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Abstract. The role of time-varying external parameters in tropical cyclone dynamics is explored through a low–order concep-

tual box model. Specifically, we look at stable–to–stable state transitions which may be linked to tropical cyclone intensifi-

cation, dissipation, or eyewall replacement cycles. To this end, we identify two parameters of interest: the exponent of radial

decline and sea surface temperature. We examine how variations in these parameters affect the stable states of the model and

consider the behaviour of the system under different time–dependent forcing profiles for the parameters. By externally forcing5

the exponent of radial decline and sea surface temperature we show the existence of rate–dependent behaviour in the model.

These findings are brought together in a case study of Hurricane Irma (2017). The results highlight the role of the radial vor-

ticity gradient in behaviour such as rate–induced tipping and overshoot recovery. They also show that a simple model can be

used to explore relatively complex tropical cyclone dynamics.

1 Introduction10

Rapidly rotating storm systems, commonly called tropical cyclones (TCs), are one of the most iconic yet destructive atmo-

spheric phenomena. It is estimated that the damage from TCs has resulted in an average cost of USD 51.5 billion over the

last decade (Krichene et al., 2023). Improvements in our ability to accurately model and predict their behaviour will result in

the saving of lives and infrastructure. In the last 50 years, much work has been done to develop systems of equations which

describe the fluid mechanical and thermodynamic evolution of TC systems, e.g. (Anthes, 1982; Emanuel, 1988). More re-15

cently, such systems have been adapted for analysis within a dynamical systems framework which has helped to extended

our understanding of the qualitative nature of TCs, e.g. (Schönemann and Frisius, 2012; Slyman et al., 2023). Here, we use a

dynamical system directly derived from first principles of physics to explore the role of the radial vorticity gradient and sea

surface temperature in TC intensification and dissipation. We connect our findings to the dynamics of eyewall replacement

cycles through the identification of relevant parameters and transient changes to the radial extent of the eyewall.20

1.1 Vorticity, Intensification, and Eyewall Replacement Cycles

The circulation of a TC is initiated by combined vorticity effects in the atmosphere. This vorticity is composed of both the

ambient vorticity due to the Earth’s rotation, given by the Coriolis parameter, and the relative vorticity of the atmospheric flow.

Weak vertical wind shear is also necessary so that a developing TC does not break apart as its convection grows through the

1



layers of the atmosphere (Gray, 1998). Once initiated, TCs are maintained by convection within the eyewall, thus they require25

a constant heat source. This heat is mainly provided through heat exchange between the ocean surface and the boundary layer

flow. The observationally derived critical SST temperature for TC formation is 26.5oC; below this threshold TCs are not

observed to form (Anthes, 1982).

An important phenomena which can occur within TCs is the eyewall replacement cycle (ERC), where a secondary tangential

wind maximum forms outside the primary eyewall. As this secondary eyewall forms it is theorised that its convection consumes30

an increasing proportion of the radial inflow, effectively ‘choking’ the inner eyewall (Kepert, 2013). As the inner eyewall

dissipates the secondary eyewall contracts and intensifies. The sequence generally occurs over a 12 to 36 hour period and can

repeat multiple times throughout the lifespan of the TC (Sitkowski et al., 2011). An ERC can impact TC forecasting as they

cause the intensity of the TC to fluctuate dramatically. If the wind speed of the inner eyewall is used to measure the strength of

a TC, an ERC may be mistaken for the dissipation of the TC.35

ERCs were first observed occurring within Typhoon Sarah, which moved through the northern Pacific in 1956 (Fortner Jr,

1958). As observation techniques progressed, ERCs were found to be a common feature of TCs (Sitkowski et al., 2011). A

recent example is the ERCs observed within Hurricane Irma, which formed in the North Atlantic in 2017 (Fischer et al., 2020).

Two ERCs were observed with each taking place over less than 12 hours. Interestingly, the first ERC consisted of inner eyewall

weakening and dissipation as expected, but the second ERC resulted in a continual rapid intensification of the TC (Fischer40

et al., 2020). This behaviour contradicts the common model of ERCs and shows that there is still much work to be done in

understanding this phenomenon.

By converging air, and thus energy, to the TC centre, the boundary layer plays an important role in intensity changes

such as intensification or secondary eyewall formation. Frictional updraft plays a major role in driving convection within the

eyewall and begins within the boundary layer (Kepert, 2013). Thus, changes to boundary layer parameters linked to frictional45

updraft may lead to the strengthening or initiation of deep convection. Boundary layer parameters which have been proposed to

directly affect convection within the eyewall are the inflow rate, tangential and gradient wind maxima, and the radial vorticity

gradient (Kepert, 2013). Further, it has been theorised that the frictionally forced vertical velocity at an eyewall is aproximately

proportional to the radial vorticity gradient (Kepert, 2013). In light of the model used in this study, we focus here on the closely

related roles of the radial vorticity gradient and the inflow rate. If we consider an increase in the radial vorticity gradient, this50

implies an increase in the radial wind shear, i.e. a greater tangential wind gradient. An increase in the tangential wind gradient

can be explained by increased tangential wind speed within the eyewall, which implies the total energy of the TC has increased.

An energy increase necessitates that energy transportation via the boundary layer flow increases, which can be realised by an

increase in the radial inflow (Anthes, 1982). The relation can be framed in the opposite direction as it is not known that one

change necessarily precedes the other.55

Multiple studies have supported this theory regarding the connection between the radial vorticity gradient and TC intensi-

fication. In a study of TC development, Ge et al. (2015) found that the radial profile of the inner–core relative vorticity was

important in determining the strength and success of initial TC intensification. They compared two vortex models with different

inner–core structures and found that the vortex with a “higher inner–core vorticity and larger negative radial vorticity gradient”
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promoted the formation of small–scale convective cells which act to intensify the TC. Additionally, in an analysis of three TC60

boundary layer models, Kepert (2013) found that a “relatively weak local enhancement” of the radial vorticity gradient outside

of the eyewall can produce a frictional updraft of the strength necessary for initiation of a secondary eyewall. He also found

that once a secondary eyewall formed it possessed significantly stronger frictional updraft than the inner eyewall due to its

position within a lower vorticity environment.

1.2 Rate–Induced Dynamics65

There are multiple mechanisms which can cause a system to transition between stable states. The most widely known and

studied is bifurcation–induced transitions (or b–tipping). These occur when external forcing causes a system to cross a bifur-

cation (a point of change in local stability). Once the bifurcation point has been crossed, the stable state which the system had

previously been tracking disappears, thus it must transition to a new stable state (assuming one exists).

Another, more recently discovered, mechanism for transitions is rate–induced transitions (or r–tipping) (Ashwin et al., 2012).70

These transitions occur without the crossing of a bifurcation point and are instead a result of the rate at which a parameter is

externally forced. When the rate of change of the external forcing profile is greater than some critical value, the system becomes

unable to track its original stable state. Tipping occurs when the system moves too far from the stable state and crosses some

threshold. These rate–dependent behaviours have been shown to exist in conceptual models of geophysical systems such as

the Indian summer monsoon (Ritchie et al., 2019) and more recently TC formation (Slyman et al., 2023). As TCs experience75

changing environmental conditions throughout their lifetime, rate–dependent behaviours can be expected to play a role in TC

intensification as well.

To define the rate of external forcing we follow Ritchie et al. (2023) and define an external forcing parameter σ ≡ σ(λt),

where u= λt is dimensionless. The rate parameter λ has units per second/day/year/ect. depending on the application. It is

useful to note that the rate of change of the external forcing parameter and the rate parameter are related by80

dσ

dt
=

dσ

du

du

dt
= λ

dσ(u)

du
, (1)

which has units of σ per second/day/year/ect. and depends on λ and σ(u) itself (Ritchie et al., 2023). So, for a fixed forcing

profile σ(u), λ quantifies the rate of change of this profile. The critical rate is then the value of λ at which rate–induced tipping

occurs, assuming the magnitude of the parameter shift remains the same.

A phenomenon closely related to rate–induced tipping is the overshooting of a bifurcation point without tipping, sometimes85

referred to as return tipping (Ritchie et al., 2023). In this case, the system is externally forced across a bifurcation but may

avoid tipping and recover its original state if the reversal in the forcing is faster than some critical rate.

2 A Low–Order Model

This analysis uses a low–order box model derived from geophysical principles as presented by Schönemann and Frisius (2012)

(S&F). The model uses cylindrical coordinates and assumes an axisymmetric TC, thus only considers variation in the radial (r)90
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Figure 1. An idealised cross section of a TC with the box model overlaid (red). Here Hb is the boundary layer height, H the tropopause

height, s the specific entropy, and r the physical radius in the boundary layer. The subscripts i, b, and a denote the inner, boundary layer, and

ambient region, respectively. The symbol ∗ denotes a variable at saturation.

and vertical (z) directions. It assumes a length scale over which variation of the Coriolis parameter is negligible and thus takes

it to be constant (f–plane approximation). It also applies both the Boussinesq and hydrostatic approximations to the governing

fluid equations. The model considers three regions situated on top of a boundary layer; the eye, eyewall, and ambient region.

A sketch of this division is shown in Figure 1. The boundaries between these regions are defined by lines of constant potential

radius. The potential radius is the physical radius to which a particle must be moved, whilst conserving absolute angular95

momentum, in order bring its relative angular momentum to zero. The S&F model takes the potential radius to be defined as

R=

√
r2 +

2vr

f
=

√
2m

f
. (2)

Here v is the tangential wind velocity, f the Coriolis parameter, and m the angular momentum per unit mass. Hence, lines

of constant potential radius correspond to lines of constant angular momentum, or ‘angular momentum surfaces’ in three

dimensions.100

The S&F model consists of a system of three first order non–linear differential equations which model the change in entropy

within the important TC regions. In attempting to simulate the model we found inconsistencies in the time scales as written in
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the original paper. After conducting a thorough scale analysis we amended the model as follows:

ds∗i
dt

=A

(
Ψb2(s

∗
i )
sbi − s∗i
Mi

)
+

s∗a − s∗i
τE

, (3a)

dsbi
dt

=A

(
Ψb2(s

∗
i )
sba − sbi
Mbi(s∗i )

+
CH

2Hb
(|vb1(s∗i )|+ |vb2(s∗i )|)(soi(s∗i )− sbi)

)
, (3b)105

dsba
dt

=A

(
Ψb2(s

∗
i )
δsa − sba
Mba(s∗i )

+
CH

2Hb
|vb2(s∗i )|(soa(s∗i )− sba)

)
+

sa − sba
τC

, (3c)

where A is the added rescale factor and set as A= 3600. Here ∗ denotes a variable at saturation. We have the dependent entropy

variables corresponding to different regions of the model: s∗i is the eyewall saturated specific entropy, sbi is the eyewall bound-

ary layer specific entropy, and sba is the ambient region boundary layer specific entropy. The remaining entropy variables are

as follows: s∗a is the ambient region saturated specific entropy, soi is the sea surface specific entropy under the eyewall, and soa110

is the sea surface specific entropy under the ambient region. These are either constants or functions of the dependent variables.

It is important to note that these entropy variables are measuring the perturbation from the mean atmospheric entropy and are

not a total entropy measure. From here on, ‘entropy’ refers to specific entropy. The mass stream function, Ψ2, is responsible

for mass exchange between regions. The region masses, M , with corresponding subscripts, denote the mass enclosed by each

region. We then have constants Hb – the height of the boundary layer, τE – the timescale of diabatic cooling, τC – the timescale115

of convective exchange, δ – the entrainment parameter (a proxy for the effects of wind shear), and CH – the transfer coefficient

for enthalpy. The tangential velocities v are taken at the inner (b1) and outer (b2) edges of the eyewall boundary layer. An

outline of the auxiliary equations is provided in Appendix A1.

As a brief overview, for the change in eyewall entropy (3a) the first term on the RHS gives the vertical transport of entropy

from the eyewall boundary layer into the eyewall. The second term gives the change due to diabatic cooling (heat exchange)120

between the eyewall and ambient region. For the change in eyewall boundary layer entropy (3b) the first term give the advective

transport of entropy within the boundary layer, i.e. the horizontal transport from the ambient region boundary layer into the

eyewall boundary layer. The second term gives the surface transfer of latent heat from the sea surface into the eyewall boundary

layer. For the change in ambient region boundary layer entropy (3c) the first term gives the vertical transport of entropy from

the ambient region into the ambient region boundary layer. The second term gives the surface transfer of latent heat from125

the sea surface into the ambient region boundary layer. The third term gives the entropy exchange due to shallow convection

between the ambient and ambient boundary layer regions.

In this study we scale (3) to evolve on a timescale similar to that observed for the phenomena we are interested in. In the

case of intensification due to ERCs, we are interested in timescales of 10-20 hrs. Via experimentation we scale (3) by a factor

of 40. The constant parameter values used in this study are those given by S&F (2012) and are provided in Appendix A2.130

In a physical context we are interested in the maximum wind speed a TC produces, thus here we present only the resulting

tangential wind speed taken at the outer eyewall boundary, denoted vb2. This wind speed is given as

vb2 =
f

2

(
R2

2 − r2b2
rb2

)
, (4)
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where R2 and rb2 are taken at the outer eyewall boundary. As only this maximum speed at the outer eyewall boundary is being

considered, an ERC for this model can be deduced from an increase in rb2 (as well as vb2) rather than the existence of multiple135

tangential wind maxima.

To quantify changes to the radial vorticity gradient we first consider the absolute vorticity in the boundary layer, ζb, which is

composed of the ambient vorticity due to the rotation of the earth (f ) and the relative vorticity of the fluid flow itself, given as

ζb = f +
vb
rb

+
∂vb
∂rb

. (5)

To determine the absolute vorticity at the outer eyewall boundary (ζb2) a tangential wind profile (in the radial direction) for that140

region is needed. The model assumes a profile of

vb =
vb2r

β
b2

rβb
for rb > rb2, (6)

where β is called the exponent of radial decline and is given a physically relevant value between 0.5 and 1. Combining equations

(5) and (6) and evaluating for rb = rb2 gives

ζb2(rb2) = f +(1−β)
vb2
rb2

. (7)145

Thus, the radial vorticity gradient at the outer eyewall boundary is defined as

∂ζb2
∂rb2

= (β− 1)
vb2
r2b2

. (8)

Note that rb2 is a variable rather than a single value as it depends on entropy (see Appendix A1).

While the physically plausible range for β is 0.5< β < 1, it was found that for β ≈ 0.5 the radial inflow was too weak

to produce realistic maximum tangential winds and for β = 1 the radial inflow was unrealistically high (Schönemann and150

Frisius, 2012). The parameter β illustrates the connection between the radial inflow and radial vorticity gradient as discussed

in Sect.1.1. The focus of this study is to show the effect of variation in β on TC dynamics. The variation of SST will also be

considered due to the natural assumption that the underlying heat source will change as the TC propagates across the ocean.

3 Results

3.1 Stable States of the Model155

Here we examine the physically plausible equlibria (stationary states) of the model. An equilibrium of the model represents

a state where the rate of change of the entropy of each box is zero. Thus, equilibria can be identified as states of constant

tangential wind. For our chosen parameter values, the model is characterised by four physically plausible equilibria: a ‘rest

state’, ‘low wind’, ‘mid wind’, and ‘high wind’. The rest state is unstable (due to underlying assumptions in S&F (2012))

and corresponds to the system with no circulation. The low wind state is stable and corresponds to a low intensity circulating160

system. Such a system would be considered too weak to constitute a TC and is instead best interpreted as a tropical depression.
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Figure 2. Bifurcation diagrams of model equilibria in a) β and b) SST. Blue denotes stable equilibria, green unstable (one positive eigen-

value), red unstable (two positive eigenvalues), saddle-node bifurcations are marked as circles, and Hopf bifurcations are marked as diamonds.

In a), for the dotted line SST = 26.725oC and for the solid line SST = 26.95oC. In b), for the dotted line β = 0.5, for the dashed line β = 0.8,

and for the solid line β = 0.95.

The mid wind state is unstable and corresponds to a system moving from the tropical depression to TC state. The high wind

state is stable and corresponds to a strong TC system.

These stable states change as the model parameters vary. We consider variation in β and SST, and the changing equilibria can

be tracked to produce a bifurcation diagram as shown in Figure 2. The equilibria mostly lose local stability through saddle-node165

bifurcation points. It should be noted that there is also a small region for low SST where the low wind state becomes unstable

via a Hopf bifurcation – this corresponds to a region where no stable circulatory system is possible.

The region of β–SST parameter space of interest for intensification or ERCs is the bistable region where both the low and

high wind states exist. In this region and at its boundary, there is the possibility of transitioning between these states. These
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Figure 3. Schematic diagram for threshold instability, or in this case, basin instability. In a) the stability landscape is shown for chosen

initial values of the parameters. The two wells represent the two stable states of the model: low wind and high wind. The teal ball represents

the system initializing from the high wind state. The orange line represents the value of tangential wind at which there exists an unstable

threshold. In b) the stability landscape has shifted to a new location and shape due to a change in the parameter values. Note how the unstable

threshold moves past the original location of the ball, thus causing it to roll into the well associated with the low wind state. This schematic

is adapted with permission from Ritchie et al. (2023, Figure 1).

transitions could represent a few different phenomena. A transition from the low to high wind state can be interpreted as the170

intensification of a tropical depression into a TC and likewise, a transition from the high to low wind state as the dissipation

of a TC into a tropical depression. A more nuanced phenomenon like an ERC will consist of a cycle of multiple, and possibly

incomplete, transitions between these stable states.

3.2 Rate–Induced Behaviour in the Model

The effect of external forcing can be thought of as a shifting of the stability landscape while maintaining its qualitative features.175

If a tipping threshold, such as an unstable equilibrium, moves past the original position of a stable equilibrium of the unforced

system, this stable equilibrium is said to be threshold unstable to varying of the forcing rate (Wieczorek et al., 2023). When

this threshold separates two stable equilibrium, the system is said to be basin unstable. Figure 3 shows a qualitative depiction

of basin instability for the high wind state in our model. In general, it has been shown that basin instability is a sufficient

condition for rate–induced tipping to occur, i.e. there exists some external forcing that will produce rate–induced tipping if the180

system is basin unstable (Wieczorek et al., 2023). In many examples it has been found that basin instability is both necessary

and sufficient for rate–induced tipping to occur (Ritchie et al., 2023).

Here, we test for basin instability of the high wind state in the β–SST phase space. We first choose a β–SST point and find

the high wind equilibrium corresponding to this parameter choice. The system is then integrated forward in time over a range

of fixed β and SST values while using the original equilibrium value as the initial condition. If for a given β–SST combination185

the system remains in the a high wind state, this parameter pair is within the basin of attraction for that initial condition.

Alternatively, if the system converges to a different equilibrium, here the low wind state, then the parameter pair is not within

the basin of attraction for that initial condition. Two examples of basin instability for the model are shown in Figure 4. Here
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Figure 4. Examples of basin instability when considering instantaneous changes in β and SST. The initial conditions are denoted by the

blue (β = 0.8, SST = 26.97 oC) and red (β = 0.875, SST = 26.95 oC) crosses with their corresponding basin instability boundary in

the same colour. The saddle-node continuation in β–SST, where the high wind equilibrium begins, is given by the black line. The initial

conditions converge to the high wind equilibrium. Parameter conditions above the basin instability boundary lines re–converged to a high

wind equilibrium after the instantaneous change and conditions below the line converged to a lower wind equilibrium. The green cross (β =

0.95, SST = 26.5) shows the conditions reached via forcing (profile trajectory shown in grey) in Figure 5.

we choose an initial condition for the high wind state (the blue and red crosses) and test for tipping to the low wind state. The

red and blue curves are the basin instability boundaries corresponding to the respective initial condition. We see that the basin190

boundaries follow the saddle–node boundary for low and intermediate values of β, but for larger β the two diverge. This area

of divergence is of interest as is shows where rate–induced tipping may occur (as opposed to traditional bifurcation–induced

tipping across the saddle–node).

Using the information provided by the basin instability diagram shown in Figure 4, we can produce examples of rate–induced

tipping in the model. To define the evolution of a given parameter σ with time we use a hyperbolic secant profile defined as195

f(t;λ,P ) =± sech(λ(t−P ))+ 1, (9)

where + gives an increasing and − a decreasing profile, λ determines the rate of change, and P the time of peak forcing. This

function was selected for its smooth transition between a defined maximum and minimum. Thus, for a given forcing parameter

and maximum and minimum values (σmin,σmax) between which the forcing will occur, we define the time evolution of σ as

σ(t;λ,P ) = σmin +(σmax −σmin)f(t;λ,P ). (10)200

9



Figure 5. Example of the rate threshold between tracking and tipping when no bifurcation is crossed, with tangential wind speed and

corresponding β and SST forcing profiles. For both the solid line and dotted line profiles the maximum and minimum values of β and

SST are the same (decreasing ramp profiles with 0.875≤ β ≤ 0.95 and 26.5≤ SST ≤ 26.95oC). The solid forcing profiles have a rate of

λ= 0.1 and we see a tracking of the high wind equilibrium, whereas the dotted forcing profiles have a rate of λ= 0.3 and we see tipping to

the low wind equilibrium.

In cases where we require a strictly increasing or decreasing profile with no return to the original value, we define the evolution

as

σ(t;λ,P ) =

σmin +(σmax −σmin)f(t;λ,P ), if t < P

σmin or σmax, if t > P.
(11)

We consider a parameter path outlined by the dotted line in Figure 4 with initial and final values given by the red and green

crosses respectively. Figure 5 shows a time integration of the system and the forcing profiles applied. The forcing profiles in205

the two examples differ only in their rates, which where chosen to be on either side of the critical rate. It is also important to

note that the forcing profiles never reach the critical values which would push the system across a bifurcation point (as shown

in Figure 4). For the solid line profile, with rate λ= 0.1, we see the forcing is slow enough for the system to follow the high

wind state, leading to an intensification of the TC. For the dotted line profile, with rate λ= 0.3, the forcing exceeds the critical

rate and the system crosses the unstable mid wind state threshold, causing it to tip to the low wind state, leading to a dissipation210

of the TC.

In Figure 6 we provide some examples of overshoot recovery in the model. In Figure 6a, β is forced with a return profile

which crosses the saddle–node bifurcation. We see a very small change in the forcing rate can determine whether the model

recovers to the high wind state or tips to the low wind state. Interestingly, the system appears to move to the unstable mid

wind state for a considerable period of time before either recovering or tipping. The similarity between this behaviour and that215

observed in ERCs is discussed in Section 5. In Figure 6b, similar behaviour can be seen for forcing of SST, where a small

change to the rate at which a temporary reduction in SST occurs can determine whether the system recovers or tips. Here
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Figure 6. Example of the rate threshold between tipping and recovery when a bifurcation is crossed, with tangential wind speed and

corresponding β or SST forcing profiles. In a), β is forced between the same maximum and minimum (decreasing return profile with

0.85≤ β ≤ 0.9) with fixed SST = 26.725oC for a range of forcing rates. In b), SST is forced between the same maximum and minimum

(decreasing return profile with 26.8≤ SST ≤ 27.2oC) with fixed β = 0.8 for a range of forcing rates.

however, instead of spending an intermediate period at the unstable mid wind state, as with the β forcing, the system moves

completely to the low wind state before beginning to recover, the success of which is dependent on the forcing rate.

4 Case Study: Hurricane Irma220

Here we test the ability of the low–order model to produce realistic tangential wind profiles such as the one observed for

Hurricane Irma (2017). Irma underwent two separate periods of rapid intensification (RI), the first shortly after its formation

and a second as it moved into the warmer waters around the edge of the Caribbean Sea (Fischer et al., 2020). In the context of

this model, recreating the first RI period is of interest in relation to factors of TC intensification. The second is of interest in

relation to the dynamics of ERCs.225
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The first period of RI lasted for approximately two days from its time of formation. This RI period saw the maximum

tangential wind increase by 33ms−1 from approximately 18ms−1 to 51ms−1 (Fischer et al., 2020). During this time Irma

moved into an area of lower SST, meaning that a decreasing SST profile accompanies this RI period. In Figure 7a are the

results of the recreation of this intensification period. The SST profile was estimated using the best track estimate latitude

and longitude coordinates for Irma along with daily gridded SST data from NOAA (Cangialosi et al., 2021). To initiate an230

intensification over this decreasing SST profile, we noted that the range over which SST is varying (27-28.5 oC) coincides

with the range within which a saddle–node bifurcation occurs in the low wind equilibrium (see Figure 2 b)). We thus applied a

decreasing return (hyperbolic secant) β forcing profile to tip the system over the low–wind–state bifurcation. Once the system

crosses the bifurcation it transitions to the high wind equilibrium producing an intensification of the TC. The β profile used in

Figure 7a has λ= 0.15. We found that an increase in λ (e.g. λ= 0.2) enabled the system to regain the low wind equilibrium235

without tipping, i.e. no intensification occurred. As the system still crosses the bifurcation point, this is an example of the

overshoot recovery discussed in Sect.3.2. Thus, in this context, we can describe the first RI as a ‘missed’ return tipping.

The second RI period began five days after its formation as it began to move over a region of increased SST. The RI period

lasted two days and increased the maximum tangential wind speed up to 80ms−1. The second RI period was characterised

by two consecutive ERCs. The ERCs observed in Irma occurred over a much shorter time span than is typical of ERCs, each240

taking around 10hr verses the average of 36hr (Sitkowski et al., 2011; Fischer et al., 2020). Although the wind profiles of

the secondary eyewalls and the ERC event were not directly measured, Fischer et al. (2020) estimated a radial wind profile of

the event using NOAA fly-through data. To recreate a similar scenario we forced the model with the estimated SST profile for

the second RI period and a double–decreasing return β profile. This resulted in an overall increase in tangential wind with two

isolated reductions corresponding to the change in β. When interpreting changes in the eyewall radius (rb2) to be tracking the245

radius of maximum wind (RMW), the model produces a change in the RMW during the ERC events on a similar scale to that

estimated by Fischer et al. (2020) (magnitude ×104 m).

5 Discussion

The observed tipping in this low-order model is between two stable states, both of which represent a storm with primary

circulation. This is a distinctive feature of the model, noting that other low-order dynamical models for TCs have tipping250

between an “on" and an “off" state (see e.g. Slyman et al., 2023). A natural question is then whether or not multiple stable

states of varying cyclone intensity exist in models of higher complexity. The nonhydrostatic Cloud Model 1 (CM1; Bryan and

Fritsch, 2002) has been widely used to model the internal dynamics throughout the lifespan of a tropical cyclone. In a study

on formation timescale under increasing SST, Ramsay et al. (2020) use CM1 to simulate an ensemble of TCs for each SST

where initial conditions are randomized through small-amplitude potential temperature perturbations. The temporal behaviour255

of maximum azimuthal-mean tangential wind at 25m is shown (Ramsay et al., 2020, Figure 2). It can be seen that individuals

storms after maturation experience periods of a reduction in the maximum wind before regaining previous strength. This

is indicative of the existence of multiple stable states, i.e. a low and high wind state. Such transitioning behaviour is more
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Figure 7. Comparison of tangential wind evolution between the model (red solid) and that observed for Hurricane Irma (light red dashed).

The model is forced with an SST profile estimated using Irma best track data and daily gridded SST from NOAA (green solid) and a

conceptual β profile (purple dotted). The outer eyewall boundary layer radius (rb2) is also shown (blue dotted). In a), the first RI period is

modelled with a decreasing return β profile (0.74≤ β ≤ 0.95, λ= 0.15) so as to initiate tipping to the high wind state. In b), the second RI

period is modelled with a double decreasing β profile (0.55≤ β ≤ 0.93, λ= 1) to recreated a double ERC event.

pronounced as SST increases. These results suggest the existence of the stable low wind state in a more complex TC model,

and thus our findings could inform further studies of tipping behaviour for more realistic simulations.260

It is informative to highlight the justification for the β forcing profiles used in Sect. 3. We discussed the theories of Kepert

(2013) and Ge et al. (2015) regarding the role of the vorticity gradient in ERCs and intensification, outlined the inclusion of

vorticity in the model, and described the connection between β and the vorticity gradient via the tangential wind profile and

radial inflow. Thus, interpreting a “dip” in β as representing a change in the radial vorticity gradient follows directly from

equation (8). We see that a decrease in β increases the radial vorticity gradient at the outer eyewall boundary. This change is in265

line with both Kepert (2013) and Ge et al. (2015), where an increase in the radial vorticity gradient is responsible for an ERC

or intensification. As box models, such as this one, are not defined over a spatial domain, it is necessary to interpret changes

in the radial vorticity gradient throughout the boundary layer as changes at the outer eyewall boundary. We acknowledge that
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this does not allow for the definition of multiple radial vorticity gradient maxima as used by Kepert (2013) or the definition of

differing inner-core vorticity profiles as used by Ge et al. (2015). Instead, this study has shown that at the level of a low–order270

conceptual model, a temporary increase in the radial vorticity gradient can initiate intensification (Fig. 7a) and dissipation

(Figs. 5, 6), with some examples suggesting ERC–like behaviour (Fig. 7b).

The β and SST forcing profiles used in this study can be likened to various physical situations. Return profiles, such as in

Figure 6, model a temporary reduction and return of the parameter value. In the case of β, such a profile would be caused by

a temporary restriction to the radial inflow of the TC. One interesting scenario where such variation in the radial inflow has275

been observed is in the diurnal variation of TC boundary layer flow (Zhang et al., 2020). These daily changes in the boundary

layer produce return profiles in the radial inflow of similar shape and over similar time spans to those used in Figures 6. In the

case of SST, return profiles represent the movement of the TC over an isolated area of cooler, or warmer (for an increasing

return profile), SST. For example, the forcing profiles like the one used in Figure 6 could model a physical situation such as

the movement of a TC over a region of upwelling of cooler water from the deep ocean as has been observed within TC regions280

(Park and Kim, 2010). The interaction of TCs with SST temperature profiles such as these has been observed to produce

interesting behaviour, such as in the case of Tropical Cyclone Nari (2001) which moved back and forth across the Kuroshio

current multiple times, causing its intensity to fluctuate. The rapid change in SST experienced by Nari as it oscillated across

the warmer water of the Kuroshio and the cooler surrounding sea could have produced SST profiles similar to those used here.

In comparison to return profiles, ramp profiles, such as in Figure 5, model gradual and continuing increases or decreases in the285

parameter values. These ramp profiles are useful for recreating the conditions often present during TC intensification as seen

in Figure 7 where the estimated SST for Hurricane Irma produced a similarly shaped profile.

The discovery of rate–induced tipping in the low–order TC model suggests that external forcing rates play a role in TC

dynamics. Very little research has been conducted into rate–induced phenomena in TCs. In a recent analysis of a low-order

model representing TC formation, Slyman et al. (2023) identified rate–induced tipping by forcing two different parameters; the290

potential velocity and wind shear. These findings point to the possibility of rate–induced tipping pervading multiple aspects of

TC dynamics.

We also found that the rate of forcing determines the systems ability to overshoot a bifurcation point but recover its original

equilibrium. No previous research has been done into the temporary exceeding of critical parameter levels in TC models. In

the case of this TC model, these brief parameter anomalies can have nice interpretations in terms of the movement of a TC295

through changing environmental conditions.

Observations of rate–dependent phenomena as described here have direct implications for TC prediction. Quantities such

as a TC’s tracking speed and the SST distribution in its path can be measured, thus allowing for approximations of rates of

external forcing. Due to the conceptual nature of the model, we have focused on the qualitative behaviour that can result from

different forcing rates. In order to make quantitative predictions about critical rates of forcing, further research of rate–induced300

tipping in higher complexity spatially–extended TC models coupled with more realistic forcing profiles will be needed.
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The results of this study broaden our understanding of the role of the vorticity gradient as a driver of TC behaviour. They

also expand upon the general dynamical properties of TCs. From these results it is clear there are potential advances to be made

in TC modelling and prediction by further research in this area .

Code availability. All numerical computations for this study were performed in MATLAB R2022a. To compute solution trajectories of (3)305

we used the 4th–order Runge–Kutta finite–difference method. In order to perform a bifurcation analysis of the model we used continuation

methods from the Continuation Core and Toolboxes (COCO) (Dankowicz and Schilder, 2013). The MATLAB code required to reproduce

these results is available at https://doi.org/10.5281/zenodo.10846204.

Appendix A: Supplementary Model Outline

A1 Auxiliary Equations310

A detailed derivation of these governing equations is provided by S&F (2012). Only an overview of the important components

is presented here.

A1.1 Mass-stream Function

The Boussinesq approximation ensures non-divergence of the radial and vertical flow within the boundary layer and hence a

mass-stream function for the boundary layer may be introduced as315

Ψb = 2πrbρbCD
|vb|vb
ζb

, (A1)

where the subscript b denotes evaluation at z =Hb, CD is the transfer coefficient for momentum, and ζ is the absolute vorticity.

For the purposes of this model the mass-stream function is only considered at the outer edge of the eyewall boundary layer, i.e.

Ψb2.

A1.2 Physical Radius and Tangential Velocity320

The model applies a version of the thermal wind balance equation derived by Emanuel (1986). Assuming gradient wind

balance, saturated pseudoadiabatic ascent, and conservation of angular momentum, Emanuel takes the radial thermal wind

balance and assumes the specific volume (1/ρ) to be expressible as a function of pressure and saturated entropy. Coupled with

the assumption that the saturated entropy does not vary along surfaces of equal angular momentum, this allows the thermal

wind balance to be expressed as a relationship between (specific) saturated entropy, s∗, and the angular momentum per unit325

mass, m:

Tb −T

m

ds∗

dm
= 2

Tb −T

f2R3

ds∗

dR
=

1

r2
− 1

r2b
, (A2)
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where T denotes temperature, r ≡ r(z;R) is the physical radius of a given potential radius, and rb ≡ rb(R) is the physical

radius in the boundary layer corresponding to the potential radius. This balance relates the angular momentum surfaces to the

potential radius and the change in saturated entropy with potential radius. Thus, equations for the evolution of the physical330

radii of the inner and outer edges of the eyewall boundary layer are found by taking R=R1 and R=R2 and approximating

the change in saturated entropy (via finite difference). For closure the mass, M , enclosed by the angular momentum surface at

R=R2 is assumed to be conserved, and as the eye is modeled by solid body rotation its mass, Me, enclosed by the angular

momentum surface at R=R1 will also be conserved. Using the Boussineq approximation of near constant density these masses

can be found (derived by Frisius (2005)) as335

M = πρ

H+Hb∫
Hb

r22 dz =
πρ

G2
ln

(
1+G2r

2
b2H

)
(A3a)

and Me = πρ

H+Hb∫
Hb

r21 dz =
πρ

G1
ln

(
1+G1r

2
b1H

)
, (A3b)

where r1 and r2 are the physical radii of the angular momentum surfaces at R=R1 and R=R2 respectively, and rb1 and rb2

are the physical radii of the inner (R=R1) and outer (R=R2) edges of the eyewall boundary layer. The functions G1 and G2

are given as340

G2(s
∗
i ) =

2Γ

f2R3
2

s∗a − s∗i
∆R

, G1(s
∗
i ) =

2Γ

f2R3
1

s∗a − s∗i
∆R

(
R1

R2

)κ−1

, (A4)

where Γ is the temperature lapse rate, f is the Coriolis parameter, and κ is called the eyewall entropy profile parameter and

controls the radial decrease in saturated entropy away from the radius of maximum wind at R2. The temperature lapse rate

controls the vertical temperature profile which in this model is taken to be linear and defined as

Γ =
Ts −Tt

H
, (A5)345

where Tt is the tropopause temperature, Ts is the sea surface temperature, and H is the tropopause height. The mass equations

(A3) can then be rearranged to find rb1 and rb2 as

rb2(s
∗
i ) =

√
1

G2H

[
exp

(
G2M

πρ

)
− 1

]
, rb1(s

∗
i ) =

√
1

G1H

[
exp

(
G1Me

πρ

)
− 1

]
. (A6)

and using (2) the corresponding tangential wind speeds at these points can be found as

vb2(s
∗
i ) =

f

2

(
R2

2 − r2b2
rb2

)
, vb1(s

∗
i ) =

f

2

(
R2

1 − r2b1
rb1

)
. (A7)350

A1.3 Mass

As the eye and eyewall mass (Me, Mi, M =Me+Mi) are assumed to be conserved they can be calculated for the resting state

when the eyewall boundaries are assumed to be vertically oriented, i.e. r1 =R1 and r2 =R2. They are then

Me = πρHR2
1, M = πρHR2

2, Mi =M −Me = πρH
(
R2

2 −R2
1

)
. (A8)
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The masses of the boundary layer beneath the eyewall (Mbi) and the ambient region (Mba) are not assumed to be conserved355

and are given by

Mbi(s
∗
i ) = πρbHb

(
r2b2 − r2b1

)
, Mba(s

∗
i ) = πρbHb

(
r2ba − r2b2

)
, (A9)

where rba is the outer radius of the ambient region.

A1.4 Entropy

The entropy of the sea surface underneath the eyewall region is taken to be360

soi(s
∗
i ) = Lv

(
q∗v − qv,ref

Ts

)
+

v2b2
2Tsβ

[
1−

(
rb2
ra

)2β
]
− fvb2rb2

Ts (1−β)

[
1−

(
ra
rb2

)1−β
]
, (A10)

where Lv is the latent heat of vaporisation, q∗v is the specific humidity at saturation, and qv,ref is the reference specific humidity.

The entropy of the sea surface far from the TC (R→∞) is taken as

soa0 = Lv

(
q∗v − qv,ref

Ts

)
, (A11)

and the sea surface entropy under the ambient region is taken as the average of these two as365

soa(s
∗
i ) =

soi + soa0
2

. (A12)

The entropy of the ambient region itself is taken to be

sa = Lv

(
qv,a
Ta

− qv,ref
Tref

)
−Rd ln

(
pa
pref

)
+ cp ln

(
Ta

Tref

)
, (A13)

where qv,a is the specific humidity of the ambient region, Tref is a reference temperature, Rd is the specific gas constant of

dry air, pa is pressure of the ambient region, pref is a reference pressure, cp is the specific heat of dry air at constant pressure,370

and Ta is the temperature of the ambient region defined as

Ta = Ts

(
pa
pref

)RdΓ

g

. (A14)

For the saturated entropy of the ambient region, s∗a, the specific humidity is taken at saturation (q∗v,a instead of qv,a).

A2 Constant Parameter Values

The model parameters used by S&F are given in Table A1.375

A3 Specific Humidity

S&F do not provide values for the specific humidities q∗v , qv,a, q
∗
v,a and qv,ref . To calculate the specific humidity at satura-

tion from the air temperature we fit a two–term exponential model to experimental data (ToolBox, 2009) (exp2 function in

MATLAB) which resulted in

q∗(T ) = 1.445× 10−6 e0.221T +4.967 e5.718×10−2 T (A15)380
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Notation Value Description

rba 420 km Outer radius of ambient region

τE 48 h Timescale of diabatic cooling

τC 4 h Timescale of convective exchange

CH 0.003 Transfer coefficient for enthalpy

CD 0.003 Transfer coefficient for momentum

H 13.5 km Difference between tropopause and boundary layer heights

Hb 1.5 km Boundary layer height

f 5× 10−5 s−1 Coriolis parameter

κ 3 Eyewall entropy profile parameter

R1 90 km Inner potential radius of eyewall

R2 180 km Outer potential radius of eyewall

∆R 30 km Distance from eyewall to outer region

ρ 0.45 kgm−3 Mean density

ρb 1.1 kgm−3 Mean boundary layer density

Tt 203.15K Tropopause temperature

Ts 301.15K Sea surface temperature

pa 500 hPa Ambient region pressure level

pref 1000 hPa Reference surface pressure

hb,ref 80% Boundary layer relative humidity

ha 45% Ambient region relative humidity

δ 0.25 Entrainment parameter

β 0.875 Tangential wind profile parameter
Table A1. Model parameters given by S&F (Schönemann and Frisius, 2012)

where T is the temperature in degrees Celsius. Then q∗v is calculated at Ts and q∗v,a at Ta. The non–saturated humidities are

then calculated as qv,ref = hb,refq
∗
v and qv,a = haq

∗
v,a. When comparing the function output with observational data of specific

humidity gathered during TC season (Jordan, 1958), values for qv,ref were close to those observed but the values of qv,a were

smaller than observed thus we scaled q∗v,a by a factor of 1.7 to match with observations. We assume this discrepancy is a result

of (A15) considering only the temperature difference and not the pressure difference between the two regions. We also take the385

reference temperature Tref to be equal to the sea surface temperature Ts.
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