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Abstract.

The West Antarctic Ice Sheet (WAIS) is the focus of current research due to its susceptibility to collapse, which could poten-

tially contribute to rising sea levels. To accurately predict future glacier evolution, precise ice sheet models are essential with

regard to suitable approximations of physical behavior to the real system and appropriate input values, as well as computing

power. The ice discharge of outlet glaciers into the ocean is one key factor here, primarily caused by basal sliding of ice. Since5

we cannot directly measure basal properties on a large scale, inverse models can be used to infer the basal drag coefficient by

minimizing a cost function that depends on a velocity misfit and a regularization term.

We conduct basal drag inversions and perform L-curve analyses to find the optimal trade-off between the cost function terms,

ending up with smooth L-curves. Additionally, the domain L-curve is divided into eight subdomains of the study area in order

to reveal how well the inverse method performs in different glaciological settings. It reveals that Pine Island Glacier being the10

best area, and slow-flowing areas such as Roosevelt Island being among the worst in terms of the L-curve behavior for the

basal drag inversion. This highlights the importance of performing a subdomain L-curve analysis, whenever an inversion for a

larger domain is calculated to discover problematic regions. Comprehensive basal drag inversion experiments allow us to test

the dependence of the L-curve and basal drag results on the non-linearity of sliding as well as on the inclusion of subglacial

effective pressure in the friction law. The analysis suggests that non-linear friction laws are preferable to linear sliding because15

of reduced variance of the overall inferred friction coefficient, faster convergence, as well as steeper L-curves leading to a more

accurate choice of weight for the regularization term. We show that a Budd-type friction law that incorporates effective pressure

from a subglacial hydrology model rather than a simple geometry-based approximation achieves an improved performance in

our inverse model. Further comparison reveals that the effective pressure from the hydrology model accounts for a larger part

of the spatial basal drag coefficient structure than the parameterized effective pressure. Allowing the inverted drag coefficient20

to more precisely reflect actual variations in basal properties. Finally, a comparison of the inferred basal drag across WAIS with

observed locations of subglacial lakes reveals a good match, giving us additional confidence in the spatial basal drag structure

revealed by the inverse method.
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1 Introduction

The West Antarctic Ice Sheet (WAIS) experiences massive ice loss and is currently the major contributor of Antarctica to sea-

level change (Shepherd et al., 2018; Naughten et al., 2023). The instability of WAIS and the related ongoing melt may lead to

a future global sea level rise of about 3.3m (Bamber et al., 2009). The ongoing continuous improvement of ice sheet models30

(e.g., Blatter et al., 2010; Seroussi et al., 2019) likely improves the uncertainties in future predictions involved. This allows us

to gain better insights into the mechanisms behind the behavior of ice sheets, e.g., in the ongoing melting and the ice dynamics.

The continuous improvements lead to better initial states of ice sheet models and their related uncertainties in future projections

(Seroussi et al., 2019). In this context of a better understanding of ice sheet processes, it is particularly important to examine the

distribution of friction at the ice-bed interface, as this process has a major influence on the ice flow velocity. The reason is that35

the majority of the high velocities of a glacier are caused by sliding along the bed of the glacier. Since the distribution of friction

underneath the ice sheets is difficult to observe directly, we need ice flow models to determine a realistic basal drag. The motion

of the glacier due to sliding at the base is also strongly linked to the subglacial hydrology (Cuffey and Paterson, 2010; Benn

and Evans, 2010), as, simply put, the occurrence of water lubricates the bed. It is therefore desirable to resemble the subglacial

water pressure on a more realistic and physical basis than it has been done so far in the community (e.g., Arthern et al., 2015;40

Barnes and Gudmundsson, 2022; Kazmierczak et al., 2022). However, since remote sensing data such as surface velocity are

available, the problem of determining the basal drag can be mathematically identified as an inverse problem. Solving inverse

problems using an optimal control approach can help to compute unknown parameters. The application of inversions to infer

the basal drag coefficient is a common approach in the glaciology community (MacAyeal, 1993; Joughin et al., 2004, 2009;

Morlighem et al., 2010, 2013; Habermann et al., 2012; Sergienko and Hindmarsh, 2013; Sergienko et al., 2014; Zhao et al.,45

2018; Wolovick et al., 2023).

The disadvantage of inverse methods is the instability, as all existing errors in the system are reflected in the unknown basal

drag coefficient to be determined, which leads to an inaccurate result. These errors can, for example, be based on incorrect

model physics, such as assumptions for the flow law regarding anisotropy, which can influence the ratio of deformation to

sliding flow, as described in McCormack et al. (2022). Rathmann and Lilien (2022) point out, that neglecting the crystal-50

orientation fabric in the flow law can influence the inferred basal drag coefficient, which can be remedied by including an

isotropic enhancement factor and inverting both the rheology and the basal drag coefficient. In addition, the basal drag coef-

ficient is sensitive to temperature assumptions and thus to the determination of ice rheology (Zhao et al., 2018). Kyrke-Smith

et al. (2018) find that the accuracy of the bed elevation data affects the derived basal conditions and suggest to invert for both,

the basal drag coefficient and the basal topography. The importance of friction laws and thus the capture of subglacial hydrol-55

ogy contribute to a more realistic basal drag coefficient determined from inversions (Schroeder et al., 2013; McArthur et al.,

2023). Overall, there are many assumptions behind every inversion of basal drag, as, for example, there are not necessarily
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enough data available or the aim of the studies differ. However, it would be possible to include all the methods mentioned

in the inversion procedure presented. But, in this manuscript, we focus primarily on the choice of the friction law and the

associated subglacial hydrology to reduce uncertainty in the resulting basal drag coefficient.60

To account for sliding beneath a glacier, a friction law (Weertman, 1957) is applied at the ice-base boundary condition of ice

sheet models. The accuracy of the unconstrained parameters in this law plays an important role in modeling glaciers in the most

realistic sense. In general, the friction law describes the basal drag in terms of basal velocity, a basal drag coefficient, and a

description of subglacial hydrology, which enters the law due to effective (water-)pressure (Budd et al., 1979). These parameters

are some of the least constrained inputs in ice flow models. In order to overcome the difficulties with unconstrained parameters65

the inverse method is used to determine the basal drag coefficient. However, since the effective pressure is also included in the

friction law, it is crucial to find a good representation of the linked subglacial hydrology in order to separate basal properties

that stem from the subglacial hydrology and ’other’ properties. Here, we compare a commonly used parameterized effective

pressure (e.g., McArthur et al., 2023; Wolovick et al., 2023) with an effective pressure from a subglacial hydrology model

(Sect. 2, Subglacial hydrology) to demonstrate the relevance of an improved water pressure description.70

In the inversion process, the basal drag coefficient is controlled by minimizing the misfit between simulated and observed

surface velocities. The integration of a regularization term (Tikhonov and Arsenin, 1977) in the cost function of the basal drag

inversion ensures that unrealistic structures in the solution, which arise due to the ill-posedness of the problem, are smoothed

by penalizing oscillations in the basal drag coefficient. In order to achieve a trade-off between the two cost function terms,

it is necessary to determine a weight for the regularization term with the help of an L-curve (Hansen, 1992; Hansen and75

O’Leary, 1993; Hansen, 2001; Wolovick et al., 2023). For this purpose, we follow Wolovick et al. (2023) and perform an

L-curve analysis that identifies the best weight for the regularized cost function term at the maximum curvature of the resulting

L-shaped curve. In the literature of the glaciological community, the regularization and the related L-curve analysis are not

always applied, when an inversion is performed (e.g., MacAyeal, 1993; Joughin et al., 2004, 2009; Arthern and Gudmundsson,

2010). Further, we are not aware of any literature in which the basal drag inversion for the entire WAIS region (compare Fig. 1)80

is performed using a regularization term, as well as an explicit L-curve analysis (e.g., Joughin et al., 2004, 2009; Ranganathan

et al., 2021). In addition, previous studies usually consider only individual glaciers or regions of WAIS, such as Joughin et al.

(2004), which focuses on the Ross Ice Shelf, or Ranganathan et al. (2021) concentrating on the MacAyeal Ice Stream, as well

as Morlighem et al. (2010) and Gillet-Chaulet et al. (2016) who deal with Pine Island Glacier, and Joughin et al. (2009) and

Sergienko and Hindmarsh (2013) who examine both, the Pine Island Glacier and the Thwaites Glacier. Although Morlighem85

et al. (2013) and Arthern et al. (2015) model the whole Antarctic ice sheet, the results of those studies are nevertheless not based

on a high-resolution mesh. In the literature, a Weertman friction law (Weertman, 1957) is often used (e.g., Morlighem et al.,

2010, 2013; Joughin et al., 2004; Ranganathan et al., 2021) instead of a Budd-type friction law (Budd et al., 1979), in which

no effective pressure is taken into account. It is also common, when using a Budd-type friction law, to use a simple geometry-

based parameterization for the effective pressure (e.g., Arthern et al., 2015; Barnes and Gudmundsson, 2022; Kazmierczak90

et al., 2022). As this parameterization is not ideal due to its strong simplifications on the subglacial processes (e.g., a perfect
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connection to the ocean of marine parts of the ice sheet), it is desirable to leverage results of hydrology models (e.g., Koziol

and Arnold, 2017; Beyer et al., 2018; Gilbert et al., 2022; McArthur et al., 2023).

One objective of this paper is to test whether an improved description of the effective pressure results in a more reliable

basal drag distribution for a major part of WAIS. Therefore we leverage the effective pressure from a physical-based subglacial95

hydrology model in the friction law and apply the common basal drag inversion. We use the effective pressure of the confined-

unconfined aquifer system model (CUAS-MPI; Beyer et al. (2018); Fischler et al. (2023)) as it was shown to perform well

in SHMIP (De Fleurian et al., 2018) and is able to describe different states of the water system. In addition, we conduct

a subdomain L-curve analysis in order to explore how the well-posedness of the inverse problem varies with glaciological

settings. Based on the performed simulations, we examine the basal drag distribution and analyze the influence of the different100

effective pressure maps, as well as the linear and non-linear friction law on the L-curve and on the spatial variability of the

basal drag coefficient.

In the following paper, we first describe the methods and data that we use to perform the inversion for the WAIS (Sect. 2). We

present our results regarding the spatial distribution of the basal drag and the basal drag coefficient along with the obtained L-

curves and the subdomain L-curve analysis (Sect. 3). Finally, we discuss our findings and compare them with lake candidates,105

as well as other studies (Sect. 4).

2 Method

Our simulations are conducted within the open-source, finite-element based Ice-Sheet and Sea-level System Model (ISSM;

Larour et al. (2012)). The basis of our inversion approach is build through the model equations represented by an ice flow

model. Completed with its boundary conditions, we refer to it as our forward model. The unknown basal drag coefficient to be110

controlled by the inversion is contained in the boundary conditions at the ice-base interface. The latter is represented through

both, a (non-)linear Weertman-type (Weertman, 1957), as well as by a Budd-type friction law (Budd et al., 1979) using different

effective pressure fields.

In the following subsections, we describe the ice flow model setup for the study region covering the WAIS. Subsequently,

we present the forward model, as well as the inversion process including regularization and the L-curve analysis.115

2.1 Model setup

In total, we perform six basal drag inversions with an accompanying L-curve experiment (compare Sect. 3). The experiments

encompass setups with linear and non-linear sliding for both, Weertman- and Budd-type friction laws. To review the effect of

different effective pressure fields, we either set this field to an effective pressure from the subglacial hydrology of CUAS-MPI,

to a simple geometry-based parameterization or we even neglect the effective pressure entirely (Weertman friction law).120
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Application to the West Antarctic Ice Sheet

We choose the WAIS domain (Fig. 1) by using the defined ice sheet drainage basins of Rignot (Glovinetto and Zwally, 2000;

Rignot et al., 2011a, c, 2013) from the Ice Sheet Mass Balance Inter-comparison Exercise (IMBIE-3, Rignot et al. (2019)). As

the ice shelves are not included in those basins, we include them with the MEaSUREs Antarctic Boundaries dataset (Mouginot

et al., 2017). We exclude the so-called J-Jpp basin describing the Filchner-Ronne catchment to keep the computational effort125

on a manageable level. However, results of the basal drag of the J-Jpp basin have already been published by Wolovick et al.

(2023), which we do not aim to reproduce. We simulate the basins for Marie Byrd Land and Ellsworth Land without the

Weddell Sea Sector. For the sake of simplicity, we will nevertheless refer to it as WAIS in the following. Figure 1 illustrates

Figure 1. Map of the study domain covering a large part of WAIS. The plots show the observed surface velocities in myr−1 from the

MEaSUREsv2 dataset (Rignot et al., 2011b, 2017). The background imagery displays the ice surface elevation of Antarctica from the

BedMachine Antarctica v2 dataset (Morlighem et al., 2020; Morlighem, 2020). The black line represents the grounding line. The insets (a),

(b) and (c) show zooms to Pine Island Glacier, Thwaites Glacier and the Siple Coast with the Mercer, Whillans, Kamb, Bindschadler and

MayAyeal Ice Streams, respectively

that we are dealing with both slow- and fast-flowing areas in this domain, including Thwaites and Pine Island Glaciers as well

as the Siple Coast ice streams. In Fig. 2a the bed elevation is displayed, which clearly shows that most of the WAIS area lies130

below sea level, with the interior deeper than the margins, making it vulnerable to the marine ice sheet instability (e.g., Hughes,
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Figure 2. Model setup of WAIS domain. (a) Bed topography in m. (b) Surface elevation in m. (c) Ice thickness in m. (d) The initial driving

stress in flow direction in kPa. (e) Observed surface velocity in myr−1 in log-scale from the MEaSUREsv2 dataset (Mouginot et al., 2012;

Rignot et al., 2011b, 2017). (f) WAIS mask with the mask parameter 0 describes the ocean, 1 the floating ice, 2 the grounded ice and 3

describes exposed rock. The subplots (a–d and f) are based on the BedMachine Antarctica v2 dataset (Morlighem et al., 2020; Morlighem,

2020). The white line in the subplots describes the grounding line and the black line delineates the study area. The plots (a–c) are underlain

with a hillshade. Gray areas in (d–e) indicate regions with no available data.

1973; Weertman, 1974; Thomas and Bentley, 1978; Schoof, 2007). The black line in Fig. 1 delineates the grounding line. The

geometry is based on the BedMachine Antarctica v2 dataset (Morlighem et al., 2020; Morlighem, 2020). This dataset includes

bed topography (Fig. 2a), surface elevation (Fig. 2b), as well as ice thickness (Fig. 2c) and the mask for the WAIS (Fig. 2f). As

described in Sect. 2.3 the most relevant data for the inversion procedure to fit the modeled horizontal ice velocities vx,vy are135

the observed ice surface velocities vobs
s . Here we use ice surface velocities from the MEaSUREs v2 dataset (Mouginot et al.,

2012; Rignot et al., 2011b, 2017) as target in the inversion as it has a complete spatial coverage in the modeling domain (Fig.

2e).

Mesh construction

We construct a two-dimensional unstructured, triangular mesh generated by using the Bidimensional Anisotropic Mesh Gen-140

erator (BAMG, Hecht (2006)). The horizontal mesh is refined in dynamic active regions such as the shear margins (Fig. 3a),

the calving front, as well as in fast-flowing areas and outlet glaciers and at the grounding line. The mesh is extruded into 10

vertical layers, so that we get a three-dimensional prism structure of the mesh.
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Figure 3. Maps of mesh characteristics. (a) The generated control field to construct the mesh with different refinements. The white colored

lines indicate the detected shear margins, which are also used to create the mesh through refinement at this position (b) The resolution of the

mesh with different element sizes ranging from 500m to ∼ 19 km.

The overall procedure to generate the mesh is based on a control field construction as described in Wolovick et al. (2023). In

Fig. 3 the underlying control field for the horizontal mesh generation and the element sizes for the horizontal mesh are shown.145

The control field (Fig. 3a) indicates the basis of the refinement strategy. For example, we want to achieve a high resolution

where the ice flow is fast, demonstrated by the yellow colors in Fig. 3a, such as at the grounding line. The mesh resolution

(Fig. 3b) is relatively low in the slow-flowing regions with around 15km resolution and the largest elements have a resolution

of 20km. The red and orange colors indicate a high resolution between 500m and 1km exactly where the grounding line and

the shear margins are located. This resolution is about a factor 3−6 higher than in Morlighem et al. (2013) (they use 3 km) and150

a factor 5− 10 higher than in Arthern et al. (2015) (they use 5 km for the whole domain of Antarctica). Overall the resulting

mesh consists of 417,284 2D-elements. At the end of the meshing procedure all relevant gridded data like the bed topography

(Fig. 2a), the ice thickness (Fig. 2c), as well as the observed surface velocities (Fig. 2e) and the mask (Fig. 2f) are interpolated

with a multi-wavelength interpolation introduced in Wolovick et al. (2023) onto the mesh.

2.2 Forward model155

We use a forward model that models the ice dynamics in an approximated way and is explained by the following higher-order

Blatter-Pattyn approximation (HO; Blatter, 1995; Pattyn, 2003).
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Figure 4. Results of the 1D steady-state advection-diffusion thermal model. (a) Vertically averaged ice rheology parameter B. (b) Basal melt

rate of grounded ice represented with a pseudo-log scale, with gray colors representing the floating ice. The black line denotes the study area

and the thinner black line represents the grounding line.

The density of ice is denoted by ρi, g represents the acceleration of gravity, hs is the surface elevation of the glacier, and η is

the ice viscosity. The latter is described by the constitutive material law for ice Glen’s flow law (Glen, 1953).160

η =
B

2ε̇
n−1

n
e

, (2)

where B is the ice rheology parameter, ε̇e =
√

1
2 tr(ϵ̇2ij) the effective strain-rate with ϵ̇ij the strain-rate tensor and n = 3 the flow

exponent. The temperature is computed by using a 1D vertical steady-state advection-diffusion thermal model as described in

Wolovick et al. (2023). To force this model, we use surface temperatures (Comiso, 2000), accumulation rates (mean of Van

De Berg et al. (2005) and Arthern et al. (2006)), as well as a geothermal heat flow (sum of Martos et al. (2017) and calculated165

shear heating). Subsequently, we compute the flow rate factor B (Cuffey and Paterson, 2010). The vertically resolved rheology

B is required for our HO model while the resulting basal melt rates of the thermal model (Fig. 4b) serve as an input for CUAS-

MPI (compare Sect. Subglacial hydrology). Figure 4a reveals a belt in the center of the study area that exhibits increased ice

stiffness associated with low surface temperatures (not shown here) and high surface elevations (compare Fig. 2b). In contrast,

we can observe relatively soft ice at the margins of the domain, where warm surface temperatures and lower surface elevations170

predominate. The thermal model suggests that about 30% of the rectangular CUAS-MPI domain enclosing the study area

in Fig. 4b are frozen to the bed. High melt rates (> 0.5m yr−1w.e.) are located close to the grounding line of Pine Island

and Thwaites Glacier, but those areas cover only about 0.2% of the total warm-based area. Most of the melt rates are in the

mm-range (median: ∼ 6mm yr−1w.e.) and clearly show the fast-flowing areas.

Boundary conditions are given at the ice-atmosphere Γs, ice-bed Γb and ice-margin Γ− interfaces to constrain the forward175

model. Towards the ice-atmosphere Γs a traction-free homogeneous Neumann boundary is assumed. The lateral ice-margin

boundary Γ− is constrained by an in-homogeneous Dirichlet condition in terms of observed surface velocities v = vobs
s . At the
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ice-bed interface Γb we employ a friction law acting beneath the ice sheet. This friction law includes the unknown basal drag

coefficient k, which we want to determine with our inversion approach. In ISSM the basal friction law is implemented in terms

of basal drag τ b as180

τ b =−k2Nr||vb||
1−m

m
2 vb. (3)

Here, vb is the basal velocity, m the friction law exponent, r the effective pressure exponent and N = pi− pw denotes the

effective pressure as a function of the ice pressure pi and the water pressure pw. If the exponent of the effective pressure is

r = 0, i.e., N is neglected in Eq. (3), we obtain a Weertman-type friction law (Weertman, 1957). Otherwise, when r > 0 holds,

we obtain the Budd-type friction law. In the case of m = 1, the law is linear in terms of velocity, but in the case of m > 1185

it becomes non-linear in velocity. Throughout the study, we set r = 0 when a Weertman sliding law is used and denote the

corresponding basal drag coefficient kW. We set r = 1 when a Budd-type sliding law is employed and denote the related basal

drag coefficient kB. We carry out experiments with these sliding laws using linear sliding, i.e., m = 1, and non-linear sliding,

i.e., m = 3. We compare a parameterized effective pressure N := Nop against one from a hydrology model N := NCUAS,

described in Sect. 2.2 Subglacial hydrology. The effective pressure Nop is described by Nop = pi− pw = ρigH − ρwg(−hb)190

assuming a perfect hydrological connection to the ocean, depending on geometry data like the ice thickness H , as well as the

bed topography hb and the water density ρw. Note, that we allow a negative water pressure. Details of the effective pressure N

are described in the next section.

Subglacial hydrology

In order to overcome shortcomings in the effective pressure parametrizations, we leverage a simulated effective pressure NCUAS195

from the MPI parallel version of the Confined-Unconfined Aquifer System model (CUAS-MPI; Beyer et al. (2018); Fischler

et al. (2023)). The model is based on an effective porous media approach (single-layer, Darcy-type flow) and solves an evolution

equation for the hydraulic head

h =
pw

ρwg
+ hb + zw, (4)

where ρw is the density of water and 0≤ zw ≤ b is the elevation within the aquifer of thickness b. The hydraulic transmissivity is200

spatially and temporally varying and evolves due to channel wall melt, creep-closure and cavity opening. This makes it possible

to simulate both inefficient and efficient water transport without resolving individual channels. The ice sheet geometry for the

hydrology model is also based on the BedMachine v2 dataset, but cropped out for the area shown in Fig 2 and interpolated

onto a 1 km regular grid. CUAS-MPI also needs a mask to distinguish between active points and boundary conditions. This

mask is based on the interpolated bed elevation and ice thickness datasets from BedMachine taking into account the floating205

condition. No-flow boundary conditions are used along the grounded part of the basin delineation (black line in Fig 2) and next

to ice-free land (mostly rock outcrops). To avoid water flowing into areas that are most likely to be frozen to the bed, no-flow

conditions are imposed in areas where the ice thickness is below 10 m or the bed elevation is 2000 m above sea level. At the

ocean boundary, a Dirichlet condition (h = 0m) is applied. We initialize the head so that the water pressure is 90% of the
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Figure 5. Two different effective pressure distributions for WAIS. (a) Geometry-based effective pressure Nop ranging from 0 to 36MPa. (b)

Effective pressure NCUAS based on the subglacial hydrology model CUAS-MPI results ranging from 0 to 8MPa, including the modifications

for areas that are not part of the CUAS domain.

ice overburden pressure. The model is forced with the steady but spatially variable ice sheet basal melt distribution (Fig. 4b)210

based on the 1D vertical steady-state advection diffusion thermal model that is also used for rheology (Fig. 4a) in the ISSM

model set-up. The basal melt rate in Fig. 4b reflects the velocity field, which is reasonable as it is included in the computation

of the melt rates. The relatively high values of basal melt rate result from high rates of shear heating. We run the model with

1 hour time steps for 10 years using the same model parameters as in Beyer et al. (2018, Tab. 1 and 3) except we use an aquifer

thickness 1 m and a smaller minimum transmissivity (Tmin = 10−14 m2 s−1).215

Since we did not apply CUAS-MPI to ice rises, we set NCUAS to the hydrostatic pressure Nop. Also, rock outcrops shown in

Fig. 2f need special treatment, as they are no data entries. We interpolate over them on the CUAS grid. Finally, we interpolate

the mentioned regions to the finite element mesh. Since Thurston Island is not included in the CUAS-MPI model domain, we

set it to ice pressure pi and neglect the water pressure due to the predominating low velocities at these locations.

The effective pressures Nop and NCUAS are displayed in Fig. 5. In contrast to NCUAS (Fig. 5b), the simple parameterization220

of the effective pressure Nop (Fig. 5a) reaches a much higher magnitude of 30MPa in the slow-flowing areas of the domain

than the effective pressure NCUAS ranging only up to 8MPa. Further, the structure of the effective pressure from the subglacial

hydrology model NCUAS shows a similar distribution as the velocity field (compare Fig. 1), as expected.

2.3 Basal drag inversion

Parameter identification problems occur in ice sheet modeling because some relevant parameters are difficult to observe di-225

rectly, like the distribution of the basal drag underneath the ice sheets. These problems are referred to as inverse problems in the
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sense that we want to infer from an observed effect of a system the underlying but not measurable cause. In ice sheet models

this can be represented through the observed ice surface velocity as the observed effect and the unknown basal drag coefficient.

In glaciology, such problems can be described by minimizing a cost function (Eq. (5)), while satisfying the underlying

forward model and controlling the unknown basal drag coefficient k.230

min
k

Jraw(vs,k) =
∫

Γs

1
2
((vx− vobs

x )2 + (vy − vobs
y )2)dΓs + λ

∫

Γb

1
2
||∇k||22 dΓb. (5)

The first term of Eq. (5) describes the absolute velocity misfit with vobs
s = (vobs

x ,vobs
y ) the observed ice surface velocity, vs =

(vx,vy) the modeled ice velocity and k the respective control parameter for the inversion. Due to the general ill-posedness

of inverse problems (Hadamard, 1902), it is difficult to solve these problems. Even small measurement errors in the observed

surface velocities vobs
s can lead to significant and unrealistic artefacts in the unknown basal drag coefficient k in the simulated235

fields. To improve this instability of the problem, it is beneficial to regularize it. Therefore the second summand is added

to the cost function (Eq. (5)), describing a typical Tikhonov regularization term (Tikhonov and Arsenin, 1977) by penalizing

oscillations in the basal drag coefficient k. This additional term is equipped with a weight λ which can be derived by performing

an L-curve analysis. A L-curve analysis is meant to be a trade-off curve between the first cost function term Jraw,obs and the

regularization term Jraw,reg.240

The idea behind conducting an L-curve analysis is to pick the best weight λ in the corner of the "L-"shape. To avoid the

arbitrary choice of finding the best λ value by hand-picking, we determine a smooth L-curve and calculate the maximum

curvature for determining the best λ value following the method of Wolovick et al. (2023). For the L-curve analysis, we use a

range of λ ∈
[
10−2,104

]
, as well as 25 logarithmically spaced samples. For every sample, a basal drag inversion is performed.

We also considered other λ ranges that included even smaller λ values, e.g., λ < 10−2. Here, using λ ∈
[
10−3,103

]
(compare245

Sect. 3), we obtain an extended small-λ limb for the inversion runs including non-linear friction laws and can thus determine

the corner of the L-curve more clearly. At very small λ values we observed that no convergence is achieved for linear friction

laws. From a mathematical point of view, this is reasonable, as the problem is again non-convex due to the non-linearity of the

forward model (Eq. (1)) and the regularization contributes too little. In addition, the initial guess of the basal drag coefficient

k also has an influence on the convergence of the inversion(compare convergence criteria Eq. (9)). Therefore, it must be well250

quantified. A good approximation for the initial basal drag coefficient kinit can be computed from the driving stress and the

observed ice velocity as (compare, e.g., Morlighem et al. (2013))

kinit =

(
max(0, τd)

N ||vobs
s ||1/m

2

)1/2

, (6)

where τd =−ρigH∇hs ·vobs
s /||vobs

s ||2 the driving stress in flow direction. In the case of Weertman friction, N is set to 1 in

Eq. (6) and for the Budd-type friction law a minimum value of 100Pa is used. For the velocity we use a minimum value of255

0.1m yr−1 to also prevent division by zero.

We observed that it can be useful to smooth the initial value kinit slightly, especially in the case of the non-linear friction

law with m = 3, in order to reach convergence. The reason for this is probably that very fine structures in the initial basal drag
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coefficient kinit are too complex for the solver, as the convergence criterion depends on the initial drag coefficient kinit (Eq. (9))

and also it may not be possible to find a solution for the stress balance in this case.260

Following again Wolovick et al. (2023), we introduce a characteristic scale to normalize our cost function in Eq. (5) before

we carry out the inversion procedure as described above. This is important to ensure that the parameter space (range of λ

values) analyzed in the L-curve is easy to identify and interpret. This is the case, when λ values are unitless and of order unity.

Thus, the optimal regularization weight λ in the maximum curvature can be found more easily in the parameter space and it is

easier to evaluate whether the degree of regularization is small or large. The terms of the scaled cost function J(vs,k) can be265

described as

J(vs,k) = Jobs(vs) +λJreg(k), with

Jobs(vs) =
1

Sobs

∫

Γs

1
2
((vx− vobs

x )2 + (vy − vobs
y )2)dΓs and

Jreg(k) =
λ

Sreg

∫

Γb

1
2
||∇k||22 dΓb.

(7)

The scaling terms Sobs and Sreg, which are described through the a-priori estimation of the characteristic magnitudes of the

corresponding terms, are

Sobs =
∫

Γs

||vobs
s ||22 dΓs = Aσ2

obs and

Sreg = A
(πσk

H̄

)2

.

(8)270

Here Sobs is defined by the variance of the surface velocity observations vobs
s , where A is the area of the grounded domain and

σ2
obs the root-mean-squared (RMS) amplitude of the observed surface velocity. The scaled regularization term Sreg has the same

magnitude as the final drag coefficient guess, where A is again the grounded domain area, σk the standard deviation of kinit

(Eq. (6)) and H̄ the mean ice thickness. A more detailed description of the derivation of Sreg can be found in Wolovick et al.

(2023).275

Our non-linear forward model (Eq. (1)) is solved with a Picard iteration scheme (iterative fixed-point method, Hindmarsh

and Payne (1996); Smedt et al. (2010)) implemented in ISSM. The remaining linear systems of equations are solved with an

iterative GMRES (Generalized Minimal Residual Algorithm, Saad and Schultz (1986)) solver combined with a Block Jacobi

preconditioner provided by PETSc (Balay et al., 1997, 2019). For simplification, the viscosity is set independent of the velocity

in the adjoint equations (e.g., MacAyeal, 1992; Morlighem et al., 2013). The linear adjoint equations obtained, represent a280

good approximation to the exact adjoint equations (Morlighem et al., 2013). In order to minimize the cost function of our basal

drag inversion a limited quasi-Newton technique the Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS,

Nocedal (1980)) called M1QN3 (Gilbert and Lemaréchal, 1989) is used. This algorithm provides two different convergence

criteria, the cost function convergence criterion ∆xmin and the gradient relative convergence criterion ϵgttol, described in Eq. (9).
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285

||J(vi,ki)− J(vi+1,ki+1)||< ∆xmin

||∇J(vi,ki)||
||∇J(v0,k0)||

< ϵgttol

(9)

Where ∇J denotes the gradient of the cost function J at (vi,ki) with i displaying the iteration steps. The initial guess is

described through v0 := vobs
s and k0 := kinit.

3 Results

First, we analyze the corresponding L-curves of the six experiments (two types of friction laws and three effective pressure290

realizations), as well as the optimization convergence behavior. We present a subdomain L-curve analysis for eight different

subdomains of our study area in order to explore the dependence of regularization and inverse problem ill-posedness on

glaciological settings. We examine the influence of the effective pressure realizations and the linear and non-linear friction

laws on the inferred basal drag distributions, as well as on the L-curves. Subsequently, we show the spatial distribution of the

best estimate basal drag of our study area.295

3.1 L-curve analysis

In Fig. 6 the L-curves for all six conducted experiments are shown. The first row of Fig. 6 displays the L-curves with linear

sliding m = 1 for Weertman and Budd with Nop and NCUAS; the second row shows the L-curves with non-linear sliding m = 3,

respectively. Each subplot (Fig. 6a–f) illustrates the data costs Jobs in relation to the regularization costs Jreg with the black

dots representing an inversion run for each of the 25 different λ values. The smoothed trade-off curve is characterized by the300

black line which lies through the 25 different model points. The red line indicates in which sector of each L-curve a λ value

should be chosen. This corner region ranges from the maximum λmax value to the minimum λmin value. Where λbest, displayed

in Fig. 6, describes the maximum curvature of the respective curve.

Note that the L-curves with a linear friction law m = 1 are given for a range of λ ∈
[
10−2,104

]
and those using a non-linear

friction law for a range of λ ∈
[
10−3,103

]
(compare Sect. 2.3). This is because the resulting L-curves with linear sliding are305

very flat when using a lower range of λ ∈
[
10−3,103

]
. This makes it even more difficult to select a corner region, especially

when the vertical limb is barely recognizable. Conversely, a steeper form of the "L" can be recognized for the L-curves with

non-linear friction laws and a higher range of λ ∈
[
10−2,104

]
. In this case, the flat limb for m = 3 is not prominent enough,

which in turn makes it again difficult to select a corner region and thus the λbest value. To obtain a proper L-curve shape in

which both, the corner region and the λbest value can be optimally determined, we decided to use the most suitable ranges310

for the respective L-curves. In addition, the characteristic scale (Eq. (8)), which we introduced in Sect. 2.3, helps us to find a

matching λ range that contains both limbs of the L-curve and thus guarantees a valid corner region.

We also found that if the λ range for m = 1 is taken too low, many outliers can be found among the smaller λ values. We

already mentioned in Sect. 2.3 that we observed difficulties in achieving convergence for λ values that are too small, especially
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Figure 6. All six conducted L-curves in a log-log plot for the regularization cost Jreg against the data cost Jobs. The black dots indicate the

inversion result for each λ value, the black line describes the smooth trade-off curve and the red color shows the corner region of the L-curves.

Gray dots indicate outliers. (a) L-curve result for the linear Weertman friction law with λbest = 0.33 (b) L-curve for the linear Budd-type

friction law including effective pressure from geometry Nop with λbest = 2.4 (c) L-curve result for the linear Budd-type friction law using the

effective pressure from CUAS-MPI NCUAS with λbest = 1.3 (d) L-curve for the non-linear Weertman friction law with λbest = 2.4 (e) L-curve

result including linear Budd-type friction law for the effective pressure from geometry Nop with λbest = 0.11 (f) L-curve for the effective

pressure NCUAS with λbest = 0.5.

when a linear friction law is chosen for the inversion in a range of λ ∈
[
10−3,103

]
. This is rather a numerical problem than one315

resulting from the mechanical system of the model, since the problem becomes non-convex if the regularization is too low, i.e.,

if the λ values are really small. However, one possibility in this case is to avoid small λ values, which are unimportant from a

mathematical perspective anyway, by shifting the λ range upwards to higher values. In addition, we noticed, that inversion runs
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using a non-linear friction law have more convergence difficulties than runs with a linear friction law. In our case, a further

smoothing of the initial drag coefficient kinit (see Eq. (6)) improved the convergence results. This makes the initial field simpler320

and less noisy and thus easier to find a solution for the stress balance solver. In the case of inversion runs using a non-linear

friction law we had to smooth the initial drag coefficient kinit far more than in the case of linear friction laws. In general, it

helps to further adjust the convergence criteria ϵgttol and ∆xmin (Eq. (9)), if the convergence of the optimization is not achieved.

For example, when an inversion only converges with ∆xmin during the line search, it is recommended to set ∆xmin more strictly.

In our case, we achieved the best results with ϵgttol = 10−3 and ∆xmin = 10−5 for inversion runs using a linear friction law. For325

convergence of the L-curve runs with a non-linear friction law, we had to set the convergence criterion much more strictly to

ϵgttol = 10−6 and ∆xmin = 10−4. This was also observed in the study by Wolovick et al. (2023) when non-linear friction laws

are used. Overall, we were able to significantly reduce the outliers of the different L-curves and achieved convergence for most

of the inversion runs, when using the mentioned adjustments.

Despite the choice of a different, upward-shifted λ interval, the L-curves with a linear friction law are still very flat in330

shape compared to those of the non-linear friction law. Nevertheless, visually all of these six L-curves have the desired and

good-looking "L"-shape. This impression can be trusted, because we use a log-log plot with the same scaling for both axes as

described in Wolovick et al. (2023), e.g., Fig. 3. Overall, we can observe in each of the six L-curves a smooth monotonic result

with a maximum of one outlier per L-curve. In addition, the smooth trade-off curve of each L-curve fits the model points very

well. The λbest value, which we pick by the maximum curvature of our curve fitting procedure is relatively in the corner of335

almost all of the L-curves. Except for the λbest value in Fig. 6a,e, which would probably be selected visually at a slightly higher

value. This is due to the fact, that we pick the peak curvature to choose the λbest value. Looking at Fig. 9b–d and Fig. 10b–d,

which represents the corresponding cost curvature, we observe that every shown total cost curvature in black has a clear peak

except the one of Fig. 9c and Fig. 10c corresponding to the experiments in Fig. 6a,e. In these two figures the total curvature

has a broad region of generally high curvature representing the visual corner and with a narrow small peak at the side. In our340

method, this side peak is selected instead of the mean value of this broader region, which explains why the λbest is not selected

exactly in the corner of the L-curve.

For all six L-curves together, the λbest value ranges between [0.11,2.4]. Compared to other L-curve results we obtained, not

shown in this manuscript, we can conclude that this is a relatively small range of λ values. Overall, these good results from the

L-curves of the six experiments give us confidence that our model procedure is trustworthy.345

Figure 7 shows the convergence of the total cost function J for all six experiments of the optimization based on the λbest

weight (labeled in Fig. 6). The x-axis displays the number of iterations required for the cost function J to reach an optimum.

In the case of a linear friction law (Fig. 7a), 200 iterations are required on average. However, if a non-linear friction law is

used (Fig. 7b) fewer iteration steps of around 120 are required until convergence is reached. But it is remarkable that the run

with a non-linear Budd friction law employing Nop requires up to 60 iterations more than the other two runs using a non-linear350

friction law. In the case of the linear friction law (Fig. 7a), the inversion using a Weertman friction law requires significantly

more iterations (about 70) for convergence than the two with the Budd-type friction law. In both, the linear and non-linear cases,
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Figure 7. Convergence of cost function J for the respective best weight λbest of all six optimization runs. Note the different ranges of iteration

steps for the x-axis. (a) Convergence for the three experiments using a linear friction law. (b) Convergence for the three experiments with a

non-linear friction law. The yellow line indicates the convergence of the inversion using a Weertman friction law, the dark blue line denotes

the convergence of the inversion run with Budd-type and Nop and the turquoise color characterizes the convergence of the run with Budd-type

using NCUAS, respectively for plot (a) and plot (b).

the inversions involving a Budd friction law with the effective pressure NCUAS require the least iterations until convergence is

reached.

Subdomain L-curve analysis355

In order to explore how the optimal regularization and the ill-posedness of the inverse problem depends on glaciological

settings, we analyze L-curves for selected subsets of our domain. The subdomain L-curve analysis is performed for a linear

Budd-type friction law experiment marked with blue color (Fig. 8) as well as for the non-linear Budd friction law represented

in red color (Fig. 8) including NCUAS. Figure 8a shows the eight different subdomains, with the goal of including a wide variety

of glaciological settings. We choose subdomains representing the main trunks of Pine Island (Fig. 8b) and Thwaites Glaciers360

(Fig. 8c), upstream tributaries of Thwaites (Fig. 8d), a slow-flowing region around WAIS Divide (Fig. 8e), tributary glaciers

of Whillans that cross the Trans-Antarctic Mountains in the presence of many rock outcrops (Fig. 8f), the shear margin of

Whillans Ice Stream (Fig. 8g), the fast-flowing trunks of Bindschadler and MacAyeal Ice Streams (Fig. 8h), and finally one

subdomain including Roosevelt Island (Fig. 8i).

For each subdomain, we compute the cost function components Jobs and Jreg including only model elements within the365

subdomain region. Since we do not recalculate the characteristic scaling factors for these subdomains or adjust for the fact that

we are integrating over a smaller area, these subdomain L-curves are shifted towards smaller values relative to the L-curve for

the entire domain, but the relative shape of the subdomain L-curves should still reflect the glaciological differences between

these regions.

The subdomain analysis results in a variety of different L-curve behaviors for both shown experiments (Fig. 8). When370

assuming a linear friction law, Figure 8 demonstrates in blue color that the L-curves of the various subdomains provide very

smooth results and outliers are only detected for very small λ. Especially the subdomains Fig. 8b,c, as well as f–h show a
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Figure 8. Subdomain L-curve using the data cost Jobs (y-axis) and regularization cost Jreg (x-axis) from the experiments m = 1, NCUAS and

m = 3, NCUAS. (a) Shows the study area plot from Fig. 1 with the eight selected subdomains marked by the dashed black lines. The labels

(b–i) of the different subdomains reflect the corresponding L-curves. (b–i) display the eight L-curves associated to the subdomains in blue

color for the experiment m = 1, NCUAS and in red color for the experiment m = 3, NCUAS.

well-behaved L-curve with a good curvature. In contrast, when assuming a non-linear friction law, we obtain the smoothest

L-curve (red color) for the subdomain including the Pine Island Glacier (Fig. 8b–i). Furthermore, the subdomain including

the rock outcrops region (Fig. 8f) and the subdomain covering Thwaites Glacier (Fig. 8c) reveal relatively smooth L-curves375

with a well-defined curvature. But overall, we get many outliers in the L-curves for larger λ using the non-linear friction law

such as in the subdomains of the WAIS divide (Fig. 8b), in the area of shear margins from Whillans Ice Stream (Fig. 8h), in

the upstream tributary of Thwaites Glacier (Fig. 8c), as well as in the L-curve of the MacAyeal and Bindschadler Ice Streams

(Fig. 8h). Showing us, that the smooth L-curve incorporating the whole model domain (Fig. 6f) suppresses those outliers for

increased λ values. But as mentioned previously in Sect. 3.1 we observed the effect that when using non-linear sliding many380

outliers appear for higher λ values in the L-curves if the lambda range is shifted towards higher λ values. Therefore we shifted

the λ range further downwards. This shift for λ could possibly already lead to an improvement in the smoothness of the L-curve

when integrating over the entire domain, but not for the individual subdomains. This could also be explained by the fact that

some of the subdomain L-curves are very smooth and have fewer outliers, and if these predominate, the few outliers in other
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areas are suppressed during integration over the entire domain. The subdomain covering Roosevelt Island generated a quite385

steep L-curve for both linear and non-linear sliding, with only a slight hint of a corner at the lower end (e.g., Fig. 8i). It is

possible that this region might show a stronger corner in its L-curve if we extended the analysis to smaller λ values. However,

observed velocity is very slow in this ice rise, and the apparent flattening at the low end may simply reflect the inability of

the inverse model to reduce misfit below the noise level of the observations. In that case, the straight-line (power-law) shape

of the Roosevelt Island L-curve may reflect the fact that this ice rise is likely frozen to the bed (Martín et al., 2006), and390

thus is poorly suited to a basal sliding inversion. In contrast, we observe in the results for both L-curves in Fig. 8 that the

subdomain in the upstream tributary of Thwaites (Fig. 8c) as well as the subdomain in the WAIS divide (Fig. 8e) reveal a

very flat L-curve. This suggests that subdomain L-curves characterized by lower velocities have no major relevance for the

individual basal drag inversions, as Jobs remains for each regularization weight λ in a similar order of magnitude. Indicating

that not much regularization is required, as the variability in the basal drag coefficient might be lower in these regions. This is395

especially the case when linear sliding is used. It could be possible, that a shift towards a higher λ range would show a proper

curve. For m = 3 this is not the case, as we have significantly more outliers in both regions for higher λ values, as mentioned

before. Conspicuous is that the subdomain covering many rock outcrops of the tributary glaciers of Whillans (Fig. 8f) shows

a relatively smooth behavior for m = 1 and m = 3. Since the modeling of rock outcrops is not straightforward, this gives us

confidence in our treatment of modeling those areas.400

If we compare the L-curves of the subdomains in Fig 8 for the experiment m = 3, NCUAS) to those of the experiment

m = 1, NCUAS, we can recognize that there are significantly fewer outliers for the linear sliding case, which only occur for

very small λ and the L-curves also appear smoother. In general, this is consistent with the results obtained for the L-curves

of the entire domain, because here the L-curves using linear sliding (Fig. 6a,c) also exhibit more outliers for smaller λ and

the L-curves with non-linear sliding law (Fig. 6d–f) displays only outliers for larger λ. Despite this different behavior, the405

general shape in terms of steepness and flatness of the L-curves remains the same for non-linear and linear sliding across all

subdomains. But as observed in Sect. 3.1, the L-curves including non-linear sliding exhibit a steeper behavior.

We can conclude that when using linear sliding laws, the different glaciology settings have no recognizable impact on the

L-curves, since only a few outliers occur (Fig. 8). However, if a non-linear sliding law is used, the influence of different glacio-

logical factors seem to be of greater importance. We therefore suggest to perform a subdomain L-curve analysis, whenever410

a basal drag inversion for a larger model domain is considered, such as WAIS. In particular, when those inversions lead to

unexplainable issues, this analysis can be used to find errors that are not directly accessible or even to discover specific regions

that could cause these problems. Overall, we can learn from this subdomain L-curve analysis how the L-curve behaves for re-

gions with different glaciological settings. We observe that the region covering shear margins causes the biggest problem when

a non-linear sliding law is included. From slow-flowing areas like the subdomain of WAIS divide or the upstream tributary415

of Thwaites Glacier we conclude that they have no significant influence on the regularization regardless of whether linear or

non-linear sliding is used. The areas of rock outcrops have not such a big influence on the L-curve as we expected. Considering

the subdomains that include fast-flow regions like the Thwaites Glacier, the Pine Island Glacier or the Siple Coast for both

linear and non-linear sliding, we observe a relatively smooth behavior of the subdomain L-curves.
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Table 1. Table of statistical values for the grounded domain (Fig. 2f) of all six conducted experiments each evaluated at its λbest point.

The reference experiment with the Weertman sliding is denoted by k2
W and Jobs,W with m = 1 and m = 3 respective, depending on which

experiment is considered. We consider the variance σ2 of the logarithmic squared basal drag coefficient ln(k2) and the logarithmic basal drag

ln(τb), as well as the variance ratio of both. The correlation R2 of effective pressure N and basal drag coefficient k2 regarding the reference

experiment k2
W is taken into account. The table displays the observational costs Jobs and the velocity equivalent of Jobs scaled by the velocity

absolute scale RMS. For the valuation of the whole model, we inspect the total model ratio with respect to the variance σ2 of the ratio ln(k2)

to ln(k2
W) times the ratio of velocity misfit Jobs. The Table 1 from Wolovick et al. (2023) serves as a reference for this table.

k2 var τ b var Var ratio Correlation Obs cost Equiv ∆vs Total var ratio

Experiments σ2(ln(k2)) σ2(ln(τ b))
σ2(ln(k2))

σ2(ln(τ b))
R2(N,k2

W) Jobs RMS×
√

Jobs
σ2(ln(k2))

σ2(ln(k2
W))

× Jobs
Jobs,W

(grounded domain) (unitless) (unitless) (unitless) (unitless) (×10−4) (m yr−1) (unitless)

m = 1, Weertman 9.07 4.14 2.19 - 38.49 20.48 1.00

m = 1, Budd, Nop 4.86 2.54 1.91 0.28 58.55 25.26 0.81

m = 1, Budd, NCUAS 6.28 2.78 2.26 0.38 46.96 22.62 0.84

m = 3, Weertman 1.91 1.29 1.48 - 86.46 30.70 0.47

m = 3, Budd, Nop 3.96 3.09 1.28 0.28 39.90 20.85 0.45

m = 3, Budd, NCUAS 1.72 1.77 0.97 0.38 71.84 27.98 0.35

3.2 Effective pressure420

In order to test the influence of subglacial hydrology realizations on the basal drag inversion results, we employ friction laws

both with (Budd) and without (Weertman) effective pressure included. For the Budd-type law, we test both an effective pressure

Nop obtained from geometry, Fig. 5a), as well as one taken from the hydrology model CUAS-MPI NCUAS (Fig. 5b). We first

analyze the impact of using effective pressure on our six L-curves (Fig. 6) followed by the effect on the spatial distribution of

the basal drag.425

Figure 9 a displays the three different L-curves that we obtain when using a non-linear friction law m = 3. The dark blue

colored L-curve including Nop in the friction law is very close to the L-curve using a Weertman-type friction law regarding

the Jobs and Jreg values. In contrast, the turquoise L-curve including NCUAS in the friction law is a bit steeper and shifted

towards higher Jreg values. In addition, the L-curve is moved further upwards to a higher Jobs error. This is supported by a

value of Jobs = 71.84m yr−1 for m = 3 and NCUAS which is relatively high compared to Jobs = 39.90m yr−1 for m = 3 and430

Nop (Table 1). But overall, we experienced fewer convergence problems with using NCUAS in the Budd friction law for the

L-curve illustrated with turquoise color. This is also emphasized by the absence of outliers, resulting in a very smooth L-

curve. The λbest = 0.5 value for the turquoise-colored L-curve is located between the other two λbest values of the experiments

and, from a visual perspective, fairly matches the corner of the L-curve. In comparison, Fig. 10 shows the three L-curves

for the linear friction law case. Here, the λbest value of the L-curve with NCUAS is again in the middle of the λbest value of435
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Figure 9. L-Curves (data cost Jobs vs. regularization cost Jreg) with non-linear Weertman- and Budd-type friction laws. (a) L-curve for non-

linear Weertman sliding in yellow color, for the non-linear Budd friction law including Nop in dark blue, with NCUAS in turquoise. The solid

line represents the smooth trade-off curve, the thicker line characterizes the corner region and the white diamond marks the λbest value in

each of these L-curves. (b–d) display the cost curvature d2(ln(J))

d(ln(λ))2
dependent on λ in the order for Weertman sliding (no N ), Budd-type with

Nop and NCUAS. Where the gray line represents the total cost function J , the red line the regularization cost function term Jreg and the blue

line the velocity misfit cost function term Jobs in each of these three plots. One inversion run is detected as an outlier for Weertman sliding

and Budd, Nop, respectively illustrated through the non-filled circle.

the two other L-curves, but now significantly higher at λbest = 1.3. In addition, the L-curve using linear Weertman sliding

has now a significantly lower λbest = 0.33 value as in the non-linear sliding case (compare Fig. 6d). The one with Nop is

significantly higher with λbest = 2.4 compared to the non-linear friction law (compare Fig. 6e). Moreover, the L-curve for Nop

and the one for NCUAS are almost identical in the linear case. This is again emphasized by the same order of magnitude from

Jobs = 46.96m yr−1 for m = 1, NCUAS and Jobs = 58.55m yr−1 for m = 1, Nop. The L-curve using a linear Weertman friction440

law shows a value of Jobs = 38.49m yr−1 which fits with the slight upwards shift of the L-curve (Fig. 10a). In total, we get the

best performance of the L-curves regarding the Jobs and Jreg for using Weertman sliding regardless of using linear or non-linear

sliding. All Jobs values in Table 1 (column five) match exactly with the λbest values of the L-curves for the different experiments

(Fig. 6). High λbest values indicate a higher surface velocity mismatch and vice versa.

In order to compare the inferred basal drag based on Weertman sliding to the resulting basal drag distribution based on445

Budd-type sliding, we should again consider Eq. 3. To reproduce the same velocity and stress fields for both sliding laws, it

can be assumed that the equation k2
W = k2

BN must apply, where k2
W describes the squared basal drag coefficient according to

Weertman sliding and k2
B according to Budd sliding. The Budd drag coefficient k2

B must satisfy this equation, if a stress field

of Weertman sliding is assumed. From this assumption, we can conclude that we benefit from the effective pressure field N

if a linear correlation between N and k2
W prevails. When considering a weak correlation between these terms, then k2

B must450
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Figure 10. L-Curves (data cost Jobs vs. regularization cost Jreg) with linear Weertman- and Budd-type friction laws. The description is

equivalent to the one from Fig. 9, only for the linear friction law instead of the non-linear friction law. One inversion run is detected as an

outlier (non-filled circle) for each of the three L-curves.

consider a large amount of structure to fit the observations. Conversely, a high linear correlation between N and k2
W would

result in a k2
B accounting for less structure. In the ideal limit, N would represent the entire spatial structure in k2

W and k2
B would

be constant. In this case, the respective resulting basal drag distribution τ b should not differ significantly (compare Fig. 17a

and Fig. 18a). However, this only applies if λbest is selected equally in both runs, as otherwise the resulting fields would be

smoother for one run, which in turn would lead to different basal drag distributions. In addition, both resulting cost functions455

J should converge to the same minimum or at least have the same order of magnitude.Since a run may stop too early or not

converge at all, resulting again in two different basal drag distributions. Overall, we would expect that changing the sliding law

would not have a large effect on the resulting basal drag field, but the basal drag coefficient inferred from the inversion would

differ significantly.

We can thus investigate the quality of both N fields by computing the linear correlation between N and k2
W (Wolovick et al.,460

2023). If this results in a positive correlation of N and k2
W the basal drag inversion will not generate much structure in k2

B.

Table 1 (fourth column) displays for all of our experiments a positive correlation R2 of N regarding k2
W. In total, NCUAS shows

a slightly stronger positive correlation with k2
W than Nop. This result matches the distribution of k2

B recognizable in Fig. 11.

Figure 11 displays the resulting drag coefficient distribution k2 in a logarithmic scale for m = 1 in the first row and m = 3

in the second row with Nop and NCUAS respectively. For better comparison, each basal drag coefficient is evaluated at the465

λbest of the respective NCUAS experiment. When comparing the structure of the basal drag coefficient shown in the subplots

Fig. 11a,b, as well as the distribution of basal drag coefficient in the second subplot row Fig. 11c,d, we observe that for all

patterns the Nop experiments exhibits more structure in k2 than the experiments with NCUAS. This finding is emphasized by

the correlation R2(N,k2
W) in Table 1, as NCUAS has a stronger correlation with k2 than Nop. Especially, when we take a closer
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Figure 11. Drag coefficient maps of log10(k2). (a–b) The first row shows the drag coefficient of the inversion run including a linear Budd

friction law with m = 1 and Nop (a), as well as NCUAS (b). Both evaluated at the λbest = 1 of the L-curve using m = 1 and NCUAS for better

comparison. (c–d) The second row describes the drag coefficient of the inversion run using a non-linear Budd friction law with m = 3 and

Nop (c), as well as NCUAS (d). Again both are evaluated at the λbest = 0.562 value of the m = 3 and NCUAS experiment. Note the different

units of the first and second rows.

look at Thwaites Glacier a more ribbed structure can be identified including Nop for both linear m = 1 and non-linear sliding470

m = 3. The intention is to use the subglacial hydrology model CUAS-MPI to obtain an effective pressure NCUAS that captures

most of the structure of the hydrology at the base, making k2 smoother than with a Weertman friction law or the often used

effective pressure from geometry like Nop. This would allow us to interpret the basal drag coefficient k2 in terms of physical

properties of the subsurface rather than basal hydrology, since the hydrology is already included in the model. Overall, the k2

in Fig. 11 for both experiments using NCUAS show a higher order of magnitude than the distribution of k2 using Nop. This can475
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be explained by the significantly higher magnitude of Nop over the whole study domain compared to NCUAS (compare Fig. 5).

This difference in magnitude is likely reflected in a higher basal drag coefficient k2 for the NCUAS experiments.

We can evaluate the variance σ2(ln(k2)) (Table 1, first column) to analyze a scale-independent measure of the structure

generated by the basal drag inversion as described in Wolovick et al. (2023). When including effective pressure in terms of

Nop into the linear friction law a decrease of variance can be recognized in comparison to Weertman. But when looking at480

non-linear sliding an increase in variance happens. In contrast, incorporating NCUAS a decrease of variance for both linear and

non-linear sliding occurs.

Compared to Wolovick et al. (2023), we get relatively high values for the computation of the velocity equivalent of the Jobs

misfit (Table 1, seventh column). This could be justified by the higher-order equations which are used in this study or even due

to our higher λbest values. By incorporating effective pressure into the linear friction law, we can report an increase in velocity485

misfit of ∼ 1m yr−1 for NCUAS and ∼ 4m yr−1 for Nop. In the non-linear case, we instead have a decrease in velocity misfit

for the Budd-friction laws compared to Weertman sliding. Especially when including Nop the velocity misfit is ∼ 10m yr−1

less compared to Weertman. An investigation of the total variance of the basal drag inversion shows us the overall quality of the

different experiments for the grounded domain (Table 1, column eight). Here, we observe a decrease when including effective

pressure into the friction law for both cases, linear and non-linear sliding.490

3.3 Non-linear versus linear sliding

In the following section, the effect of a linear vs. a non-linear friction law on the L-curves is examined and emphasized with

statistical values from Table 1. Figure 12 shows the L-curve for the linear Budd friction law m = 1, NCUAS experiment (blue

color) parallel to the non-linear Budd-type friction law m = 3, NCUAS experiment (red color). To get an impression of the

different λ ranges used for linear and non-linear sliding, we also show the L-curve of the m = 3, NCUAS experiment in Fig. 12495

with the shifted λ range
[
10−2,104

]
(gray color), which is also applied for the m = 1, NCUAS experiment. The results show

steeper L-curves for the case of non-linear sliding than for the L-curves results of the linear friction laws (Fig. 12). It can be

recognized, when comparing Fig. 9b–d to Fig. 10b–d that this could be explained by the increasing Jobs term and the more

attenuated Jreg cost function term. This also fits with the finding in Fig. 6 that all L-curves in the second row (m = 3) point

towards a higher regularization cost Jreg. This was also found in the publication of Wolovick et al. (2023). If we consider Fig. 6,500

the corner region is characterized by the λmax to the λmin value, which divides the L-curve in the flat λ-limb and the vertical

λ-limb. We can also conclude that the L-curves in the first row for m = 1 have a wider range of their corner regions, which

not only contain lower λ values but also higher ones, compared to those from the second row for m = 3. With a smaller range

from λmin to λmax, it is easier to select an optimal λ value, which also increases the reliability of the L-curves. This scenario

is given by the experiments with a larger non-linearity of m = 3 exhibiting a steeper behavior. In addition, the convergence in505

Fig. 7 displays that the total cost function J gets smaller at least for using Weertman or NCUAS than the cost function for the

non-linear friction law.

When comparing the behavior of linear sliding m = 1 with non-linear sliding m = 3, we recognize for Weertman, as well as

for Budd-type a decrease of variance in ln(k2) (Table 1). The decrease is especially high when considering Weertman and Budd
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Figure 12. L-curve comparison plot for linear sliding m = 1 and non-linear sliding m = 3 with NCUAS. The blue color illustrate the L-

curve for linear sliding and NCUAS with λ ∈
[
10−2,104

]
. The red color shows the L-curve for the non-linear friction law with NCUAS and

λ ∈
[
10−3,103

]
. For a better comparison the L-curve for non-linear friction law with NCUAS in a range

[
10−3,103

]
is also given in gray. The

dots explain the different inversion runs, the solid line indicates the smooth trade-off curve, the thicker line describes the corner region, and

the white, filled diamonds mark the λbest for all shown L-curves. One inversion run for the L-curve with linear friction law (m = 1) including

NCUAS detected as outlier.

sliding including NCUAS. For m = 1 using NCUAS we get velocity errors of∼ 23m yr−1, whereas we can determine an increase510

to ∼ 28m yr−1 when considering a non-linear friction law. But overall, we recognize the strongest increase in velocity misfit

of ∼ 10m yr−1 when using a non-linear Weertman friction law instead of a linear one. In total, this demonstrates that only

the velocity misfit of the friction law including Nop decreases when changing from linear to non-linear sliding. Considering

the variance ratio of ln(k2) and τ b we get an overall decrease when using a non-linear friction law. Figure 11 shows more

of the ribbed features in the first row using a linear friction law than for the non-linear friction law in the second row. When515

comparing the total variance ratio of our basal drag inversion (Table 1, seventh column), we get an improved performance for

non-linear sliding independent of Weertman or Budd-type reflected by a strong decrease of total variance ratio.

3.4 Best drag estimate

In this section, we focus on the non-linear Budd-type friction law with NCUAS, and λbest = 0.5 as it represents the best estimate

of basal drag τ b and basal drag coefficient k2 that we achieved (Fig. 6f). We analyze the spatial variability of these fields and520

conduct comparisons of λmin, λmax and λbest from the associated L-curve (Fig. 6f) for the basal drag coefficient k2, the basal
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Figure 13. Map of best estimated basal drag result τ b from WAIS inversion using λbest = 0.5 and non-linear Budd sliding m = 3 incorpo-

rating NCUAS. The distribution is given in the unit kPa within a range of [0,600]. (a–c) display the zoom-in boxes for Pine Island Glacier,

Thwaites Glacier and the Siple Coast as shown in Fig. 1.

drag τ b and the velocity error vs−vobs
s given by a symmetric logarithmic scale (Fig. 15). It should be noted that we do not use

the λbest = 0.5 to show the fields in Fig. 15 but instead the nearest neighbor inversion of λbest, as well as of λmin and λmax from

the resulting L-curve in Fig. 6f.

Figure 13d shows the resulting spatial distribution of basal drag τ b. As expected, all glaciers with fast-flowing areas (Fig. 2e)525

are characterized by a relatively low basal drag (Fig. 13a–c). This can be recognized in the Pine Island Glacier, as well as at

the Siple Coast (Mercer, Whillans, Bindschadler and MacAyeal Ice Streams, compare Fig. 1). The Pine Island Glacier and
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Figure 14. Map of best estimated basal drag coefficient result k2 from WAIS inversion using λbest = 0.5 and non-linear Budd sliding m = 3

incorporating NCUAS. The distribution is given within a range of [0,6] (myr−1)−1/3. (a–c) display the zoom-in boxes for Pine Island Glacier,

Thwaites Glacier and the Siple Coast as shown in Fig. 1.

MacAyeal Ice Stream display a rippled structure (Fig. 13c). Thwaites Glacier is particularly prominent in this regard, as the

structure of the basal drag alternates between high and low basal drag (Fig. 13a). This particular structure is clearly recognizable

in the basal drag coefficient in Fig. 14a and could be caused by the underlying bed topography, which reveals a bumpy terrain530

(Fig. 2a). Overall, Fig. 14d shows a low drag coefficient over the entire study area, apart from the Kamb Ice Stream and

Roosevelt Island, and areas further upstream where slow-flowing areas dominate. The Kamb Ice Stream exhibits a very high
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Figure 15. Map of best drag coefficient and best drag estimate, as well as the velocity error from left to right for the minimum acceptable

λmin, λbest and maximum acceptable λmax of the experiment with non-linear Budd-type sliding including NCUAS. Plots (a–c) show the basal

drag coefficient log10(k2) in (myr−1)−1/3 within a range of [−4,−0.5]. (d–f) display plots for basal drag τ b in kPa within a range of

[0,600]. Figures (g–i) illustrate the velocity error on a symmetric logarithmic scale in myr−1.

drag, which is in line with the finding of Joughin and Tulaczyk (2002) and Beem et al. (2014) that the glacier is frozen to the

bed.

When comparing our results for λmin = 0.0562, λbest = 0.562 and λmax = 10 in the first row of Fig. 15, we can observe in the535

results the effect of the different weighting of regularization. The basal drag coefficient k2 for λmax displays a really smooth

distribution with barely any structure. On the other hand, λmin shows a patchy structure with possible artefacts. This occurrence

can also be recognized in the same way in the basal drag τ b (Fig. 15d–f). In addition, Plot 15i has a rather high velocity error

(vs−vobs
s ) widespread on the entire domain. However, this is not surprising, as λmax = 10 provides a high weighting for the
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Figure 16. Map of slip ratio between basal and surface velocity vb/vs for the experiment with non-linear Budd-type sliding including NCUAS

at λbest = 0.5.

regularization term Jreg, which is minimized together with the first velocity misfit cost term Jobs. Therefore, the velocity misfit540

can not get as small as in Fig. 15g. Striking here is the large velocity error at the edge of the whole domain in Fig. 15h,i.

Overall, the velocity misfit results in a patchy distribution of both overestimated surface velocities in red color, as well as

underestimated modeled surface velocities vs, indicated by blue color.

Figure 16 displays the ratio of basal and surface velocity, which provides us with insights into the creep-to-sliding behavior

of WAIS. The result shows us that a high proportion of velocity is caused due to sliding at the base (blue colors) exactly in545

those locations where high velocities (Fig. 1) and a low basal drag τ b (Fig. 13d) predominate. When focusing on Thwaites

Glacier again a ribbed structure of velocities caused by sliding and creep is visible. Another striking feature is the high creep

percentage in some locations of the Thwaites grounding line which matches with the high basal drag (Fig. 13b). Assuming

that Roosevelt Island is frozen to the bed, the high proportion of velocity represented by creep (red colors) seems to be very

suitable at this location. The high percentage of creep in the area of Kamb Ice Stream also corresponds with the expectation of550

Kamb sticking to the bed.

4 Discussion

4.1 L-curves

We observe different problems in our L-curve procedure, e.g., many outliers for λ < 10−2 when using linear friction laws and

convergence problems for non-linear sliding. Most of the problems could be solved by shifting the λ range towards higher555

values, further smoothing the initial drag coefficient kinit or by choosing different values for the convergence criteria ∆xmin and

ϵgttol in Eq. (9). As mentioned before, the problem of outliers for too small λ values is due to the fact of non-convexity.
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It would be desirable to choose in the future one λbest value for the entire Antarctica. But the results with our L-curve

procedure show a range of different λbest values, where it gets hard to pick one λbest that fits for the whole domain. One way to

overcome this issue is to apply a method as in Wolovick et al. (2023), where different experiments are used to find an overall560

best drag distribution. Compared to the values for the λbest values of the Filchner-Ronne region in Wolovick et al. (2023),

we obtain even higher λbest values for the WAIS region. But one should notice here, that our experiments are based on the

higher-order equations, and their inversion runs are based on the shelfy-stream approximation (SSA equations). Simulating our

region with the SSA equations (not shown here) yields λbest values of the same order of magnitude as described in Wolovick

et al. (2023). This fact would imply that an SSA inversion can resolve finer structures than an HO inversion.565

The analysis of the influence of linear and non-linear sliding shows us that we get flatter L-curves for m = 1, but steeper

L-curves for m = 3 and with that a smaller corner region, which makes it easier to choose an optimal λ. We also carried out an

L-curve analysis with a linear friction law for a range of λ ∈
[
10−3,103

]
, which results in an even flatter L-curve.

4.2 Utilizing hydrology models in inverse modeling

Here, we discuss the influence of effective pressure and how our results differ for linear and non-linear Budd and Weertman570

sliding. Like Wolovick et al. (2023), we can argue that our results (Sect. 3.2) suggest that it is reasonable to use a non-linear

friction law for a basal drag inversion. Although our results show a strongly increased velocity misfit Jobs compared to Wolovick

et al. (2023), which even increases with non-linear sliding, except for using Nobs, we see an overall improvement when m = 3 is

used. We observe a reduction by half of the total variance (Table 1, seventh column) when switching from linear m = 1 to non-

linear sliding m = 3. This gives us a measure of the overall performance of our inversion, whereby the increased velocity costs575

in Jobs are compensated by the reduction in the variance of ln(k2). Beyond that, when using non-linear sliding, our L-curves

indicate a steeper shape than those arising from linear friction laws (Fig. 6, Fig. 12), something also observed by Wolovick

et al. (2023). This stronger curve leads to a smaller acceptable corner range for λ (Fig. 6) and thus to an easier determination

of an optimal λbest. In addition, our experiments show that for non-linear sliding using Weertman or Budd including NCUAS the

convergence of the optimization process is achieved in significantly fewer iteration steps (Fig. 7).580

We agree with Wolovick et al. (2023) regarding the non-linearity of friction laws used in basal drag inversion, but our results

concerning the use of effective pressure N differ somewhat. The location of the L-curve for the linear and non-linear Weertman

case shows a slightly better performance than the L-curves for Budd sliding with NCUAS (Fig. 10, Fig. 9). However, the velocity

misfit for non-linear sliding is reduced from 30.70myr−1 to 27.98myr−1 when switching from Weertman to Budd including

NCUAS. On top of this result, we get the best performance using a non-linear Budd friction law incorporating NCUAS when585

looking at the total variance ratio (Table 1). McArthur et al. (2023) obtain a positive correlation between the effective pressure

N and the basal drag coefficient k when using a Schoof sliding law, but not when they refer to a Budd-type sliding law. This

differs from our results, as we obtain a positive correlation also when using the Budd-type sliding law (compare Table 1).

Regions with a lower effective pressure NCUAS also exhibit a lower basal friction coefficient k, which again demonstrates the

controlling role of the hydrological system (compare Fig. 5b and Fig. 14). The slightly increased correlation of NCUAS to k2
W590

compared to Nop to k2
W shows us that NCUAS does not need to produce too much structure when computing Jobs. This is further
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supported by our result of Fig. 11, which demonstrates that NCUAS leads to a smoother basal drag coefficient k2 distribution,

which is our goal when including NCUAS from a subglacial hydrology model. This confirms that the non-linear Budd friction

law with NCUAS performs well with our model setup. Equally, the results of McArthur et al. (2023) show a smoother basal

drag coefficient, when the effective pressure of a subglacial hydrology model is included. Such a smooth and only slightly595

variable basal drag coefficient is desirable, because the effective pressure field N should account for the entire structure by

including the subglacial hydrology (recall k2
W = k2

BN ). The confidence in this experiment m = 3, NCUAS is further supported

by the experience of better convergence and the resulting smoother L-curves when including NCUAS. Overall, these key findings

justify our argumentation in Sect. 3.4 to define the basal drag τ b and drag coefficient k2 as our best estimate when using the

experiment for NCUAS, m = 3. Overall, our results, as well as the study of McArthur et al. (2023), demonstrate a more realistic600

ice sheet model representation when using output of subglacial hydrology models, revealing the importance of coupling ice

sheet models with subglacial hydrology models.

4.3 Comparison with previous studies/findings in the WAIS

In this section, we compare our best drag and best drag coefficient with other possible lake candidates and findings from

previous studies. When analyzing our best estimate of basal drag τ b and basal drag coefficient k2, we find high variability605

in the Thwaites region (Fig. 13b, Fig. 14b) and high velocities are predominant (Fig. 2e). Here, we observe the characteristic

rib-like patterns, so-called traction ribs (Sergienko and Hindmarsh, 2013), which varies between high basal drag τ b around

200 kPa and very low regions of drag close to 0 kPa. Rib-like features are also observed in paleo-ice streams (Stokes et al.,

2016). Stokes et al. (2016) suggest that those ribbed bedforms found under the ice masses could be caused due to a topographic

expression. Comparing our results with existing seismic measurements of the glacier bed reflection in the Thwaites region610

could provide us with further insights in the future. However, when we examine the Siple Coast for our best maps of basal drag

(Fig. 13c) and basal drag coefficient (Fig. 14c) we have low variability, especially for the Mercer Ice Stream, as well as the Van

der Veen and Whillans Ice Stream. Nevertheless, when applying SSA instead of the HO equations, it would be possible to find

a higher variability in this region due to the lower λbest values we obtain when using SSA. In that case, the structure might not

be smoothed as much as we observe here at higher λbest values. The Pine Island Glacier in Fig. 13a and Fig. 14a is represented615

by a relatively low basal drag and basal drag coefficient compared to the drag obtained from Morlighem et al. (2010). While

our drag is quite equally distributed, the basal drag for the Pine Island Glacier in Morlighem et al. (2010) shows a very patchy

structure, but this could also caused by the higher mesh resolution used in the study.

Rathmann and Lilien (2022) assume that sticky spots are difficult to detect and bed bumps could be misinterpreted when

deriving the basal drag coefficient using Glen’s flow law (Eq. 2). Indeed, some sticky spots identified in the literature, e.g.,620

the sticky spot of Kamb Ice Stream (Luthra et al., 2017), are not visible in our resulting basal drag coefficient field (Fig.14c),

nor in the basal drag field (Fig. 13c). We hypothesize, that this could be due to the neglect of crystal-orientation fabric when

inferring the basal drag coefficient k. However, the sticky spot could also be obscured by the regularization process, the lower

mesh resolution in this region (Fig. 3b), or, in general, the fact that we consider a Budd-type sliding law incorporating an

effective pressure field instead of using only Weertman sliding like Rathmann and Lilien (2022). In the latter case, the sticky625
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spot could already occur in the effective pressure field, which is not recognizable in our case (compare Fig. 5). Overall, we

cannot argue, if our basal drag coefficient would significantly change, when considering anisotropic ice instead of isotropic

ice as with Glen’s flow law. In addition, the choice of flow law, e.g. using an anistropic flow law or including an enhancement

factor instead of using Glen’s flow law (Eq. 2), could also further impact our results regarding the deformation to sliding ratio

(Fig. 16). Considering our map in Fig. 16, it becomes apparent that most of the glaciers and ice streams of our study domain630

are controlled by sliding-dominated flow. Comparing these results with those of McCormack et al. (2022), who show that the

experiments with ESTAR and Glen with the enhancement factor E = 5 (experiment G5) reveal an increase in deformation-

induced flow especially in the defined deformation sliding zone and the bed-parallel shear deformation zone, our results would

possibly change if the ESTAR flow law or at least an enhancement factor is included in Glen’s flow law.

According to Kyrke-Smith et al. (2018), our inferred basal drag conditions should be interpreted with caution, as they635

recommend separating between skin and form drag. When performing the inversion with detailed bed topography data, they

observed a reduced skin drag. Indicating, that the results could include drag, which is due to unresolved topography rather than

inherent bed and sediment conditions. Uncertainties in the basal topography could contribute to errors in the inferred basal

drag. In addition, Kyrke-Smith et al. (2018) suggest to base the inversion in areas, where traction ribs can be found, like in

the Thwaites region, on high-resolution topography data, not done here. However, Schroeder et al. (2013) investigate the water640

system transition beneath Thwaites glacier based on a geophysical analysis. They found concentrated channels (no effect on

basal drag) near the grounding line, followed by a transition to distributed channels (reducing basal drag) further upstream.

Comparing our basal drag distribution with these findings agrees well (Fig. 13b), as we observe a distribution of low drag

further upstream that transitions into a distribution of higher drag near the grounding line.

The inversion method and L-curve analysis presented could, of course, be extended to other iterative schemes, as demon-645

strated in Zhao et al. (2018), or to flow-rate factor inversions (e.g., Arthern et al., 2015; Ranganathan et al., 2021; McArthur

et al., 2023). Various studies suggest performing a combined inversion of basal drag and flow-rate factor, e.g., Rathmann and

Lilien (2022) recommends such joint inversion to reduce mass-flux errors by compensating for missing fabric information

when using Glen’s flow law. The simultaneous determination of the flow-rate parameter and the basal drag coefficient would

be necessary, as the ice velocity is controlled by both. When performing a single inversion, like our basal drag inversion, we650

have to assume an erroneous rheology, and thus, we insert uncertainties into the resulting basal conditions (Ranganathan et al.,

2021). However, we argue that both, an iterative scheme and joint inversion, need a good temperature-depth profile to get a

good initial state after inversion, as e.g., Zhao et al. (2018) aims for, or to get a good joint inversion result. This is the reason,

why we restrict our inversion to an absolute misfit term in the cost function J . As a inclusion of the logarithmic misfit term

(e.g., Morlighem et al., 2013) would perform better, if a rheology inversion is considered. The observed surface velocities in655

the interior of the study area are relatively slow and without proper choice of the rheology (temperature) the velocity contribu-

tion from ice deformation could already lead to a higher surface velocities than observed. In this case, the basal drag inversion

could not correct for this bias and the logarithmic misfit in these regions would likely be very high. But overall, changing the

misfit term does not change the presented approach for the inversion of the basal drag with the used L-curve analysis. However,

incorporating more knowledge into the calculation of rheology, such as a better temperature-depth distribution, could help in660
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future to obtain better results. Nevertheless, our aim was not to achieve the best steady state, as e.g., Zhao et al. (2018). Our

statement is, that focusing on a smooth L-curve result in an inversion is also of great importance, as we experienced that any

ill-formed L-curve was always due to difficulties in the inversion process, either caused by the input data or the numerics

involved. For example, if the λ value is not selected in the corner of the "L", whether due to an incorrect representation, e.g.

not based on log-log scale, or due to a subjective choice of the λ value, we would produce unrealistic artefacts in the basal665

conditions.

Comparison with subglacial lakes

The hydrology beneath the glacier plays a major role as a contributor to sliding at the base and, with that, to the velocity of

the glaciers. Lakes beneath the ice sheet serve as a lubricant at the ice base. The white circles displayed in Fig. 17 and Fig. 18

describe positions of WAIS where lake candidates from various observational measurements (Carter et al., 2007; Blankenship670

et al., 2009; Wright and Siegert, 2012; Malczyk et al., 2020) are expected. We compare our best estimate of basal drag τ b for

non-linear Budd sliding including NCUAS (compare Sect. 3.4) and the same maps for non-linear Budd sliding but using Nop

with these possible subglacial lakes. Examination of the Thwaites Glacier (Fig. 17b) shows for the basal drag τ b using NCUAS

a relatively good match of low basal drag and lake candidates except for the outlying lake further downstream. The low values

of drag, including the Nop pressure (Fig. 18a), also match fairly well with the possible lakes. It is clearly visible that even the675

lake shapes correspond very well with the ribbed structure that can be recognized in the area of the Thwaites Glacier for basal

drag incorporating Nop except for the lake further downstream. The isolated lake further upstream of Thwaites marked with a

white circle agrees again with a low basal drag distributionincluding Nop.

When analyzing the Siple Coast in total (Fig. 17c–d, Fig. 18c–d), most of the possible lake candidates that lay in the fast-

flowing regions match quite good with areas of low drag values for both basal drag results using Nop or NCUAS. Overall, when680

comparing Fig. 17a and Fig. 18a, it is striking that the basal drag τ b have a similar distribution of low and high drag values

regardless of whether NCUAS or Nop are included, as already assumed in Sect. 3.2. This leads to a relatively good agreement

of low basal drag values with the lake candidates in both maps. However, if we compare k2 using NCUAS and k2 including

Nop (not shown in the manuscript), it is of course noticeable that the lake candidates match the low values of the basal drag

coefficient with Nop much better than those of basal drag coefficient with NCUAS. The different magnitudes of k2 with NCUAS685

and k2 with Nop are probably due to the different magnitudes of the two effective pressure maps (compare Fig. 5), as already

described in Sect. 3.2 and discussed in Fig. 11. Therefore, it is more efficient to just compare the lake candidates with basal

drag, when incorporating a Budd-type friction law. It is also noticeable that both basal drag, as well as basal drag coefficient

have a different structure when using Nop or NCUAS. In τ b including Nop, clearly finer structures can be recognized, both in

the Thwaites region, as well as at the Siple Coast (Fig. 18b–d). Here, ribbed structures are much more visible, which are more690

smoothed out in the basal drag with NCUAS (Fig. 17). As mentioned in Sect. 3.2, this could be explained by the different λbest

values. Because with a higher λbest, as this is the case for the maps including NCUAS with λbest = 0.5, the basal structure is

smoothed significantly more than with a lower weight as for the maps with Nop using a lower λbest = 0.1. What should also be
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Figure 17. Best estimate basal drag map evaluated at its λbest = 0.5 value with subglacial lake candidates. (a) shows the basal drag map from

Fig. 13d with the possible lakes. (b–d) display zoom-in boxes of basal drag for Thwaites Glacier, Mercer and Whillans Ice Streams, as well

as for the MacAyeal Ice Stream. The lake candidates are marked with white lines and circles. These data are used from the datasets of Carter

et al. (2007), Blankenship et al. (2009), Wright and Siegert (2012) and Malczyk et al. (2020).

noted is that the structures that both τ b using Nop exhibit, correspond very well with the lake candidates and in the Thwaites

region even with the shapes of the three individual lakes further upstream.695

Overall, we can achieve a good correlation of the possible lake candidates with our shown maps of τ b (Fig. 17, Fig. 18).

This agreement for Nop with λbest = 0.1 is even better than with NCUAS with λbest = 0.5, which is due to the different degree of

smoothing by the regularization. If we consider NCUAS with the λbest = 0.1 value of Nop (not shown in the manuscript), we get

similarly good results with more visual features matching the lake candidates and their shape.

33

https://doi.org/10.5194/egusphere-2024-1251
Preprint. Discussion started: 22 July 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 18. Basal drag map evaluated at its λbest = 0.1 value with subglacial lake candidates. (a) shows the basal drag map τ b using non-linear

Budd sliding including Nop. (b–d) display zoom-in boxes of basal drag for Thwaites Glacier, Mercer and Whillans Ice Streams, as well as

for the MacAyeal Ice Stream. The possible lakes, marked with white lines and circles, are used from the datasets of Carter et al. (2007),

Blankenship et al. (2009),Wright and Siegert (2012) and Malczyk et al. (2020).

5 Conclusions700

In this paper, we analyzed in total six basal drag inversion experiments for a large part of WAIS using both, linear and non-linear

Weertman, as well as Budd-type friction laws with two different effective pressure descriptions. We especially focused on a

basal drag inversion using a Budd-type friction law incorporating an effective pressure from a hydrology model to improve the

basal drag field for a major part of WAIS. We conclude, how to deal with poorly shaped L-curves for weighting a regularization

term and ended up with six very smooth ones. The L-curve analysis taught us that it is essential to not accept an ill-shaped705

L-curve with many outliers, but to find the inconsistencies in the model setup. In all cases, we were able to achieve a smoother
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L-shaped curve, if different actions, e.g., shifting the λ-range, have been made. The subdomain L-curve analysis reveals that

subdomains with different geometry settings have an effect on the shape and smoothness of the L-curves. Different problematic

areas can also be recognized by means of many outliers.

Our results suggest, as previous studies, that it might be useful to rely on a non-linear friction law when using basal drag710

inversions. We demonstrate that including effective pressure from the subglacial hydrology model CUAS-MPI can further

improve the resulting maps of a basal drag inversion. We were able to show that the incorporated effective pressure field

explains a significant fraction of the variance in drag coefficient. Even though we believe that we could achieve even better

results for the basal drag coefficient by further improving the effective pressure of CUAS-MPI. Our resulting best estimate of

basal drag and basal drag coefficient distribution reveals a good fit with data of possible lake candidates. The ribbed structure715

that we recognize in parts of Thwaites in the drag coefficient maps could be confirmed in the future with seismic measurements.

As we have high confidence in our results, our achieved basal drag can serve as an initial stress state for further models

considering a major part of WAIS. In the future, the behavior of the L-curves and their analysis should also be compared with

the other areas of Antarctica or even the entire Antarctic.

Code and data availability. The used open-source Ice-Sheet and Sea-level System Model (ISSM v. 4.22; Larour et al. (2012)) is available at720
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(Mouginot et al., 2012; Rignot et al., 2011b) are accessible through https://doi.org/10.5067/D7GK8F5J8M8R (Rignot et al., 2017). For the

1D thermal model we use surface climate inputs of surface temperature (Comiso, 2000) and accumulation rate (mean of Van De Berg et al.

(2005) and Arthern et al. (2006)). All those data can be found at https://doi.org/10.1594/PANGAEA.734145, 2010 (Le Brocq et al., 2010; Le
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