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Abstract 18 

Gross primary production (GPP) stands as a crucial component in the terrestrial carbon cycle, 19 

greatly affected by large-scale circulation adjustments. This study explores the influence of El 20 

Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) on China’s GPP, utilizing 21 

long-term GPP data generated by the Boreal Ecosystem Productivity Simulator (BEPS). Partial 22 

correlation coefficients between GPP and ENSO reveal substantial negative associations in 23 

most parts of western and northern China during the September-October-November (SON) 24 

period of ENSO development. These correlations shift to strongly positive over southern China 25 

in December-January-February (DJF), then weaken in March-April-May (MAM) in the 26 

following year, eventually turning generally negative over southwestern and northeastern China 27 

in June-July-August (JJA). In contrast, the relationship between GPP and IOD basically exhibits 28 

opposite seasonal patterns. Composite analysis further confirms these seasonal GPP anomalous 29 

patterns. Mechanistically, we ascertain that, in general, these variations are predominantly 30 

controlled by soil moisture during ENSO events (except MAM)in SON and JJA, but and by 31 

temperature during IOD events (except SON) in DJF and MAM. Quantitatively, China's annual 32 

GPP demonstrates modest positive anomalies in La Niña and negative nIOD years, in contrast 33 

to minor negative anomalies in El Niño and positive pIOD years. This results from 34 

counterbalancing effects with significantly greater GPP anomalous magnitudes in DJF and JJA. 35 

Additionally, the relative changes in total GPP anomalies at the provincial scale display an east-36 

west pattern in annual variation, while the influence of IOD events on GPP presents an opposing 37 

north-south pattern. We believe that this study can significantly contribute to enhance our 38 

comprehension understanding of specific processes by which large-scale circulation influences 39 

climate conditions and, in turn, affects China’s GPP. how intricate atmospheric dynamics 40 

influence China’s GPP on an interannual scale.  41 

 42 
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Highlight 46 

(1) Impacts of ENSO and IOD on China’s GPP vary with seasons, showing nearly opposite 47 

patterns. 48 

(2) Soil moisture controls GPP in fall and summer, while temperature plays a key role in 49 

winter and spring. 50 

(3) Counterbalancing causes modest positive GPP anomalies in La Niña and nIOD, 51 

contrasting with minor negative anomalies in El Niño and pIOD. 52 

 53 

1.Introduction 54 

Vegetation photosynthesis, a pivotal physiological process affecting the terrestrial carbon cycle, 55 

predominantly governs variations in the net biome productivity (NBP), surpassing the impact 56 

of total ecosystem respiration (Piao et al., 2020; Wang et al., 2022; Wang et al., 2018). Gross 57 

primary production (GPP) represents the total amount of carbon dioxide assimilated by plants 58 

per unit time through the photosynthetic processes, acting as a crucial carbon flux in mitigating 59 

anthropogenic CO2 emissions (Gough, 2012; Houghton, 2007). However, despite evident long-60 

term increasing trends in GPP, primarily attributed to CO2 fertilization (Ryu et al., 2019; 61 

Schimel et al., 2015; Yang et al., 2022), it also shows regional and global interannual variations. 62 

These variations are largely linked to climate fluctuations driven by ocean-atmosphere 63 

interactions and the teleconnections (Wang et al., 2021b; Ying et al., 2022). To date, the impact 64 

of such teleconnections on China’s GPP remains insufficiently documented.  65 

 66 

The El Niño-Southern Oscillation (ENSO) exerts a significant influence on the global terrestrial 67 

carbon cycle, which is the dominant mode of inter-annual climate variability (Bauch, 2020; 68 

Kim et al., 2017; Wang et al., 2016; Wang et al., 2018; Zeng et al., 2005). Within this context, 69 

GPP typically assumes a leading role in shaping the response of terrestrial carbon sinks to 70 

ENSO events (Ahlstrom et al., 2015; Wang et al., 2018; Zhang et al., 2018). Global patterns 71 

reveal a negative GPP anomaly of approximately −1.08 Pg C yr-1 during El Niño years, 72 
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contrasting a positive GPP anomaly of about 1.63 Pg C yr-1 in La Niña years (Zhang et al., 73 

2019). However, the impact of ENSO on GPP exhibits significant regional differences. At 74 

present, while existing researches have predominantly focused on the response of tropical GPP 75 

to ENSO, studies specific to China are relatively limited. Liu et al. (2014) highlighted the effects 76 

of ENSO on crop growth in the North China, and Li et al. (2021) demonstrated that the response 77 

of GPP to El Niño varies with the phase of the Pacific Decadal Oscillation (PDO) in the eastern 78 

China.  79 

 80 

ENSO is not the sole global climatic oscillation, influencing the terrestrial carbon cycle. 81 

Another significant player is the Indian Ocean Dipole (IOD), a tropical coupled ocean-82 

atmosphere mode (Saji et al., 1999), which also affects the terrestrial carbon cycling by 83 

modulating the climate circulations (Wang et al., 2022; Wang et al., 2020; Wang et al., 2021b; 84 

Yan et al., 2023). Research indicates that IOD events can influence precipitation in China, with 85 

effects lasting from the year of the event through the subsequent summer (Zhang et al., 2022a). 86 

Zhang et al. (2022b) also proved that extreme positive IOD (pIOD) events in 2019 affected the 87 

precipitation in summer 2020 in Eastern China, and proposed that the summer precipitation in 88 

the following year was mainly affected by IOD in northern China, while by ENSO in the 89 

Yangtze River Basin. Additionally, a prior study explored the influence of the extreme positive 90 

IOD (pIOD) event in 2019 on GPP anomalies across the Indian Ocean rim countries. It 91 

suggested a conspicuous negative GPP anomaly occurred in eastern China during the 92 

September-October-November (SON) (Wang et al., 2021b).  93 

 94 

The primary objective of this study was to comprehensively assess the impact of ENSO and 95 

IOD events on GPP in China. To this end, we initially employed partial correlation analysis to 96 

elucidate the relationship between GPP and climate anomalies, specifically soil moisture and 97 

temperature, induced by ENSO and IOD events across various seasons. The analysis utilized 98 

historical long-term GPP data spanning from 1981 to 2021, simulated by the Boreal Ecosystem 99 

Productivity Simulator (BEPS) model. The aim was to get a preliminary understanding of the 100 
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influence exerted by ENSO and IOD. Furthermore, composite analysis was adopted to illustrate 101 

the actual responses during distinct events, including individual ENSO and IOD occurrences. 102 

The ensuing discussion will delve into the analysis results on national, regional, and provincial 103 

scales. 104 

 105 

2.Datasets and methods 106 

2.1 Datasets used 107 

The sea surface temperature (SST) dataset are derived from the Monthly NOAA’s Extended 108 

Reconstructed Sea Surface Temperature version 5 (ERSSTv5) (Muñoz, 2019). It is generated 109 

on a 2°x2° grid, using statistical methods to enhance spatial completeness. Commencing from 110 

January 1854 to the present, the monthly SST data includes anomalies computed with respect 111 

to a 1971-2000 monthly climatology. 112 

 113 

Meteorological data were adopted from ECMWF Reanalysis v5 (ERA5)ERA5-Land monthly 114 

averaged data with 0.1° × 0.1° grids, including 2m surface air temperature (TAS), and 115 

volumetric soil moisture (SM) during the period from 1981 to 2021. ERA5-Land was created 116 

by replaying the land component of the ECMWF ERA5 climate reanalysis at a higher resolution 117 

compared to ERA5. Reanalysis combines model data with global observations into a consistent 118 

dataset based on the laws of physics. The original soil moisture data was divided into four layers 119 

based on different surface depths. These layers were depth-weighted and then aggregated into 120 

the average soil moisture to a depth of 289cm (m3 m-3).  121 

 122 

GPP spanning from 1981 to 2021 was simulated by the BEPS model, featuring a horizontal 123 

resolution of 0.0727° × 0.0727°. The BEPS model, originally developed for Canadian boreal 124 

ecosystems, has been re-constructed for GPP simulations on the global scale (Chen et al., 1999; 125 

Chen et al., 2012). BEPS is a process-based model driven by satellite-observed leaf area index 126 
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(LAI), meteorological data, land cover types, soil texture, and CO2 concentration to simulate 127 

the daily carbon flux of terrestrial ecosystems (Chen et al., 2019; Liu et al., 1997). The input 128 

data used to drive GPP in this study include ERA5 meteorological data (Hersbach et al., 2023), 129 

GLOBMAP LAI product (Liu et al., 2012), Land Cover Classification System (LCCS) 130 

generated by the Food and Agriculture Organization (FAO) of the United Nations (Friedl and 131 

Sulla-Menashe, 2019), Harmonized World Soil Database v1.2 from FAO (Fischer et al., 2008), 132 

and CO2 concentration based on the Global Monitoring Laboratory from NASA (Lan et al.). 133 

Notably, BEPS distinguishes itself from other models through the organic combination of 134 

remote sensing data and mechanistic modelling. It produces simulation datasets for GPP, Net 135 

primary productivity (NPP) and evapotranspiration (ET). Key features of BEPS include the 136 

incorporation of sunlit-shaded leaf stratification strategy (Norman, 1982). The model calculates 137 

canopy-level photosynthesis by summing the GPP of sunlit and shaded leaves (Chen et al., 138 

1999). 139 

𝐺𝑃𝑃 = 𝐴𝑠𝑢𝑛𝐿𝐴𝐼𝑠𝑢𝑛 + 𝐴𝑠ℎ𝑎𝑑𝑒𝐿𝐴𝐼𝑠ℎ𝑎𝑑𝑒                        (1) 140 

𝐿𝐴𝐼𝑠𝑢𝑛 = 2 cos 𝜃 [1 − 𝑒𝑥𝑝 (−
0.5Ω𝐿𝐴𝐼

cos𝜃
)]                      (2) 141 

𝐿𝐴𝐼𝑠ℎ𝑎𝑑𝑒 = 1 − 𝐿𝐴𝐼𝑠𝑢𝑛                                    (3) 142 

where 𝐴𝑠𝑢𝑛 and 𝐴𝑠ℎ𝑎𝑑𝑒  represent the amount of photosynthesis at per sunlit and shaded leaf, 143 

respectively; 𝐿𝐴𝐼𝑠𝑢𝑛  and 𝐿𝐴𝐼𝑠ℎ𝑎𝑑𝑒  represent the canopy-level sunlit and shaded LAI, 144 

respectively; Ω is the foliage clumping index indicaiting the influence of foliage clustering on 145 

radiation transmission, and 𝜃 is the solar zenith angle. 146 

 147 

The accuracy of carbon flux products simulated by BEPS has been validated in previous studies 148 

(Chen et al., 2019; He et al., 2021). We also used the measured site data from ChinaFlux 149 

(http://chinaflux.org/) and National Tibetan Plateau Third Pole Environment (Li et al., 2013) 150 

(Table S1) to assess the performance of BEPS simulated GPP (Fig. S1). Our analysis reveals a 151 

high consistency between simulated and observed GPP, with an average R2 of 0.77 (p < 0.05) 152 

and an average root mean square error (RMSE) of 1.70 gC m-2 day-1. In addition, the global 153 

terrestrial GPP from FluxSat product Version 2.2 (Joiner et al., 2018) was also used to assess 154 

http://chinaflux.org/
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the reliability of BEPS GPP. FluxSat GPP is obtained by using light-use efficiency (LUE) 155 

framework based on Moderate-resolution Imaging Spectroradiometer (MODIS) satellite data, 156 

eliminating the dependency on other meteorological input data. The comparison between BEPS 157 

GPP and FluxSat GPP data revealed a robust agreement, with a correlation coefficient (𝑟) of 158 

0.63 (p < 0.05) and a RMSE of 1.1 Pg C yr−1 (Fig. S2). These consistencies underscore the 159 

reliability of the BEPS GPP data in capturing terrestrial carbon flux dynamics. 160 

2.2 Anomaly calculation 161 

To calculate anomalies, we initially eliminated the long-term climatology to get rid of the 162 

seasonal cycle. Subsequently, we subtracted the 7-year running average for each grid to 163 

eliminate the decadal oscillation and long-term trends for all the variables. Further, refinement 164 

involved smoothing the derived GPP and climate anomalies using a 3-month running average 165 

to remove the intra-seasonal variability. For consistency, the BEPS simulated GPP data was 166 

resampled to 0.1° × 0.1°. To align with this, non-vegetated areas in the climate data were 167 

masked according to the resampled BEPS GPP, uniformity in spatial representation. 168 

2.3 Definition of climate events 169 

The Oceanic Niño Index (ONI) is used to define ENSO events (Fig. 1a), which represents the 170 

3-month running mean SST anomaly in the Niño 3.4 region (5°N-5°S, 120°-170°W). The 171 

positive phase of an ENSO event (El Niño) is characterized by the ONI exceeding +0.5K for 172 

five consecutive overlapping 3-month periods. Conversely, the negative phase of an ENSO 173 

event (La Niña) occurs when the ONI is below −0.5K for five consecutive overlapping 3-month 174 

periods. The severity of the event can be further categorized into weak (0.5~–0.99), moderate 175 

(1.00~–1.49), strong (1.50~–1.99) and extremely strong (≥2.00) based on the absolute value 176 

of the ONI. To qualify for a specific rating, an event should meet or exceed a threshold for at 177 

least three consecutive overlapping three-month periods. 178 

 179 
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Moreover, the Dipole Mode Index (DMI) is employed to identify IOD events (Saji et al., 1999). 180 

The DMI is calculated from SST differences between the Western Equatorial Indian Ocean 181 

(10°S-10°N, 50°-70°E) and the South-eastern Equatorial Indian Ocean (10°S-0°N, 90°-110°E) 182 

(Fig.1b). Given that the short duration of IOD events with a tendency to peak during the SON, 183 

the standard deviation of SON DMI (0.52K from 1981 to 2021) is used as the criterion for 184 

identifying IOD events. A positive phase IOD (pIOD) event is defined when the absolute value 185 

of DMI is greater than or equal to one standard deviation (0.52 K) for three consecutive 3-186 

month periods. Additionally, a strong pIOD event is identified if the DMI value exceeds two 187 

standard deviations (1.04 K).  188 

  189 

Fig.1 Time series of the Oceanic Niño Index (ONI) (a) and the Dipole Mode Index (DMI) (b) from 1980 190 

to 2022. The positive phase events (El Niño and positive Indian Ocean Dipole (pIOD)) are filled in 191 

green and the negative phase events (La Niña and negative IOD (nIOD)) are filled in yellow, and the 192 

events are also labeled with a two-digit year. The green and yellow dashed lines represent the positive 193 

and negative thresholds for El Niño-Southern Oscillation (ENSO) and IOD, respectively. The gray 194 
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background indicates years with the simultaneous ENSO and IOD events. 195 

2.4 Partial correlation analysis 196 

To comprehensively assess the impacts of ENSO and IOD on GPP, while accounting for the 197 

influence of other events, partial correlation analysis (pcor) was employed, following the 198 

previous studies (Saji and Yamagata, 2003; Wang et al., 2021b). The definition of pcor for x 199 

and y, controlling for z, is given by: 200 

𝑝𝑐𝑜𝑟𝑦𝑥.𝑧 =
𝑟𝑦𝑥−𝑟𝑦𝑧𝑟𝑥𝑧

√1−𝑟𝑦𝑧
2 √1−𝑟𝑥𝑧

2
                                (4) 201 

where 𝑟𝑦𝑥 is the correlation of the dependent variable y and the explanatory variable x (e.g., 202 

DMI), and the same is for 𝑟𝑦𝑧 and 𝑟𝑦𝑥. The two-tailed Student's t-test was used to calculate 203 

the statistical significance of each pixel result: 204 

𝑡 = 𝑝𝑐𝑜𝑟𝑦𝑥.𝑧√
𝑛−2−𝑘

1−𝑝𝑐𝑜𝑟𝑦𝑥.𝑧
2                                  (5) 205 

where n and k are the number of samples and conditioned variables, respectively.  206 

 207 

2.5 Composite analysis  208 

When enumerating the years of ENSO and IOD events, we retained all the years of IOD events 209 

and ENSO events of above the moderate intensity. Individual events and compound events were 210 

categorized and summarized in Table 1. In this study, a compound event refers to the 211 

simultaneous occurrence of ENSO and IOD, primarily El Niño & pIOD and La Niña & negative 212 

IOD (nIOD). IOD typically peaked in the September-October-November (SON, yr0), while 213 

ENSO peaked in the December(yr0)-January(yr1)-February(yr1) (DJF), and the influence of 214 

the two events could extend until the summer of the following year. Therefore, we selected four 215 

seasons from SON to June-July-August (JJA) in the following year for composite analysis in 216 

this study. In addition, the year 1991 was excluded due to the strong eruption of Mount Pinatubo, 217 

which had a large impact on the global carbon cycle (Mercado et al., 2009). 218 

 219 
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Table 1. Occurrences of ENSO and IOD events from 1981 to 2021. 220 

Events Years 

El Niño 1982, 1986, 1987, 2002, 2009 

La Niña 1984, 1988, 1999, 2007, 2011, 2020 

pIOD 2019 

nIOD 1992, 1996, 2016 

El Niño & pIOD  1994,1997, 2015 

El Niño & nIOD  - 

La Niña & pIOD  - 

La Niña & nIOD  1998, 2010 

 221 
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3.Results 222 

3.1 Historical relationship between GPP and ENSO223 



12 

 

224 

 225 
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Fig. 2 Spatial patterns of partial correlation coefficients (pcor) between ONI and gross primary productivity 226 

(GPP) (a-d), surface air temperature (TAS) (e-h), soil moisture (SM) (i-l) in different seasons, controlling 227 

for the effect of DMI. Hatched areas represent significance at p ≤ 0.05 based on the two-tailed Student's t-228 

test. (m-p) Heatmaps represent the relationships of the pcor patterns among GPP, TAS, and SM, and bar 229 

charts illustrate the pattern correlations of these pcor values between GPP and TAS and SM on the national 230 

scale for each season. We here use seasonal average temperature as a mask to exclude regions with 231 

temperatures below zero, thereby minimizing the influence of phenology on GPP. Notably, asterisks (*) in 232 

the bar charts denote significance at p < 0.05.  233 
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234 

 235 
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Fig. 3 Same as Fig.2, but for DMI, controlling the effect of ONI. 236 

 237 

We analyzed the pcor patterns between GPP and , climate anomalies, and across different 238 

events using long time series data (Figs. 2 and 3). Following this, we calculated pattern 239 

correlation coefficients between the GPP and climate pcor patterns (including all the pixels 240 

over China), aiming to investigate the varying impacts of key climate drivers (TAS and SM) 241 

on photosynthesis across different seasons (Figs. 2m-p, and 3m-p).  242 

 243 

Figure 2 reveals notable seasonal variations in the pcor patterns between GPP, related climate 244 

anomalies, and ONI index in December-January-February (DJF) when ENSO peaked, 245 

controlling the effect of DMI in September-October-November (SON) when IOD peaked. 246 

During SON, significant negative pcor between GPP and ONI is observed in regions including 247 

the Tibetan Plateau, Southwestern China, Loess Plateau, and Liaoning province (Fig. 2a). 248 

Clearly, this pattern aligns closely with the pcor pattern between soil moisture and ONI (Figs. 249 

2a and i). The pattern correlation analysis between GPP and both TAS and SM underscores the 250 

dominance of SM in influencing GPP anomalies, indicated by a correlation coefficient of 251 

0.3130 (p < 0.05). This finding suggests that the soil moisture deficit induced by El Niño largely 252 

inhibits vegetation photosynthesis during this season (Fig. 2m). 253 

 254 

Along with the peak of ENSO events in DJF, the pcor pattern between GPP and ONI exhibits 255 

a distinct shift from the pattern in SON. Notably, DJF showcases significant positive pcor 256 

values over large areas in southern China and weak positive pcor in the North and Northeastern 257 

China (Fig. 2b). During this period, temperaturesoil moisture still emerges serves as a more 258 

influential factor in driving GPP changes, reflected in a nation-wide pattern correlation 259 

coefficient of 0.3245 (p < 0.05) (Fig. 2n). Specifically, sufficient soil moisture higher winter 260 

temperatures during El Niño, coupled with higher winter temperaturessufficient soil moisture, 261 

contribute to a substantial enhancement in GPP across Southern China. In contrast, the impact 262 

is weaker in the North and Northeast China due to the vegetation being in the non-growing 263 

season, and localized soil water deficits (Figs. 2b, f, and j). In addition, GPP experiences 264 
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inhibition in some areas of southwestern China due to low temperatures and soil drought.  265 

 266 

Subsequently, the positive pcor of GPP decreases, or even turns into weak slightly negative 267 

values from DJF to March-April-May (MAM) in southern China., which These changes are 268 

primarily attributed to shifts of temperature, with a pattern correlation coefficient of −0.09 (p 269 

< 0.05) (Figs. 2c, and g, and o). On a nationwide scale, Conversely, the positive pcor of GPP 270 

continues to increase in northern Sichuan, aligning with the positive pcor of temperature (Figs. 271 

2c and g), and in northern Hebei and parts of neighboring Inner Mongolia, corresponding to 272 

the weak positive pcor of soil moisture (Figs. 2c and k). temperature becomes the dominant 273 

factor in this period, but it exhibits a negative correlation with GPP, with a spatial correlation 274 

coefficient of −0.18 (p < 0.5). This negative correlation is mainly due to negative GPP and 275 

positive temperature in the southwest region, and positive GPP and negative temperature in the 276 

northern region (Figs. 2c and 2g). Specifically, the negative pcor of GPP in southwest China is 277 

due to soil moisture shortages (Fig. 2k). In the northern region, where a large area of croplands 278 

exists (Fig. S11), human management practices may have a greater impact on GPP, particularly 279 

in the spring when the growing season begins. However, these human management practices 280 

(e.g., irrigation, fertilization, pesticide use) are not considered in the BEPS model, which could 281 

introduce significant uncertainties in simulated GPP over cropland areas. Additionally, in some 282 

grasslands of northern Hebei and parts of neighboring Inner Mongolia, GPP shows positive 283 

pcor during El Niño events, possibly due to the strong legacy effects of climatic conditions in 284 

DJF period.  285 

 286 

Moving into JJA, the pcor of GPP exhibits widespread negative values again (Fig. 2d). In 287 

general, during El Niño, increased soil moisture and lower temperatures greatly contribute to 288 

enhanced GPP, while drier soil moisture and higher temperatures inhibit the increase in GPP 289 

(Fig. 2p). Regionally, higher temperatures and lower soil moisture both contribute to the 290 

negative GPP anomalies over southwestern China. However, lower soil moisture 291 

predominantly curtails GPP over the Tibetan Plateau, the Yellow River basin, and northeastern 292 
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Inner Mongolia. Overall, the correlation coefficients between GPP and TAS and SM in summer 293 

are comparable, with soil moisture exhibiting a slightly higher effect, represented by a 294 

correlation coefficient of −0.4739 (p < 0.05), compared to a correlation coefficient of −0.370.36 295 

(p < 0.05) for temperature soil moisture.  296 

 297 

3.2 Historical relationship between GPP and IOD 298 

In comparison, the pcor patterns between GPP and DMI in SON, controlling for the effect of 299 

ONI in DJF, exhibit nearly opposite patterns to those between GPP and ONI (Figs. 2 and 3). In 300 

detail, GPP demonstrates significant positive pcor values with DMI in southwestern China and 301 

eastern Inner Mongolia, but displays significant negative pcor with DMI in southeastern China 302 

during SON (Fig. 3a). In terms of climate drivers, during the pIOD events, for instance, wetter 303 

soil and lower temperatures both benefit the significant enhancement in GPP in southwestern 304 

China, while higher temperatures largely contribute to the enhancement in GPP over eastern 305 

Inner Mongolia. Conversely, GPP is largely inhibited by the dry conditions in southeastern 306 

China (Figs. 3e and i). Overall, soil moisture dominates the GPP anomaly in China, with a 307 

correlation coefficient of 0.3326 (p < 0.05) (Fig. 3m). 308 

 309 

In DJF, GPP exhibits widespread significant negative pcor with DMI (Fig. 3b), primarily due 310 

to the widespread negative pcor of temperature, characterized by a correlation coefficient of 311 

0.3204 (p < 0.05) (Figs. 3f and n). Moving into MAM, the significant negative pcor between 312 

GPP and DMI carried on from those in DJF, but shifts to weak positive pcor in southeastern 313 

China, driven by the significant positive pcor of temperature (Figs. 3c and g). However, the 314 

significant negative pcor of soil moisture in the Jianghuai Basin and North China still negates 315 

the positive effect of temperature (Fig. 3k). During this period, temperature remains the 316 

dominant factor, with a nation-wide pattern correlation coefficient of 0.15 16 (p < 0.05) with 317 

GPP (Fig. 3o). 318 

 319 
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In JJA, the situation undergoes a change, showing the significant positive pcor of GPP over 320 

southwestern, north and northeast China, and weak negative pcor over southeastern China (Fig. 321 

3d). In other words, lower temperatures and gradually wetter soil are conducive to the increase 322 

in vegetation photosynthesis, but heat and dry conditions cause the weak inhibition of 323 

photosynthesis in southeastern China during the pIOD (Figs. 3p). However, unlike the ENSO 324 

event, the role of temperature is slightly higher than that of SM in the IOD event, and the 325 

correlations between GPP and TAS and SM are −0.39 and 0.36 (p < 0.05), respectively. 326 

 327 
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3.3 GPP anomalies caused by specific ENSO and IOD events 328 

 329 

Fig. 4. Spatial distributions of seasonal composite GPP anomalies for ENSO events, (a-d) for El Niño, 330 

and (e-h) for La Niña. The black slashes indicate areas where El Niño events differ significantly from 331 

La Niña events (p ≤ 0.05) based on the Student’s two-sample t-test. The two-digit year in first column 332 

denote the years used for composite analysis. Additionally, China is divided into four regions: 333 

Northwest China, Tibetan Plateau, Northern China, and Southern China, as shown in (e), which is used 334 

in the following context. 335 

 336 

337 

Fig. 5. Similar to Fig. 4, but for spatial distributions of seasonal composite GPP anomalies for IOD 338 

events, (a-d) for pIOD, and (e-h) for nIOD. We did not conduct the significance test here owing to the 339 

limited samples.  340 

 341 
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While we have elucidated the historical relationship between GPP and ENSO and IOD events 342 

through partial correlation coefficients and discussed the underlying climate drivers, we here 343 

specifically selected actual events to conduct a composite analysis. This approach aims to 344 

further comprehensive understanding of the effects of ENSO and IOD events on GPP variations 345 

in China. 346 

 347 

3.3.1 ENSO-induced GPP anomalous patterns  348 

The impacts of El Niño and La Niña events exhibit opposite influences on GPP with obvious 349 

seasonal variations (Fig. 4). Specifically, during SON, GPP anomalies are relatively weak, 350 

indicating some suppressions over southwestern China and north China during El Niño events, 351 

primarily attributed to dry conditions there (Figs. 4a and S4a). As ENSO peaks in DJF, GPP is 352 

significantly strengthened during El Niño events and suppressed during La Niña events, 353 

especially over southern China (Figs. 4b and f), aligning well with the patterns of pcor between 354 

GPP and ONI, controlling the effect of DMI (Fig. 2b). Concurrently, the widespread higher 355 

temperatures and wetter soil moisture both contribute to enhanced GPP over southern China 356 

during El Niño events (Figs. S3b and S4b), while colder temperatures and drier soil moisture 357 

lead to GPP suppression there during La Niña (Figs. 2f and 3f). In MAM as ENSO weakens 358 

and vegetation starts to grow in the extratropics, the enhanced GPP over southern China in DJF 359 

during El Niño events diminishes, even transitioning into a notable GPP reduction over 360 

southwestern China, north China, and northeastern China (Fig. 4c). This transition is conspired 361 

by phenological and climate changes including colder temperatures and prolonged dry 362 

conditions (Figs. S3c and S4c). The GPP pattern exhibits the opposite transition in La Niña 363 

(Fig. 4g). Moving to JJA, dry and hot conditions (Fig. S3d and S4d) lead to significant negative 364 

GPP anomalies in southeastern and southwestern China in El Niño (Fig. 4d), whereas cool and 365 

wet conditions result in positive GPP anomalies in La Niña events (Fig. 4h). Overall, GPP 366 

anomalies induced by ENSO events in DJF and JJA are more pronounced than those in SON 367 

and MAM, corresponding to the life cycle of event and vegetation growth periods, respectively. 368 
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Crucially, they demonstrate distinct GPP patterns, with significant enhancements in DJF and 369 

reductions in JJA during El Niño events and reverse during La Niña events, aligning well with 370 

the pcor pattern between GPP and ONI, controlling for the effect of DMI (Fig. 4). In addition, 371 

the effect of ENSO on vegetation in southern China appears more substantial.  372 

 373 

3.3.2 IOD-induced GPP anomalous patterns 374 

During the period from 1981 to 2021, we only find one independent but extreme pIOD event 375 

occurred in 2019 according to our criterion (Table 1). This extreme pIOD event extended from 376 

June to December, a longer duration compared to other IOD events. Different from ENSO, 377 

IOD basically peaks in SON. GPP anomalies induced by this extreme event align closely with 378 

the long-term pcor patterns between GPP and DMI, controlling for the effect of ONI (Fig. 3). 379 

Specifically, significant reductions in GPP occur in southeastern China in SON (Fig. 5a), 380 

predominantly due to heat stress and severe drought conditions (Figs. S5a and S6a), consistent 381 

with the findings revealed by Wang et al. (2021b). In DJF, the seasonal legacy of vegetation 382 

state (Yan et al., 2023) and prolonged droughts lead to the widespread GPP reductions (Figs. 383 

5b and S6b), outweighing the potential positive effect of higher temperatures (Fig. S5b). Of 384 

course, the decline of GPP in southwestern China appears linked to lower temperatures (Figs. 385 

5b and S5b). During MAM, the mitigation of soil moisture deficit and favorable higher 386 

temperatures in southern China facilitate a shift in GPP from decline to increase (Fig. 5c). In 387 

the north, persistent drought conditions notwithstanding (Fig. S6c), higher temperatures and 388 

the onset of the growing season contribute to the enhanced GPP (Fig. 5c). In JJA, increased 389 

precipitation over the Yangtze and Yellow River basins (Zhang et al., 2022) alleviates the soil 390 

moisture deficits (Fig. S6d). Coupled with the relatively lower temperatures, this leads to 391 

widespread GPP increases. Conversely, GPP suppressions in provinces south of 25°N and 392 

around the Bohai Sea are attributed to higher temperatures and soil water deficits (Figs. 5d, 393 

S5d, and S6d). 394 

 395 
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In contrast to the intense 2019 pIOD event, our composite analysis incorporates three weak 396 

nIOD events, resulting in comparatively milder anomalies. In SON, different from pIOD event, 397 

negative GPP anomalies in nIOD mainly appear in the provinces of Guizhou, Hunan, and 398 

Guangxi (Fig. 5e), associated well with concurrent dry conditions (Fig. S6e). In DJF, although 399 

the spatial pattern of soil moisture remains largely consistent with SON (Fig. S6f), a shift from 400 

negative to positive temperature anomalies mitigates the evident GPP reductions (Fig. 5f). The 401 

ongoing soil wetting and the onset of the growing season in northern hemisphere in MAM 402 

result in the increased GPP over the Yellow River Basin and southwestern China (Figs. 5g, S5g, 403 

and S6g). Subsequently, in JJA, the combination of wetter soil and lower temperatures 404 

facilitates vegetation photosynthesis in southern China, while drier soil largely contributes to 405 

the reduction in GPP in the north and northeastern China (Figs. 5h, S5h, and S6h).  406 

 407 
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3.3.3 National and regional total GPP anomalies 408 

409 

Fig. 6. The seasonal and annual mean anomaly of GPP in different classified events for China (a), for 410 

Northern China (b), for Southern China (c), for Northwest China (d), and for Tibetan Plateau (e). The 411 

error bars show the standard deviation of different events in the composite analysis.  412 

 413 

We calculated the total GPP anomaly in China and various geographic regions for each 414 

classified event on both seasonal and annual scales (Fig. 6). Regionally, the geographical 415 

divisions include Northern China, Southern China, Northwest China, and Tibetan Plateau (Fig. 416 

4e). Notably, the North-South boundary aligns closely with the 0° isotherm in January and the 417 

annual precipitation line of 800 mm. The division between the North and the Northwest is 418 
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determined by the annual precipitation line of 400 mm, and the Tibetan Plateau is segmented 419 

based on topographic factors. 420 

 421 

In general, the GPP anomalies exhibit noticeable differences on the seasonal scale, while the 422 

total annual anomalies do not show a significant magnitude due to the mutual offset of positive 423 

and negative anomalies in different seasons. However, it is worth noting that our annual totals 424 

are calculated from the SON in the developing year of the event to the JJA in the following 425 

year. This method deviates from the traditional calendar year, and as per the conventional 426 

definition of a “year”, the annual anomalies induced by these events can indeed be substantial.  427 

 428 

Specifically, taking a national perspective (Fig. 6a), GPP anomalies during the El Niño and La 429 

Niña events exhibit opposite signs in DJF and JJA, with greater magnitudes during these peak 430 

periods of the events and the most vigorous growth period of vegetation, respectively. In terms 431 

of the development process of the event, the annual anomaly of GPP is negative during El Niño, 432 

with a magnitude of −0.04±0.19 Pg C yr−1, but positive during La Niña events, with a 433 

magnitude of 0.01±0.37 Pg C yr−1. The asymmetry of the positive and negative phases of IOD 434 

is also evident in the total anomaly. For the pIOD event in 2019, GPP shows strong negative 435 

anomalies with values of −0.41 Pg C yr−1 in SON and −0.75 Pg C yr−1 in DJF. Conversely, it 436 

exhibits a marked positive anomaly in the following JJA, with a value of 0.85 Pg C yr−1. The 437 

annual total of GPP anomaly is opposite for pIOD and nIOD events, showing −0.10 Pg C yr−1 438 

and 0.01±0.33 Pg C yr−1, respectively. Moreover, large standard deviation indicated that there 439 

are large uncertainties in the impact of different events, and each event has its uniqueness 440 

(Capotondi et al., 2015).  441 

 442 

Additionally, the variation of GPP anomaly in each region is basically consistent with that at 443 

the national scale, especially in the Southern. But regional differences indeed exist in the total 444 

amount of GPP anomalies, demonstrating the difference in the impact of events on different 445 

regions’ GPP. Taking the 2019 extreme pIOD event as an example, the GPP showed a 446 
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significant negative anomaly in the Southern during the SON (Fig. 6c), resulting in negative 447 

anomalies in GPP at the national scale (Fig. 6a), but weak positive anomalies in the Northern 448 

and TP (Figs. 6b and e). Then, the GPP anomaly was close to zero in the Northern and Southern 449 

in MAM (Figs. 6b and c), while it was still a significant negative anomaly in the Northwest 450 

and TP (Figs. 6d and e). Moreover, the negative annual GPP anomalies in the Southern and 451 

Northwest offset the positive anomalies of the TP and Northern, making a negative annual GPP 452 

anomaly in the national of this event. 453 

 454 

In terms of the magnitude of GPP anomalies, they are more pronounced in the Northern and 455 

Southern regions, characterized by lusher vegetation, mostly less than 0.5 Pg C yr−1. 456 

Meanwhile, GPP anomalies are relatively weaker in the Northwest and TP regions, primarily 457 

covered by grassland, generally less than 0.1 Pg C yr−1. Further, we calculate the contributions 458 

of different regions to the national total GPP anomaly in each event (Table S3), referencing an 459 

index described in the article by Ahlstrom et al. (2015), as detailed in the supplementary method. 460 

Overall, the GPP anomaly in the Southern region dominates the national GPP variation, 461 

contributing approximately 68% to ENSO events and 46% to IOD events, respectively. The 462 

Northern GPP anomaly contributes approximately 28% to the national GPP variation in ENSO 463 

events and 39% in IOD events. In addition, the contribution of GPP anomaly in the Northwest 464 

and TP regions to the national GPP variation is within 10%.465 
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3.3.4 Relative changes in total GPP anomalies at provincial scale 466 

 467 

Fig. 7. Spatial distributions of relative changes of total composite anomalies of GPP at provincial scale 468 

for different classified events. 469 
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We presented the spatial patterns of mean GPP anomalies from the SON in the developing year 470 

to the JJA in the decaying year (Fig. S7) and further calculated provincial total GPP anomalies 471 

(Fig. S8 and Table S3). Provinces with more extensive forest coverage, such as Yunnan, central 472 

provinces housing the Qinling Mountains, and northeast provinces where the Greater and 473 

Lesser Hinggan Mountains are situate, exhibit relatively larger provincial GPP anomalies. 474 

However, differences are apparent among different events (Fig. S8). Considering differences 475 

in area and vegetation coverage across provinces, our focus centers on the relative change of 476 

GPP anomalies (Fig. 7). It’s important to note that, due to different years used in composite 477 

analysis, our quantitative comparisons are limited to the same event within different provinces, 478 

while qualitative descriptions are extended to different events.  479 

 480 

El Niño events generally induce substantial GPP changes in two main regions with a relative 481 

change of over 10% (Fig. 7a). One region encompasses the northern coastal provinces, 482 

including Tianjin, Hebei, Shandong, and Jiangsu, while the other is situated in the western part, 483 

including Xinjiang, Tibet, and Yunnan provinces. Yunnan, rich in forest resources, bears the 484 

brunt of El Niño ‘s impact, exhibiting a total negative GPP anomaly of −90.2122.55 Tg C yr−1 485 

(Table S4) and a relative change of approximately 16%. Despite comparable relative changes 486 

in GPP for other provinces, their GPP anomalies are relatively smaller, within ranging from 487 

−10 to −15 Tg C yr−1. Notably, Xinjiang, characterized by a fragile forest steppe in the Altai 488 

and Tianshan Mountain regions, consistently demonstrates substantial relative changes in GPP 489 

during both ENSO and other events. Quantitatively, during the El Niño episode, Xinjiang 490 

witnesses a remarkable 24% relative change in GPP, accompanied by a positive GPP anomaly 491 

of −3.8215.27 Tg C yr−1. In contrast, during the La Niña episode, provinces with notable 492 

relative changes are mainly concentrated in the northern regions, such as Xinjiang, Inner 493 

Mongolia, Ningxia, Shanxi, and Liaoning provinces (Fig. 7b). In addition, although the 494 

influence of ENSO on GPP in the southern China is significant (Fig. 4), the total relative change 495 

through the year remains small due to the cancellation of positive and negative anomalies in 496 

different seasons. 497 
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In the pIOD classification, only the 2019 extreme event is considered, resulting in the relative 498 

change in GPP anomalies exceeding 10% in approximately half of the provinces. Notably, 499 

Jiangxi, Fujian, Guangxi, Guangdong, and Hainan experience reductions of more than 25% in 500 

GPP, with Jiangxi exhibiting the largest GPP anomaly of −130 31.50 Tg C yr−1, Conversely, 501 

Shandong, Shanxi, and Henan witness increase of over 25% in GPP (Fig. 7c). During nIOD 502 

events, northern provinces generally exhibit negative relative changes, while southern 503 

provinces display positive relative changes.  504 

 505 

In summary, the relative changes in total GPP anomalies at the provincial scale exhibit an east-506 

west pattern in annual variation. Meanwhile, the influence of IOD events on GPP presents an 507 

opposing north-south pattern. 508 
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4. Discussion 509 

4.1 Seasonal legacy effect 510 

While the legacy effects of climate on subsequent vegetation have been widely confirmed 511 

(Bastos et al., 2020; Bastos et al., 2021), they were not fully accounted for in this study. During 512 

ENSO and IOD events, temperature and soil moisture vary with seasons, resulting in diverse 513 

conditions such as high temperature and drought, high temperature and wet, low temperature 514 

and drought, and low temperature and wet across different regions and seasons. Vegetation 515 

does not immediately respond to changes in climatic conditions change due to its 516 

environmental resistance and self-regulation. These legacy effects are complex and vary by 517 

region as ENSO or IOD events progress through different seasons. 518 

 519 

Spring serves as a transitional period between the peak of the climatic event and the peak of 520 

the growing season, making it challenging to fully explain the spatial patterns of GPP anomalies 521 

in parts of northern China sole based on temperature and soil moisture. Higher temperatures 522 

during DJF in El Niño events (Fig. 2f) can advance the growing season, subsequently impacting 523 

vegetation in the following spring. Sanders-DeMott et al. (2020) have proved that a warm 524 

winter can enhance the photosynthetic capacity of vegetation in the subsequent spring. 525 

Additionally, Yan et al. (2023) quantified the influence of the preceding and contemporaneous 526 

climatic conditions on NEP during the 1997/98 El Niño and pIOD compound event, showing 527 

that legacy effects can counteract or even reverse the effects of contemporaneous climatic 528 

conditions. 529 

 530 
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4.21 The effect of compound ENSO and IOD events on China’s GPP  531 

 532 

Fig. 8. Spatial distributions of seasonal composite GPP anomalies for compound events, (a-d) for El 533 

Niño & pIOD events, and (e-h) for La Niña & nIOD events. The two-digit year in first column denote 534 

the years used for composite analysis.535 
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Indeed, despite IOD events being generally considered an independent coupled ocean-536 

atmosphere interaction (Saji et al., 1999), historical IOD events can occur in conjunction with 537 

ENSO (Ham et al., 2017; Yang et al., 2015). These combined phenomena are most notable 538 

represented by El Niño & pIOD and La Niña & nIOD events. Williams and Hanan (2011) 539 

researched the interactive effects of ENSO and IOD on African GPP, relying on an offline 540 

terrestrial biosphere model simulation. Their findings suggested that IOD could cause obvious 541 

anomalous GPP over much of Africa, capable of suppressing or even reversing ENSO signals 542 

in GPP anomalies. In addition, Yan et al. (2023) explored the interactive effects of ENSO and 543 

IOD on seasonal anomalies of tropical net land carbon flux using the TRENDYv9 multi-model 544 

simulations, revealing diverse effects in different sub-continents and seasons. We explore the 545 

anomalies of GPP in compound events based on composite analysis (Fig. 8), and the spatial 546 

patterns of soil moisture and temperature anomalies are shown in the appendix (Figs. S9 and 547 

S10). 548 

 549 

The spatial patterns of the GPP anomalies during concurrent ENSO and IOD events differ from 550 

those in single events, although some similarities are evident. GPP anomalies in El Niño & 551 

pIOD and La Niña & nIOD events are generally opposite, and we focus specifically on El Niño 552 

& pIOD events here. In El Niño & pIOD events, GPP anomalies exhibit a general opposition, 553 

with enhanced vegetation photosynthesis in the southern regions and inhibited in the northern 554 

regions during SON. This spatial characteristic of GPP anomalies bears some resemblance to 555 

that induced by El Niño alone (Figs. 4a and 8a). Weak GPP anomalies are generally observed 556 

in DJF, with noticeable negative GPP anomalies in Guizhou and Hunan, and some positive 557 

GPP anomalies in regions south of 25°N (Fig. 8b). Notably during DJF, while significant 558 

positive GPP anomalies occur in El Niño events (Fig. 4b), simultaneous pIOD events induce 559 

significant negative GPP anomalies (Fig. 5b). When both events coincide, their impacts seem 560 

to largely counterbalance each other, resulting in a more neutral GPP anomaly. In MAM, GPP 561 

increases in Northern China (Fig. 8c). Subsequently, in JJA, vegetation photosynthesis 562 

experiences a significant increase in the Northern and Yunnan provinces (Fig. 8d).  563 
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It is worth noting that the impacts of compound events on China’s GPP may not follow a 564 

straightforward linear superposition of the effects of two individual events. While their effects 565 

are nearly opposite when occurring separately, the positive and negative effects on GPP may 566 

be not simply cancelled each other out when they coincide. This complexity arises from the 567 

simultaneous occurrence of two tropical air-sea interaction modes, leading to intricate effects 568 

on mid-latitude circulations. Given the limited number of compound events, further exploration 569 

is necessary to unravel the effects of ENSO and IOD on GPP in China. 570 

 571 

4.32 Modulation of large-scale circulations on China’s GPP 572 

China’s GPP is intricately influenced by atmospheric circulations and sea surface temperature 573 

(Li et al., 2021; Ying et al., 2022). Ying et al. (2022) showed significant correlations between 574 

seasonal GPP variation in China and climate phenomena such as ENSO, Pacific Decadal 575 

Oscillation (PDO), and Arctic Oscillation (AO), based on the Residual Principal Component 576 

analysis. Their research indicated that these identified SST and circulation factors could 577 

account for 13%, 23% and 19% of the seasonal GPP variations in spring, summer and autumn, 578 

respectively. And Li et al. (2021) proved that GPP response to El Niño varied with PDO phases 579 

during the growing seasons of typical El Niño years. Although both studies emphasized the 580 

impact of ENSO on China’s GPP and explored the roles of PDO and AO, the IOD was notably 581 

absent from their analyses. Contrastingly, our study sheds light on the significant influence of 582 

the extreme positive phase of IOD in 2019, showing a substantial negative GPP anomaly in 583 

southeastern China during SON, aligning with findings by Wang et al. (2021b). Moreover, the 584 

integration of partial correlation and composite analysis in our study elucidates the 585 

considerable impact of IOD on China’s GPP within this context. Importantly, our research 586 

underscores the temporal and spatial variability in the effects of IOD and ENSO on GPP across 587 

different seasons and regions. This complexity in ocean–atmosphere teleconnections implies 588 

that other climate oscillations, such as Polar/Eurasia (polarEA) and Atlantic Multidecadal 589 

Oscillation (AMO), might also contribute to influencing China’s GPP (Zhu et al., 2017), which 590 
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is still worthy of further analysis and research. 591 

 592 

4.43 Uncertainties in BEPS Simulations 593 

The simulation of China’s GPP by BEPS is subject to several sources of uncertainty inherent 594 

in the model’s structure, parameterizations, processes, and input data (Chen et al., 2012; Chen 595 

et al., 2017; He et al., 2021a; Liu et al., 2018; Wang et al., 2021a). Leaf Area Index (LAI), a 596 

crucial input for the BEPS model, is derived from global remote sensing data that inherently 597 

possess uncertainties in spatial distribution and trend changes. Previous studies have 598 

highlighted significant uncertainties in simulating carbon budget of global terrestrial 599 

ecosystems when employing different LAI remote sensing data (Chen et al., 2019; Liu et al., 600 

2018). Foliage clumping index which is used to separate sunlit and shaded LAI can also cause 601 

some uncertainties in simulating GPP, because the current version of BEPS used the time-602 

invariant satellite-derived clumping index (Chen et al., 2012). Biases in meteorological drivers, 603 

such as precipitation, can further result in considerable uncertainties in simulating terrestrial 604 

carbon cycle. The choice of precipitation products, for instance, has been shown to yield 605 

considerable differences in simulated net land-atmosphere carbon flux (Wang et al., 2021c). 606 

Moreover, BEPS model, like other terrestrial biosphere models, lacks consideration for 607 

vegetation adaptability to rising CO2 concentration, potentially leading to an overestimation of 608 

the fertilization effect on GPP. In addition, the accuracy of simulations over agricultural areas 609 

is compromised in BEPS, as it only considers crops with a C3 photosynthetic pathway and 610 

overlooks C4 crops (He et al., 2017; He et al., 2021b; Ju et al., 2006). Although BEPS simulated 611 

GPP demonstrates relatively high consistency with the measured GPP of Yingke Station (CRO), 612 

located in the northwest of China, its accuracy lacks validation over the extensive farmlands in 613 

north and northeastern China where various crops are grown (Fig. S11). Agricultural operations, 614 

particularly irrigation, which can significantly impact GPP, are not considered in BEPS. He et 615 

al. (2021a) revealed extensive wetting signals over croplands in arid and semi-arid areas which 616 

exerted strong impacts on GPP and evapotranspiration simulations in BEPS after assimilating 617 
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the Soil Moisture Active Passive (SMAP) soil moisture product. Furthermore, photosynthetic 618 

key parameters, such as carboxylation capacity at 25°C (Vcmax,25), can largely determine the 619 

performance in simulating GPP. After assimilating the solar-induced chlorophyll fluorescence 620 

(SIF) from the Orbiting Carbon Observing Satellite-2 (OCO-2) to optimize Vcmax,25 of different 621 

plant functional types (PFTs) in BEPS, previous studies suggested the improvements in 622 

simulating GPP at regional and global scales to some extent (He et al., 2019; Wang et al., 623 

2021a). 624 

 625 

5. Conclusion 626 

In this paper, we used partial correlation coefficients and composite analysis to investigate the 627 

impacts of ENSO and IOD events on China’s GPP during 1981–2021. The partial correlation 628 

results reveal that the effects of ENSO and IOD on GPP and related climate in China exhibit 629 

distinct seasonal variations and are basically opposite. Specifically, during SON, significant 630 

negative pcor between GPP and ENSO is observed over the Tibetan Plateau, southwestern 631 

China, Loess Plateau, and Liaoning. In DJF, strongly positive pcor occurs over southern China, 632 

weakening in the subsequent MAM, albeit with some enhancements in northern Hebei and 633 

neighboring Inner Mongolia. The pcor then turns generally negative in JJA. In contrast, 634 

significant positive pcor between GPP and IOD is noted in southwestern and Northeast China 635 

during SON. Subsequently, widespread negative pcor appears during DJF, persisting 636 

significantly in most western and northern regions during MAM. In JJA, the pcor becomes 637 

significantly positive in southwestern, north and northeast China. Moreover, the correlation 638 

coefficients between GPP and climate show that GPP anomalies are primarily dominated by 639 

SM during ENSO events except MAMin JJA and SON, while temperature generally plays a 640 

more important role during IOD events except SONin in DJF and MAM.  641 

 642 

The composite analysis results validate the patterns of GPP anomalies observed in the partial 643 

correlation. Generally, China's annual total GPP demonstrates modest positive anomalies in La 644 
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Niña and nIOD years, contrasting with minor negative anomalies in El Niño and pIOD years. 645 

This results from the counterbalancing effects, with significantly greater GPP anomalous 646 

magnitudes in DJF and JJA. Regionally, GPP anomalies fluctuate more in the Southern and 647 

Northern regions. The GPP anomaly in the Southern region dominates the national GPP 648 

variation, with the contribution of 68% to ENSO events and 46% to IOD events, respectively. 649 

On the provincial scale, western and northern provinces in experience larger relative annual 650 

variations during ENSO events, with magnitudes exceeding 10%, exhibiting a general east-651 

west pattern. Conversely, provinces in the southern and Northern China witness larger relative 652 

changes during IOD events, showing an opposing north-south pattern. For instance, the 2019 653 

extreme pIOD led to relative changes of over 25% in certain provinces in the south and north.  654 

  655 
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