of this factor a priori.

The expression for γi tells us that we should compare the magnitude of this term with ϕ∗
hist,i. Both this and the previous

factor depend on the magnitude of climate change.

3. ϕ∗
hist,i, which is the WR-specific anomaly of parameter ϕ. This factor does not depend on climate change; it is rather a245

measure for the ability (or skill) of the WR classification to separate contrasting situations in terms of the parameter ϕ.

Two idealized cases shed further light on the role of this factor: If each day within the historical period was randomly

attributed to a WR, then the average of ϕ would be the same for all WRs and therefore ϕ∗
hist,i = 0 for all i. In this case

γi = 0, i.e., WR frequency changes are completely irrelevant because the WRs do not distinguish different scenarios of

ϕ. The opposite case is a highly skillful WR classification, which separates days with strongly positive anomalies of ϕ250

from those with strongly negative anomalies of ϕ. In this situation the magnitude of ϕ∗
hist,i can be large, i.e., comparable

to the day-to-day variance of ϕ. Now, what matters for γi is the ratio of factors (2) and (3), ∆ϕi

ϕ∗
hist,i

. Note that this is not

the ratio ∆ϕi

ϕhist,i
, i.e., the relative intensity change of ϕ in WR i, which would be much smaller. Rather it is the ratio

of intensity change to the WR-specific anomaly of ϕ. For a “very good WR classification” in terms of the variable ϕ,

ϕ∗
hist,i might be 10 times larger than ∆ϕi, and in this case we would obtain γi = 1 (for the above-mentioned assumption255

that ∆fi
fhist,i

is in the order of 0.1), i.e., in this case the frequency change of WR i would be equally important as the

intensity change of WR i. As an aside, we note that different measures were previously used for assessing the quality of

a WR classification for a given parameter ϕ, e.g., the Brier skill score (Schiemann and Frei, 2010) or the “coefficient of

efficiency” (Madonna et al., 2021).

In summary, γi(ϕ) depends on the climate change effect on the frequency of the WR and on the WR-specific intensity change260

of ϕ, as well as on the skill of the WR classification to separate different states of ϕ. As we will see in the remainder of this
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paper, it appears difficult to obtain values of γi(ϕ) that are O(1). This is the case at least for the parameter we investigate (surface

precipitation, ϕ= P ), for the climate simulations we use (CESM1-LE for the RCP8.5 scenario), and for our WR-classification

in the North Atlantic-European region. We also show that γi(P ) varies spatially, mainly because of spatial variations of the

third factor, i.e. the ability of the WR classification to represent local variability of the considered parameter ϕ. Of course, we265

do not exclude the possibility that other WR classifications in other regions applied to other parameters could lead to larger

values of γi(ϕ) than the ones documented in this study. This would require a combination of a more skillful classification,

larger frequency changes, and smaller intensity changes.

For the visualization of γi(P ), we decided that it is meaningful to mask regions where the absolute climate change signal of

P , i.e. Peoc −Phist, is below a certain threshold. In these regions where the climate change signal is weak, the question how270

much WR frequency changes contribute becomes obsolete and potentially large values of γi(P ) would be difficult to interpret.

For each parameter and in each season, we have subjectively chosen a threshold such that γi is masked at about 30% of the

grid points within the plotted domain.

Before we discuss examples of WR-specific γi(ϕ) fields, we note that from Eq. 5 we can also define an overall γ, defined as

γoverall(ϕ) =

∣∣∣∣∣
∑n

i=1

[
∆fiϕ

∗
hist,i

]∑n
i=1

[
fhist,i∆ϕi

] ∣∣∣∣∣ (7)275

We will briefly consider γoverall at the end of the paper in Sect. 5, but next focus on the WR-specific γi(ϕ) in Sect. 4.

4 Application to CESM1-LE simulations

In this section, the concept outlined in Sect. 3 is applied to three aspects of precipitation in DJF and JJA (total seasonal precip-

itation P , number of wet days Nwet, and number of heavy precipitation days Nheavy), using the CESM1 climate simulations

and the WR identification outlined in Sect. 2. To set the scene, Fig. 2 shows the CESM1 seasonal mean climatologies in the280

historic period of precipitation P in DJF and JJA (Fig. 2a,b), of the number of wet days Nwet in DJF (Fig. 2e), and of the

number of heavy precipitation days Nheavy in DJF (Fig. 2f), together with the corresponding climate change signals of these

fields. In DJF, climatological precipitation is largest (within the considered domain) in southwestern Norway (values larger

than 10mmd−1) and reaches beyond 7mmd−1 in local maxima off the US east coast and near South Greenland, Iceland, and

Scotland (Fig. 2a). The climate change signal in this season (Fig. 2c) shows negative values in the Labrador Sea, the Irminger285

Sea, and in the Mediterranean, with values up to −2mmd−1, and, in most of the rest of the domain, slightly weaker positive

values with local maxima over the UK and southwestern Norway. In JJA, precipitation is weaker in most parts of the North

Atlantic compared to DJF (Fig. 2b), and the climate change signals are positive along the North American east coast and in

Greenland, and negative over most parts of Europe (Fig. 2d). Considering again DJF, the climatological wet day frequency

has high values (0.6− 0.9) in large parts of the North Atlantic (Fig. 2e), and climate change signals are positive in the Arctic290

and over the Baltic Sea and negative in the same regions where also mean precipitation decreases (Fig. 2g). Finally, the DJF

climatology of Nheavy shows a constant value of 0.01 by definition (Fig. 2f), with largest increases due to climate change in a

band along 50◦N from Newfoundland to eastern Europe (Fig. 2h).
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Figure 2. Seasonal mean precipitation Phist in the CESM1 historic simulations for (a) DJF and (b) JJA, respectively, and (c,d) the climate

change signal ∆P = Peoc −Phist in the same seasons. Units are mmd−1. Seasonal mean number of (e) wet days Nwet and (f) heavy

precipitation days Nheavy for DJF, and (g,h) the climate change signal ∆N(·) =N(·),eoc−N(·),hist in the same season. Units days per day.

Gray contours in (a,b,e,f) denote seasonal mean geopotential height at 500 hPa (in m).
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Figure 3. (a) Contribution of the regime AT to the climate change signal of seasonal mean precipitation ϕ= P in DJF (in mm d−1), i.e.,

feoc,ATPeoc,AT − fhist,ATPhist,AT ; (b) contribution to the field shown in (a) from intensity changes of P in the regime AT, i.e., term (i)

in Eq. (5), fhist,AT∆PAT (in mm d−1); (c) contribution to the field shown in (a) from frequency changes of regime AT, i.e., term (iib) in

Eq. (5), ∆fATP
∗
hist,AT (in mm d−1); and (d) γAT (P ) in dimensionless units. Contour lines on (c) are P ∗

hist,AT (in mm d−1). The colorbar

under (c) is valid for (a), (b), and (c).

To explain the steps required for the calculation of γi, we now first, in Sect. 4.1, assess as an illustrative example the

contributions of the frequency and intensity changes of one selected WR to the climate change signal of P in DJF. Then, in295

Sect. 4.2 and 4.3, results are shown for different WRs in DJF and JJA, and for the three considered aspects of precipitation,

respectively.

4.1 An illustrative example

As a first example, we consider the frequency and intensity contributions from regime AT (Atlantic Trough) to the climate

change signal in P in DJF (Fig. 2c). We have chosen this WR because, in our simulations, it has the largest frequency change300

in DJF between the two climate periods from fhist,AT =13.5% to feoc,AT =15.2% (Fig. 1). For this WR, the relative frequency

change of ∆fAT

fhist,AT
= 12.6% corresponds to the first factor relevant for the calculation of γi (see Eq. 6). Also, this WR is

12



interesting as it has a strongly positive climate change signal over the British Isles and in the North Sea region (Fig. 3a), i.e., in

a region where CMIP6 models show an increase in cyclone track density in DJF (Priestley and Catto, 2022, their Fig. 2e).

According to Eq. (5), the total contribution of regime AT to the climate change signal of P in DJF, i.e., feoc,ATPeoc,AT −305

fhist,ATPhist,AT (Fig. 3a), can be decomposed into a contribution from intensity changes during regime AT (term (i), Fig. 3b)

and frequency changes of regime AT (term (iib), Fig. 3c). Overall, intensity changes clearly determine the pattern shown in

Fig. 3a, including the regions with pronounced positive and negative climate change effects on P . An exception is the region

near the Bay of Biscay, where term (iib) has large positive values exceeding 0.1 mm d−1 (Fig. 3c), comparable to those from

term (i). The reason for this strong local signal is that the WR-specific precipitation anomaly, P ∗
hist,AT , has large positive310

values in this region, i.e., precipitation is strongly enhanced in this region in regime AT compared to climatology. Peak values

of P ∗
hist,AT in the Bay of Biscay exceed 4 mm d−1 (Fig. 3c). Together with the AT frequency change of 1.7% this yields the

comparatively large values of term (iib). The high values of P ∗
hist,AT qualitatively agree with the increased frequency of intense

precipitation related to atmospheric rivers in this region and WR, as shown by Pasquier et al. (2019).

As a consequence, the key field γi(ϕ) investigated in this study, which corresponds to the modulus of the ratio of the fields315

shown in Fig. 3c (term (iib) in Eq. (5)) and Fig. 3b (term (i) in Eq. (5)), attains for this particular example application (total

precipitation P , season DJF, regime AT) mainly low values of about γAT (P )≃ 0.1, except for the Bay of Biscay region where

γAT (P )> 1 (Fig. 3d). In some regions the effects of intensity and frequency changes have the opposite sign. For instance,

over northwestern Spain, precipitation intensity in regime AT decreases due to climate change (Fig. 3b) whereas the frequency

increase of AT contributes to an increase of P (Fig. 3c) – because of a strongly positive AT-specific precipitation anomaly320

– resulting in a small negative net decrease of winter precipitation associated with regime AT (Fig. 3a). This first example

indicates that most of the climate change signal of P in DJF that can be attributed to regime AT is determined by the field of

precipitation intensity change associated with the regime and not due to a frequency change of the regime. However, locally,

frequency changes can matter (as shown by values of γAT (P ) on the order of 1 or larger), if they are comparably large (here

the relative frequency change amounts to almost 15%) and if the considered regime has a locally pronounced precipitation325

anomaly P ∗
hist,i.

4.2 Systematic analysis of γi for total precipitation in DJF and JJA

The same procedure, outlined above for the regime AT, can now be applied to all WRs in DJF, in order to obtain the full

decomposition of the climate change signal of P into WR-specific intensity and frequency changes. Figure 4 shows the results

for the regimes AR, EuBL, ZO, and, for comparison, again AT. The patterns of the total WR contribution to the climate change330

signal (left column) show many similarities (e.g., negative values in the Labrador Sea and in most of the Mediterranean, and

positive values over the eastern USA and the region extending from the UK to the Baltic Sea). Indeed, these regime-specific

climate change signals in P look at first sight very similar to the overall climate change signal in P (Fig. 2c). This means

that the climate change signal is, at least in some regions, mainly determined by other factors than the circulation variability

captured by the weather regimes. A prominent example is the strong decrease of precipitation in the Labrador Sea in all regimes.335

This is caused by the poleward retreat of the sea ice edge in the future climate, which will strongly reduce shallow convection
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Figure 4. Decomposition of climate change signal of seasonal mean precipitation P in DJF for regimes (from top to bottom) AT, AR, EuBL,

and ZO. (a,e,i,m) Total contributions of the regimes to the climate change signal (in mm d−1); (b,f,j,n) contributions from WR-specific

intensity changes, i.e., term (i) in Eq. (5); (c,g,k,o) contributions from WR-specific frequency changes, i.e., term (iib) in Eq. (5); (d,h,l,p)

γi(P ) in dimensionless units. Contour lines in (c,g,k,o) are for ϕ∗
hist,i (in mm d−1).

associated with intense cold air outbreaks south of the sea ice edge in the current climate. However, closer inspection of the left

column panels in Fig. 4 also shows important differences between the regimes: (i) south of Iceland, the climate change signal

is either strongly negative, strongly positive, or close to zero in the regimes AT, AR, and EuBL, and (ii) also in the Iberian

Peninsula and along the west coast of Scandinavia there are large differences between the regimes.340

As discussed for regime AT in the previous section, these regime-specific climate change signals are mainly, or even almost

entirely, due to WR-specific intensity changes (2nd column in Fig. 4). The role of frequency changes of WRs, which was

discussed to be locally important for regime AT, is smaller for all other regimes (3rd column) and therefore, for regime ZO

(as well as for the regimes that are not shown), the values of γi(P ) hardly exceed 0.1 (right column), indicating that intensity

changes are at least 10 times more important than frequency changes for explaining climate change signals of P in these345

regimes. For AR, γAR(P ) reaches values above 0.5 southwest of Iceland. The reasons for the lower γ-values over Europe for

the regimes AR, EuBL and ZO compared to AT are mainly the (much) lower frequency changes in these regimes (Fig. 1).
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Figure 5. As Fig. 4 but for seasonal mean precipitation P in JJA.

The same analysis for JJA (Fig. 5) shows first of all generally smaller climate change signals compared to DJF (compare

panels in left columns). In regions where there is still a substantial climate change signal, i.e., in regions that are not masked in

the plots of γi(P ), the analysis reveals mainly low values of γi(P ) (in most regions smaller than 0.3). The exceptions are the350

high values of γAR(P )> 2 in a band stretching from west of Ireland to Denmark, and of γEuBL(P )> 1 in a similar region.

These values result for AR from the exceptionally large relative frequency increase of almost 25% (Fig. 1) and a pronounced dry

WR-specific anomaly of P in this region (of about −1.5mm d−1, see contours in Fig. 5g), yielding a (weak) negative climate

change signal (Fig. 5e). For EuBL, the smaller relative frequency change and similar WR-specific precipitation anomalies lead

to the smaller but still comparatively large values of γi(P ). Except for these two regimes, WR-specific precipitation anomalies355

of P over Europe tend to be lower in JJA than in DJF (compare contours in 3rd column of Fig. 4 and 5), indicating that P in

JJA, compared to DJF, differs less between WRs. This translates directly to low values of the frequency change terms (iib) and

therefore to low values of γi(P ) in most regimes.

4.3 Systematic analysis of γi for the frequency of wet days and heavy precipitation days in DJF

We now return to the season DJF, but consider two different aspects of precipitation climatology: the decomposition is now360

applied to the number of wet days Nwet and to the number of heavy precipitation days Nheavy (as defined in Sect. 2.1). Figure
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6 shows the results for Nwet, for the same four WRs as shown previously for P . First, we note that the climate change signals

of Nwet (left column) are qualitatively similar to those for P , i.e., seasonal-mean wetting in a particular WR goes typically

along with more wet days in the same WR, and vice versa for drying. The exception here is the western North Atlantic where

the climate change signal of Nwet is close to zero, despite a strong increase of P . And as for P , also for Nwet a large part365

of the climate change signal is explained by the “intensity changes” (second column in Fig. 6). This means that, for instance

the reduction of the contribution from regime AT to the number of wet days in the Mediterranean (Fig. 6a) is mainly due to

a reduced rate of wet day occurrence in regime AT in this region. Consequently, values of γAT (Nwet) again tend to be small

(less than 0.3) in most regions with the exception of the North Sea and Baltic Sea where γAT (Nwet) reaches values larger than

1, indicating that in this region and WR, WR frequency changes matter more than changes in the rate of wet day occurrence370

for explaining the climate change signal in the number of wet days. Considering all WRs shown in Fig. 6 and comparing with

the same analysis for P , the γi(Nwet) values appear to be slightly larger.

In stark contrast, for the number of heavy precipitation days shown in Fig. 7, the climate change signals are positive in

almost the entire North Atlantic European region, but the gamma values are small for all WRs and hardly exceed values of

0.15. This shows that for the frequency of heavy precipitation days, i.e., for a characteristic of the precipitation climatology375

that is strongly determined by thermodynamics, WR frequency changes play an even smaller role than for, e.g., the frequency

of wet days.

5 Conclusions

In this study, we introduced a framework that helps quantifying the role of changes in the frequency of WRs to climate change

signals in surface precipitation. This framework is conceptually simple, and can be applied to any meteorological variable,380

WR definition, and climate change signal from any climate model and climate change scenario. As a key variable, we suggest

to calculate the parameter γi(ϕ), which corresponds, for a specific WR i, to the ratio of the contribution from WR frequency

changes to the climate change signal of ϕ to the contribution of WR intensity changes. A value of 1 indicates that both

contributions are equally important. The derivation of γi(ϕ) shows that, for a given WR i, it depends on three independent

factors: (i) the relative frequency change of the WR i due to climate change, (ii) the climate change effect on the intensity of385

the parameter ϕ in the WR i, and (iii) the anomaly of ϕ in WR i, which depends on the skill of the WR classification to separate

contrasting situations in terms of the parameter ϕ.

When applying this framework to seasonal-mean precipitation in the North Atlantic-European region in DJF and JJA in

CESM1-LE simulations under the RCP8.5 scenario, and using a 7-WR classification, it turns out that values of γi(P ) are

typically small (< 0.3). Only for few WRs and in comparatively small regions γi(P ) reached values beyond 1, indicating that390

in individual WRs the frequency changes can matter in regions where these WRs strongly modulate precipitation occurrence

(i.e., where the WR classification is particularly skillful). However, from the field γoverall(P ) (Eq. 7, see Fig. 8a), which is

less than 0.3 in the entire domain, the main conclusion is that when considering the effects of intensity and frequency changes

aggregated across WRs, then indeed, to first order, WR frequency changes are not relevant for explaining climate change
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Figure 6. Decomposition of climate change signal for the number of wet days Nwet in winter (DJF) for regimes as labeled on the left-hand

side of each row. The first three columns show values in wet days per day, otherwise plotting conventions are identical to Fig. 4.

signals in P . The same fields for the number of wet and heavy precipitation days, γoverall(Nwet) and γoverall(Nheavy), are395

shown in Fig. 8b,c, and they confirm the results for P . Consistent with the discussion in the previous section, γoverall(Nwet)

has slightly larger values than γoverall(P ) in northern Europe, and the values of γoverall(Nheavy) are consistently lower, hardly

exceeding 0.05.

There is a combination of reasons why, in our analysis, WR frequency changes only play a minor role. Or, to put it differently,

there are three ways how, with other climate simulations and/or WR classifications and/or variables ϕ, larger γi(ϕ) values could400

be obtained. These three ways correspond to the three factors discussed in Sect. 3:

– larger relative frequency changes of WRs – in our case, they are typically less than 10% and only for regime AR in JJA

reach almost 25%,

– smaller climate change effects on the intensity of ϕ – these effects are large for ϕ= P , ϕ=Nwet, and ϕ=Nheavy , but

might be smaller for other variables, and405

– larger WR-specific anomalies of ϕ, i.e., an increased skill of the WR classification in predicting the variable under

consideration.
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Figure 7. Decomposition of climate change signal for the number of heavy precipitation days Nheavy in winter (DJF) for regimes as labeled

on the left-hand side of each row. The first three columns show values in heavy precipitation days per day, otherwise plotting conventions are

identical to Fig. 4.

It is worth further discussing the last of these factors. In the rigorous conceptual approach we take here there is a very

explicit dependency of the result whether WR frequency changes are relevant or not on the WR classification. Therefore, a

comprehensive answer to the question how important WR frequency changes are for climate change signals should necessarily410

include a variety of WR classifications. An upper-bound to the importance of WR frequency changes would be reached for

the “best possible” WR classification, i.e., the WR classification with the largest regime-specific anomalies or the highest

skill. A measure for assessing the skill of a WR classification in stratifying precipitation is the Brier skill score (Schiemann

and Frei, 2010). It quantifies how much more skillful a WR classification is for predicting daily precipitation, compared to

assuming climatological precipitation values. Calculating the Brier skill score for the 60th quantile precipitation threshold and415

the WR classification used in this study yields values of about 0.2 in western Europe and lower values in eastern Europe in

DJF (Fischer, 2021, their Fig. 4.17). Comparison with the Brier skill scores of more than 70 WR classifications for the 60th

quantile of daily precipitation in DJF as reported by Schiemann and Frei (2010), which are between 0.1 and 0.3, indicates that

the skill of our WR classification is within this range. Therefore, it is unlikely that a different WR classification would yield
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Figure 8. The overall γoverall in DJF as defined in Eq. 7 for (a) seasonal mean precipitation P , (b) the number of wet days Nwet, and (c)

the number of heavy precipitation days Nheavy . Plotting conventions are identical to the right panels in Fig. 4.

much larger values of γi(P ) in DJF. In JJA, however, the Brier skill score of our Atlantic basin-wide WR classification for the420

same precipitation quantile is low with values of less than 0.02 over most of central and eastern Europe.
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There are few exceptions to the general result of small values of γi(P ). In some regions in western Europe and for WRs with

comparatively large frequency changes, γi(P ) reaches values beyond 1. This geographical preference of larger γi(P ) values in

western Europe is related to the fact that precipitation in these regions differs rather strongly between the WRs. In other words,

in these regions, the WR classification explains more of the rainfall variability and therefore, circulation changes as quantified425

by changing WR frequencies, can matter for explaining WR-specific climate change signals in P . As shown in Fig. 8, near the

British Isles γoverall(P ) reaches its largest values of about 0.3, indicating that in this part of the North Atlantic storm track

in DJF, WR frequency changes also contribute about one fourth to the overall increase in P in the considered climate change

simulations (Fig. 2c).

However, the resulting values of γi(ϕ) not only depend on the regime classification, but clearly also on the climate model430

and the climate change scenario, on the region, and on the parameter ϕ. We hope that the conceptual analysis and examples

shown in this study will motivate others to assess γi(ϕ) for different WR classifications, in other regions, and with output from

other climate simulations. In terms of different variables, we briefly compared results for three aspects of precipitation and

found slightly larger values of γi(ϕ) for the number of wet days Nwet than for seasonal-mean precipitation P , and the lowest

values of γi(ϕ) for the number of heavy precipitation events Nheavy. These differences might be related to the fact that some435

meteorological variables are affected strongly by climate change through thermodynamic effects, e.g., the intensity of heavy

precipitation events (Pendergrass, 2018) or the frequency of days above a certain absolute temperature threshold. The larger

the thermodynamic effect of global warming on a certain variable, the larger (and the more uniform across weather regimes)

the intensity change ∆ϕi, the smaller γi. Conversely, for variables for which thermodynamic arguments constrain less their

climate change signal, no physical reason exists for why ∆ϕi should be large (and uniform across weather regimes), and thus440

we expect larger values of γi(ϕ) for such variables.

Several studies explicitly quantified dynamic vs. thermodynamic contributions to climate change. For instance Pfahl et al.

(2017) found that the dynamic contribution to changes in extreme precipitation is mainly important in the subtropics but

not in the midlatitudes. This result is qualitatively consistent with our finding that γi(Nheavy) is small in the North Atlantic-

European domain. However, it is important to mention that our decomposition into WR frequency and intensity changes cannot445

be easily compared to this alternative approach of separating thermodynamic and dynamic effects. WR frequency changes can

be essentially regarded as dynamic contributions, whereas WR intensity changes most likely have a strong thermodynamic

contribution, but may also contain a substantial effect from dynamics. For instance, in a warmer climate, intense cyclones

may become deeper due to enhanced precipitation and diabatic heating (e.g., Büeler and Pfahl, 2019; Sinclair et al., 2020;

Dolores-Tesillos et al., 2022; Binder et al., 2023), and this dynamic contribution would be quantified in our approach as a WR450

intensity increase (assuming here that the intense cyclones still occur in the same WR). It is therefore important to improve in

future studies the understanding of the WR intensity changes. While, at least in some regions, ∆ϕi(P ) is fairly uniform across

WRs (see 2nd column in Fig. 4), which most likely indicates a strong thermodynamic control on these fields, the WR-specific

intensity changes for the frequency of heavy precipitation events, ∆ϕi(Nheavy) (2nd column in Fig. 7), is much less uniform,

which is likely related to dynamical effects such as the preferred location of intense cyclones in different WRs.455
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In future studies, the conceptual γ approach could be extended to decompositions based on the frequency of occurrence

and intensity of synoptic weather systems such as cyclones, anticyclones and fronts. That is, instead of asking how WR

frequency changes affect climate change signals of, e.g., precipitation, one could diagnose the relevance of frequency changes

in the occurrence of cyclones and fronts. Examples of such weather system decomposition were presented in Yettella and Kay

(2017) and in Chang et al. (2022). The approach introduced in this study could provide useful guidance for the analysis and460

interpretation of how weather system frequencies and intensities affect trends in surface weather parameters.
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