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Abstract. Global warming poses a major threat to marine ecosystems, which fulfill important 

functions for humans and the climate. Ecosystem models are therefore increasingly used to 

estimate future changes in the functioning of marine ecosystems. However, projections differ 

notably between models. We propose that a major uncertainty factor in current models is that 

they ignore the high adaptive potential of phytoplankton, key players in marine ecosystems. 20 

Here, we use a 0-dimensional evolutionary ecosystem model to study how phytoplankton 

adaptation can affect estimates of future ecosystem-level changes. We found that phytoplankton 

adaptation can notably change simulated ecosystem dynamics, with the effect depending on 

environmental conditions. In a steady environment, adaptation allows for a more efficient use 

of resources, which enhances primary production and related ecosystem functions. In a 25 

warming environment, on the contrary, adaptation mitigates dominance changes among 

functionally different taxa and consequently leads to weaker changes in related ecosystem 

functions. Our results demonstrate that by neglecting phytoplankton adaptation, models may 

systematically overestimate future changes in the functioning of marine ecosystems. Future 

work can build on our results and include evolutionary processes into more complex model 30 

environments. 

 

1 Introduction 

Global warming leads to a rapid reorganization of marine ecosystems, which poses a major 

threat to their functioning (Pecl et al., 2017). Since changes in the functioning of marine 35 

ecosystems directly impact humans and even feed back on the climate, understanding them is 

crucial (Pecl et al., 2017; Prentice et al., 2015). Ecosystem models have proven a valuable tool 
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in this regard, but projections differ notably between models (Laufkötter et al., 2015, 2016). 

Current models largely ignore the high adaptive potential of phytoplankton (Laufkötter et al., 

2015, 2016; Munkes et al., 2021), which are key players in marine ecosystems (Litchman et al., 40 

2015). Here, we fill this gap by using an evolutionary ecosystem model to study the effect of 

phytoplankton adaptation to global warming on projected changes in ecosystem functioning. 

We apply the model to the Baltic Sea, which is impacted by above-average levels of multiple 

stressors (Reusch et al., 2018). 

 Marine ecosystems are of great importance for human societies. Primary production by 45 

phytoplankton contributes about half of global photosynthesis (Field et al., 1998) and drives the 

biological carbon pump, which involves the fixation and export of atmospheric carbon to the 

deep ocean (Basu and Mackey, 2018). Cyanobacteria, on the contrary, pose a threat to marine 

ecosystems due to their toxicity and ability to fix atmospheric nitrogen, which can shift the 

nutrient balance towards eutrophication (Backer and McGillicuddy, 2006; Gustafsson et al., 50 

2012, 2017; Schindler et al., 2008). Finally, marine food webs from phytoplankton at the base, 

via zooplankton as secondary producers, up to fish as top predators represent commercially 

relevant resources with great importance for coastal regions around the globe (Atkinson et al., 

2004; Everson, 2000; Lomartire et al., 2021; Weatherdon et al., 2016). 

 As they form the basis of the marine food web and drive biogeochemical cycles, 55 

phytoplankton play a key role in the functioning of marine ecosystems. Climate change-related 

alterations in phytoplankton dynamics can therefore have far-reaching repercussions for marine 

ecosystem functioning. Phytoplankton respond to global warming by changing their phenology, 

which has led to an earlier and prolonged blooming season in the Baltic Sea, for example 

(Wasmund et al., 2019). The resulting mismatches with higher trophic levels like zooplankton 60 

and fish alter food web structures and may eventually lead to ecosystem-level changes (Asch 

et al., 2019; Edwards and Richardson, 2004; Winder and Schindler, 2004a). In addition, 

warming and eutrophication promote harmful algal blooms, which pose a threat to animal and 

human health (Glibert et al., 2014; Gobler et al., 2017; Paerl et al., 2015). Since  ecosystem-

level changes like these are expected to have a direct impact on human well-being and the 65 

climate (Pecl et al., 2017; Prentice et al., 2015), predicting them is of great importance.  

 Ecosystem models offer the possibility to assess future ecosystem-level changes. For 

example, ecosystem models can be integrated into global ocean circulation models to simulate 

future changes in net primary production on global scale, but models do not even agree on the 

direction of change (Laufkötter et al., 2015). Similarly, regional models for the Baltic Sea 70 
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cannot agree on the future development of cyanobacteria blooms regarding timing, 

concentration, and nitrogen fixation (Hense et al., 2013; Meier et al., 2011; Neumann, 2010). 

These uncertainties can notably affect estimates of future ocean deoxygenation (Long et al., 

2021), nutrient load (Reusch et al., 2018; Wasmund et al., 2001), and harmful algal bloom 

dynamics (Hallegraeff, 2010; Paerl et al., 2015). Since model projections form the base of 75 

political decision making (Intergovernmental Panel on Climate Change (IPCC), 2022; Meier et 

al., 2014), there is an urgent need to improve their informative value. A first step could be to 

identify the key processes that affect ecosystem functioning. One key process that is lacking in 

most ecosystem models is the evolutionary adaptation of phytoplankton. 

 Their large population sizes and short generation times allow phytoplankton to quickly 80 

adapt to environmental changes. Evolution experiments, observations, and resurrection 

experiments showed that phytoplankton adaptation can be relevant on perennial or even shorter 

time scales (Hattich et al., 2024; Irwin et al., 2015; Jin and Agustí, 2018). Due to the crucial 

role of phytoplankton in marine ecosystems, considering phytoplankton adaptation in models 

may notably alter projected changes in ecosystem functioning (Ward et al., 2019). Some 85 

ecosystem models have already considered evolutionary processes in phytoplankton, such as 

the natural selection from a diverse standing stock (Banas, 2011; Bruggeman and Kooijman, 

2007; Dutkiewicz et al., 2020; Follows et al., 2007; Merico et al., 2009; Ward et al., 2012), the 

combination of selection and immigration (Acevedo-Trejos et al., 2018; Terseleer et al., 2014), 

the instantaneous acclimation of cellular resource allocation and metabolism (Kerimoglu et al., 90 

2017; Smith et al., 2016a), or the evolutionary adaptation in the form of mutation and selection. 

Models including the latter, from here on called evolutionary ecosystem models, have been 

used as a strategy to reduce model complexity (Pahlow et al., 2008), to identify the drivers of 

phytoplankton diversity (Wirtz, 2013), to analyze evolutionary mechanisms under idealized 

(laboratory) conditions (Beckmann et al., 2019; Clark et al., 2011; Collins, 2016), or to study 95 

the spatial distribution and/or temporal evolution of different functional traits in more realistic 

environments (Grimaud et al., 2015; Hinners et al., 2019; Le Gland et al., 2021; Sauterey et al., 

2017). Only a few evolutionary ecosystem models, however, have already addressed questions 

related to ecosystem functioning. For example, Smith et al. (2016b), Acevedo-Trejos et al. 

(2018), and Chen et al. (2019) studied the relationshipstrade-offs between phytoplankton size-100 

diversity, and productivity, and export production. Toseland et al. (2013), Daines et al. (2014), 

and Sauterey and Ward (2022) investigated drivers and future changes of phytoplankton C:N 

stoichiometry, which affects biogeochemical cyclingthe efficiency of the biological carbon 
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pump. Finally, Cherabier and Ferrière (2022) analyzedstudied the effect of bacterial adaptation 

to global warming on the microbial loop and the resulting impact on primary production. 105 

 So far, however, no model has explicitly addressed the question of how phytoplankton 

adaptation to global warming could affect the functioning of a marine ecosystem. A first step 

can be to estimate the effect of adaptation on warming-related changes in phytoplankton 

community composition. Different phytoplankton functional groups fulfill different functions 

in the ecosystem, for example, by contributing differently to the biological carbon pump 110 

(sinking speed), the nitrogen cycle (nitrogen fixation), and the energy transfer to higher trophic 

levels (food quality, susceptibility to predation) (Litchman et al., 2015). To our knowledge, 

there is only one model to date that considers competition between multiple phytoplankton 

functional groups and their adaptation to global warming simultaneously (Hochfeld and 

Hinners, 2024). Using this model, Hochfeld and Hinners (2024) demonstrated that adaptation 115 

can significantly reduce simulated phytoplankton responses to global warming in terms of 

changes in bloom timing and relative taxa abundance. However, it has not been studied yet how 

adaptation-related changes in phytoplankton responses may affect ecosystem functioning. 

 Here, we use the Hochfeld and Hinners (2024) model to estimate for the first time how 

phytoplankton adaptation may affect warming-related changes in different ecosystem functions, 120 

including primary production, secondary production, carbon export, nitrogen fixation, and 

resource use efficiency (RUE). We apply the model to the Baltic Sea, which is already impacted 

by above-average levels of warming, nutrient load, and deoxygenation (Reusch et al., 2018). 

Due to the 0-dimensional setup of the model, we do not evaluate absolute changes in the above-

mentioned ecosystem functions. Instead, we focus on how phytoplankton adaptation may 125 

change the future contribution of primary production to these ecosystem functions. Our study 

is a first step to improve model projections of ecosystem-level changes that future work can 

build upon. 

  

2 Materials and Methods 130 

2.1 Model description 

To study how phytoplankton adaptation to global warming may affect predicted changes in 

ecosystem functioning, we use the model from Hochfeld and Hinners (2024). A detailed 

description of the model is available in Hochfeld and Hinners (2024) and the associated 

supplementary material. In summary, the model simulates the dynamics of phytoplankton, 135 
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zooplankton, dissolved inorganic nitrogen, and dead organic matter (detritus) in a 0-

dimensional framework (Fig. B1). Three different phytoplankton functional groups common to 

the Baltic Sea are resolved, dinoflagellates, diatoms, and diazotrophic cyanobacteria. Each 

functional group is represented by a common taxon or by a complex of common taxa. For 

dinoflagellates and diatoms, the model simulates two cold-water species of the genera 140 

Apocalathium and Thalassiosira, respectively. For cyanobacteria, the model considers a 

complex that represents the dominant nitrogen-fixing genera in the Baltic Sea, Nodularia, 

Aphanizomenon, and Anabaena (Karlsson et al., 2005; Stal et al., 2003). Like in other modeling 

studies (Hense and Beckmann, 2006; Hinners et al., 2015; Lee et al., 2018), cyanobacteria are 

assumed to be non-grazeable due to toxicity, while dinoflagellates and diatoms are equally 145 

grazed by zooplankton. To ensure an accurate representation of phytoplankton phenology under 

ongoing global warming, the model additionally resolves phytoplankton life cycle dynamics, 

including growing and resting stages. 

The key feature of the model is the flexibility in two temperature-dependent functional 

traits. The first flexible trait, the optimum temperature for growth, adapts through random 150 

mutations. Mutations occur during reproduction and lead to a randomized change in the 

optimum temperature, with small changes being much more likely than large changes. Cell size, 

on the contrary, does not respond randomly to temperature but plastically, with the cell size 

decreasing linearly with increasing temperature (Atkinson et al., 2003). For further details on 

the implementation of mutations and plasticity, see Hochfeld and Hinners (2024). The model 155 

additionally considers that changes in cell size affect metabolic cell properties (Litchman et al., 

2007; Marañón et al., 2013; Ward et al., 2017), which in turn determine the nitrogen-limited 

growth rate (Grover, 1991). Since trait changes such as those described above affect individual 

cells, the model uses an agent-based approach after Beckmann et al. (2019) to simulate the 

dynamics of agents (super-individuals) with their individual phenotypic trait values. 160 

Zooplankton, dissolved inorganic nitrogen, and detritus, on the contrary, are represented by 

compartments, i.e., collections of cells or molecules described by their averaged properties and 

their concentration. 

 

2.2 Model modifications 165 

We slightly extended the Hochfeld and Hinners (2024) model described above by adding the 

explicit calculation of different ecosystem functions, including carbon export, cyanobacterial 

nitrogen fixation, and resource use efficiency (RUE). 
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We calculate carbon export from the carbon content of buried phytoplankton resting 

cells and the carbon that is exported through sinking of detritus. Detritus contains the dead 170 

phytoplankton and zooplankton cells, as well as the remains from unassimilated feeding. 

Following Ward et al. (2012), we divide detritus into dissolved inorganic matter (DOM) and 

particulate organic matter (POM) in a 50:50 ratio, with only POM being exported to deeper 

water layers. The distinction between POM and DOM represents a modification of the previous 

publication (Hochfeld and Hinners, 2024), in which we assumed that the entire detritus pool 175 

sinks. Since the sinking of detritus depends quadratically on the detritus concentration, we 

increased the original sinking rate by a factor of 4, from 0.097 d-1 to 0.388 d-1, to keep the mass 

loss per time step similar to the original version of the model. The sinking rate represents the 

only parameter value that was changed in comparison to the version published in Hinners and 

Hochfeld (2024). 180 

 To determine the amount of fixed atmospheric nitrogen, we assume that all the fixed 

nitrogen is converted into biomass. Thus, we define nitrogen fixation as the biomass built up 

by the diazotrophic cyanobacteria life cycle stage during each time step. 

 Finally, following Ptacnik et al. (2008), we calculate resource use efficiency (RUE) as 

the ratio of phytoplankton biomass and dissolved inorganic nitrogen. Since the cyanobacteria 185 

in our model can fix atmospheric nitrogen, we use simulations without cyanobacteria to derive 

RUE. Hence, we only consider the RUE of dinoflagellates and diatoms. Both dinoflagellates 

and diatoms are grazed by zooplankton; to avoid grazing-related biases in RUE, we additionally 

exclude zooplankton from RUE simulations. 

 190 

2.3 Model scenarios 

To understand how the adaptation of phytoplankton to different environments affects model 

estimates of associated ecosystem functions, we evaluate four different model scenarios, which 

are adopted from Hochfeld and Hinners (2024) (Table 1). Since our simulations are affected by 

random processes, e.g., during mortality and mutation, we perform seven simulations for each 195 

scenario and average the output to ensure robust results. Each simulation is run over 100 years. 

 The first two model scenarios C (control) and CA (control and adaptation) represent 

control scenarios, which are forced with a steady seasonal temperature and irradiance forcing 

for present-day conditions in the Gulf of Finland. The two control scenarios C and CA serve as 

spin up for two global warming scenarios W (warming) and WA (warming and adaptation). 200 
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Global warming is simulated by adding a steady temperature increase of 0.3 °C per decade to 

the seasonal temperature forcing, which corresponds to the IPCC scenario SSP3-7.0 (Allan et 

al., 2021). While adaptation in the optimum temperature is disabled in C and W, it is enabled in 

CA and WA. In this way, we can study how the (in)ability of phytoplankton to adapt to their 

environment may affect ecosystem functioning.  205 

 

Table 1: Overview of the four model scenarios that we evaluate in this article. All scenarios are adopted 

from Hochfeld and Hinners (2024). For each scenario, we run seven different simulations over 100 years 

and average the output to ensure robust results. Control represents a present-day seasonal temperature 

forcing for the Gulf of Finland. Warming adds a constant temperature increase of 0.3 °C per decade to 210 

the control forcing (IPCC scenario SSP3-7.0, Allan et al., 2021). 

 No adaptation Adaptation 

Control C CA 

Warming W WA 

 

3 Results 

3.1 Model validation 

The simulated seasonal phytoplankton dynamics are described in detail in Hochfeld and 215 

Hinners (2024). In summary, the two control scenarios C and CA produce a spring bloom of 

dinoflagellates and diatoms, a summer bloom of cyanobacteria, and a second but weaker bloom 

of diatoms in autumn (Fig. B2). The simulated bloom succession agrees reasonably well with 

recent monitoring data from the Baltic Sea, despite slight differences in spring bloom timing 

(Hjerne et al., 2019). As discussed in Hochfeld and Hinners (2024), the simulated bloom 220 

succession is realistic for the focal phytoplankton taxa. 

In contrast to phytoplankton, Hochfeld and Hinners (2024) did not validate the seasonal 

dynamics of zooplankton against monitoring data. Here, we find that zooplankton biomass 

peaks during phytoplankton spring bloom following the peak in phytoplankton biomass (Fig. 

B3); remember that the model simulates cyanobacteria as single summer-blooming 225 

phytoplankton taxon, which is assumed to be non-grazeable due to toxicity. Despite these 

simplifications in the model, the simulated seasonal pattern is indeed reasonable for some of 

the common zooplankton taxa in the Baltic Sea (Dutz et al., 2010; Feike et al., 2007). 
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3.2 Annual balances 

The annual balances of our simulated ecosystem functions are shown in Fig. 1 for the last 230 

simulation year of all four model scenarios. Figure 1 reveals that phytoplankton produce ~10 

times more biomass than zooplankton per year and hence dominate biomass production in our 

simulations. Primary production, in turn, is dominated by cyanobacteria, while dinoflagellates 

account for the smallest amount of primary production per year. 

 235 

Figure 1: Annual balances of our simulated ecosystem functions for the last simulation year of the four 

model scenarios (C: control, CA: control and adaptation, W: warming, WA: warming and adaptation). 

For each scenario, annual balances were averaged from seven different simulations. The differences 

between the four scenarios are statistically significant at the 0.05 level, except for dinoflagellates in W 

and WA (Table A1). 240 

 

Annual primary production, i.e., total phytoplankton biomass, increases under global 

warming, with the increase being more than halved if phytoplankton thermal adaptation is 

enabled. Under control conditions, on the contrary, total phytoplankton biomass is by ~35 % 

higher with thermal adaptation. The observed development of annual primary production is 245 
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predominantly driven by cyanobacteria and to a lesser extent by diatoms, while dinoflagellates 

show a contrasting development (Fig. B4). This finding is underlined by strong positive 

correlations between total phytoplankton biomass, cyanobacteria, and diatoms, while 

dinoflagellates correlate negatively with all three (Fig. 2). In all four model scenarios, total 

phytoplankton biomass correlates strongest with cyanobacteria (0.98 ≤ r ≤ 1) and weakest with 250 

dinoflagellates (-0.73 ≤ r ≤ -0.07).  

 Annual secondary production, i.e., zooplankton biomass, correlates positively with 

annual primary production. Under control conditions, correlation is strongest with diatoms, 

while under global warming, zooplankton biomass correlates strongest with total phytoplankton 

biomass. In addition, zooplankton biomass production is notably affected by phytoplankton 255 

adaptation. Under control conditions, zooplankton produce by ~52 % more biomass if 

phytoplankton can adapt. Under global warming, zooplankton biomass increases, with the 

increase being by ~73 % weaker when phytoplankton adaptation is enabled. 

 The annual amount of fixed atmospheric nitrogen mirrors the annual biomass of 

cyanobacteria, which is confirmed by a strong positive correlation in all four model scenarios 260 

with r ≥ 0.99. Under control conditions, cyanobacteria fix ~72 % more nitrogen when 

adaptation is enabled. Global warming leads to an increase in nitrogen fixation by ~218 % in 

W and ~54 % in WA, respectively. 

Carbon export correlates positively with both phytoplankton and zooplankton biomass, 

with the correlation being stronger with phytoplankton, which dominate biomass production (r 265 

≥ 0.90 vs. r ≥ 0.69). Among phytoplankton, carbon export correlates strongest with 

cyanobacteria, which dominate primary production. In addition, carbon export is notably 

affected by phytoplankton adaptation. Under present-day conditions, carbon export is by ~59 

% higher in CA than in C. Global warming leads to an increase in carbon export by ~184 % in 

W and ~52 % in WA, respectively. 270 

Finally, resource use efficiency (RUE) decreases under global warming in our 

simulations, with the decrease being similar with and without phytoplankton adaptation (~57 

% and ~58 %, respectively). Independent of the climate scenario, RUE is always higher if 

phytoplankton can adapt. Phytoplankton adaptation leads to an increase in RUE by ~59 % and 

~61 % under control and warming conditions, respectively. 275 

In conclusion, all ecosystem functions that we investigate in this study, except for 

dinoflagellates and RUE, show similar developments in the four model scenarios. This is 
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underlined by strong positive correlations, which are significant at the 0.05 level (Fig. B5). 

While RUE is excluded from correlations as it was derived from simulations without 

cyanobacteria and zooplankton, dinoflagellates correlate (mostly) negatively with all other 280 

ecosystem functions. Independent of their direction, all correlations notably change their 

strength between the four model scenarios. Under control conditions, correlations are stronger 

if phytoplankton adaptation is enabled. This pattern reverses under global warming, where 

correlations are weaker with adaptation. This weakening is particularly strong for zooplankton, 

for which the negative correlation with dinoflagellates turns slightly positive in WA. 285 
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Figure 2: Correlation matrices showing the correlation coefficients between the simulated ecosystem 

functions for the four different model scenarios (C: control, CA: control and adaptation, W: warming, 

WA: warming and adaptation). For C and CA, we calculated correlation coefficients using the annual 290 

balances from the last 95 years of seven different simulations. For W and WA, however, we only used 

the last 40 years to capture warming-related changes. All correlations shown here, except for those with 

dinoflagellates, are significant at the 0.05 level according to a t-test (see Fig. B5). Please note that 

resource use efficiency (RUE) is not included since we derived RUE from simulations without 

cyanobacteria and zooplankton. 295 

 

4 Discussion 

In this study, we used an evolutionary ecosystem model to analyze how ecosystem functioning 

may change in response to global warming, and how these changes may be affected by 

phytoplankton adaptation. Our results show that warming-induced changes in primary 300 

production and associated ecosystem functions are generally less pronounced if phytoplankton 

adaptation is enabled. In addition, we found that most ecosystem functions are significantly 

positively correlated, and that the strength of these correlations differs between model 

scenarios. 

 305 

4.1 Primary production 

The model projects an increase in annual primary production in response to global warming. 

This increase is predominantly driven by cyanobacteria, which are pre-adapted to high 

temperatures (Collins and Boylen, 1982; Lehtimäki et al., 1997; Nalewajko and Murphy, 2001). 

This finding agrees with observations showing a strong increase in Baltic Sea cyanobacteria 310 

over the past decades (Suikkanen et al., 2007), as well as with a modeling study projecting 

future increases in cyanobacteria biomass and primary production for several areas of the Baltic 

Sea (Meier et al., 2011).  

Our simulations further suggest that phytoplankton adaptation can lead to a weakened 

increase in cyanobacteria biomass, and hence, primary production, under global warming. In 315 

Hochfeld and Hinners (2024), we discuss extensively how adaptation can influence the 

competition between different phytoplankton groups. In summary, under steady temperature 

conditions, adaptation leads to increased primary production across phytoplankton taxa due to 

niche separation. Under global warming, the adaptation of spring-blooming diatoms to higher 
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temperatures leads to a stronger competition with the summer-blooming cyanobacteria, 320 

weakening the bloom of the latter. However, even when phytoplankton adaptation is taken into 

account, our simulations still suggest an increase in cyanobacteria biomass under global 

warming. A further increase in cyanobacteria in the future can have severe consequences for 

the ecosystem, for example, due to their toxicity for higher trophic levels (Chorus and Welker, 

2021; Quesada et al., 2006; Repavich et al., 1990) and their ability to fix atmospheric nitrogen. 325 

 

4.2 Nitrogen fixation 

Our model results suggest a strong warming-related increase in nitrogen fixation in the future, 

which is a direct result of the projected increase in cyanobacterial summer biomass. Today, the 

Baltic Sea is already impacted by above-average levels of nutrient load (Reusch et al., 2018). 330 

For example, nitrogen-driven eutrophication turned the Baltic Sea into one of the most hypoxic 

ocean areas worldwide, with severe consequences for productivity, biodiversity, and 

biogeochemical cycling (Breitburg et al., 2018). In the future, global warming is expected to 

further increase the vulnerability of coastal systems to nutrient loading as harmful algal bloom 

events become more likely and pose an increasing threat to animal and human health (Glibert 335 

et al., 2014; Gobler et al., 2017; Paerl et al., 2015). 

 Since the 1970s, nutrient management strategies have been applied to the Baltic Sea 

catchment area, resulting in a reduction of anthropogenic nitrogen load by ~25 % (Reusch et 

al., 2018). At the same time, however, nitrogen load by fixation increased notably (Gustafsson 

et al., 2017). Model simulations demonstrated that the contribution of nitrogen fixation to the 340 

total nitrogen load to the Baltic Sea increased from almost 20 % in the 1980s to almost 35 % in 

the 2000s, so that the total nitrogen load decreased by only ~9 % (Gustafsson et al., 2017). For 

the future, our results suggest that the extent of nitrogen fixation in the Baltic Sea will further 

increase with rising temperatures. Even though this increase may be limited by adaptation and 

the resulting stronger competition between cyanobacteria and other phytoplankton taxa, higher 345 

temperatures will still have a positive effect on nitrogen fixation. Thus, the importance of 

nitrogen fixation for the nitrogen budget of the Baltic Sea will most likely continue to increase 

and further mitigate the success of nutrient management strategies. Therefore, nutrient 

management strategies urgently need to account for nitrogen load by fixation to be successful 

in the future. Since our projected increase in nitrogen fixation is significantly reduced if we 350 

consider phytoplankton adaptation, we strongly recommend that models used for assessment 

consider phytoplankton adaptation to realistically estimate future nitrogen load by fixation.    
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4.3 Secondary production 

Our simulated changes in secondary production in response to global warming qualitatively 

agree with our simulated changes in total primary production. In our warming scenarios, both 355 

phytoplankton and zooplankton increase in abundance. A study by Richardson and Shoeman 

(2004) demonstrated that the abundance of herbivorous zooplankton significantly depends on 

their phytoplankton prey (bottom-up control), meaning that a warming-related increase in 

phytoplankton will most likely lead to an increase in zooplankton abundance. Like our findings 

regarding overall primary production and nitrogen fixation, we observe that the consideration 360 

of phytoplankton adaptation leads to a weakened increase in zooplankton biomass under global 

warming. These results indicate that future efforts to model ecosystems in terms of trophic 

transfer should consider phytoplankton adaptation as a crucial factor.  

In addition, our simulations show a warming-related earlier bloom timing for 

phytoplankton and zooplankton, with the shift being stronger for zooplankton (Table A2). The 365 

resulting decrease in the time lag between primary producers and grazers stands in contrast to 

findings from other studies reporting a warming-related increase in time lag (Edwards and 

Richardson, 2004; Winder and Schindler, 2004a, b; Adrian et al., 2006). 

However, observations revealed that some phytoplankton and zooplankton taxa indeed 

show synchronous shifts in bloom timing, for example diatoms and Daphnia (Adrian et al., 370 

2006). Some studies even suggest a warming-related decrease in the time lag between 

phytoplankton and zooplankton (Aberle et al., 2012; Almén and Tamelander, 2020). 

Consequently, the reduced time lag produced by our model seems realistic for fast growing 

zooplankton taxa like Daphnia, which can quickly respond to phenological changes in their 

phytoplankton prey. 375 

 

4.4 Carbon export 

Our simulations project a warming-related increase in carbon export in the future, which is 

significantly reduced if phytoplankton adaptation is enabled. The projected changes in carbon 

export correlate notably with projected changes in biomass production, which are dominated 380 

by a strong increase in cyanobacterial summer biomass. In the Baltic Sea, cyanobacteria blooms 

have intensified over the last century of global warming (Finni et al., 2001), especially during 

the last decades (Suikkanen et al., 2007). This development is reflected by sediment records, 

which show a simultaneous increase in cyanobacteria pigments and carbon content during the 
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same period (Poutanen and Nikkilä, 2001). In the future, warming is expected to further 385 

increase summer primary production with a positive feedback on carbon export in several areas 

of the Baltic Sea (Tamelander et al., 2017).  

The ocean is a major sink for atmospheric carbon; the biological carbon pump is of 

similar magnitude to current carbon emissions from fossil fuels (Giering et al., 2020). Our 

results demonstrate that phytoplankton adaptation can have a significant impact on the amount 390 

of carbon exported, and therefore needs to be taken into account for predictions of the global 

carbon cycle. 

 

4.5 Resource use efficiency (RUE) 

We furthermore analyzed how adaptation may influence RUE under global warming. Since we 395 

had to exclude nitrogen-fixing cyanobacteria and zooplankton grazing from RUE simulations, 

our assessments on potential effects of warming and adaptation on RUE are only valid for a 

two-species ecosystem including dinoflagellates and diatoms. For this species configuration, 

we found that adaptation increases resource use efficiency under both control and warming 

conditions. For both climate scenarios, adaptation is driven by competition for nitrogen, 400 

allowing dinoflagellates and diatoms to use the available nitrogen optimally within their means. 

RUE is lower under global warming than under control conditions, both with and 

without adaptation. The warming-related decrease in RUE is predominantly driven by a fixed 

temperature-dependent life cycle trait of dinoflagellates (for details, see Hochfeld and Hinners, 

2024), which terminates the dinoflagellate spring bloom at temperatures around 6°C and thus 405 

restricts dinoflagellate adaptation to the increasing temperatures. With adaptation, however, 

RUE is still higher than without, because diatoms are not restricted by their life cycle and can 

therefore optimize their nitrogen uptake even under global warming. 

Our simulations show that adaptation generally allows for a more efficient use of 

resources and thus higher RUE. Models that ignore adaptation may hence systematically 410 

underestimate RUE under both present-day and future conditions. In addition, our results 

demonstrate that future models should consider not only adaptation, but also possible species-

specific constraints on adaptation, such as life cycle dynamics. 
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4.6 Control factors and feedbacks in our model ecosystem 415 

We found that all ecosystem functions are positively correlated in our simulations, except for 

dinoflagellate annual biomass (and RUE). Under control conditions, all correlations (regardless 

of their direction) are stronger when phytoplankton adaptation is considered. Dinoflagellates 

and diatoms adapt to individual temperature niches to reduce competition for nitrogen, with the 

reduced competition between diatoms and cyanobacteria allowing for a stronger cyanobacterial 420 

summer bloom and hence increased nitrogen fixation (see Fig. B2 and Hochfeld and Hinners, 

2024). Zooplankton peak during dinoflagellate spring bloom (Figs. B2 and B3), meaning that 

dinoflagellates constitute the main food source for zooplankton. Hence, the stronger 

dinoflagellates grow due to increased nitrogen fixation, the more they are grazed by 

zooplankton. Thus, the increased cyanobacterial nitrogen fixation indirectly fuels zooplankton 425 

growth, while it directly fuels the growth of diatoms. The result is an overall increase in biomass 

production, which, in turn, increases carbon export. Dinoflagellates are the only losers in this 

scenario due to the strong grazing pressure by zooplankton. 

 Under global warming, however, adaptation leads to an overall weakening of 

correlations, even though cyanobacteria are stronger than under control conditions. While 430 

diatoms benefit from the increased nitrogen fixation, grazing pressure on them increases, 

weakening the positive correlation with zooplankton. In addition, as demonstrated by Hochfeld 

and Hinners (2024), the presence of cyanobacteria in summer restricts diatom adaptation to the 

increasing temperatures, causing a weaker positive correlation between diatoms and 

cyanobacteria. Due to the stronger grazing on diatoms, zooplankton are also less positively 435 

impacted by cyanobacteria. The weaker positive effect of cyanobacteria on diatoms and 

zooplankton is reflected in a slight weakening of the remaining positive correlations, and a 

notable weakening of the negative correlations with dinoflagellates. Furthermore, the reduced 

relative grazing pressure on dinoflagellates reverses the negative correlation with zooplankton, 

meaning that an increase in zooplankton biomass no longer implies a decrease in dinoflagellate 440 

biomass. 

 To conclude, cyanobacteria are the most important control factor in our model 

ecosystem, which is also confirmed by a principal component analysis (Fig. B6). First, 

cyanobacteria produce the highest amount of biomass per year. Second, due to their ability to 

fix atmospheric nitrogen, they directly control the biomass production of dinoflagellates and 445 

diatoms, and indirectly that of zooplankton. Cyanobacteria are therefore the main factor for 

carbon export in our simulations, which also agrees with observations as discussed above (see 
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Sect. 4.4). However, the interdependencies between cyanobacteria and the other taxa may 

change depending on the climate scenario and the presence or absence of phytoplankton 

adaptation. These results demonstrate that by neglecting adaptation, we may be missing 450 

adaptation-related changes in taxa interactions, especially in changing environments, which can 

affect the entire ecosystem and hence its functioning. 

 

4.7 Model biases and outlook 

In the following, we discuss the simplifications and assumptions of our model that may bias 455 

our predicted changes in ecosystem functioning. Based on this discussion, we give suggestions 

for future modeling studies on climate-related ecosystem changes. 

 First, our model lacks a quantitative validation against observational data. For the Baltic 

Sea, phytoplankton observations at species level are sparse and insufficient in temporal 

resolution and/or coverage to allow for an extensive quantitative model validation. Data that 460 

provide sufficient temporal resolution and coverage are usually at functional group level and 

thus show the signal of the focal species superimposed on the signal of other species from the 

same functional group. Thus, such data are not suitable for a quantitative model validation, but 

they can still narrow down the seasonality of the focal species and hence provide information 

on qualitative differences between the model taxa. Here, we used data at functional group level 465 

from Hjerne et al. (2019) to validate our ecosystem model qualitatively (Sect. 3.1 and Fig. B2). 

Due to the lack of an extensive quantitative validation, however, we only evaluate our results 

qualitatively and focus on identifying fundamental relationships between phytoplankton 

adaptation and ecosystem functioning. 

 Second, simulation at species level may limit the generality of our results. Our projected 470 

warming-related decrease in RUE, for example, results from a fixed temperature threshold in 

the life cycle of the modelled dinoflagellate and hence only applies to the species configuration 

in our model. We cannot make statements about future changes in RUE in other ecosystems 

with a different set of species. Future work can build on our results and investigate RUE in 

more complex ecosystems to make more general statements about future warming-related 475 

changes. Nevertheless, we think that our simulated adaptation-related increase in RUE is robust 

and independent of the species configuration in our model. 

In addition to biases in phytoplankton, further biases may be introduced by our 

simplistic representation of zooplankton. We assume that zooplankton grazing depends 
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exclusively on phytoplankton biomass and do not consider potential effects of irradiance and 480 

temperature. Moreover, we neglect both zooplankton life cycle dynamics and adaptation. Thus, 

the zooplankton in our model is entirely controlled by prey availability, which may be 

reasonable for fast-growing taxa that were found to respond rapidly to changes in their 

phytoplankton prey (Adrian et al., 2006). However, our representation of zooplankton is 

inappropriate for simulating slow-growing taxa with longer and more complex life cycles 485 

(Adrian et al., 2006). Future work can build on our model and study how a more complex 

representation of zooplankton, including both fast- and slow-growing taxa, and higher trophic 

levels may be affected by phytoplankton adaptation. 

Furthermoreinally, we use a 0-dimensional model setup, which may lead to biases in all 

predicted ecosystem functions, particularly in carbon export. For example, we cannot explicitly 490 

simulate physical processes in the ocean like vertical mixing, including seasonal and future 

changes in stratification and mixed layer depth. Multiple studies suggest a future increase in 

ocean surface stratification, which may reduce vertical nutrient fluxes and hence affect primary 

production, marine food web dynamics, and carbon export (Capotondi et al., 2012; Hordoir and 

Meier, 2012; Sallée et al., 2021). Thus, our projected increase in primary production might not 495 

be repeated if our model accounted for future decreases in nutrient supply in a more stratified 

system. However, an increase in primary production indeed seems likely under current 

anthropogenic nutrient loads for several areas of the Baltic Sea, as predicted by a 3D coupled 

biogeochemical-physical model (Meier et al., 2011). Considering carbon export specifically, 

other crucial processes like gravitational particle sinking and fragmentation are only included 500 

implicitly in our model, while we neglect vertical migration of zooplankton and nekton (Henson 

et al., 2022). In addition, in semi-enclosed ecosystems like the Baltic Sea, carbon export is not 

predominantly fueled by phytoplankton primary production but also by benthic primary 

production and riverine and terrestrial inputs (Goñi et al., 2000; Renaud et al., 2015; Tallberg 

and Heiskanen, 1998). Since these key processes (and maybe others) are lacking in our model, 505 

we cannot interpret our results as projections of future carbon export. Instead, we interpret them 

as projections of the future contribution of primary production to carbon export. 

 Finally, our results may be influenced by our implementation of evolutionary 

adaptation. We use an agent-based approach to simulate evolutionary trait changes of super-

individuals (agents) due to random mutations. Since the mutated trait value is sampled from a 510 

normal distribution centered at the parental trait value, we need information about the standard 

deviation of this distribution (i.e., the mutational step size), which cannot be measured directly 
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in the laboratory. However, simulated trait changes over time can be compared to observed trait 

changes. As shown by Hochfeld and Hinners (2024), the model used here agrees well with rates 

of trait change observed in the laboratory and in nature (Irwin et al., 2015; Jin and Agustí, 2018). 515 

In addition to parameter-related biases, our results are sensitive to resolution (i.e., the number 

of cells per agent). To ensure robust results without increasing computation time by orders of 

magnitude, we consider the results of seven different simulations per model scenario. Despite 

these biases, the agent-based approach used here has notable advantages over population-level 

approaches that do not track the evolutionary history of individuals. Population models based 520 

on fitness gradients, which assume that trait change is proportional to change in population 

fitness (Grimaud et al., 2015; Norberg et al., 2012; Pahlow et al., 2008; Wirtz, 2013), are 

inapplicable to complex fitness landscapes with thresholds. So-called trait diffusion models, on 

the other hand, represent mutations as non-random biomass fluxes in trait space, with both 

discrete (Beckmann et al., 2019; Hinners et al., 2019; Sauterey et al., 2017) and continuous 525 

versions (Chen et al., 2019; Le Gland et al., 2021; Merico et al., 2014; Smith et al., 2016b). 

Since continuous trait diffusion models require the shape of the trait distribution to be 

prescribed, such models cannot account for multimodality or evolutionary branching. In 

conclusion, the agent-based approach used here provides the most realistic representation of 

evolution among current approaches. To date, agent-based approaches have been used to 530 

investigate evolutionary mechanisms under laboratory conditions (Beckmann et al., 2019; 

Clark et al., 2011; Collins, 2016), to derive biogeographic patterns (Daines et al., 2014; Sauterey 

and Ward, 2022), or to infer the effects of global warming on biogeochemical cycling based on 

stoichiometric changes (Toseland et al., 2013). To our knowledge, our model is the first agent-

based model, and indeed the first ecosystem model, to explicitly simulate the effects of 535 

phytoplankton adaptation to global warming on ecosystem functioning. 

 

5 Conclusions 

Our study demonstrates that phytoplankton adaptation affects simulated ecosystem functions 

through bottom-up control. The effect of phytoplankton adaptation on simulated ecosystem 540 

functions depends on environmental conditions. 

In a steady environment, phytoplankton adaptation allows for a more efficient use of 

resources through niche separation, which, in turn, increases primary production. An increase 

in primary production may enhance secondary production, nitrogen fixation, and carbon export, 
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and maybe even other ecosystem functions not included in this study. Thus, by neglecting 545 

adaptation, models can systematically underestimate resource use efficiency in a steady 

environment and hence ecosystem functions that are directly related to primary production. In 

a warming environment, however, adaptation has the opposite effect. With the ability to adapt 

to the increasing temperatures, non-pre-adapted taxa can mitigate the dominance of superior 

pre-adapted taxa. Since different taxa fulfill different functions in the ecosystem, weaker 550 

changes in their abundance lead to weaker changes in associated ecosystem functions. By 

neglecting phytoplankton adaptation, models may therefore systematically underestimate the 

resilience of phytoplankton communities to environmental change, which may lead to a 

systematic overestimation of warming-induced changes in ecosystem functioning. Thus, to 

realistically simulate ecosystem functioning in both steady and changing environments, future 555 

models should not only consider multiple phytoplankton functional groups due to their different 

roles in the ecosystem but also their potential to adapt to their environment. 

Our study is a first step to improve model projections of future ecosystem-level changes. 

Future work can build on our results, for example by expanding on our model ecosystem to 

include multiple nutrients, a higher diversity of phytoplankton functional groups, a more 560 

complex representation of zooplankton, and higher trophic levels. Another next step would be 

to couple our or a similar evolutionary ecosystem model to a 1D or 3D physical environment 

to allow for a more realistic representation of physically driven processes, e.g., biogeochemical 

cycling. The performance of such an evolutionary biogeochemical-physical model could then 

be tested against long-term evolutionary data (e.g., from sediment archives). Using such a 565 

validated model for climate projections could notably improve estimates of future ecosystem-

level changes. 
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Appendices 

Appendix A 570 

Supporting tables. 

 

Table A1: Results of a series of t-tests comparing all model scenarios (C: control, CA: control and 

adaptation, W: warming, WA: warming and adaptation) with regard to annual balances. The table 

presents the value of the test statistic (t), the degrees of freedom (df), and the p-value (p). Please note 575 

that we used a paired-sample t-test when comparing control and warming simulations since these were 

performed pairwise, and a two-sample t-test otherwise.  
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 Variable t df p 
C

A
 v

s.
 C

 
Dinoflagellates 2.1795 12 0.0499 

Diatoms -7.7662 12 5.0873×10-6 

Cyanobacteria -6.1108 12 5.2491×10-5 

Phytoplankton -6.4065 12 3.3697×10-5 

Zooplankton -9.1802 12 8.9508×107 

N2 fixation -5.8068 12 8.3836×10-5 

Carbon export -5.8882 12 7.3861×10-5 

RUE -27.2736 12 3.6372×10-12 

W
A

 v
s.

 W
 

Dinoflagellates -1.9463 12 0.0754 

Diatoms -3.0493 12 0.0101 

Cyanobacteria -13.7101 12 1.0818×10-8 

Phytoplankton -12.5522 12 2.9249×10-8 

Zooplankton -7.3374 12 9.0067×10-6 

N2 fixation -12.1507 12 4.2078×10-8 

Carbon export -12.8997 12 2.1524×10-8 

RUE 25.0575 12 9.8930×10-12 

W
 v

s.
 C

 

Dinoflagellates 18.1062 6 1.8266×10-6 

Diatoms -31.8063 6 6.4192×10-8 

Cyanobacteria -99.4698 6 6.9577×10-11 

Phytoplankton -77.4443 6 3.1205×10-10 

Zooplankton -39.0206 6 1.8926×10-8 

N2 fixation -88.6053 6 1.3921×10-10 

Carbon export -77.9701 6 2.9965×10-10 

RUE 48.8723 6 4.9211×10-9 

W
A

 v
s.

 C
A

 

Dinoflagellates 9.4959 6 7.7730×10-5 

Diatoms -12.3243 6 1.7400×10-5 

Cyanobacteria -8.9350 6 1.0966×10-4 

Phytoplankton -9.0959 6 9.9165×10-5 

Zooplankton -5.2772 6 0.0019 

N2 fixation -8.2710 6 1.6905×10-4 

Carbon export -9.3836 6 8.3152×10-5 

RUE 62.3327 6 1.1462×10-9 
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Table A2: Average timing of phytoplankton and zooplankton blooms in spring, as well as the time lag 

between phytoplankton and zooplankton for the two control scenarios C (control) and CA (control and 580 

adaptation), along with the associated standard deviations. Also shown are the corresponding average 

warming-related changes in W (warming), and WA (warming and adaptation), including propagated 

errors. For each scenario, we calculated average values from the last simulation year of seven different 

simulations. 

 C CA W WA 

Phytoplankton 

timing [d] 
89.5 ± 1.2 78.5 ± 0.7 -8.2 ± 1.6 -1.9 ± 1.0 

Zooplankton 

timing [d] 102.4 ± 2.0 86.5 ± 2.4 -16.9 ± 2.3 -5.5 ± 2.6 

Time lag [d] 12.9 ± 2.4 8.0 ± 2.5 -8.7 ± 2.8 -3.5 ± 2.8 
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Appendix B 585 

Supporting figures. 

 

Figure B1: Components of the Hochfeld and Hinners (2024) ecosystem model including compartments 

for dissolved inorganic nitrogen (N), detritus (D), and zooplankton (Z), along with agent-based life 

cycles of dinoflagellates (din), diatoms (dia), and cyanobacteria (cya). Each life cycle is represented by 590 

a resting stage (RES) and a vegetative growing stage (vegetative cells, VEG). For cyanobacteria, the 

model simulates a second, nitrogen-fixing growing stage (vegetative cells with heterocysts, HET). The 

figure additionally shows the nitrogen fluxes between the different ecosystem components, and the sinks 

and sources of nitrogen (sinking of detritus, burial of phytoplankton resting cells, and resuspension of 

phytoplankton resting cells (not part of this study and therefore disabled), and cyanobacterial nitrogen 595 

fixation). The figure was adapted from Hochfeld and Hinners (2024) under the terms of the Creative 

Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/) and 

created with BioRender.com. 
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Figure B2:  Accumulated phytoplankton biomass during the last simulation year of the four different 600 

model scenarios (C: control, CA: control and adaptation, W: warming, WA: warming and adaptation). 

For each scenario, the output of seven different simulations was averaged. The colors indicate the share 

of dinoflagellates, diatoms, and cyanobacteria in the total phytoplankton biomass. In the two control 

scenarios, black vertical lines show the observed timing of the Baltic Sea spring bloom, the 

cyanobacterial summer bloom, and the diatom autumn bloom (Hjerne et al., 2019, bloom periods were 605 

derived from Fig. 2C). Please note that the accumulated phytoplankton biomass shown in this figure 

includes both growing and resting stages integrated over the entire water column due to the 0-

dimansional model setup, while the monitoring data by Hjerne et al. (2019) only cover the first 20 m. 

Thus, the figure most likely overestimates resting stage biomass compared to the monitoring data, 

meaning that the simulated biomass peak(s) of a taxon are most relevant for model validation, rather 610 

than the general presence of the taxon. 
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Figure B3: Zooplankton biomass during the last simulation year of the four different model scenarios 

(C: control, CA: control and adaptation, W: warming, WA: warming and adaptation). For each scenario, 

we averaged the output of seven different simulations. 615 

 

 

Figure B4: Annual balances of cyanobacteria, diatoms, and dinoflagellates for the four different 

model scenarios (C: control, CA: control and adaptation, W: warming, WA: warming adaption). 
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 620 

Figure B5: Matrices showing the p-values for the correlations in Fig. 2 (Sect. 3.2). Model scenario 

abbreviations: C: control, CA: control and adaptation, W: warming, WA: warming and adaptation. Black 

numbers indicate that the corresponding correlations are statistically significant at the 0.05 level, while 

orange numbers indicate the opposite. 
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 625 

Figure B6: Results for a principal component analysis (PCA). The PCA shows that most variability in 

our model ecosystem can be explained by the first principal component (PC 1), which is associated with 

all model variables that are positively impacted by cyanobacteria. Zooplankton and especially 

dinoflagellates can be clearly identified as outliers. 

 630 

Code availability 

The model code and the scripts for evaluating the model output and creating the figures are 

available on GitHub at https://github.com/Isabell-Hochfeld/Adaptive-Phytoplankton-

Community-Model, last access: April 23, 2024) and on Zenodo at 

https://zenodo.org/doi/10.5281/zenodo.10693812 (version 1.1.0, Hochfeld, 2024). All code is 635 

written in MATLAB (version R2022a). 
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