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Abstract. Supraglacial lake development in Greenland consists of intricate hydrological processes, contributing not only to 

surface mass loss, but also to a lowering of the surface albedo and changes in ice dynamics. While the estimation of lake area 

has recently improved, the determination of the lake volume is essential to properly estimate the amount of water contained in 

and lost from supraglacial lakes throughout the melt seasons. In this study, four supraglacial lake depth estimation methods, 

including two new empirical approaches, are presented and compared. The empirical methods were developed to relate 15 

Sentinel-2 reflectance values to supraglacial lake depth obtained from 1) ICESat-2 crossings over 19 lakes in Northeast and 

Southwest Greenland, and 2) in situ sonar tracks from four lakes on Zachariæ Isstrøm in Northeast Greenland. The depths 

from both equations were independently correlated to their corresponding Sentinel-2 reflectance values to create empirical 

relations. The third method is a standardly used radiative transfer model also based on Sentinel-2 data. Finally, the depths for 

five lakes in Northeast Greenland were derived from TanDEM-X digital elevation models after lake drainage. All four methods 20 

were applied to the five lakes for which digital elevation models were procured, allowing for a direct comparison of the 

methods. In general, the sonar-based empirical equation aligned best with the estimates from the digital elevation model until 

its saturation point of 8.6 m. Through the evaluation of the ICESat-2-based equation, a strong influence of lake bed sediment 

on depth estimation could be seen. The ICESat-2 empirically derived depth equation produced slightly deeper depths than the 

sonar-based equation. The radiative transfer model more strongly overestimated nearly all depths below its saturation point of 25 

16.3 m, when compared to the digital elevation model results. This large overestimation can be primarily attributed to the 

sensitivity of this method’s parameters. Furthermore, all methods, with the exception of the digital elevation model, were 

applied to an area in Northeast Greenland on the peak melt dates for the years 2016 to 2022 to explore lake volume interannual 

variability. Finally, a closer look into the uncertainties for each method provides insight into associated errors and limitations 

when considering which method to use for supraglacial lake depth estimation. Overall, the use of empirically derived equations 30 

are shown to be capable of simplifying supraglacial lake depth calculations, while retaining sufficient accuracy under low-

sediment, floating ice-free, and atmospherically clear conditions.  
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1 Introduction 

Supraglacial lakes (SGLs) play an important role in glacial surface mass balance calculations as they collect meltwater and act 

as conduits for surface and subglacial runoff. The dynamic nature of these lakes is influenced primarily by rainfall, surface 35 

temperatures and snowpack thickness (Turton et al., 2021), leading to strong interannual variability in the size and timing of 

the lakes over the melt season. SGLs, however, are found in topographical depressions, which remain in the same locations, 

due to the influence of bedrock topography on the glacier surface (Gudmundsson, 2003; Lampkin and Vanderberg, 

2011),  allowing for lake development to be easily tracked. The ability to accurately delineate SGLs in satellite imagery has 

improved significantly in recent years (Williamson et al., 2018; Arthur et al., 2020; Dirscherl et al., 2020; Schröder et al., 2020; 40 

Dell et al., 2021; Hochreuther et al., 2021; Hu et al., 2021; Corr et al., 2022;  Lutz et al., 2023). However, while this information 

provides insight on seasonal lake area trends, the volumes of the lakes are necessary in order to estimate the amount of water 

that is stored on the glacier and discharged into the subglacial system, in addition to understanding its subsequent impact on 

the subglacial hydrological system and ice dynamics through hydrofracture-induced drainages. 

Previously, various methods to measure SGL volumes based on a radiative transfer model (RTM) have been explored. This 45 

method uses the reflectance value of a pixel in combination with estimates of lake bed albedo, optically deep water reflectance, 

and a two-way attenuation coefficient to determine the water depth of the pixel. Originally derived by Philpot (1987), the 

radiative transfer model has been commonly used to estimate SGL volume across Greenland and Antarctica (Sneed and 

Hamilton, 2007; Sneed and Hamilton, 2011; Tedesco and Steiner, 2011; Williamson et al., 2017; Macdonald et al., 2018; 

Williamson et al., 2018; Moussavi et al., 2020;Arthur et al., 2020; Glen et al., 2024; and Melling et al., 2024). Additionally, 50 

empirical functions have been fit to in situ data acquired via sonar (Box and Ski, 2007; Fitzpatrick et al., 2013; Legleiter et al., 

2014; Pope et al., 2016) or digital elevation model (DEM) (Moussavi et al., 2016) data to achieve better lake depth estimates. 

Many of these newly developed algorithms were also compared to the physical radiative transfer model in their analysis; 

however, the authors’ conclusions on the better performing method differ. These varying results could be attributed to the 

small and, thus, unrepresentative amount of in situ data on which the algorithms were fitted in many of the studies, along with 55 

the lack of validation data against which the results can be compared for an objective evaluation. Furthermore, these optically 

based methods are limited by the presence of sediment in the water causing depth overestimation (Box and Ski, 2007; Sneed 

and Hamilton, 2011; Arthur et al., 2020); the effect of wind, and thus waves, on the surface reflectance (Sneed and Hamilton, 

2007; Pope et al., 2016; Arthur et al., 2020); and the difficulty of accurately estimating the lake bed albedo and optically deep 

water, which is roughly defined as water deeper than 40 m (Sneed and Hamilton, 2007; Sneed and Hamilton, 2011; Tedesco 60 

and Steiner, 2011; Moussavi et al., 2016; Pope et al., 2016).  

With the recent launch of the Ice, Cloud and land Elevation Satellite 2 mission (ICESat-2), a new suite of SGL depth algorithms 

have been developed, two of which are the Lake Surface-Bed Separation (LSBS) algorithm (Fair et al., 2020) and the Watta 

algorithm (Datta and Wouters, 2021). Both of these algorithms use ICESat-2’s ATL03 laser data product to identify SGL 

surfaces based on the flatness of the return signal and then automatically estimate the depth along the lake profile. Datta and 65 



3 

 

Wouters (2021) further create an empirical equation that correlates these lake depths to reflectance values in multispectral 

satellite images in order to estimate depths independently of ICESat-2 tracks. These two algorithms were directly compared 

on a few test lakes in Fricker et al. (2021), along with several other algorithms created to extract lake profiles from ICESat-2 

data, as well as the radiative transfer model. These results were compared against a manual delineation of the lake bed from 

the raw ATL03 data. The RTM method applied to both Sentinel-2 and Landsat-8 red bands consistently underestimated the 70 

manually delineated lake depths, whereas the ICESat-2 algorithms all generally estimated depths near the manually delineated 

depths, but contained many large perturbations.   

In this study, we compare four supraglacial lake depth estimation methods in order to directly evaluate the behavior and 

limitations of each method. These methods include (1) the previously mentioned radiative transfer model (RTM), (2) an 

empirical equation derived from ICESat-2 lake crossings, (3) an empirical equation derived from in situ sonar data gathered 75 

in Northeast Greenland, and (4) TerraSAR-X add-on for Digital Elevation Measurement (TanDEM-X) elevation data. To 

understand the pitfalls of each method, we discuss the associated errors and uncertainties of each. Finally, we apply the methods 

to the peak lake area extent in the 2016 to 2022 melt seasons in Northeast Greenland in order to evaluate interannual lake 

volume trends.  

2 Data and methods 80 

This study consists of four methods based on various data sources. For simplicity, these approaches will be called (1) the 

radiative transfer model (RTM), (2) the ICESat-2 equation, (3) the sonar equation, and (4) the DEM method. 

2.1 Sentinel-2 data 

As part of the European Space Agency’s Copernicus program, two Sentinel-2 satellites capture multispectral data ranging from 

coastal aerosol (442.7 nm) to shortwave infrared (2202.4 nm) with a near daily revisit time in northern Greenland. This high 85 

acquisition rate is advantageous for monitoring dynamic hydrological processes, especially considering the high frequency of 

cloud coverage over Greenland’s coastal regions, which renders a significant portion of images unusable. Furthermore, 

Sentinel-2’s red, green, and blue (RGB) bands are provided with a resolution of 10 m, which is valuable for a detailed analysis 

of the lakes. The Sentinel-2 images are provided as a top-of-atmosphere product (L1C) or an atmospherically corrected bottom-

of-atmosphere product (L2A) (Drusch et al., 2012). Since the atmosphere would distort the reflectance value of lake pixels, 90 

and thus the depth estimations, L2A images are used in this study. Furthermore, the cloud-masking algorithm developed by 

Nambiar et al. (2022) that was specifically created for polar regions is used here to eliminate cloudy images from the processing 

chain. All methods except for the DEM method rely on Sentinel-2 data for the estimation of lake depth. Ideally, suitable 

imagery is acquired from the same date as the ICESat-2, in situ sonar, or TanDEM-X data; however, due to poor atmospheric 

conditions or missing data, images from the same day may not be available. In these cases, images from the previous day were 95 

used with only one exception.  
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2.2 Radiative transfer model 

Developed by Philpot (1987), the radiative transfer model uses a physically based understanding of how light attenuates 

through the water to provide an estimate for its depth. It is described by Eq. (1): 

𝑧 =  
ln(𝐴𝑑−𝑅∞)−ln (𝑅𝑤−𝑅∞)

𝑔
 ,           (1) 100 

where 𝑧 is depth, 𝐴𝑑 is the lake bed albedo, R∞ is the reflectance of optically deep water (e.g. ocean), 𝑅𝑤 is the reflectance 

value of the lake pixel, and 𝑔 is a two-way attenuation coefficient. Here, along with the other equations presented in this 

research, depth below the surface is a positive value. Since the lake bed albedo is unable to be measured directly, the assumption 

that the surrounding water-free ice can be used as an approximate estimate is utilized. Thus, 𝐴𝑑 is calculated from averaging 

the reflectance values within a 30 m (i.e. 3 pixel) radius around each lake, as in Moussavi et al. (2020). This radius is used in 105 

order to compensate for potential imperfections in the lake masks, which could allow for some water pixels to be included in 

the 𝐴𝑑 calculation. Furthermore, although it is intended that  R∞ be calculated for each image optically deep water is not 

present in every scene due to various conditions, such as cloud cover or extensive sea ice presence. Thus, R∞ is empirically 

determined from averaging the reflectance of optically deep water (i.e. ocean) from many Sentinel-2 scenes in the region, 

similar to Melling et al. (2024). Additionally, g is estimated using various relationships of light attenuation in water, the values 110 

for which are tuned to the specific wavelength observed by different satellite missions. Here, the values determined in 

Williamson et al. (2018) for Sentinel-2 are used, specifically 0.1413 for the green band.  

2.3 ICESat-2 

2.3.1 Data location 

In this study, ICESat-2 is used to define one of the four algorithms. Launched in 2018, ICESat-2 carries a set of six green 115 

lasers (532 nm) with a 10 kHz pulse repetition rate (Neumann et al., 2019). This high frequency makes it possible to identify 

lake profiles with the ATL03 product, which is a geolocated dataset where individual photons are reflected off both the lake 

surface and bed. Since ICESat-2 has a long revisit cycle of 91 days, it itself is not suitable for the intraseasonal monitoring of 

SGL evolution since lakes usually develop and sometimes drain within days to a few weeks. Since Sentinel-2, however, has a 

high temporal and spatial resolution in Greenland, such a monitoring task is possible. Thus, the depths derived from the ICESat-120 

2 lake crossings are correlated with temporally coinciding Sentinel-2 images to create a depth-reflectance relationship.  

Figure 1(a) shows the locations used in this study for which an ICESat-2 path crossed a filled supraglacial lake, depicted by 

purple points. In order to allow a sufficient number of ICESat-2 lake crossing and Sentinel-2 imagery, we augmented our data 

set from Northeast Greenland with datasets in Southwest Greenland. In total, we found 19 lake crossings over the 2019 to 2022 

melt seasons  for which the lake profiles contained enough points for the lake surface and bed to be distinguishable. These 125 

crossings are depicted in Fig. 1(c) for the lakes found in Northeast Greenland and (d) for those found in Central-West and 

Southwest Greenland. For each lake crossing, a corresponding Sentinel-2 image was acquired from the same day or the closest 
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day to the ICESat-2 crossing as possible. In Table A1, detailed information for each lake crossing is listed, including the date 

of acquisition, the ICESat-2 beam ID, the number of lakes acquired from each track and the corresponding Sentinel-2 image 

used for further processing. 130 

 

Figure 1: (a) An overview of Greenland, showing the locations of the supraglacial lakes with ICESat-2 crossings used in this study 

(purple points) labeled by (c) and (d), which are shown in further detail in the respective subimage. The gray lines represent 

Greenland’s basin boundaries, produced by Rignot et al. (2011). (b) A closer view of Northeast Greenland, with the region over 

which an interannual analysis was produced. (c) and (d) show the ICESat-2 track paths (red) for the lakes marked in (a) for Central-135 
West/Southwest Greenland and Northeast Greenland, respectively. Each lake is represented visually with the Sentinel-2 image 

closest to the acquisition (listed in Table A1). 

2.3.2 ICESat-2 lake crossing track retrieval 

Here, ATL03 tracks from ICESat-2 were used to gather a set of SGL depth profiles. Due to ICESat-2’s long revisit time and 

narrow footprint, a lake crossing is a relatively rare event. Areas in Northeast and Central-West/Southwest Greenland (shown 140 

in Fig. 1) were manually investigated over the 2019 to 2022 summer melt seasons to identify potential lake crossings using 

NASA’s OpenAltimetry tool (https://openaltimetry.org/data/icesat2/). The date, geolocation and track ID of unfrozen and high 

quality lake crossings were then entered into the Jupyter Notebook processing tool developed by Fricker et al. (2021) 

(https://github.com/fliphilipp/pondpicking). In this tool, the ICESat-2 ATL03 data is shown in an editable window, where the 

lake surface and bed can then be manually drawn. An example from one of the lakes can be seen in Fig. 2(a), where the 145 

manually drawn lake surface is depicted by the blue line and the lake bed by the red line. It should be noted that these lines are 

not determined in regard to the photon confidence level (Neumann et al., 2019), but rather by the density of photon return 

signals. Based on best judgment and consistency with previous studies (Fricker et al., 2021), the surface and bed profiles were 

https://openaltimetry.org/data/icesat2/
https://github.com/fliphilipp/pondpicking
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drawn along the areas of highest photon concentration, typically just below the first appearance of photon accumulation. 

However, the width of the area of high photon concentration spans an average range of 0.62 m for the lake surface and 1.06 m 150 

for the lake bed, resulting in a substantial difference in where the surface or bed could be delineated. The depths from the 

obtained track were then correlated to Sentinel-2 reflectance values. Figure 2(b) shows the corresponding track path over a 

Sentinel-2 image from the previous day. The Sentinel-2 L2A images were downloaded and then preprocessed by converting 

the digital numbers to reflectance values. In this study, all three RGB bands were investigated to determine which band 

produces the most reliable depth results. Thus, reflectance values were collected for each band along the profile of each lake. 155 

 

Figure 2: An example SGL in southwest Greenland captured on 18 August 2019. (a) ICESat-2 ATL03 data showing the lake surface 

(blue) and lake bed profile (red), created using the picking tool by Fricker et al. (2021). (b) the Sentinel-2 image from the previous 

day (17 August 2019), showing the ICESat-2 path crossing the lake (green). 

2.3.3 Lake depth equation 160 

Firstly, a refraction correction needed to be applied to the ICESat-2 depths to account for the change in speed of light in water.  

As used in Parrish et al. (2019), it is defined as Eq. (2): 

𝑅 =  
𝑆𝑛1

𝑛2
  ,            (2) 

where 𝑅  is the adjusted depth, 𝑆 is the uncorrected depth, 𝑛1  is the refractive index of air (𝑛1  = 1.00029), and 𝑛2  is the 

refractive index of green light (λ = 560 nm) in water (𝑛2 = 1.3343), where the refractive indices are adapted from Mobley 165 

(1995). The corrected ICESat-2 depths were then compared with RGB reflectance values for all 19 lakes. An exponential 

function was fitted to each band and the R2 values were used to determine which optical band best correlates with lake depth.  

2.4 In situ sonar 

The second empirically derived depth algorithm is based on sonar data gathered in situ in Northeast Greenland. For this, a self-

built remote controlled boat equipped with a sonar sensor was constructed. This boat consists of a floatation board, two 170 
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propellers, a waterproof box containing electrical wiring and a battery, as well as a Lawrence Elite 7 FS sonar sensor and 

corresponding monitor, seen in Fig. 3(a) and (b). During fieldwork in July 2022, four depth profiles were measured with this 

boat, the locations of which are depicted in Fig. 3(d). These lakes are located upstream of the grounding line of the glacier 

Zachariæ Isstrøm, as shown in Fig. 3(c). These lake profiles are then processed using the software Reefmaster 2.0, where the 

lake bed is manually delineated from the sonar signal and then converted into vector data points. Some error could arise from 175 

the delineation of the lake bed from the sonar plot, as there is not only some noise in the backscatter but also limitations in 

manually extracting the surface. We assume this error to be approximately 0.20 m based on experience delineating sonar 

signals. As a note, the naming convention of these lakes is based on the location of topographical depressions in the Northeast 

Greenland region highlighted in Fig. 1(b), over which there are roughly 860 depressions that have recently filled with 

meltwater. Within some depressions, multiple untouching lakes regularly form, requiring the use of the descriptors a, b, c, and 180 

d.  

 

Figure 3: (a) The remote controlled sonar-equipped boat used in this fieldwork to gather lake depth profiles. (b) The underside of 

the boat, showing the sonar sensor in the middle along with the two propellers. (c) A zoomed out view of the scene shown in (d), 

showing the relation of the measurements to the two major glaciers in Northeast Greenland. (d) A Sentinel-2 image from 19 July 185 
2021 with the sites on which the sonar measurements of four supraglacial lakes were taken (marked with red points), and the lakes 

for which DEMs were created (marked with yellow diamonds). Each lake is labeled with its ID number. 

The four sonar tracks acquired in situ via a remote controlled boat are displayed in Fig. 4, where the tracks are overlaid onto a 

Sentinel-2 image captured one day before the sonar acquisition. Each track contains data up to around 100 m offshore. The 

tracks for lakes 522, 610a, and 610b in Fig. 4(b)-(d) show depths up to roughly 7 m deep, while the track for lake 469 in Fig. 190 

4(a) shows depths above 10 m with a small area around 14 m deep. 



8 

 

 

Figure 4: The sonar tracks captured over the four SGLs acquired in situ with a remote controlled boat. The sonar data for Lake 

610a were acquired on 4 July 2022 and the other three lakes on 9 July 2022. The backgrounds are Sentinel-2 L2A RGB images from 

one day before the sonar acquisition date, i.e. 3 July 2022 and 8 July 2022. 195 

The depths from these sonar tracks were correlated to the Sentinel-2 imagery to create a depth–reflectance relationship, 

similarly to the ICESat-2 method. The sonar acquisition dates and Sentinel-2 tile IDs can be found in Table A2. The sonar 

depth data were acquired at a much higher resolution than the resolution of Sentinel-2 images, so an average was taken of the 

sonar depth data over every Sentinel-2 pixel. This discrepancy in resolution results in an average standard deviation of 0.32 m 

among all the pixels used to create the equation. The sonar tracks, however, did not always pass perfectly through the center 200 

of the pixel, so the measured depths may only be representative of a portion of the pixel. An exponential function was then fit 

to the depth–reflectance data of the most suitable band, determined in Section 2.3.3.    

 

2.5 TanDEM-X  

In 2010, the TanDEM-X mission was launched, creating a configurable, high-resolution space-borne radar interferometer in 205 

the X-band. Synthetic Aperture Radar (SAR) DEMs of Northeast Greenland are created from Co-registered Single look Slant 

range Complex (CoSSC) data based on differential interferometry (Sommer et al., 2022). Initially, interferograms were 

calculated from concatenated SAR acquisitions in the along-track direction. Thereafter, the differential phase of each 

interferogram was unwrapped using a minimum cost flow algorithm and converted to elevation values above a reference 
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surface. As the reference DEM, we use the global Copernicus DEM GLO-30 with a spatial resolution of 30 m (European Space 210 

Agency 2022). Eventually, each newly created TanDEM-X DEM was iteratively co-registered to the Copernicus DEM in the 

horizontal and vertical plane to remove remaining systematic offsets or geometric distortions. The co-registered DEMs, 

captured after the complete drainage of a supraglacial lake, were used to determine the bathymetry of the lake. From this, the 

lake depths can be determined for a previous date when the lake was filled. 

Since TanDEM-X coverage is sporadic due to the campaign-based DEM acquisition (Bachmann et al., 2021) and complete 215 

lake drainages are relatively infrequent, the acquisition of a post-drainage lake DEM is difficult. Nonetheless, post-drainage 

DEMs were created for five lakes in Northeast Greenland over the 2021 melt season, the locations for which are shown in Fig. 

3(d).  In order to determine the lake depth, a lake surface elevation was determined from the boundary of the segmented lake 

mask from a date before drainage (Lutz et al., 2023). The elevations around the boundary were averaged to produce one surface 

value, from which the elevations of the lake bed were subtracted, resulting in the lake depth at each pixel. Since the resolution 220 

of the DEM is 10 m, some variation in the average elevation found within lake edge pixels is to be expected, especially around 

strongly sloped or rugged areas. When determining the inclusion of a lake in this study, any lake with a surface elevation 

standard deviation of more than 1.5 m was excluded. Of the five lakes evaluated in this research, the average standard deviation 

for the surface elevation was 0.93 m.  

2.6 Method comparison 225 

To evaluate these lake depth estimation techniques, all four methods were applied to the five lakes for which DEMs were 

procured. Sentinel-2 imagery was chosen as close to the drainage date of each lake as possible. The lakes in each image were 

delineated using the deep learning method developed in Lutz et al. (2023). The data pertaining to the lake drainage dates, the 

DEM acquisition dates, and the Sentinel-2 imagery used are detailed in Table A3. 

Additionally, the sonar equation, the ICESat-2 equation and the RTM method were applied to peak melt dates in the 2016 to 230 

2022 melt seasons over an area in Northeast Greenland encompassing the Nioghalvfjerdsbræ (also known as the 79°N Glacier) 

and Zachariæ Isstrøm glaciers. This region can be seen in Fig. 1(b). The dates for maximum lake area extent were determined 

from the results found in Lutz et al. (2023). These three methods were then applied to the lake area extent derived from their 

method. This allows for a comparison of the methods on a large scale while also showing the interannual variability of the 

meltwater development in the region.  235 

3 Results 

3.1 ICESat-2 depth equation 

Figure 5(a)-(c) displays three plots, one for each RGB band, in which the depth values gathered from 19 ICESat-2 lake profiles 

are plotted against their corresponding Sentinel-2 reflectance values. For each band, the data shows two distinct trends, 

correlating to the region from which the ICESat-2 data was acquired, i.e. whether the lakes were located in Northeast or 240 
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Southwest Greenland. Due to such distinct behavior between the regions, two curves were fit to the data for each band, where 

the orange data points and curves represent data from Northeast Greenland and the green ones represent data from Southwest 

Greenland. The ice in Southwest Greenland is generally more heavily covered by sediment than Northeast Greenland, leading 

to a lower surface albedo, which can be seen by the darker color of the ice surrounding lakes in Figure 1(d). This difference 

presumably explains the shift in depth measurements towards lower reflectance values in data from Southwest Greenland. The 245 

distinction between the regional curves becomes stronger with larger wavelengths, i.e. the curves are the most distinctly 

separated for the blue band and the least separated for the red band, implying a stronger influence of the sediment for 

wavelengths that penetrate deeper into the water. Furthermore, the red band, shown in  Fig. 5(b), shows clear limitations due 

to attenuation. Here, reflectance values are only able to estimate depths up to around 3 m, depths above which are represented 

by similar reflectance values. Due to this behavior, curves for the red band were only fit on data up to 3.5 m. In contrast, the 250 

data points for the green band only start stacking at the same reflectance values once they reach around 10 m deep, while the 

rest are distributed fairly evenly across the higher reflectance values. 

 

Figure 5: SGL depth versus reflectance plots for ICESat-2 depths (a)-(c) and sonar depths (d) against their corresponding Sentinel-

2 L2A reflectance values. For (a)-(c), data gathered from ICESat-2 tracks in Southwest Greenland are represented by green points 255 

and data from Northeast Greenland are represented by orange points. For (d), each color represents a different lake from which the 
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sonar data was gathered. For (a)-(d), the respective curves represent exponential equations fit to the data from the specified band 

and region, the RMSE and R2 values for which are listed in each subplot. 

Since the green band has the best coefficient of determination (R2) values and has a fairly consistent depth–reflectance ratio 

across nearly the full spectrum, it has been selected as the basis for this depth algorithm. The best fit to the data was found 260 

using an exponential function, defined by Eq. (3) and Eq. (4) for the Southwest and Northeast regions, respectively:  

𝑧𝑆𝑊 = 18.8999𝑒−5.9037𝑥 + 0.3237  ,         (3) 

𝑧𝑁𝐸 = 21.9222𝑒−4.0180𝑥 + 0.3902  ,         (4) 

where 𝑧 is the lake depth and 𝑥 is the Sentinel-2 L2A reflectance value. These functions are plotted over the ICESat-2 data in 

Fig. 5(c). The root mean squared error (RMSE) of the exponential fit and the R2 values for the Southwest function are 1.30 m 265 

and 0.83, respectively, while for the Northeast function they are 0.80 m and 0.78, respectively. To better assess the uncertainty 

variation along the curve, the RMSE was calculated for bins of 0.05 increments over the reflectance values, since how well 

the curve fits to the data varies with reflectance. Here, the RMSE values ranged from 0.54 m to 1.75 m for the Northeast 

function. While the data points in the Southwest function include depths up to 12 m, depths only up to around 7 m were 

gathered in the Northeast. This additional depth range allows the Southwest equation to be reasonably valid up to roughly 10 270 

m of depth, where the number of samples declines and the depth values start to saturate at similar reflectance values. The 

Northeast equation, however, can only be reasonably used to depths up to around 6 m.  

3.2 Sonar depth algorithm 

While post-processing the sonar data, depths were compared at points where the boat passed more than once, where the 

difference should in theory be zero. While Lakes 522, 610a, and 610b had an average crossover difference of 0.11 m, the 275 

average difference of the crossover points for Lake 469, was 0.68 m, with differences found up to 2.11 m. The large 

discrepancies can be attributed to the rough water conditions rocking the boat during data acquisition. This lake was, thus, 

removed from the analysis. The relatively small discrepancies found for the other lakes could be attributed not only to minor 

fluctuations in the lake’s surface, but also to the precision of the sonar sensor and the geospatial sensor. The depths from these 

three sonar tracks were plotted together against their corresponding Sentinel-2 reflectance values for the green band, as seen 280 

in Fig. 5(d). Since all three lakes were located in Northeast Greenland, the data follow one trend. An exponential equation was 

fit to the data, which is described by the Eq. (5): 

𝑧 = 14.9572𝑒−4.2629𝑥 + 0.5242  ,          (5) 

where 𝑧 is the lake depth and 𝑥 is the Sentinel-2 L2A reflectance value. The data points corresponding to the Sentinel-2 green 

band are plotted in Fig. 5(d), where the tracks along each lake are a different color. Here, the RMSE for the fit equation is 0.85 285 

m and the R2 is 0.76. Furthermore, the quantification of the uncertainty was handled similarly to the ICESat-2 equation by 

calculating the RMSE for 0.05 increments over the reflectance values. Among these bins, the RMSE ranges from 0.27 m to 

0.94 m. 
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3.3 Comparison of SGL depth estimation methods 

The five lakes for which DEMs were procured are shown in Fig. 6. Here, all four depth estimation methods are shown. Some 290 

areas of the DEMs are marked as invalid since Sentinel-2 imagery showed some water remaining on the lake bed after the 

drainage. These areas, while shown in the other methods, were not used in the calculation of volumes, maximum depths or 

errors to allow for a consistent comparison. Using the DEM results as reference, the limitations of the other three methods can 

be seen. While the sonar equation tends to produce the shallowest results, they are the results most in agreement with the DEM 

estimates, up to its saturation depth of around 8.6 m, which can be seen in Fig. B1(c). While this method slightly overestimates 295 

shallow areas (< 3 m), it produces results similar to the DEM for depths between 3 and 7 m deep, which can be seen in Fig. 

B2. The ICESat-2 method, however, overestimates depths across the entire depth range, until its saturation point of around 

12.7m (see Fig. B1(b)). The lowest volume errors in comparison with the DEM estimates are found with Lake 469, where the 

ICESat-2 method only overestimates the total volume by 6.0%. While this error is low, it is unrepresentative of the comparison 

of individual depths. The majority of the lake is overestimated, whereas the deeper areas (13 to 27 m deep) are underestimated 300 

(see Fig. B2). Since the data used to fit both the sonar and ICESat-2 methods is limited to shallower depths, the behavior of 

both methods over 6 m is unconstrained by actual data and thus most likely deviates from optimal estimates.  

The RTM method even more strongly overestimates the lake volume for all five lakes, when compared to the DEM results. 

For shallower lakes, e.g. 741c and 741d, the RTM method overestimates the volume by 137.5% and 75.4%, respectively. This 

method has its lowest error for the largest lake (469), with an overestimation error of only 6.7%. Similar to the ICESat-2 305 

estimates, however, this is unrepresentative of the accuracy of individual depth estimation. The RTM method overestimates 

depths the most of all methods, until it reaches a saturation level around 16.3 m (see Fig. B1(a)). For Lake 469, the majority 

of the lake is significantly overestimated with the deeper areas (18 to 27 m deep) underestimated (see Fig. B2).  
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Figure 6: The four lake depth estimation methods (DEM, sonar equation, ICESat-2 equation, and RTM) are applied to five different 310 
lakes (469, 562, 741a, 741c, and 741d). The total volume estimated from each method is shown for each lake, along with the maximum 

estimated depth. Areas where the DEM could not be calculated due to residual water are marked by pink. These areas, while shown, 

were excluded from the calculation of the volume and maximum depths for the other methods. 
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3.4 Interannual comparison of peak melt extent 

Figure 7 shows the volume estimates for the ICESat-2 equation, sonar equation, and RTM method for the dates of maximum 315 

spatial extent over the 2016 to 2022 melt seasons over the area in Northeast Greenland shown in Fig. 1(b). The uncertainties 

associated with each method are shown via error bars. These uncertainties were calculated based on various method-dependent 

factors. For the sonar and ICESat-2 methods, we estimated uncertainties based on geolocation error, on the fit of the data to 

the curve, and in the delineation of the lake bed and surface in the sonar data. Additionally, an uncertainty based on the cross 

points of the boat tracks was included for the sonar method. Finally, the uncertainty for the RTM method was based on the 320 

sensitivity of the parameters 𝐴d, 𝑅∞, and 𝑔.  

The 2018 melt season in Northeast Greenland has been shown to be comparably dry and cold (Turton et al., 2021), which is 

reasonably reflected by the significantly lower volume estimates from all three methods. An example of this large difference 

is seen when comparing the largest volume for the sonar method in 2016 with 0.903 km3 of total water, whereas the estimates 

for 2018 were less than half of that with only 0.349 km3. Besides this large deviation, the interannual variability of the total 325 

amount of meltwater gathered in SGLs is rather low, considering the large span of the error bars. The RTM estimates have the 

largest interannual variability with a standard deviation of 0.287 km3, compared to 0.194 km3 and 0.167 km3 for the sonar and 

ICESat-2 equations, respectively. This variability can be explained by the larger saturation depth inherent to the RTM method. 

With a larger range of potential depths, the amount by which estimates can vary increases. 

When comparing to the variability of lake area in Lutz et al. (2023), the interannual lake area variability is much larger than 330 

the interannual lake volume variability. For example, the 2016 lake area extent was 346.5% larger than the 2018 extent, 

whereas the 2016 total lake volume is only 158.7% larger than the 2018 total lake volume, based on estimations from the sonar 

equation. This suggests that more lake area is rather easily gained but is composed of relatively shallow water, resulting in less 

volume change. A closer look at the distribution of average lake depths per year can be seen in Fig. B3. 
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 335 

Figure 7: The total lake volume over Northeast Greenland (area defined in Fig. 1(b)) for the date of peak melt area determined in 

Lutz et al. (2023) over the 2016 to 2022 melt seasons. The estimates from the sonar equation, ICESat-2 equation, and the RTM 

method are shown for each melt season, along with their estimated uncertainties. 

4 Discussion 

4.1 Usefulness of the different visible bands for depth analysis 340 

Throughout literature, both the red and green bands have been used for single-channel depth estimation in multispectral 

imagery. In our study, the saturation of the red band with depths of around 3 m is clearly seen (see Fig. 5(b)). This has also 

been noted by several other research groups (Datta and Wouters, 2021; Melling et al., 2024; Moussavi et al., 2016; Pope et al., 

2016; Williamson et al., 2018); however, the red band is often used despite this. Some studies used the red band without 

justification (Box and Ski, 2007; Fitzpatrick et al., 2013), while others concluded that the use of the red band resulted in better 345 

performance based on a comparison of the depth estimations from two different satellites (Williamson et al., 2017; Williamson 

et al., 2018). While there is a clear depth-reflectance trend up to around 3 m deep, this low saturation depth limits the scope of 

such a method. From our sonar, ICESat-2 and DEM data sources, it can be seen that lake depths are often over 5 m deep, with 

four of the five lakes showing maximum DEM-derived depths between 10 and 25 m. Moreover, in the interannual comparison, 

between 8.1% (in 2020) and 32.1% (in 2018) of lakes had an average depth larger than 4 m over the melt seasons according 350 

to the sonar equation (see Fig. B3). While the majority of lakes were quite shallow, a significant portion of the water volume 

is present in lakes with deeper average depths. Based on this, the use of the green band seems to be a more suitable choice for 

estimating deeper lake depths, which was similarly determined by Sneed and Hamilton (2007), Sneed and Hamilton (2011), 

and Tedesco and Steiner (2011). However, an analysis by Pope et al. (2016) was conducted to compare red and green estimates 

to depths derived from digital elevation models, which found that the green band overestimated the lake depths when the 355 
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radiative transfer model was used. A similar conclusion was reached by Melling et al. (2024), who found that the RTM method 

applied to five test lakes overestimated depths by up to 153% with the green band and underestimated depths by up to 63% 

with the red band. As seen through our study though, estimates can vary quite strongly depending on the method used, and the 

radiative transfer model is particularly prone to overestimating lake depth. Moussavi et al. (2016) used DEMs to define several 

lake depth equations in comparison with the radiative transfer model. In their study, the green band performed best for both 360 

single-channel equations; however, they concluded the use of the red band was preferential due to the lower sensitivity of the 

red band to variations in the radiative transfer model parameters. While the red band may be better suited to the shallow depths, 

the advantages of using the green band in single-channel depth estimation methodologies seem to outweigh the disadvantages. 

4.2 Differences and potential errors in the methodological approaches 

Since each method is derived from different data sources and is dependent on various variables, the uncertainties present in 365 

each method can contribute to the discrepancies seen among the depth estimations. Firstly, there are a couple of effects inherent 

to regression equations. Neither the ICESat-2 equation nor the sonar equation contain many very shallow (< 0.5 m) depths, 

only 9.8% and 3.3% of the data, respectively. Furthermore, the sonar equation only contains four data points above 7 m (1.64% 

of the data) and there are no data above 7 m for the ICESat-2 equation. Due to this limited spread, the regressions are not 

properly bound at the extremes. This effect can be seen in the sonar equation’s inability to estimate depths above 8.6 m as well 370 

as in the overestimation of depths in the ICESat-2 equation. Furthermore, the addition of deeper data points for both the sonar 

and ICESat-2 equations could affect the curvature of the entire regression, which would affect the estimation of the rest of the 

depths as well. Moreover, the inability of both equations to accurately estimate very shallow areas is apparent in Fig. 6, where 

lake depth at the lake edge is overestimated compared to the DEM method. This effect can be attributed to the sonar equation 

regression never reaching a value below 0.5 m in a physically meaningful range, rendering this method incapable of estimating 375 

depths below this value. In the ICESat-2 equation, however, the regression reaches zero, but only at a very high reflectance, 

which is less likely to be seen in shallow lake edge waters. This difference seen in Fig. 6 could also be due to an inaccurate 

estimation of the DEM’s surface level, which would be more apparent in shallower areas, since the average standard deviation 

among all five lakes for the surface elevation is 0.93 m. Additionally, several studies have reported that after a rapid drainage, 

local ice uplift has been observed (Chudley et al., 2019; Das et al., 2008; Doyle et al., 2013; Hoffman et al., 2011). While the 380 

maximum observed uplift was 1.2 m (Das et al., 2008), most groups reported that the ice slowly settled back to a lower 

elevation up to 0.2 m above the pre-drainage elevation. Thus, DEMs created after a rapid drainage could potentially still contain 

a vertical offset, which could affect the comparison to other methods. 

Furthermore, the geolocation of ICESat-2’s photons could introduce inaccuracies due to horizontal accuracy and footprint size, 

resulting in a mismatch between depth and reflectance information. A geolocation error between 2.5 and 4.4 m was reported 385 

through validation with ArcticDEM (Luthcke et al., 2021), which is below the specified ATLAS photon horizontal geolocation 

of 6.5 m (1σ) (Neumann et al., 2019). However, each beam has a nominal footprint diameter of 17 m, which is larger than the 
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spatial resolution of Sentinel-2 (10 m) and might result in an inaccurate comparison of ICESat-2 depths and Sentinel-2 

reflectance. 

Next, the depth overestimation in the RTM method seen throughout the lakes in Fig. 6 can be attributed to the difficulties 390 

involved in the calculation of the parameters 𝐴d, R∞, and 𝑔. Firstly, the reliance on an estimation of R∞ by averaging ocean 

pixels from other scenes can introduce errors due to a potential difference in atmospheric conditions and sun elevation, among 

others. The ocean itself also inherently has a relatively wide spread of reflectance values, in general ranging from 0.06 to 0.11. 

Secondly, using the lake edge reflectance, 𝐴d, as a proxy for lake bed albedo can introduce errors into depth estimation. 

Tedesco and Steiner (2011) found this approximation to lead to average depth errors of 15.9% when estimating 𝐴d with the 395 

green band. Similarly, it was found by Moussavi et al. (2016) that 𝐴d estimates based on lake edge reflectances were higher 

than optimized lake bed albedos by 5 - 10%. This then translates to around a 20% depth underestimation in green bands. 

Additionally, the calculation of 𝐴d can be skewed by imperfect lake masks. If the drawn lake boundary does not actually follow 

the edge of the lake, the 𝐴d value would be calculated from lake pixels instead of just the surrounding ice. If 𝐴d were calculated 

from water pixels, this would lead to a shallower depth estimation. This could also be problematic for situations in which an 400 

SGL is located nearby a non-ice feature, such as a nunatak. Finally, the theoretical estimation of the variable 𝑔 may not be 

realistic. Pope et al. (2016) state that 𝑔 for green bands is more sensitive to errors than the red band, since green light attenuates 

through water more slowly. This fact, along with the differences in lab-based and theoretically calculated 𝑔 values, implies a 

strong influence of variations in this value on the estimated lake depth. Having specifically tuned the parameter 𝑔  to a higher 

value, Melling et al. (2024) found that 𝑔 was still responsible for significant overestimation of depth in the green band, even 405 

though the depths were more in line with DEM methods than the standardly used theoretical 𝑔  values. 

Thus, for all three parameters discussed here, a sensitivity study was conducted on Lake 562, more details for which can be 

found in Fig. B4. It was found that a change of 0.01 m-1 in the variable 𝑔 resulted in a 7.4% change in estimated volume or a 

0.60 m change in average depth of the lake. Furthermore, the variable R∞ was evaluated over the span of reflectance values 

found in the nearby ocean. Over this reflectance span of 0.05, there was a difference of 14.7% in the resulting volume 410 

estimations. Additionally, since the values for 𝐴d are calculated on the pixels surrounding each lake, the width of the area 

around the lake is considered here. In this instance, lowering the distance to 10 m or raising it to 60 m had some effect, but it 

was smaller than the effect seen with the other two variables. This, however, could potentially vary significantly for other lakes 

around which the ice surface is more variable, e.g. with sediment dispersion. Overall, the sensitivity of these three variables, 

as well as the rough estimation of some, contribute to the tendency of the RTM to produce erroneous results, without the 415 

variables having been tuned to specific scenarios.  

4.3 Limitations of lake depth estimation from multispectral images 

While methodologies employing multispectral images for the purpose of estimating SGL depths have been shown to work 

well for most situations, there are certain limitations of such methods which must be acknowledged. Firstly, sediment is 
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deposited on the surface of the glacier, which can then enter the supraglacial lakes and settle to the lake bed, as seen in Fig. 420 

8(a), appearing as dark regions. This is further exemplified in Fig. 8(b), which shows the amount of sediment left behind after 

a lake drainage. When estimating lake depth from reflectance values, these areas would be measured with a very low 

reflectance, which would then lead to depth overestimation. Even though the ice in Northeast Greenland is relatively clean, 

sediment is still prone to gather in some lakes in the region. Due to the insights gained from the ICESat-2 analysis (see Fig. 

5), it can be assumed that the effect of sediment in Southwest Greenland is even more pronounced. Furthermore, if there are 425 

any shadows (e.g. from clouds, surrounding topography or internal topography), this will influence the reflectance value, 

causing the depth to be overestimated. A third situation inducing errors in depth estimation is frozen lake surfaces. Figure 8(c) 

shows an image of a lake with a frozen, but not snow covered, surface layer. When the surface is frozen but still transparent, 

it increases the reflectance value in the satellite image. The difference in color between a frozen and unfrozen surface can be 

seen in Fig. 8 (d), where a small portion of the surface is unfrozen. From satellite images and even at a high helicopter flying 430 

height, it is not obvious that these lakes are frozen. The consequence of this is that there is little to no indication in satellite 

images that the surface is frozen and the lake will be estimated as shallower than in actuality. This effect also can be problematic 

in time series analysis, as the floating ice tends to shift around the lake. What could be perceived as a large increase in lake 

volume could in actuality be the floating ice shifting from covering up a deep part of the lake to a shallower part. Similarly, if 

there are thin clouds or fog present over a lake, this could make the lake color appear lighter, causing depth underestimation. 435 

This also highlights the importance of using bottom-of-atmosphere products (e.g. Sentinel-2 L2A) to minimize atmospheric 

effects.  

 

Figure 8: Aerial images of sediment-filled, drained, and frozen SGLs in Greenland. (a) A sediment-filled SGL in Northeast 

Greenland, photo taken in July 2022 by M. Braun. (b) The sediment left behind after an SGL drainage in Northeast Greenland, 440 
photo taken in July 2022 by A. Humbert. (c) An SGL in Scoresby Sound with a frozen surface with the exception of a small portion 

highlighted in (d), photo taken in August 2022 by K. Lutz. 

5 Conclusions and outlook 

Throughout the development and implementation of these four supraglacial lake depth estimation methods, it can be seen that 

each method has certain areas of suitable applicability. The reliability of DEM differencing is advantageous for understanding 445 

the full bathymetry of a lake, which cannot be dependably obtained through the other methods, especially for deeper lakes. As 

long as an accurate surface elevation can be estimated, this method is useful for a closer evaluation of individual lakes, but is 
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not suitable for long-term or widespread monitoring due to limited acquisitions of TanDEM-X and the irregularity of complete 

lake drainages.  

The other three methods presented here, however, would be more suitable for lake volume estimation on a larger scale. The 450 

radiative transfer model is standardly used due to its reliance purely on optical data and incorporation of the properties of 

surrounding features. This allows it to be more useful for widespread monitoring; however, the sensitivity of its parameters 

can easily cause an overestimation of depths. Due to the difficulty in properly estimating these parameters, the use of a more 

simplistic equation could be preferential. Even though the data directly obtained from ICESat-2 or in situ sonar devices are 

impractical for the continuous monitoring of lakes, the correlation of their depth data to optical missions with a high revisit 455 

rate, such as Sentinel-2, allow for a simple and direct estimate of lake depth in optical imagery. The sonar-based equation, 

while limited in use to depths below 8 m, seems to fit the DEM estimates best. Through the evaluation of the ICESat-2 depths 

on different Sentinel-2 bands, the influence of the lake location (Northeast vs. Southwest Greenland), is quite apparent. This 

distinction in the data is most presumably due to the higher percentage of sediment on the ice in many parts of Southwest 

Greenland, causing a shift to lower reflectance values. Through the band analysis, the green band appears to be most suitable 460 

for general applications due to its good depth-reflectance ratio and higher saturation limit. However, to improve the 

methodology overall, combining estimations from red, green, and blue bands into a single algorithm could potentially 

overcome the attenuation limitations of each band, allowing for more accurate estimations in shallow water with the red band 

and deeper water with the blue. The limitations of a method based purely on multispectral images, however, will still be 

present.  465 

In order to improve both the ICESat-2 and sonar equations, the acquisition of more depth data would be required. Not only 

would more data reduce the uncertainty attributed to the regression fit, but the acquisition of data with deeper depths would 

allow the equations to be properly extended to depths above their current limitations. Additionally, the acquisition of in situ 

data during a simultaneous ICESat-2 passing would allow for a direct comparison of the raw data on which both methods are 

respectively based. To acquire data from larger portions of a lake than is feasible with a remote controlled boat, the use of 470 

airborne lidar could be advantageous. Overall, this study shows the benefits and disadvantages of different supraglacial lake 

depth estimation techniques, while demonstrating that relatively reliable estimations can be obtained through more simplistic 

methods when there are clear atmospheric conditions, low lake bed sedimentation, and minimal floating ice.  

Appendix A: Data acquisition information 

Table A1: ICESat-2 and Sentinel-2 data used for the development of the ICESat-2-based lake depth algorithm in this study. The 475 
lake IDs are designated based on the region within which they are located, i.e. Northeast (NE), Central-west (CW), or Southwest 

(SW) Greenland. 

Lake ID Date ICESat-2 Track Sentinel-2 Tile ID 

NE1 
4 August 2022 ATL03_20220804220138_06721603_006_01_gt1r 

S2B_MSIL2A_20220804T151809_N0400_R068_T26XNN_2022

0804T190239 NE2 
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NE3 1 August 2019 ATL03_20190801155607_05280405_006_02_gt3l 
S2A_MSIL2A_20190801T153911_N0208_R011_T27XVH_2019

0801T185645 

NE4 29 June 2021 ATL03_20210629063841_00861205_006_01_gt2r 
S2A_MSIL2A_20210628T152911_N0300_R111_T27XVJ_2021

0628T191004 

NE5 
26 August 2021 

ATL03_20210826035052_09701205_006_01_gt3r S2B_MSIL2A_20210826T150759_N0301_R025_T26XNN_2021

0826T185448 NE6 ATL03_20210826035052_09701205_006_01_gt2r 

CW1 

14 August 2019 

ATL03_20190814035453_07190403_006_02_gt2l 
S2B_MSIL2A_20190813T152819_N0208_R111_T22WED_2019

0813T185854 

CW2 ATL03_20190814035453_07190403_006_02_gt3l 
S2B_MSIL2A_20190814T150019_N0208_R125_T22WEB_2019

0814T183619 

CW3 

6 July 2020 ATL03_20200706005932_01630805_006_01_gt2l 
S2B_MSIL2A_20200705T151809_N0209_R068_T22WEB_2020

0705T185648 
CW4 

CW5 

CW6 18 August 2019 ATL03_20190818034635_07800403_006_02_gt1l 
S2B_MSIL2A_20190817T150809_N0208_R025_T22WEB_2019

0817T202054 

CW7 2 August 2021 ATL03_20210802061504_06051205_006_01_gt3r 
S2A_MSIL2A_20210801T150911_N0301_R025_T22WEB_2021

0801T171130 

CW8 

31 July 2022 

ATL03_20220731125445_06051605_006_02_gt2r 
S2B_MSIL2A_20220801T150809_N0400_R025_T22WEA_2022

0801T185623 

CW9 

ATL03_20220731125445_06051605_006_02_gt3r 

S2B_MSIL2A_20220801T150809_N0400_R025_T22WEB_2022

0801T185623 

CW10 
S2B_MSIL2A_20220801T150809_N0400_R025_T22WEA_2022

0801T185623 

SW1 
2 August 2021 ATL03_20210802061504_06051205_006_01_gt2r 

S2A_MSIL2A_20210801T150911_N0301_R025_T22WEA_202

10801T171130 SW2 

SW3 18 August 2019 ATL03_20190818034635_07800403_006_02_gt3l 
S2B_MSIL2A_20190817T150809_N0208_R025_T22WEA_2019

0817T202054 

 

 

Table A2: The acquisition date of the in situ sonar measurements along with the Sentinel-2 image against which the depth data was 480 
correlated. 

Lake ID Sonar Acquisition Date Sentinel-2 Tile ID 

469 9 July 2022 S2B_MSIL2A_20220708T152819_N0400_R111_T27XVH_20220708T174327 

522 9 July 2022 S2B_MSIL2A_20220708T152819_N0400_R111_T27XVH_20220708T174327 

610a 4 July 2022 S2A_MSIL2A_20220703T152821_N0400_R111_T27XVH_20220703T202516 

610b 9 July 2022 S2B_MSIL2A_20220708T152819_N0400_R111_T27XVH_20220708T174327 
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Table A3: Data used in the formation of the DEM method comparison analysis. For each lake, the date on which it is first seen 

drained is listed, along with the date on which the TanDEM-X data was acquired. The Sentinel-2 tile IDs that were used as the basis 

for the sonar equation, ICESat-2 equation, and the RTM method are also listed. 485 

Lake ID Drainage Date DEM Date Sentinel-2 Tile ID 

469 1 August 2021 13 August 2021 S2B_MSIL2A_20210730T151809_N0500_R068_T27XVH_20230123T222526 

562 24 July 2021 13 August 2021 S2A_MSIL2A_20210721T153911_N0500_R011_T27XVH_20230526T204315 

741a 21 July 2021 23 July 2021 S2B_MSIL2A_20210720T151809_N0500_R068_T27XVH_20230126T233654 

741c 20 / 21 July 2021 23 July 2021 S2A_MSIL2A_20210719T145921_N0500_R125_T27XVH_20230126T165617 

741d 20 / 21 July 2021 23 July 2021 S2A_MSIL2A_20210719T145921_N0500_R125_T27XVH_20230126T165617 

Appendix B: Additional data analysis 

 

Figure B1: The depths [m] derived from the DEMs of all five lakes (469, 562, 741a, 741c, and 741d) against the estimated depths [m] 

from (a) the RTM method, (b) the ICESat-2 equation and (c) the sonar equation. A reference line (black) is given to represent where 

the DEM and estimated depths would be equal. A red dashed line shows the depth at which each method is saturated (stays stagnant) 490 
even though the DEM depth increases. 
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Figure B2: The average error in depth for the sonar, ICESat-2, and RTM methods in comparison with the reference depths of the 

DEM for all five lakes (469, 562, 741a, 741c, and 741d) over 10 cm depth increments. The average depth derived from each method 

is subtracted from the DEM depth, implying that all negative errors are an overestimation and all positive errors are an 495 

underestimation of the specific method when compared to the DEM. 

 

 

Figure B3: Number of lakes on the yearly peak melt dates, categorized by the average depth [m] of each lake calculated from the 

sonar method. 500 
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Figure B4: The sensitivity of (a) the two-way attenuation coefficient, 𝒈, (b) the width of ice around the lake considered in calculating 

the lake bed albedo, 𝑨𝐝 width, and (c) the reflectance of optically deep water, 𝐑∞. The estimated lake volume for Lake 562 is given 

for the different variable inputs. The central value for each parameter was used in the method comparison in Sect. 3.3. 505 
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