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Abstract 18 

Gross primary production (GPP), a crucial component in the terrestrial carbon cycle, is strongly 19 

influenced by large-scale circulation patterns. This study explores the influence of El Niño-20 

Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) on China’s GPP, utilizing long-21 

term GPP data generated by the Boreal Ecosystem Productivity Simulator (BEPS). Partial 22 

correlation coefficients between GPP and ENSO reveal substantial negative associations in 23 

most parts of western and northern China during the September-October-November (SON) 24 

period of ENSO development. These correlations shift to strongly positive over southern China 25 

in December-January-February (DJF), then weaken in March-April-May (MAM) in the 26 

following year, eventually turning generally negative over southwestern and northeastern China 27 

in June-July-August (JJA). In contrast, the relationship between GPP and IOD basically exhibits 28 

opposite seasonal patterns. Composite analysis further confirms these seasonal GPP anomalous 29 

patterns. Mechanistically, these variations are predominantly controlled by soil moisture during 30 

ENSO events (except MAM) and by temperature during IOD events (except SON). 31 

Quantitatively, China's annual GPP demonstrates modest positive anomalies in La Niña and 32 

negative IOD years, in contrast to minor negative anomalies in El Niño and positive IOD years. 33 

This outcome is due to counterbalancing effects, with significantly larger GPP anomalies 34 

occurring in DJF and JJA. Additionally, the relative changes in total GPP anomalies at the 35 

provincial scale display an east-west pattern in annual variation, while the influence of IOD 36 

events on GPP presents an opposing north-south pattern. We believe that this study can 37 

significantly enhance our understanding of specific processes by which large-scale circulation 38 

influences climate conditions and, in turn, affects China’s GPP.  39 

 40 

Key words: Gross primary production, China, El Niño-Southern Oscillation, Indian Ocean 41 

Dipole, BEPS 42 
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1.Introduction 44 

Vegetation photosynthesis, a pivotal physiological process affecting the terrestrial carbon cycle, 45 

predominantly governs variations in the net biome productivity (NBP), surpassing the impact 46 

of total ecosystem respiration (Piao et al., 2020; Wang et al., 2022; Wang et al., 2018). Gross 47 

primary production (GPP) represents the total amount of carbon dioxide assimilated by plants 48 

per unit time through the photosynthetic processes, acting as a crucial carbon flux in mitigating 49 

anthropogenic CO2 emissions (Gough, 2012; Houghton, 2007). However, despite evident long-50 

term increasing trends in GPP, primarily attributed to CO2 fertilization (Ryu et al., 2019; 51 

Schimel et al., 2015; Yang et al., 2022), it also shows regional and global interannual variations. 52 

These variations are largely linked to climate fluctuations driven by ocean-atmosphere 53 

interactions and the teleconnections (Wang et al., 2021b; Ying et al., 2022). To date, the impact 54 

of such teleconnections on China’s GPP remains insufficiently documented.  55 

 56 

The El Niño-Southern Oscillation (ENSO) exerts a significant influence on the global terrestrial 57 

carbon cycle, which is the dominant mode of inter-annual climate variability (Bauch, 2020; 58 

Kim et al., 2017; Wang et al., 2016; Wang et al., 2018; Zeng et al., 2005). Within this context, 59 

GPP typically assumes a leading role in shaping the response of terrestrial carbon sinks to 60 

ENSO events (Ahlstrom et al., 2015; Wang et al., 2018; Zhang et al., 2018). Global patterns 61 

reveal a negative GPP anomaly of approximately −1.08 Pg C yr-1 during El Niño years, 62 

contrasting a positive GPP anomaly of about 1.63 Pg C yr-1 in La Niña years (Zhang et al., 63 

2019). However, the impact of ENSO on GPP exhibits significant regional differences. At 64 

present, while existing researches have predominantly focused on the response of tropical GPP 65 

to ENSO, studies specific to China are relatively limited. Liu et al. (2014) highlighted the effects 66 

of ENSO on crop growth in the North China, and Li et al. (2021) demonstrated that the response 67 

of GPP to El Niño varies with the phase of the Pacific Decadal Oscillation (PDO) in the eastern 68 

China.  69 

 70 

ENSO is not the sole global climatic oscillation, influencing the terrestrial carbon cycle. 71 
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Another significant player is the Indian Ocean Dipole (IOD), a tropical coupled ocean-72 

atmosphere mode (Saji et al., 1999), which also affects the terrestrial carbon cycling by 73 

modulating the climate circulations (Wang et al., 2022; Wang et al., 2020; Wang et al., 2021b; 74 

Yan et al., 2023). Research indicates that IOD events can influence precipitation in China, with 75 

effects lasting from the year of the event through the subsequent summer (Zhang et al., 2022a). 76 

Zhang et al. (2022b) also proved that extreme positive IOD (pIOD) events in 2019 affected the 77 

precipitation in summer 2020 in Eastern China, and proposed that the summer precipitation in 78 

the following year was mainly affected by IOD in northern China, while by ENSO in the 79 

Yangtze River Basin. Additionally, a prior study explored the influence of the extreme 80 

pIODevent in 2019 on GPP anomalies across the Indian Ocean rim countries. It suggested a 81 

conspicuous negative GPP anomaly occurred in eastern China during the September-October-82 

November (SON) (Wang et al., 2021b).  83 

 84 

The primary objective of this study was to comprehensively assess the impact of ENSO and 85 

IOD events on GPP in China. To this end, we initially employed partial correlation analysis to 86 

elucidate the relationship between GPP and climate anomalies, specifically soil moisture and 87 

temperature, induced by ENSO and IOD events across various seasons. The analysis utilized 88 

historical long-term GPP data spanning from 1981 to 2021, simulated by the Boreal Ecosystem 89 

Productivity Simulator (BEPS) model. The aim was to get a preliminary understanding of the 90 

influence exerted by ENSO and IOD. Furthermore, composite analysis was adopted to illustrate 91 

the actual responses during distinct events, including individual ENSO and IOD occurrences. 92 

The ensuing discussion will delve into the analysis results on national, regional, and provincial 93 

scales. 94 

 95 
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2.Datasets and methods 96 

2.1 Datasets used 97 

The sea surface temperature (SST) dataset was derived from the Monthly NOAA’s Extended 98 

Reconstructed Sea Surface Temperature version 5 (ERSSTv5) (Muñoz, 2019). It is generated 99 

on a 2°x2° grid, using statistical methods to enhance spatial completeness. Commencing from 100 

January 1854 to the present, the monthly SST data includes anomalies computed with respect 101 

to a 1971-2000 monthly climatology. 102 

 103 

Meteorological data were adopted from ECMWF Reanalysis v5 (ERA5)-Land monthly 104 

averaged data with 0.1° × 0.1° grids, including 2m surface air temperature (TAS), and 105 

volumetric soil moisture (SM) during the period from 1981 to 2021. ERA5-Land was created 106 

by replaying the land component of the ECMWF ERA5 climate reanalysis at a higher resolution 107 

compared to ERA5. Reanalysis combines model data with global observations into a consistent 108 

dataset based on the laws of physics. The original soil moisture data was divided into four layers 109 

based on different surface depths. These layers were depth-weighted and then aggregated into 110 

the average soil moisture to a depth of 289cm (m3 m-3).  111 

 112 

GPP spanning from 1981 to 2021 was simulated by the BEPS model, featuring a horizontal 113 

resolution of 0.0727° × 0.0727°. The BEPS model, originally developed for Canadian boreal 114 

ecosystems, has been re-constructed for GPP simulations on the global scale (Chen et al., 1999; 115 

Chen et al., 2012). BEPS is a process-based model driven by satellite-observed leaf area index 116 

(LAI) and foliage clumping index (Ω), meteorological data, land cover types, soil texture, and 117 

CO2 concentration to simulate the daily carbon flux of terrestrial ecosystems (Chen et al., 2019; 118 

Liu et al., 1997). The input data used to drive GPP in this study include ERA5 meteorological 119 

data (Hersbach et al., 2023), GLOBMAP LAI product (Liu et al., 2012), Land Cover 120 

Classification System (LCCS) generated by the Food and Agriculture Organization (FAO) of 121 

the United Nations (Friedl and Sulla-Menashe, 2019), Harmonized World Soil Database v1.2 122 
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from FAO (Fischer et al., 2008), and CO2 concentration based on the Global Monitoring 123 

Laboratory from NASA (Lan et al.). 124 

Notably, BEPS distinguishes itself from other models through the organic combination of 125 

remote sensing data and mechanistic modelling. It produces simulation datasets for GPP, Net 126 

primary productivity (NPP), and evapotranspiration (ET). Key features of BEPS include the 127 

incorporation of sunlit-shaded leaf stratification strategy (Norman, 1982). The model calculates 128 

canopy-level photosynthesis by summing the GPP of sunlit and shaded leaves (Chen et al., 129 

1999). 130 

𝐺𝑃𝑃 = 𝐴𝑠𝑢𝑛𝐿𝐴𝐼𝑠𝑢𝑛 + 𝐴𝑠ℎ𝑎𝑑𝑒𝐿𝐴𝐼𝑠ℎ𝑎𝑑𝑒                        (1) 131 

𝐿𝐴𝐼𝑠𝑢𝑛 = 2 cos 𝜃 [1 − 𝑒𝑥𝑝 (−
0.5Ω𝐿𝐴𝐼

cos𝜃
)]                      (2) 132 

𝐿𝐴𝐼𝑠ℎ𝑎𝑑𝑒 = 1 − 𝐿𝐴𝐼𝑠𝑢𝑛                                    (3) 133 

where 𝐴𝑠𝑢𝑛 and 𝐴𝑠ℎ𝑎𝑑𝑒  represent the amount of photosynthesis at per sunlit and shaded leaf, 134 

respectively; 𝐿𝐴𝐼𝑠𝑢𝑛  and 𝐿𝐴𝐼𝑠ℎ𝑎𝑑𝑒  represent the canopy-level sunlit and shaded LAI, 135 

respectively; Ω is the foliage clumping index indicaiting the influence of foliage clustering on 136 

radiation transmission, and 𝜃 is the solar zenith angle. 137 

 138 

The accuracy of carbon flux products simulated by BEPS has been validated in previous studies 139 

(Chen et al., 2019; He et al., 2021). We also used the measured site data from ChinaFlux 140 

(http://chinaflux.org/) and National Tibetan Plateau Third Pole Environment (Li et al., 2013) 141 

(Table S1) to assess the performance of BEPS simulated GPP (Fig. S1). Our analysis reveals a 142 

high consistency between simulated and observed GPP, with an average R2 of 0.77 (p < 0.05) 143 

and an average root mean square error (RMSE) of 1.70 gC m-2 day-1. In addition, the global 144 

terrestrial GPP from FluxSat product Version 2.2 (Joiner et al., 2018) was also used to assess 145 

the reliability of BEPS GPP. FluxSat GPP is obtained by using light-use efficiency (LUE) 146 

framework based on Moderate-resolution Imaging Spectroradiometer (MODIS) satellite data, 147 

eliminating the dependency on other meteorological input data. The comparison between BEPS 148 

GPP and FluxSat GPP data revealed a robust agreement, with a correlation coefficient (𝑟) of 149 

0.63 (p < 0.05) and a RMSE of 1.1 Pg C yr−1 (Fig. S2). These consistencies underscore the 150 

http://chinaflux.org/
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reliability of the BEPS GPP data in capturing terrestrial carbon flux dynamics. 151 

2.2 Anomaly calculation 152 

To calculate anomalies, we first removed the long-term climatology to eliminate the seasonal 153 

cycle. Subsequently, we subtracted the 7-year running average for each grid to eliminate the 154 

decadal oscillation and long-term trends for all the variables. Further, refinement involved 155 

smoothing the derived GPP and climate anomalies using a 3-month running average to remove 156 

the intra-seasonal variability. For consistency, the BEPS simulated GPP data was resampled to 157 

0.1° × 0.1°. To align with this, non-vegetated areas in the climate data were masked according 158 

to the resampled BEPS GPP, uniformity in spatial representation. 159 

2.3 Definition of climate events 160 

The Oceanic Niño Index (ONI) is used to define ENSO events (Fig. 1a), which represents the 161 

3-month running mean SST anomaly in the Niño 3.4 region (5°N-5°S, 120°-170°W). The 162 

positive phase of an ENSO event (El Niño) is characterized by the ONI exceeding +0.5K for 163 

five consecutive overlapping 3-month periods. Conversely, the negative phase of an ENSO 164 

event (La Niña) occurs when the ONI is below −0.5K for five consecutive overlapping 3-month 165 

periods. The severity of the event can be further categorized into weak (0.5~0.99), moderate 166 

(1.00~1.49), strong (1.50~1.99) and extremely strong (≥2.00) based on the absolute value of 167 

the ONI. To qualify for a specific rating, an event should meet or exceed a threshold for at least 168 

three consecutive overlapping three-month periods. 169 

 170 

Moreover, the Dipole Mode Index (DMI) is employed to identify IOD events (Saji et al., 1999). 171 

The DMI is calculated from SST differences between the Western Equatorial Indian Ocean 172 

(10°S-10°N, 50°-70°E) and the South-eastern Equatorial Indian Ocean (10°S-0°N, 90°-110°E) 173 

(Fig.1b). Given that the short duration of IOD events with a tendency to peak during the SON, 174 

the standard deviation of SON DMI (0.52K from 1981 to 2021) is used as the criterion for 175 

identifying IOD events. A positive phase IOD (pIOD) event is defined when the absolute value 176 
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of DMI is greater than or equal to one standard deviation (0.52 K) for three consecutive 3-177 

month periods. Additionally, a strong pIOD event is identified if the DMI value exceeds two 178 

standard deviations (1.04 K).  179 

  180 

Fig.1 Time series of the Oceanic Niño Index (ONI) (a) and the Dipole Mode Index (DMI) (b) from 1980 181 

to 2022. The positive phase events (El Niño and positive Indian Ocean Dipole (pIOD)) are filled in 182 

green and the negative phase events (La Niña and negative IOD (nIOD)) are filled in yellow, and the 183 

events are also labeled with a two-digit year. The green and yellow dashed lines represent the positive 184 

and negative thresholds for El Niño-Southern Oscillation (ENSO) and IOD, respectively. The gray 185 

background indicates years with the simultaneous ENSO and IOD events. 186 

2.4 Partial correlation analysis 187 

To comprehensively assess the impacts of ENSO and IOD on GPP, while accounting for the 188 

influence of other events, partial correlation analysis (pcor) was employed, following the 189 

previous studies (Saji and Yamagata, 2003; Wang et al., 2021b). The definition of pcor for x 190 
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and y, controlling for z, is given by: 191 

𝑝𝑐𝑜𝑟𝑦𝑥.𝑧 =
𝑟𝑦𝑥−𝑟𝑦𝑧𝑟𝑥𝑧

√1−𝑟𝑦𝑧
2 √1−𝑟𝑥𝑧

2
                                (4) 192 

where 𝑟𝑦𝑥 is the correlation of the dependent variable y and the explanatory variable x (e.g., 193 

DMI), and the same is for 𝑟𝑦𝑧 and 𝑟𝑦𝑥. The two-tailed Student's t-test was used to calculate 194 

the statistical significance of each pixel result: 195 

𝑡 = 𝑝𝑐𝑜𝑟𝑦𝑥.𝑧√
𝑛−2−𝑘

1−𝑝𝑐𝑜𝑟𝑦𝑥.𝑧
2                                  (5) 196 

where n and k are the number of samples and conditioned variables, respectively.  197 

 198 

2.5 Composite analysis  199 

When enumerating the years of ENSO and IOD events, we retained all the years of IOD events 200 

and ENSO events of above the moderate intensity. Individual events and compound events were 201 

categorized and summarized in Table 1. In this study, a compound event refers to the 202 

simultaneous occurrence of ENSO and IOD, primarily El Niño & pIOD and La Niña & negative 203 

IOD (nIOD). IOD typically peaked in the September-October-November (SON, yr0), while 204 

ENSO peaked in the December(yr0)-January(yr1)-February(yr1) (DJF), and the influence of 205 

the two events could extend until the summer of the following year. Therefore, we selected four 206 

seasons from SON to June-July-August (JJA) in the following year for composite analysis in 207 

this study. In addition, the year 1991 was excluded due to the strong eruption of Mount Pinatubo, 208 

which had a large impact on the global carbon cycle (Mercado et al., 2009). 209 

  210 
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Table 1. Occurrences of ENSO and IOD events from 1981 to 2021. 211 

Events Years 

El Niño 1982, 1986, 1987, 2002, 2009 

La Niña 1984, 1988, 1999, 2007, 2011, 2020 

pIOD 2019 

nIOD 1992, 1996, 2016 

El Niño & pIOD  1994,1997, 2015 

El Niño & nIOD  - 

La Niña & pIOD  - 

La Niña & nIOD  1998, 2010 

 212 
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3.Results 213 

3.1 Historical relationship between GPP and ENSO 214 

 215 

Fig. 2 Spatial patterns of partial correlation coefficients (pcor) between ONI and gross primary productivity 216 

(GPP) (a-d), surface air temperature (TAS) (e-h), soil moisture (SM) (i-l) in different seasons, controlling 217 

for the effect of DMI. Hatched areas represent significance at p ≤ 0.05 based on the two-tailed Student's t-218 

test. (m-p) Heatmaps represent the relationships of the pcor patterns among GPP, TAS, and SM, and bar 219 

charts illustrate the pattern correlations of these pcor values between GPP and TAS and SM on the national 220 

scale for each season. We here use seasonal average temperature as a mask to exclude regions with 221 

temperatures below zero, thereby minimizing the influence of phenology on GPP. Notably, asterisks (*) in 222 

the bar charts denote significance at p < 0.05.  223 
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 224 

Fig. 3 Same as Fig.2, but for DMI, controlling the effect of ONI. 225 

 226 

We analyzed the pcor patterns between GPP and climate anomalies across different events 227 

using long time series data (Figs. 2 and 3). Following this, we calculated pattern correlation 228 

coefficients between the GPP and climate pcor patterns, aiming to investigate the varying 229 

impacts of key climate drivers (TAS and SM) on photosynthesis across different seasons (Figs. 230 

2m-p, and 3m-p).  231 

 232 

Figure 2 reveals notable seasonal variations in the pcor patterns between GPP, related climate 233 

anomalies, and ONI index in December-January-February (DJF) when ENSO peaked, 234 

controlling the effect of DMI in September-October-November (SON) when IOD peaked. 235 

During SON, significant negative pcor between GPP and ONI is observed in regions including 236 

the Tibetan Plateau, Southwestern China, Loess Plateau, and Liaoning province (Fig. 2a). 237 

Clearly, this pattern aligns closely with the pcor pattern between soil moisture and ONI (Figs. 238 
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2a and i). The pattern correlation analysis between GPP and both TAS and SM underscores the 239 

dominance of SM in influencing GPP anomalies, indicated by a correlation coefficient of 0.31 240 

(p < 0.05). This finding suggests that the soil moisture deficit induced by El Niño largely 241 

inhibits vegetation photosynthesis during this season (Fig. 2m). 242 

 243 

Along with the peak of ENSO events in DJF, the pcor pattern between GPP and ONI exhibits 244 

a distinct shift from the pattern in SON. Notably, DJF showcases significant positive pcor 245 

values over large areas in southern China and weak positive pcor in the North and Northeastern 246 

China (Fig. 2b). During this period, soil moisture still serves as a more influential factor in 247 

driving GPP changes, reflected in a nation-wide pattern correlation coefficient of 0.45 (p < 0.05) 248 

(Fig. 2n). Specifically, sufficient soil moisture during El Niño, coupled with higher winter 249 

temperatures, contribute to a substantial enhancement in GPP across Southern China. In 250 

contrast, the impact is weaker in the North and Northeast China due to the vegetation being in 251 

the non-growing season, and localized soil water deficits (Figs. 2b, f, and j). In addition, GPP 252 

experiences inhibition in some areas of southwestern China due to low temperatures and soil 253 

drought.  254 

 255 

Subsequently, the positive pcor of GPP decreases, or even turns slightly negative from DJF to 256 

March-April-May (MAM) in southern China, primarily attributed to shifts of temperature (Figs. 257 

2c and g). On a nationwide scale, temperature becomes the dominant factor in this period, but 258 

it exhibits a negative correlation with GPP, with a spatial correlation coefficient of −0.18 (p < 259 

0.5). This negative correlation is mainly due to negative GPP and positive temperature in the 260 

southwest region, and positive GPP and negative temperature in the northern region (Figs. 2c 261 

and 2g). Specifically, the negative pcor of GPP in southwest China is due to soil moisture 262 

shortages (Fig. 2k). In the northern region, where a large area of croplands exists (Fig. S11), 263 

human management practices may have a greater impact on GPP, particularly in the spring 264 

when the growing season begins. However, these human management practices (e.g., irrigation, 265 

fertilization, pesticide use) are not considered in the BEPS model, which could introduce 266 
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significant uncertainties in simulated GPP over cropland areas. Additionally, in some 267 

grasslands of northern Hebei and parts of neighboring Inner Mongolia, GPP shows positive 268 

pcor during El Niño events, possibly due to the strong legacy effects of climatic conditions in 269 

DJF period.  270 

 271 

Moving into JJA, the pcor of GPP exhibits widespread negative values again (Fig. 2d). In 272 

general, during El Niño, increased soil moisture and lower temperatures greatly contribute to 273 

enhanced GPP, while drier soil moisture and higher temperatures inhibit the increase in GPP 274 

(Fig. 2p). Regionally, higher temperatures and lower soil moisture both contribute to the 275 

negative GPP anomalies over southwestern China. However, lower soil moisture 276 

predominantly curtails GPP over the Tibetan Plateau, the Yellow River basin, and northeastern 277 

Inner Mongolia. Overall, the correlation coefficients between GPP and TAS and SM in summer 278 

are comparable, with soil moisture exhibiting a slightly higher effect, represented by a 279 

correlation coefficient of 0.47 (p < 0.05), compared to a correlation coefficient of −0.37 (p < 280 

0.05) for temperature.  281 

 282 

3.2 Historical relationship between GPP and IOD 283 

In comparison, the pcor patterns between GPP and DMI in SON, controlling for the effect of 284 

ONI, exhibit nearly opposite patterns to those between GPP and ONI (Figs. 2 and 3). In detail, 285 

GPP demonstrates significant positive pcor values with DMI in southwestern China and eastern 286 

Inner Mongolia, but displays significant negative pcor with DMI in southeastern China during 287 

SON (Fig. 3a). In terms of climate drivers, during the pIOD events, for instance, wetter soil 288 

and lower temperatures both benefit the significant enhancement in GPP in southwestern China, 289 

while higher temperatures largely contribute to the enhancement in GPP over eastern Inner 290 

Mongolia. Conversely, GPP is largely inhibited by the dry conditions in southeastern China 291 

(Figs. 3e and i). Overall, soil moisture dominates the GPP anomaly in China, with a correlation 292 

coefficient of 0.33 (p < 0.05) (Fig. 3m). 293 
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In DJF, GPP exhibits widespread significant negative pcor with DMI (Fig. 3b), primarily due 294 

to the widespread negative pcor of temperature, characterized by a correlation coefficient of 295 

0.32 (p < 0.05) (Figs. 3f and n). Moving into MAM, the significant negative pcor between GPP 296 

and DMI carried on from those in DJF, but shifts to weak positive pcor in southeastern China, 297 

driven by the significant positive pcor of temperature (Figs. 3c and g). However, the significant 298 

negative pcor of soil moisture in the Jianghuai Basin and North China still negates the positive 299 

effect of temperature (Fig. 3k). During this period, temperature remains the dominant factor, 300 

with a nation-wide pattern correlation coefficient of 0.16 (p < 0.05) with GPP (Fig. 3o). 301 

 302 

In JJA, the situation undergoes a change, showing the significant positive pcor of GPP over 303 

southwestern, north and northeast China, and weak negative pcor over southeastern China (Fig. 304 

3d). In other words, lower temperatures and gradually wetter soil are conducive to the increase 305 

in vegetation photosynthesis, but heat and dry conditions cause the weak inhibition of 306 

photosynthesis in southeastern China during the pIOD (Figs. 3p). However, unlike the ENSO 307 

event, the role of temperature is slightly higher than that of SM in the IOD event, and the 308 

correlations between GPP and TAS and SM are −0.39 and 0.36 (p < 0.05), respectively. 309 

 310 
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3.3 GPP anomalies caused by specific ENSO and IOD events 311 

 312 

Fig. 4. Spatial distributions of seasonal composite GPP anomalies for ENSO events, (a-d) for El Niño, 313 

and (e-h) for La Niña. The black slashes indicate areas where El Niño events differ significantly from 314 

La Niña events (p ≤ 0.05) based on the Student’s two-sample t-test. The two-digit year in first column 315 

denote the years used for composite analysis. Additionally, China is divided into four regions: 316 

Northwest China, Tibetan Plateau, Northern China, and Southern China, as shown in (e), which is used 317 

in the following context. 318 

 319 

320 

Fig. 5. Similar to Fig. 4, but for spatial distributions of seasonal composite GPP anomalies for IOD 321 

events, (a-d) for pIOD, and (e-h) for nIOD. We did not conduct the significance test here owing to the 322 

limited samples.  323 

 324 
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While we have elucidated the historical relationship between GPP and ENSO and IOD events 325 

through partial correlation coefficients and discussed the underlying climate drivers, we here 326 

specifically selected actual events to conduct a composite analysis. This approach aims to 327 

further comprehensive understanding of the effects of ENSO and IOD events on GPP variations 328 

in China. 329 

 330 

3.3.1 ENSO-induced GPP anomalous patterns  331 

The impacts of El Niño and La Niña events exhibit opposite influences on GPP with obvious 332 

seasonal variations (Fig. 4). Specifically, during SON, GPP anomalies are relatively weak, 333 

indicating some suppressions over southwestern China and north China during El Niño events, 334 

primarily attributed to dry conditions there (Figs. 4a and S4a). As ENSO peaks in DJF, GPP is 335 

significantly strengthened during El Niño events and suppressed during La Niña events, 336 

especially over southern China (Figs. 4b and f), aligning well with the patterns of pcor between 337 

GPP and ONI, controlling the effect of DMI (Fig. 2b). Concurrently, the widespread higher 338 

temperatures and wetter soil moisture both contribute to enhanced GPP over southern China 339 

during El Niño events (Figs. S3b and S4b), while colder temperatures and drier soil moisture 340 

lead to GPP suppression there during La Niña (Figs. 2f and 3f). In MAM as ENSO weakens 341 

and vegetation starts to grow in the extratropics, the enhanced GPP over southern China in DJF 342 

during El Niño events diminishes, even transitioning into a notable GPP reduction over 343 

southwestern China, north China, and northeastern China (Fig. 4c). This transition is conspired 344 

by phenological and climate changes including colder temperatures and prolonged dry 345 

conditions (Figs. S3c and S4c). The GPP pattern exhibits the opposite transition in La Niña 346 

(Fig. 4g). Moving to JJA, dry and hot conditions (Fig. S3d and S4d) lead to significant negative 347 

GPP anomalies in southeastern and southwestern China in El Niño (Fig. 4d), whereas cool and 348 

wet conditions result in positive GPP anomalies in La Niña events (Fig. 4h). Overall, GPP 349 

anomalies induced by ENSO events in DJF and JJA are more pronounced than those in SON 350 

and MAM, corresponding to the life cycle of event and vegetation growth periods, respectively. 351 



18 

 

Crucially, they demonstrate distinct GPP patterns, with significant enhancements in DJF and 352 

reductions in JJA during El Niño events and reverse during La Niña events, aligning well with 353 

the pcor pattern between GPP and ONI, controlling for the effect of DMI (Fig. 4). In addition, 354 

the effect of ENSO on vegetation in southern China appears more substantial.  355 

 356 

3.3.2 IOD-induced GPP anomalous patterns 357 

During the period from 1981 to 2021, we only find one independent but extreme pIOD event 358 

occurred in 2019 according to our criterion (Table 1). This extreme pIOD event extended from 359 

June to December, a longer duration compared to other IOD events. Different from ENSO, 360 

IOD basically peaks in SON. GPP anomalies induced by this extreme event align closely with 361 

the long-term pcor patterns between GPP and DMI, controlling for the effect of ONI (Fig. 3). 362 

Specifically, significant reductions in GPP occur in southeastern China in SON (Fig. 5a), 363 

predominantly due to heat stress and severe drought conditions (Figs. S5a and S6a), consistent 364 

with the findings revealed by Wang et al. (2021b). In DJF, the seasonal legacy of vegetation 365 

state (Yan et al., 2023) and prolonged droughts lead to the widespread GPP reductions (Figs. 366 

5b and S6b), outweighing the potential positive effect of higher temperatures (Fig. S5b). Of 367 

course, the decline of GPP in southwestern China appears linked to lower temperatures (Figs. 368 

5b and S5b). During MAM, the mitigation of soil moisture deficit and favorable higher 369 

temperatures in southern China facilitate a shift in GPP from decline to increase (Fig. 5c). In 370 

the north, persistent drought conditions notwithstanding (Fig. S6c), higher temperatures and 371 

the onset of the growing season contribute to the enhanced GPP (Fig. 5c). In JJA, increased 372 

precipitation over the Yangtze and Yellow River basins (Zhang et al., 2022) alleviates the soil 373 

moisture deficits (Fig. S6d). Coupled with the relatively lower temperatures, this leads to 374 

widespread GPP increases. Conversely, GPP suppressions in provinces south of 25°N and 375 

around the Bohai Sea are attributed to higher temperatures and soil water deficits (Figs. 5d, 376 

S5d, and S6d). 377 

 378 
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In contrast to the intense 2019 pIOD event, our composite analysis incorporates three weak 379 

nIOD events, resulting in comparatively milder anomalies. In SON, different from pIOD event, 380 

negative GPP anomalies in nIOD mainly appear in the provinces of Guizhou, Hunan, and 381 

Guangxi (Fig. 5e), associated well with concurrent dry conditions (Fig. S6e). In DJF, although 382 

the spatial pattern of soil moisture remains largely consistent with SON (Fig. S6f), a shift from 383 

negative to positive temperature anomalies mitigates the evident GPP reductions (Fig. 5f). The 384 

ongoing soil wetting and the onset of the growing season in northern hemisphere in MAM 385 

result in the increased GPP over the Yellow River Basin and southwestern China (Figs. 5g, S5g, 386 

and S6g). Subsequently, in JJA, the combination of wetter soil and lower temperatures 387 

facilitates vegetation photosynthesis in southern China, while drier soil largely contributes to 388 

the reduction in GPP in the north and northeastern China (Figs. 5h, S5h, and S6h).  389 

 390 
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3.3.3 National and regional total GPP anomalies 391 

392 

Fig. 6. The seasonal and annual mean anomaly of GPP in different classified events for China (a), for 393 

Northern China (b), for Southern China (c), for Northwest China (d), and for Tibetan Plateau (e). The 394 

error bars show the standard deviation of different events in the composite analysis.  395 

 396 

We calculated the total GPP anomaly in China and various geographic regions for each 397 

classified event on both seasonal and annual scales (Fig. 6). Regionally, the geographical 398 

divisions include Northern China, Southern China, Northwest China, and Tibetan Plateau (Fig. 399 

4e). Notably, the North-South boundary aligns closely with the 0° isotherm in January and the 400 

annual precipitation line of 800 mm. The division between the North and the Northwest is 401 
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determined by the annual precipitation line of 400 mm, and the Tibetan Plateau is segmented 402 

based on topographic factors. 403 

 404 

In general, the GPP anomalies exhibit noticeable differences on the seasonal scale, while the 405 

total annual anomalies do not show a significant magnitude due to the mutual offset of positive 406 

and negative anomalies in different seasons. However, it is worth noting that our annual totals 407 

are calculated from the SON in the developing year of the event to the JJA in the following 408 

year. This method deviates from the traditional calendar year, and according to the conventional 409 

definition of a “year”, the annual anomalies induced by these events can indeed be substantial.  410 

 411 

Specifically, taking a national perspective (Fig. 6a), GPP anomalies during the El Niño and La 412 

Niña events exhibit opposite signs in DJF and JJA, with greater magnitudes during these peak 413 

periods of the events and the most vigorous growth period of vegetation, respectively. In terms 414 

of the development process of the event, the annual anomaly of GPP is negative during El Niño, 415 

with a magnitude of −0.04±0.19 Pg C yr−1, but positive during La Niña events, with a 416 

magnitude of 0.01±0.37 Pg C yr−1. The asymmetry of the positive and negative phases of IOD 417 

is also evident in the total anomaly. For the pIOD event in 2019, GPP shows strong negative 418 

anomalies with values of −0.41 Pg C yr−1 in SON and −0.75 Pg C yr−1 in DJF. Conversely, it 419 

exhibits a marked positive anomaly in the following JJA, with a value of 0.85 Pg C yr−1. The 420 

annual total of GPP anomaly is opposite for pIOD and nIOD events, showing −0.10 Pg C yr−1 421 

and 0.01±0.33 Pg C yr−1, respectively. Moreover, large standard deviation indicated that there 422 

are large uncertainties in the impact of different events, and each event has its uniqueness 423 

(Capotondi et al., 2015).  424 

 425 

Additionally, the variation of GPP anomaly in each region is basically consistent with that at 426 

the national scale, especially in the Southern. But regional differences indeed exist in the total 427 

amount of GPP anomalies, demonstrating the difference in the impact of events on different 428 

regions’ GPP. Taking the 2019 extreme pIOD event as an example, the GPP showed a 429 
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significant negative anomaly in the Southern during the SON (Fig. 6c), resulting in negative 430 

anomalies in GPP at the national scale (Fig. 6a), but weak positive anomalies in the Northern 431 

and TP (Figs. 6b and e). Then, the GPP anomaly was close to zero in the Northern and Southern 432 

in MAM (Figs. 6b and c), while it was still a significant negative anomaly in the Northwest 433 

and TP (Figs. 6d and e). Moreover, the negative annual GPP anomalies in the Southern and 434 

Northwest offset the positive anomalies of the TP and Northern, making a negative annual GPP 435 

anomaly in the national of this event. 436 

 437 

In terms of the magnitude of GPP anomalies, they are more pronounced in the Northern and 438 

Southern regions, characterized by lusher vegetation, mostly less than 0.5 Pg C yr−1. 439 

Meanwhile, GPP anomalies are relatively weaker in the Northwest and TP regions, primarily 440 

covered by grassland, generally less than 0.1 Pg C yr−1. Further, we calculate the contributions 441 

of different regions to the national total GPP anomaly in each event (Table S3), referencing an 442 

index described in the article by Ahlstrom et al. (2015), as detailed in the supplementary method. 443 

Overall, the GPP anomaly in the Southern region dominates the national GPP variation, 444 

contributing approximately 68% to ENSO events and 46% to IOD events, respectively. The 445 

Northern GPP anomaly contributes approximately 28% to the national GPP variation in ENSO 446 

events and 39% in IOD events. In addition, the contribution of GPP anomaly in the Northwest 447 

and TP regions to the national GPP variation is within 10%.448 
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3.3.4 Relative changes in total GPP anomalies at provincial scale 449 

 450 

Fig. 7. Spatial distributions of relative changes of total composite anomalies of GPP at provincial scale 451 

for different classified events. 452 
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We presented the spatial patterns of mean GPP anomalies from the SON in the developing year 453 

to the JJA in the decaying year (Fig. S7) and further calculated provincial total GPP anomalies 454 

(Fig. S8 and Table S3). Provinces with more extensive forest coverage, such as Yunnan, central 455 

provinces housing the Qinling Mountains, and northeast provinces where the Greater and 456 

Lesser Hinggan Mountains are situate, exhibit relatively larger provincial GPP anomalies. 457 

However, differences are apparent among different events (Fig. S8). Considering differences 458 

in area and vegetation coverage across provinces, our focus centers on the relative change of 459 

GPP anomalies (Fig. 7). It’s important to note that, due to different years used in composite 460 

analysis, our quantitative comparisons are limited to the same event within different provinces, 461 

while qualitative descriptions are extended to different events.  462 

 463 

El Niño events generally induce substantial GPP changes in two main regions with a relative 464 

change of over 10% (Fig. 7a). One region encompasses the northern coastal provinces, 465 

including Tianjin, Hebei, Shandong, and Jiangsu, while the other is situated in the western part, 466 

including Xinjiang, Tibet, and Yunnan provinces. Yunnan, rich in forest resources, bears the 467 

brunt of El Niño’s impact, exhibiting a total negative GPP anomaly of −22.55 Tg C yr−1 (Table 468 

S4) and a relative change of approximately 16%. Despite comparable relative changes in GPP 469 

for other provinces, their GPP anomalies are relatively smaller, within −5 Tg C yr−1. Notably, 470 

Xinjiang, characterized by a fragile forest steppe in the Altai and Tianshan Mountain regions, 471 

consistently demonstrates substantial relative changes in GPP during both ENSO and other 472 

events. Quantitatively, during the El Niño episode, Xinjiang witnesses a remarkable 24% 473 

relative change in GPP, accompanied by a positive GPP anomaly of −3.82Tg C yr−1. In contrast, 474 

during the La Niña episode, provinces with notable relative changes are mainly concentrated 475 

in the northern regions, such as Xinjiang, Inner Mongolia, Ningxia, Shanxi, and Liaoning 476 

provinces (Fig. 7b). In addition, although the influence of ENSO on GPP in the southern China 477 

is significant (Fig. 4), the total relative change through the year remains small due to the 478 

cancellation of positive and negative anomalies in different seasons. 479 

In the pIOD classification, only the 2019 extreme event is considered, resulting in the relative 480 
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change in GPP anomalies exceeding 10% in approximately half of the provinces. Notably, 481 

Jiangxi, Fujian, Guangxi, Guangdong, and Hainan experience reductions of more than 25% in 482 

GPP, with Jiangxi exhibiting the largest GPP anomaly of −31.50 Tg C yr−1, Conversely, 483 

Shandong, Shanxi, and Henan witness increase of over 25% in GPP (Fig. 7c). During nIOD 484 

events, northern provinces generally exhibit negative relative changes, while southern 485 

provinces display positive relative changes.  486 

 487 

In summary, the relative changes in total GPP anomalies at the provincial scale exhibit an east-488 

west pattern in annual variation. Meanwhile, the influence of IOD events on GPP presents an 489 

opposing north-south pattern. 490 
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4. Discussion 491 

4.1 The effect of compound ENSO and IOD events on China’s GPP  492 

 493 

Fig. 8. Spatial distributions of seasonal composite GPP anomalies for compound events, (a-d) for El 494 

Niño & pIOD events, and (e-h) for La Niña & nIOD events. The two-digit year in first column denote 495 

the years used for composite analysis. 496 

 497 

Indeed, despite IOD events being generally considered an independent coupled ocean-498 

atmosphere interaction (Saji et al., 1999), historical IOD events can occur in conjunction with 499 

ENSO (Ham et al., 2017; Yang et al., 2015). These combined phenomena are most notable 500 

represented by El Niño & pIOD and La Niña & nIOD events. Williams and Hanan (2011) 501 

researched the interactive effects of ENSO and IOD on African GPP, relying on an offline 502 

terrestrial biosphere model simulation. Their findings suggested that IOD could cause obvious 503 

anomalous GPP over much of Africa, capable of suppressing or even reversing ENSO signals 504 

in GPP anomalies. In addition, Yan et al. (2023) explored the interactive effects of ENSO and 505 

IOD on seasonal anomalies of tropical net land carbon flux using the TRENDYv9 multi-model 506 

simulations, revealing diverse effects in different sub-continents and seasons. We explore the 507 

anomalies of GPP in compound events based on composite analysis (Fig. 8), and the spatial 508 

patterns of soil moisture and temperature anomalies are shown in the appendix (Figs. S9 and 509 

S10). 510 
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The spatial patterns of the GPP anomalies during concurrent ENSO and IOD events differ from 511 

those in single events, although some similarities are evident. We observed that GPP anomalies 512 

during El Niño & pIOD events are generally opposite to those during La Niña & nIOD events. 513 

Here, we focus on the impacts of El Niño & pIOD events. In El Niño & pIOD events, GPP 514 

anomalies exhibit a general opposition, with enhanced vegetation photosynthesis in the 515 

southern regions and inhibited in the northern regions during SON. During El Niño & pIOD 516 

events, photosynthesis generally increased in the southern regions and decreased in the 517 

northern regions during SON, indicating opposing GPP anomalies across these areas. This 518 

spatial characteristic of GPP anomalies bears some resemblance to that induced by El Niño 519 

alone (Figs. 4a and 8a). Weak GPP anomalies are generally observed in DJF, with noticeable 520 

negative GPP anomalies in Guizhou and Hunan, and some positive GPP anomalies in regions 521 

south of 25°N (Fig. 8b). Notably during DJF, while significant positive GPP anomalies occur 522 

in El Niño events (Fig. 4b), simultaneous pIOD events induce significant negative GPP 523 

anomalies (Fig. 5b). When both events coincide, their impacts seem to largely counterbalance 524 

each other, resulting in a more neutral GPP anomaly. In MAM, GPP increases in Northern 525 

China (Fig. 8c). Subsequently, in JJA, vegetation photosynthesis experiences a significant 526 

increase in the Northern and Yunnan provinces (Fig. 8d).  527 

It is worth noting that the impacts of compound events on China’s GPP may not follow a 528 

straightforward linear superposition of the effects of two individual events. While their effects 529 

are nearly opposite when occurring separately, the positive and negative effects on GPP may 530 

be not simply cancelled each other out when they coincide. This complexity arises from the 531 

simultaneous occurrence of two tropical air-sea interaction modes, leading to intricate effects 532 

on mid-latitude circulations. Given the limited number of compound events, further exploration 533 

is necessary to unravel the effects of ENSO and IOD on GPP in China. 534 

4.2 Modulation of large-scale circulations on China’s GPP 535 

China’s GPP is intricately influenced by atmospheric circulations and sea surface temperature 536 

(Li et al., 2021; Ying et al., 2022). Ying et al. (2022) showed significant correlations between 537 
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seasonal GPP variation in China and climate phenomena such as ENSO, Pacific Decadal 538 

Oscillation (PDO), and Arctic Oscillation (AO), based on the Residual Principal Component 539 

analysis. Their research indicated that these identified SST and circulation factors could 540 

account for 13%, 23% and 19% of the seasonal GPP variations in spring, summer and autumn, 541 

respectively. And Li et al. (2021) proved that GPP response to El Niño varied with PDO phases 542 

during the growing seasons of typical El Niño years. Although both studies emphasized the 543 

impact of ENSO on China’s GPP and explored the roles of PDO and AO, the IOD was notably 544 

absent from their analyses. Contrastingly, our study sheds light on the significant influence of 545 

the extreme positive phase of IOD in 2019, showing a substantial negative GPP anomaly in 546 

southeastern China during SON, aligning with findings by Wang et al. (2021b). Moreover, the 547 

integration of partial correlation and composite analysis in our study elucidates the 548 

considerable impact of IOD on China’s GPP within this context. Importantly, our research 549 

underscores the temporal and spatial variability in the effects of IOD and ENSO on GPP across 550 

different seasons and regions. This complexity in ocean–atmosphere teleconnections implies 551 

that other climate oscillations, such as Polar/Eurasia and Atlantic Multidecadal Oscillation 552 

(AMO), might also contribute to influencing China’s GPP (Zhu et al., 2017).  553 

4.3 Uncertainties in BEPS Simulations 554 

The simulation of China’s GPP by BEPS is subject to several sources of uncertainty inherent 555 

in the model’s structure, parameterizations, processes, and input data (Chen et al., 2012; Chen 556 

et al., 2017; He et al., 2021a; Liu et al., 2018; Wang et al., 2021a). Leaf Area Index (LAI), a 557 

crucial input for the BEPS model, is derived from global remote sensing data that inherently 558 

possess uncertainties in spatial distribution and trend changes. Previous studies have 559 

highlighted significant uncertainties in simulating carbon budget of global terrestrial 560 

ecosystems when employing different LAI remote sensing data (Chen et al., 2019; Liu et al., 561 

2018). Foliage clumping index which is used to separate sunlit and shaded LAI can also cause 562 

some uncertainties in simulating GPP, because the current version of BEPS used the time-563 

invariant satellite-derived clumping index (Chen et al., 2012). Biases in meteorological drivers, 564 
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such as precipitation, can further result in considerable uncertainties in simulating terrestrial 565 

carbon cycle. The choice of precipitation products, for instance, has been shown to yield 566 

considerable differences in simulated net land-atmosphere carbon flux (Wang et al., 2021c). 567 

Moreover, BEPS model, like other terrestrial biosphere models, lacks consideration for 568 

vegetation adaptability to rising CO2 concentration, potentially leading to an overestimation of 569 

the fertilization effect on GPP. In addition, the accuracy of simulations over agricultural areas 570 

is compromised in BEPS, as it only considers crops with a C3 photosynthetic pathway and 571 

overlooks C4 crops (He et al., 2017; He et al., 2021b; Ju et al., 2006). Although BEPS simulated 572 

GPP demonstrates relatively high consistency with the measured GPP of Yingke Station (CRO), 573 

located in the northwest of China, its accuracy lacks validation over the extensive farmlands in 574 

north and northeastern China where various crops are grown (Fig. S11). Agricultural operations, 575 

particularly irrigation, which can significantly impact GPP, are not considered in BEPS. He et 576 

al. (2021a) revealed extensive wetting signals over croplands in arid and semi-arid areas which 577 

exerted strong impacts on GPP and evapotranspiration simulations in BEPS after assimilating 578 

the Soil Moisture Active Passive (SMAP) soil moisture product. Furthermore, photosynthetic 579 

key parameters, such as carboxylation capacity at 25°C (Vcmax,25), can largely determine the 580 

performance in simulating GPP. After assimilating the solar-induced chlorophyll fluorescence 581 

(SIF) from the Orbiting Carbon Observing Satellite-2 (OCO-2) to optimize Vcmax,25 of different 582 

plant functional types (PFTs) in BEPS, previous studies suggested the improvements in 583 

simulating GPP at regional and global scales to some extent (He et al., 2019; Wang et al., 584 

2021a). 585 

4.4 Limitations and Future work 586 

While the seasonal legacy effects of climate on subsequent vegetation have been widely 587 

confirmed (Bastos et al., 2020; Bastos et al., 2021), they were not fully accounted for in this 588 

study. During ENSO and IOD events, temperature and soil moisture vary with seasons, 589 

resulting in diverse conditions such as high temperature and drought, high temperature and wet, 590 

low temperature and drought, and low temperature and wet across different regions and seasons. 591 
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Vegetation does not immediately respond to changes in climatic condition changes due to its 592 

environmental resistance and self-regulation. These legacy effects are complex and vary by 593 

region as ENSO or IOD events progress through different seasons. 594 

Spring serves as a transitional period between the peak of the climatic event and the peak of 595 

the growing season, making it challenging to fully explain the spatial patterns of GPP anomalies 596 

in parts of northern China based on temperature and soil moisture. Higher temperatures during 597 

DJF in El Niño events (Fig. 2f) can advance the growing season, subsequently impacting 598 

vegetation in the following spring. Sanders-DeMott et al. (2020) have proved that a warm 599 

winter can enhance the photosynthetic capacity of vegetation in the subsequent spring. 600 

Additionally, Yan et al. (2023) quantified the influence of the preceding and contemporaneous 601 

climatic conditions on NEP during the 1997/98 El Niño and pIOD compound event, showing 602 

that legacy effects can counteract or even reverse the effects of contemporaneous climatic 603 

conditions. 604 

Additionally, Temperature and water (precipitation or soil moisture) have long been regarded 605 

as the main climate factors driving inter-annual fluctuations of GPP or NEP (Zeng et al., 2005; 606 

Piao et al., 2013; Ahlstrom et al., 2015; Wang et al., 2016; Jung et al., 2017; Humphrey et al., 607 

2018). However, other factors, such as VPD and radiation, also play important roles. This may 608 

explain the occasional mismatch between GPP patterns and TAS/SM in certain regions in Figs. 609 

2 and 3. Overall, although the dominant driving factors vary seasonally, TAS and SM capture 610 

GPP variations more effectively on a national scale. 611 

Finally, it is worth noting that climate factors often interact closely with one another. For 612 

example, soil moisture can influence changes in surface air temperature, and vice versa. As a 613 

result, in addition to direct effects, climate drivers may also impact vegetation through indirect 614 

pathways. Humphrey et al. (2021) discussed the direct and indirect effects of soil moisture on 615 

variations in terrestrial interannual carbon sinks—specifically, through its influence on 616 

temperature and vapor pressure deficit (VPD)—using simulations from four Earth System 617 

Models. This area of interaction warrants further investigation in future research. 618 
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5. Conclusion 619 

In this paper, we used partial correlation coefficients and composite analysis to investigate the 620 

impacts of ENSO and IOD events on China’s GPP during 1981–2021. The partial correlation 621 

results reveal that the effects of ENSO and IOD on GPP and related climate in China exhibit 622 

distinct seasonal variations and are basically opposite. Specifically, during SON, significant 623 

negative pcor between GPP and ENSO is observed over the Tibetan Plateau, southwestern 624 

China, Loess Plateau, and Liaoning. In DJF, strongly positive pcor occurs over southern China, 625 

weakening in the subsequent MAM, albeit with some enhancements in northern Hebei and 626 

neighboring Inner Mongolia. The pcor then turns generally negative in JJA. In contrast, 627 

significant positive pcor between GPP and IOD is noted in southwestern and Northeast China 628 

during SON. Subsequently, widespread negative pcor appears during DJF, persisting 629 

significantly in most western and northern regions during MAM. In JJA, the pcor becomes 630 

significantly positive in southwestern, north and northeast China. Moreover, the correlation 631 

coefficients between GPP and climate show that GPP anomalies are primarily dominated by 632 

SM during ENSO events except MAM, while temperature generally plays a more important 633 

role during IOD events except SON.  634 

 635 

The composite analysis results validate the patterns of GPP anomalies observed in the partial 636 

correlation. Generally, China's annual total GPP demonstrates modest positive anomalies in La 637 

Niña and nIOD years, contrasting with minor negative anomalies in El Niño and pIOD years. 638 

This results from the counterbalancing effects, with significantly greater GPP anomalous 639 

magnitudes in DJF and JJA. Regionally, GPP anomalies fluctuate more in the Southern and 640 

Northern regions. The GPP anomaly in the Southern region dominates the national GPP 641 

variation, with the contribution of 68% to ENSO events and 46% to IOD events, respectively. 642 

On the provincial scale, western and northern provinces in experience larger relative annual 643 

variations during ENSO events, with magnitudes exceeding 10%, exhibiting a general east-644 

west pattern. Conversely, provinces in the southern and Northern China witness larger relative 645 
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changes during IOD events, showing an opposing north-south pattern. For instance, the 2019 646 

extreme pIOD led to relative changes of over 25% in certain provinces in the south and north.  647 

  648 
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