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Abstract. Computing hydrological fluxes at the Earth’s surface is crucial for landscape evolution models, topographic analysis,

and geographic information systems. However, existing formalisms, like single or multiple flow algorithms, often rely on ad-

hoc rules based on local topographic slope and drainage area, neglecting the physics of water flow. While more physics-oriented

solutions offer accuracy (e.g. shallow water equations), their computational costs limit their use in term of spatial and temporal

scales. In this conrtibution, we introduce GraphFlood, a novel and efficient iterative method for computing river depth and5

water discharge in 2D on a digital elevation model (DEM). Leveraging the Directed Acyclic Graph (DAG) structure of surface

water flow, GraphFlood iteratively solves the 2D shallow water equations. This algorithm aims to find the correct hydraulic

surface by balancing discharge input and output over the topography. At each iteration, we employ fast DAG algorithms to

calculate flow accumulation on the hydraulic surface, approximating discharge input. Discharge output is then computed using

the Manning flow resistance equation, similar to the River.lab model (Davy and Lague, 2009). Iteratively, the divergence of10

discharges increments flow depth until reaching a stationary state. This algorithm can also solve for flood wave propagation

by approximating the input discharge function of the immediate upstream neighbours. We validate water depths obtained

with the stationary solution against analytical solutions for rectangular channels and the River.lab and Caesar Lisflood models

for natural DEMs. GraphFlood demonstrates significant computational advantages over previous hydrodynamic models, with

approximately a 10-fold speed-up compared to the River.lab model (Davy and Lague, 2009). Additionally, its computational15

time scales slightly more than linearly with the number of cells, making it suitable for large DEMs exceeding 106 - 108 cells.

We demonstrate the versatility of GraphFlood in integrating realistic hydrology into various topographic and morphometric

analyses, including channel width measurement, inundation pattern delineation, floodplain delineation, and the classification

of hillslope, colluvial, and fluvial domains. Furthermore, we discuss its integration potential in landscape evolution models,

highlighting its simplicity of implementation and computational efficiency.20

1 Introduction

River dynamics encompass key processes of landscape evolution at different temporal and spatial scales. Rivers transfer sed-

iments downstream, they control the baselevel of hillslopes, and set the pace of denudation rates (e.g. Clubb et al., 2019).

Modelling landscape evolution and the development of fluvial landforms, in particular, thus requires a sound representation of
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how rivers erode, transport and deposit material. As landscape evolution models are used to simulate the dynamics of topogra-25

phy over 105-107 years and at continental scales (Salles et al., 2023), accounting for short-term processes (e.g. daily variations

of discharge, flood) at local scales remains a methodological and numerical challenge. Simulating flow in open environments

in two or three dimensions requires sophisticated numerical methods which are computationally demanding and which are

thus mostly inapt for the challenge of simulating landscape evolution over geological time scales (Davy et al., 2017). Instead, a

common approach to model water flow across landscapes consists in applying the single or multiple flow algorithms (e.g. Tar-30

boton, 1997; O’Callaghan and Mark, 1984). These techniques route water along topographic gradients towards one or multiple

neighboring pixels in a DEM and approximate discharge by drainage area weighted by precipitation rates (Adams et al., 2020).

The approximation of steady flow using drainage-area based discharge has been the cornerstone of integrating hydrodynamics

in long-term erosion laws (e.g. Whipple and Tucker, 1999). This approach has the compelling advantage that it reduces flow

patterns to a network of flow lines, and has been widely used to establish empirical scaling laws relating drainage area to35

channel steepness and uplift (Wobus et al., 2006), or to unravel landscape evolution from the planform shape of the river net-

works (Schumm et al., 2000; Willett et al., 2014). Moreover, these methods rely on efficient algorithms, which leverage graph

theory to compute drainage area (e.g. Braun and Willett, 2013; Anand et al., 2020), flow across complex terrain (e.g. Barnes

et al., 2014; Cordonnier et al., 2018; Barnes et al., 2021; Schwanghart and Scherler, 2017) or geomorphological metrics (e.g.

Gailleton et al., 2019; Mudd et al., 2018; Grieve et al., 2018; Schwanghart et al., 2021). In particular the Single Flow Direction40

(SFD) algorithm is thus the numerical workhorse for simulation software for landscape evolution (Hergarten, 2020; Braun and

Sambridge, 1997; Willgoose et al., 1994; Campforts et al., 2017; Braun and Willett, 2013, e.g.) and numerical frameworks for

quantitative geomorphology (e.g. Barnhart et al., 2020; Gailleton et al., 2023; Schwanghart and Scherler, 2014; Mudd et al.,

2019).

However, reducing rivers to lines in landscape evolution models may overtly simplify the dynamics and feedbacks of fluvial45

processes (Armitage, 2019). In fact, the response of rivers to climate variability, tectonic movements or baselevel changes is

more varied than the simple propagation of a wave of vertical changes through 1D network of lines. For example, changes

in boundary conditions cause rivers to adjust their width (e.g. Dunne and Jerolmack, 2020; Baynes et al., 2022) and their

planform flow pattern (e.g. Schuurman et al., 2013), both of which feedback on sediment fluxes (e.g. Davy and Lague, 2009).

In addition, the past decade has seen the rising availability of high resolution lidar-derived DEMs (<1 m resolution). This means,50

however, that for a variety of geomorphological applications (e.g. Steer et al., 2022; Stammberger et al., 2024) rivers cannot be

realistically represented by one pixel-wide paths (Figure 2). Several recent studies demonstrate the advantages of integrating

2D hydrodynamics to inform the study of landforms (Costabile et al., 2019; Costabile and Costanzo, 2021; Bernard et al.,

2022), even on long timescales. Here, we present a new and efficient method, based on graph theory and finite differences, to

fill this methodological gap and allow the efficient approximation of 2D hydrodynamics on high resolution topography and/or55

longer term landscape evolution model.
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Figure 1. Comparison between water flows approximated with GraphFlood (a and c), calculating flow depth and discharge vectors, and

with a classic drainage area based method (D8 Steepest descent route) (b and d). The panels detail a channel junction and highlight how

GraphFlood models flow patterns and how these differ from one-pixel wide flows derived from the D8 algorithm.

1.1 Existing solutions

A range of numerical models incorporating 2D to 3D hydrodynamics to study river systems and their morphological evolu-

tion exists, with widely different methods and levels of complexity, depending on the temporal and spatial scales of interest.

Finite-element models are commonly used for reach-scale models, such as DELFT3D (Roelvink and Banning, 1995), HEC60

RAS (Brunner, 2002), BASEMENT (Vanzo et al., 2021) or TELEMAC (Villaret et al., 2013). These models are designed for

simulating the evolution of fluvial landforms over scales of 1-100 km and over 1-100 years, and therefore fall outside the scope

of this study.

Bates et al. (2010) developed a two-dimensional hydrodynamic model Lisflood-FP, solving for the 2D Shallow Water Equa-

tions (SWE). Their cellular-automata approach has been successfully incorporated in the landscape evolution model CAESAR65

Coulthard et al. (2013) to simulate reach-to-catchment scale fluvial hydro-morphodynamics (e.g. Yu and Coulthard, 2015;

Liu and Coulthard, 2015; Coulthard and Van De Wiel, 2017). Lisflood-FP adopts a finite difference scheme on the bidirec-

tional water fluxes between pixel. While it has been applied to catchment scales over potentially thousands of years (Liu and

Coulthard, 2017, e.g.), its potential for longer-term and larger-scale studies remains hampered by the physics behind which

explicitly simulates wave propagation. Indeed, any upstream change of runoff input (e.g., precipitation) needs to be gradually70

propagated downstream one pixel per computational time step. While modelling non-steady flows is important for simulating

transient responses to individual storm events (e.g. Van De Wiel and Coulthard, 2010), it represents a limiting factor aiming for

simulating longer time scales. Bates et al. (2010) and subsequent improvements by de Almeida et al. (2012) have been utilized

in other landscape evolution framework (e.g. Barnhart et al., 2020) following the same principle.

An alternative to propagating wave is to focus on the stationary state of the river network (i.e., in equilibrium with the input75

field of runoff). The main challenge in estimating efficiently the stationary solution lies in spreading the flow to its equilibrium
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field. The latter depends on the final geometry of the hydraulic surface, which cannot be deduced from the geometry of the

terrain alone. To address this point, Davy et al. (2017) developed an efficient particle-based solution to solve the SWE. In this

approach, precipitons (i.e., elementary volumes of water) are dropped on the landscapes and propagate following a stochastic

path down the hydraulic surface. Precipitons increase the water height along their path, bypassing the need to to propagate80

flood waves gradually. The frequency at which precipitons pass a cell determines the amount of water received by this cell,

balanced by a decrease of flow depth based on discharge calculated with Manning’s equations. This method is efficient in terms

of computation time (Davy et al., 2017), and in particular in the fluvial domain having high frequency of precipiton passage.

However, it has some physical and numerical drawbacks: i) each precipiton is on a different timeline making the isolation of

snapshots through time challenging; ii) the fluvial domain receives many more precipitons than the hillslope domain, making85

their repeated passage numerically redundant while displaying slower convergence time on hillslopes; and iii) precipitons are

independent one from another and only integrate information down their 1D flow path. A similar approach has been developed

by Pelletier (2008), who outlined the prototype of a highly-iterative solution that repeatedly runs the MFD model on the terrain

and the water surface. This process incrementally increases the flow height until satisfying an equilibrium between flow depth

and input discharge. This approach is the starting point for our new algorithm.90

1.2 A new solution based on graph theory

GraphFlood uses a novel approach to efficiently calculate the stationary solution for the whole landscape. Topography can

numerically be described as a data structure where each location of a DEM is linked to its neighbours via unique directional

connections upstream or downstream. In graph theory, this data structure is called a Directed Acyclic Graph (DAG) and opens a

range of efficient algorithms applied to the propagation of information through a landscapes (see the review work of Heckmann95

et al., 2015). We leverage the DAG nature of the topography to propagate runoff through the whole landscape at every single

time step using drainage area calculated on the hydraulic surface. Using the DAG structure, calculating drainage-area is very

efficient and can be done in a single graph traversal following the downstream topological order (e.g. Anand et al., 2020; Braun

and Willett, 2013; Gailleton et al., 2023; Hergarten and Neugebauer, 2001). Weighted by precipitation rates, drainage area

determines the amount of water entering every cell of the system. At each iteration, we calculate the discharge leaving the cells100

following a SWE, neglecting inertia (Davy et al., 2017). The balance of the input and output discharges iteratively increments

flow depth until reaching an equilibrium of the water surface.

In the following, we first describe the theory behind our method, before explaining the algorithm and the associated finite

difference scheme. Different case studies are then tested to demonstrate the potential of the method for flood modelling,

morphometric analysis, and landscape evolution modelling. Last, we discuss the limitation and next developments for the105

model.
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2 Theoretical background

2.1 Shallow Water Equations

We use the 2D SWE to approximate the physics of water flow in open-environment. The equations are derived by integrating

the three-dimensional Navier-Stokes equations over the vertical dimension, assuming that the velocity field varies primarily in110

the horizontal direction, and are commonly used to model flooding beyond reach scale (Bates, 2022). The 2D SWEs consist

in a mass conservation equation and a momentum conservation equation. Using the notations of Davy et al. (2017), the mass

conservation equation can be written:

∂h

∂t
−∇ · (q) = 0 (1)

h is the water depth in [L], t the time in [T] and q the discharge per unit width in [L2

T ].115

Neglecting inertia, (Manning et al., 1890) demonstrated that the momentum equation can be simplified into Manning’s

equations where flow velocity u (in L
T ) is expressed as:

u =
hα

n

s

∥s∥ 1
2

(2)

where α is Manning’s exponent, usually assumed equal to 2
3 , n is Manning’s friction coefficient, xmax being the direction of

the steepest hydraulic gradient.120

In order to insert equation 2 into equation 1, discharge per unit width and velocity are related via flow depth:

q = u ·h (3)

Unlike similar methods (Bates et al., 2010, e.g.) or more sophisticated formulations (e.g. Brunner, 2002) incorporating

additional physical elements (e.g. inertia, turbulence), our method is designed to be optimized when these components can

be neglected (Davy et al., 2017). We use Q to refer to the volumetric flux in [L3

T ] and the indices Xin and Xout to refer125

respectively to quantities entering or leaving a given cell.

These equations can simulate the propagation of water through space and time dynamically, solving a transient flood wave.

∇ · q is the difference between qin made of qout from upstream neighbours and qout from the current cell to its downstream

neighbours. For a constant input of qin on a landscape (e.g. constant precipitation rates, fixed input discharge), the system has

an equilibrium state - or stationary solution - where the water depth and hydraulic slope lead to a qout balancing qin. The total130

Qin for the stationary state for a given location becomes the integration of all the source terms (e.g. precipitations, resurgence)

over the drainage area upstream of a given location.

In this contribution, we refer to the transient solution when we seek to solve the transient propagation of Q through space

and time and to the stationary solution when we are only interested in the equilibrated fields.
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3 A graph-based iterative method135

As stated in section 1.1, there are multiple ways to numerically solve for the SWE. Our developed scheme applies an explicit

finite difference scheme on a graph (Braun and Willett, 2013; Barnhart et al., 2020; Gailleton et al., 2023). It aims to provide a

reasonably efficient and scalable solution suitable for large-scale DEMs and LEMs. Our iterative scheme is optimised for the

stationary solution, but can be used for transient simulation. In the following, we detail the numerical graph structure (DAG)

required by our method, we describe the finite difference scheme, explain the transient and stationary solutions and validate140

them against analytical solutions.

3.1 Numerical structure

We use the following terms adopted from graph theory (see Heckmann et al., 2015, for a comprehensive review about the use

of graph theory applied to geomorphological applications): a discrete location is represented by a node, linked to its neighbor

nodes via links. The links are directed edges linking donors to their downstream receivers. In our referential donors have145

higher hydraulic surface (Z +h) than their receivers. The algorithm is compatible with any type of grid (e.g. hexagonal grid or

triangular network), as long as the DAG structure defines the topology between the pixels or facets. Each link is characterized

by a specific length ∂l representing the distance between the two neighbour nodes and a link width ∂w representing the local

width. Each node represents a cell area Ac. The scheme also requires common DAG algorithms: the topological ordering -

an operation providing a list of nodes sorted from upstream to downstream and sink filling a method filling local minimas150

disconnected from the rest of the graph (e.g. lake, local noise). The DAG can use both Single Flow Direction (SFD) topology

(Braun and Willett, 2013), where each node has a single receiver (e.g. steepest descent or D8), or Multiple Flow Direction

(MFD) DAGs (e.g. Tarboton, 1997; Anand et al., 2020). This distinction is important as most common operations on SFD

DAGs are simpler and more efficient than the MFD DAGs (e.g. Braun and Willett, 2013; Anand et al., 2020). It is worth noting

the latter catches more details about flow topology and tend to increase the accuracy of the represented processes (Armitage,155

2019, e.g.).

In this contribution, we developed the method for regular grids. In the stationary case, we use the algorithms of Barnes

et al. (2014) and Cordonnier et al. (2018) to ensure flow continuity and proceed to an initial filling of the local minimas

(e.g. noise, lake). Topological sorting operations use a modified version of Braun and Willett (2013) for SFD and a variant of

Anand et al. (2020) for MFD. The modifications are minor changes of data structure that do not change the overall functioning160

while improving performance and readability (see Gailleton et al. (2023) for detailed implementations). One advantage of

GraphFlood is that it can be implemented using existing computational frameworks for DEM analysis and LEM simulation

(e.g. Schwanghart and Scherler, 2014; Gailleton and Mudd, 2021; Barnhart et al., 2020). A notable difference compared to

existing framework is that we calculate the DAG using the hydraulic surface rather than the topography.
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3.2 Iterative explicit finite difference scheme165

We use an explicit finite difference scheme to solve equation 1. In the transient case, the numerical solution predicts flow depth

change for every node i:

ht+1
i −ht

i

∆t
=

∑
d=donors(i)

Qind
− ∑

r=receivers(i)

Qoutr

Ac
(4)

where Qind
represent the discharge from a donor d to the node i and Qoutr the discharge from the node i and a receiver r. For

the latter, in the case of SFD (i.e. single receiver), equation 3 becomes:170

Qouti
=

∆W

n
hα

i

√
sir (5)

where i and r are respectively a given node and its single receiver and ∆W the flow width in the given direction. Because flow

can only go through one link, ∆W is easy to determine. For example for our case of a regular grid, it is ∆x in the y direction,

∆y in the x direction and the diagonal length for the other cases. As noted by Coulthard et al. (2013), MFD can become

increasingly more complicated: multiple receivers mean ∆W “overlaps” and using the direct width of flow for each links can175

break the conservation of mass. Let’s imagine a regular grid considering D8 neighbouring (cardinal and diagonal directions),

a node that would discharge to all these directions would integrate twice the total flow width. Porting this formulation to MFD

requires then a correction factor. Equation 3 in MFD DAG therefore becomes:

Qouti
=

C

n
hα

i

∑
j in receivers

sij∆Wij

√
Sijmax

(6)

By definition, for a given flow depth, both SFD and MFD discharge should be equal. Therefore, the correction factor is:180

C =
sijmax∆Wijmax∑

j in receivers

Sij∆Wij
(7)

The magnitude of Qout flux is the same for MFD and SFD schemes, but the correction factor states the discharge need to be

parted to multiple receivers proportional to Sij∆Wij .

Both transient and stationary solutions follow that scheme to calculate the output discharge, the difference is the calculation

Qin for all nodes. The overall process is outlined on algorithm 1.185

3.3 Transient solution

For the transient solution, Qindi
is Qoutdi

calculated between the donor and this node plus an eventual local external Qin

source term (e.g., resurgence, precipitation, grid edge input). The method becomes similar to (Bates et al., 2010) - only that
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Algorithm 1 Iterative stationary solver

Initialise DAG structure on hydraulic surface

while Convergence criterion1 not met do

Update DAG with hydraulic surface

for each node n in downstream topological order do

Calculate s(n) and weight partitioning

Determine Qin(n) from upstream nodes

Calculate Qout(n)

Transfer Q to receivers of n

end for

Increment hw for all nodes

end while

their formulation includes an approximation of inertia and have a D4 flow topology. Although straightforward and massively

parallelisable (e.g. Apel et al., 2022), this method does not benefit from the DAG data structure as signals are propagated from190

one node to their immediate neighbours. If external Qin is kept constant long enough, this solution converges toward a unique

equilibrium stationary state and is not efficient if the intermediate transient steps are not important.

Like any explicit finite difference methods, higher time steps leads to less iterations and more efficient spread, but also more

instability. Equation 6 expresses the velocity of a flood wave and therefore its stability can be approximated using the Courant

Friedrich Levy conditions (CFL):195

Cr = ∆t
umax

∆xmax
(8)

where Cr is the Courant number.

The transient solution converges toward an equilibrium hydraulic surface and Q field. We estimate convergence based on

both median h and ∆h
∆t for the whole landscape. We stopped the iterative process once the first plateaus and, when increment

in flow depth becomes lowerthan an acceptable ad hoc threshold (e.g. 10−9 m).200

3.4 Stationary solution

The stationary solution optimises convergence towards the equilibrated solution - i.e. the steady state flow depth and discharge

fields to an input runoff. Ultimately, the amount of water flowing through a landscape equates the runoff rate propagated into

the drainage network. Numerically speaking, it falls down to calculating a weighted drainage area, a procedure already in use in

GIS applications and LEMs when it comes to integrating the effect of spatial variations in precipitations (Leonard et al., 2023,205

e.g.). In the case of effective precipitations, each nodes receive a local P (x,y)∆x∆y, while in reach mode, given entry nodes

receive an arbitrary Qin. In both cases, received water is then recursively transferred to all the downstream nodes following

the topological order. It effectively reduces the need to propagate a signal gradually from upstream to downstream one node
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Figure 2. Comparison between hydrology approximated with GraphFlood (a and c), calculating flow depth and discharge vectors, and with

a classic drainage area based method (D8 Steepest descent route). The pannels zoomed on a channel junction highlight how GraphFlood

allows the extraction of detailed flow pattern in all direction and magnitude compared to the D8, linear networks of drainage area.

at a time. However, the final hydraulic surface being different than the topographic surface, the algorithm needs to iterate to

gradually build the hydraulic surface. From the first iteration, discharge is propagated through the full landscape and starts210

“piling up” h on the whole flow path. Every iteration recomputes the DAGs from the updated hydraulic surface, effectively

spreading Qin towards its final geometry balanced by Qout. Time step in the stationary mode is a numerical stability criterion

modulating the magnitude of flow depth increment. Because Qin is independently determined from Qout, the CFL stability

criterion does not strictly apply and we test the model with a constant or a variable time step (then determined in respect to

CFL conditions). Similarly to the transient solution, we estimate convergence based on both median h and ∆h between each215

iterations for the whole landscape and considered convergence reached once median ∆h < 1e− 9 m.

3.5 Validation

We validate the numerical scheme against an analytical solution (Figure 3) in the case of a rectangular channel (Bates et al.,

2010; Davy et al., 2017). We combine equation 1 and equation 3 to obtain an analytical stationary flow depth noted h∗W :
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Figure 3. Validation tests for the MFD and SFD stationary and transient simulation for a given Qin = 15 m3.s−1. The scenarios with

constant dt were set to 1e−3 seconds and the scenarios with CFL condition were calculated with Cr = 3e−3. Both were chosen empirically

as values balancing model performances, stability and cleanness of the final results. Panel a displays the full results for all the simulations

while b zooms on the stationary model results.

h∗ =
nQin

dx
√

s

1
α

(9)220

Equation 2 predicts that in the case of a rectangular channel with a constant slope S0, the slope of the water surface s should

be equal to S0. Assuming a boundary condition of fixed hydraulic slope equals to S0, we can determine h∗ suitable for an

analytical calibration.

We run GraphFlood with the transient and stationary solvers, and MFD and SFD schemes on a 200 m × 40 m rectangular

channel with a regular dx = 1 m (more details in the figure caption). Figure 3a shows the results for all runs. Each simula-225

tion converges towards h∗, validating the numerical methods. The number of iterations to reach h∗ - directly linked to the

computational efficiency of the algorithms - is significantly higher for the transient model as it needs to propagate the flood

wave through the whole channel one node per iteration. This behaviour is likely to worsen with the complexity of a natural

river network where any junction would need catchment-wise upstream information before being equilibrated and being able

to propagate signal downstream. Figure 3b zooms on the stationary models that reach stationary state in about 300-1000 iter-230

ations, roughly 400 times faster than the transient model. Adaptive time stepping based on the CFL condition slightly reduces

the number of iterations required to reach the analytical solution and the SFD model converges in less iterations than the MFD

model.
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3.6 Test sites

We test GraphFlood on two lidar-derived DEMs and aim to explore the effect of different geographical contexts on the algo-235

rithm, both in term of relief and climate. Our first test site is located near Green River (Utah, USA), a low-relief area in an arid

context with smooth hillslopes. The second test site is the Hanalei river catchment in Hawai (USA), with sharp relief made

of volcanic rocks, steep hillslopes and entrenched valleys. The original spatial resolution of both DEMs is 1 m, provided pre-

processed from point clouds and provided by opentopography.org (OpenTopography, 2020, 2012). We also downsample the

DEM of the Hanalei river catchment to a resolution of 5 m using a cubic resampling implemented by GDAL/OGR contributors240

(2023) to process a larger watershed and test GraphFlood on multiple resolutions.

4 Results

4.1 Numerical behavior for a single simulation

We first explore the behavior of the model during a single simulation, where we run the MFD stationary algorithm on both

test sites for a high-intensity rainfall rate of 100 mm h−1. We deliberately chose an extreme rainfall rate to test the algorithm245

under high flow conditions during which multiple diverging river channels are activated.

We run the model to convergence (figure 4 - see caption for the full simulation parameters). In term of channel network

topology, GraphFlood is able to reproduce diverging and converging flow patterns that follow converging and diverging channel

networks. This behaviour is striking on Green River, where the broad valleys consist of an interwoven network of channels,

but also well-captured on the clearer channel beds of Hanalei. GraphFlood in that way contrasts with drainage-area based flow250

patterns which by nature converge toward a single line of flow (e.g. fig. 2). In both cases the majority of the DEM pixels are

displaying insignificant flow depth (<1 cm) as one should expecting from natural landscapes where rivers only represent small

portions of the landscape.

GraphFlood reaches convergence in respectively 4000 and 3000 numerical iterations for Green river and Hanalei (fig. 5

a and b) based on the criterion outlined in sections 3.3 and 3.4. At first glance, this number is high, but we observe a huge255

discrepancy in the spatial and temporal patterns of convergence. The model converges asymptotically in the rivers where less

than 200 iteration for Green River and less than 60 for Hanalei are enough, as illustrated by the striking spatial variations on

figure 5 c and d. Low drainage area on the hillslopes induces lower increments of flow depth, which combined with high slopes

explain the slower convergence on the hillslopes.

We test the sensitivity of the model to its numerical parameter ∆t and its discretisation ∆x. ∆t controls the magnitude260

of h increment. Maximising it optimises the spreading of Q to its equilibrium field. However, our tests also highlight that

while significant over-estimation provokes numerical divergence, slight overestimation converges to an underestimated final

h. Spatial resolution of DEM, ∆x, can be dictated by the availability of source data, but it can be interesting to reduce the

resolution of a DEM in order to process larger area (if computing speed or memory are limiting factors). For this test, we use

the Green River DEM resampled from dx = 1 m to dx = 10 m. Flow patterns remain relatively similar from a resolution265
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Figure 4. Flow depth field calculated with GraphFlood for fluvial valleys in Green River, Wyoming, USA (a) and Hanalei, Hawaii, USA

(b). The maps are zoomed on major fluvial valleys for clarity. Both histograms show the distribution of water height for the MFD stationary

solutions calculated during a high storm event (precipitation rate = 100 mm/h). Note the logarithmic y scale on the histogram demonstrating

the huge majority of points have low flow depth (< 1cm).

to another. However loss of details are observed at lower resolution as expected. Lowering resolution leads to lower hydraulic

slopes on averaged and subsequently a decrease of Qout and an increase of total volume of water stored on the DEM.

We also test the sensitivity to the physical parameters. Manning’s coefficient is an empirical friction parameter reflecting

the local surface condition (e.g. vegetation, bed roughness, see Arcement and Schneider (1989) for different measurements).

Higher friction values predicts a higher and more distributed water surface required to reach the same Qout. Higher input270

discharge or precipitation rates lead to higher flow velocity and therefore lower the stability condition, thus impacting speed of

convergence.
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Figure 5. Rate of convergence for the simulation of figure 4 with respectively ∆t = 1× 10−2 s and ∆t = 2× 10−2 s. On panels a and b,

we show in black the median flow depth function of the number of numerical iterations and in red the changes in flow depth between each

iterations. Panels c and d demonstrate the spatial variability in the rate of convergence. Note that GraphFlood converges significantly faster

in fluvial domain. The number of iterations before convergence is defined as the first iteration reaching 95% of its equillibrium value .

4.2 Comparison with existing models

We compared GraphFlood with previoous models sharing similar applications (relatively large-scale and medium term hydrol-

ogy): Caesar Lisflood (Coulthard et al., 2013) and River.Lab (formerly Eros/Floodos - Davy et al. (2017)). We ran the three275

models on Green River with a constant rainfall rate of 30 mm h−1 and a classical friction coefficient of 0.033. We ran the three
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Figure 6. Benchmark comparing the difference in stationary field of flow depth between CAESAR-LISFLOOD, River.Lab (formerly

EROS/FLOODOS) and GraphFlood. The data expresses the distribution of flow depth differences for each pairs of the models. The dis-

tributions are estimated using a Kernel Density Estimation.

stationary simulations, as detailed in section 3.4. We compared the fields of flow depth by pairs of models (figure 6). Overall,

the differences between the models are minimal, centered between 3 10−4 and 5 10−4 m. The differences can be linked to

the differences in flow routing. Caesar Lisflood can only route flow to cardinal directions therefore the distribution of slopes

is not exactly the same than GraphFlood and River.lab which include diagonals. River.Lab relies on a stack of consecutive 1D280

stochastic paths on a 2D grid while GraphFlood offers a continuous solution in space and time, explaining the small differences

in the final solutions.

5 Applications and potential

5.1 Flood extent

The computational efficiency of GraphFloods enables the rapid simulation of stationary flow depth and extents under differ-285

ent runoff intensities. We ran the model for effective precipitation rates ranging from 5 mm h−1 - approximating low-flow

conditions - to 300 mm h−1 - extreme storm conditions. Figure 7 shows the flood extent for each different scenario on a per

node basis. In addition to fast engineering application or flood risk assessment, (Bates, 2022), Bernard et al. (2022) noted that

using flow metrics calculated from different precipitation rates could be used to determine the extent of flood plains and of the

different channels of a river system. While more computationally demanding than geometrical method (e.g. Clubb et al., 2022),290

GraphFlood offers a physics-based method self-emerging the floodplain geometry. Low flow conditions in purple in Figure 7

emphasise the geometry of channel beds while higher, storm-related flow conditions in blue indicate the maximum extent of

the floodplain. We only computed uniform precipitation rate scenarios, but GraphFlood can ingest spatially variable matrices

of effective precipitations if coupled with more sophisticated precipitation/infiltration data or model.
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Figure 7. Flood extent at stationary solutions for different precipitation rates. The color represent the minimum precipitation rate at which

the area is flooded by at least 10 cm of water. Note the self-emergence of bedforms and floodplains.

5.2 Flood wave295

While the model is primarily designed and optimised for the stationary state, we illustrate its capabilities to model the transient

propagation of a flood wave (e.g. sudden increase of input discharge in reach mode) in Figure 8. We isolated a small section of

a river from the Green River site and started from equilibrated low flow conditions (time=0s). We instantly increase the input

discharge by a factor 3 and the different panels display the spatial propagation of the resulting flood wave through time.

5.3 Hydromorphometry300

One of the main technical challenge in topographic analysis studies is to determine from topographic data the transitions

between the fluvial network, the colluvial channels, and the hillslopes. Such classification is useful for understanding landscape
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Figure 8. Flood extent at stationary solutions for different precipitation rates. The color represent the minimum precipitation rate at which

the area is flooded by at least 10 cm of water. Note the self-emergence of bedforms and floodplains.

dynamics (e.g. Grieve et al., 2016; Hurst et al., 2019), to constrain geomorphological laws (Perron, 2011, e.g.). Landscape

Evolution Models also routinely apply different process laws based on that transition (e.g. Perron, 2011), or to assess the

response of landscape to tectonics or climate changes (e.g. Willett, 1999). A common approach consists in isolating breaks305

in the Slope-Area distributions to determine a critical drainage area value (DiBiase et al., 2010; Whipple et al., 2013, e.g.).

A number of geometrical/empirical method have also been developed to isolate individual channel heads in higher resolution
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DEMs (Pelletier, 2013; Clubb et al., 2014; Lurin et al., 2023, e.g.). These methods intrinsic limitation is the use of surface

topography: the latter by nature cannot express the actual geometry of water bodies there making them harder to detect.

Recent studies (Costabile et al., 2019; Costabile and Costanzo, 2021; Bernard et al., 2022) demonstrated that approaches310

explicitly approximating hydrodynamics effectively overcome that limitation by computing hydrology-derived geomorpholog-

ical metrics from hydraulic surface and discharge. They show that the slope-area relationship can incorporate hydrological

information by replacing topographic slope by the hydraulic slope at equilibrium and D8 drainage area by a specific drainage

area as(r) = q
r , where r is the runoff precipitation rate and q the discharge per unit width. These methods show that as(r) is

very efficient to naturally separate river channels from colluvial channels and hillslopes. These metrics are naturally embedded315

within the DAG structure of GraphFlood allowing a more systematic and straightforward bulk computation. We extracted s

- as(r) for both test sites and separated hillslopes, colluvial and fluvial domains (see Figure 9). For clarity, we use arbitrary

thresholds from the s - as(r) plots to determine the transitions. We also define the floodplains using the maximum extent of

fluvial channels for high precipitation rates from figure 7.

The s - as(r) relationships for both catchments globally show patterns similar to classic Slope-Area techniques. s increases320

and plateaus in the hillslopes domain to then decrease with break in slopes in log space corresponding to colluvial and fluvial

channels (e.g. Montgomery, 2001). However, we also observe low s - as(r) areas, corresponding to flat surfaces isolated from

the channel (e.g. elevated terraces). Both sites then show a noticeable break in slope corresponding to the colluvial domain

where flow starts to converge towards proto-channels, followed by another less-pronounced break in slope expressing the

switch to well define rivers domain. The addition of hydraulic information to slope and area makes the distinction less sensitive325

to the threshold and direct visualisation of as give an already clear and physics-based separation of the different domains. The

fluvial domains also terminate with an interesting high surge of s for high as(r) corresponding to local accelerated flow that

would not be caught by common S-A plots.

This last observation highlights the kind of additional information the hydrology-aware approach unravels. Bernard et al.

(2022) built on earlier work restricted on hillslope (Gallant and Hutchinson, 2011) where s≡ dz
dx to develop this principle330

further and express a proxy for channel width, called specific width ws(r). The specific width is calculated from the ratio

between SFD drainage area (i.e. most convergent flow lines) and the specific drainage area (i.e. representing the flow field

spread to its natural extent). As acknowledge by the authors, the challenge lies in the choice of the single flow path which will

determine A: if the latter does not coincide with that main discharge field, the results are highly noisy and difficult to interpret.

With the precipiton method, Bernard et al. (2022) suggest the calculation should be post-processed on the discharge field335

calculated at low-flow condition and following its maximum values. We leverage GraphFlood integrated DAG data structure

to optimise this process and generalise it to the 2D channel network. Indeed, using the DAG calculated from the equillibrated

hydraulic surface, we repeat a stochastic walk to calculate A where the steepest receivers of each nodes is determined from

the multiple flow receivers using the hydraulic surface and a probability function of these receivers’ Qout. Repeating this walk

about 50 times and keeping track of node-wise max(ws) ensures all the channel pixels are visited. Figure 10 displays the340

resulting field of flow width where we simply apply a threshold to filter out unreasonable values happening when A gets out
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Figure 9. Domainification of the landscape based on hydromorphometry. Using an approch based on Bernard (2022) as well as data in

figure 7, we separate the domains into area affected by hillslopes, colluvial and fluvial domains. The domains are selected by applying cutoff

values on the s− as(r) plots - see main text for details about these values. Areas that are not fluvial but flooded at high flow are considered

floodplains.

of the main channel for few nodes. This method effectively highlights fine-grained variations in flow width and allows its

systematic, efficient extraction unravelling patterns of “width” knickpoints.

6 Discussion

6.1 Controls on numerical efficiency and accuracy345

Computational efficiency to reach the stationary solution is one of the main advantage of GraphFlood and figure 12 provides a

number or benchmarks function of the number of nodes of the DEM. However, computational efficiency depends on multiple

factors making the efficiency partly case dependent.
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Figure 10. Effective width for a section of Hanalei river, reflecting channel widening and narrowing.

First, part of the method relies on subjective choices. As demonstrated on figure 5, there are spatial discrepancies in Graph-

Flood convergence speed. A study focusing on fluvial domains (e.g. flood extent) often only require <100 iterations, while350

obtaining convergence for the entire landscape (e.g. separate the different process-based domains) can take up to few thou-

sands iterations. The time step also dictates the speed and accuracy of the algorithm. Maximising the time step reduces the

number of iterations to reach convergence. Yet, it also impacts the accuracy, consistency, computational time and stability of

the solution (i.e., a higher time step plateau to a fluctuating hydraulic surface).

Secondly, switching the model from MFD to SFD mode reduces the number of operations to compute and therefore the355

computational time. However the resulting water surface is impacted by this choice due to the over-focusing of flow in the single

flow routing (figure 11). The line concentrating all the flow overestimates Qin while all the other channel nodes overestimate

Qout resulting in a global underestimation of h. The error on Green River is concentrated around 10%.

Finally the performances of GraphFlood are tightly linked to the numerical framework used for its implementation. The

simplicity and versatility of GraphFlood make it straightforward to re-implement in different frameworks as long as they of-360

fer basic graph data structure and local minima handling. Computing the DAG and the related algorithms for each iteration

accounts for a big part of of the computational time. Therefore, the implementations of these algorithms strongly impact the
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overall performances. For example, the exact same simulation takes approximately 250 ms or 800 ms in the python/c++ imple-

mentation or using MATLAB©/ TopoToolBox (Schwanghart and Scherler, 2014) respectively. The time consuming algorithms

are the topological ordering (e.g. Anand et al., 2020; Braun and Willett, 2013; Carretier et al., 2016), the local minima resolver365

(e.g. Cordonnier et al., 2018; Barnes et al., 2014; Gailleton et al., 2023) and the receivers and donors computations as they

need updtates at each iterations.

Detailed time-benchmark comparison with other methods can also quickly be misleading because of the divergence of

scopes: GraphFlood focuses on steady flow which is conceptually too different to compare to transient solvers (e.g. Bates

et al., 2010; Brunner, 2002). River.Lab (Davy et al., 2017, formerly Floodos, ) also targets stationary solution. Bernard (2022)370

demonstrated that the method could reach the same orders of magnitude for the time required to get a convergent solution in

the main rivers in specific cases where the influx of precipitons is optimised to enter only the main channel via discrete inlets

from tributary junctions. However, the efficiency of this method decreases when simulating other parts of the landscape, such

as hillslopes, due to the low frequency of precipitation passage on non-convergent areas.

Nevertheless it is worth noting the algorithm is scalable: Green River site converges in about 20 seconds for the main rivers,375

with less than 200 ms per iterations. We also tested GraphFlood on an 83 Million pixels DEM on a laptop with 32 Gb of

memory and the model converged for the main rivers in about 20 hours with 100 seconds per iterations.

6.2 Potential optimisations

An obvious optimization consists in developing a parallel version of GraphFlood. In this paper, we made the choice to remain

on single threaded CPU for (i) simplicity, (ii) flexibility and (iii) favouring the possibility to run concurrent models to explore380

parameter space. Transient mode can be parallelised, even on GPU, as each node is independent from one another at a time t

similar to Apel et al. (2022). Stationary GraphFlood, on the other hand, has a strong non-local component in the calculation of

Qin and would require significant modification to be partially parallelised, using for example Barnes et al. (2021) .

Another optimisation consists in improving our management of time stepping. CFL conditions only theoretically apply

to our calculation of Qout, but not on the propagation of Qin in stationary mode. Alternative finite difference formulation385

like Runge-Kutta or an implicit formulation could allow larger time steps. However these methods would only increase the

efficiency of a single iteration but would still suffer from the highly-iterative nature of the algorithm to reach an equilibrated

hydraulic surface.

Finally, we can significantly reduce the computation time of studies interested in the fluvial domain only. As suggested in

Bernard (2022) and illustrated in figure 4, GraphFlood converges significantly faster in areas with higher Q. The fluvial domain390

only represents a minor subset of the total number of nodes in a landscape and theoretically, focusing only on these nodes could

significantly speed up the process. Induced sub-graph methods offer solutions to apply algorithms in a subset of a DAG without

the need to process its entirety. In the case of rivers, it requires the identification of all the nodes of interest, i.e. downstream of a

given discharge or drainage area threshold. Taking full advantage of this optimisation is challenging as it requires the dynamic

identifications of the nodes of interest without processing the whole graph.395
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Figure 11. Differences in final results for Single flow solver and Multiple flow solvers. The MFD solution is cleaner and has less artifacts.

The magnitude of the differences is function of the frequency at which the D8 SFD flow passes through a cell (proxied here by MFD as(r)).

While SFD solvers are faster and simpler, their accuracy will be function of diverging flow patterns. Smaller ∆t can reduce the differences.

We developed an induced sub-graph method to take advantage of that optimisation. The principle remains the same than

section 3.1, except that graph-realted operations are computed in a node-to-node basis (e.g. computing the DAG donors and

receivers, handling of local minimas, topological ordering). A pre-computing step determines input points based on drainage

area thresholds or arbitrary input points (Tarboton, 1997). These points are pushed in a priority queue sorting active nodes

per decreasing elevation (opposite to Barnes et al. (2014)), ensuring that the most upstream node of interest that has not been400

processed yet is always the next in queue. The nodes are popped and processed from the priority queue sequentially. Once

Qin and Qout computed according to section 3.1, we push in the priority queue the receivers of the active node. The process

is repeate until emptying the queue. Note that if a node has no receiver and is not a model edge, we gradually fill the local

depression until finding an outlet, in a similar way to Davy et al. (2017) or Gailleton et al. (2023).

This version of the algorithm reproduces the results from the original one, except minor artifacts near the input points. One405

iteration takes 250 ms with GraphFlood and 15 ms with the induced graph method. For a discharge threshold of 36000 m2 and

a precipitation rate of 50 mm yrs−1, the models converge for the main rivers in about 50 s for GraphFlood vs 3 s for the induced

graph method demonstrating strong potential for studies focusing on the fluvial domain. The complexity of the algorithm is tied

to the priority queue and is thereforeO(n logn) with n being the number of nodes in each traversal, meaning computation time
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Figure 12. Time benchmark comparing the computational efficiency of GraphFlood and its induced graph variant for the Green River DEM

resampled at various resolutions. The global convergence time represents the timing for converging the model for the fluvial and colluvial

domains while the time per iterations is an important metric when considering GraphFlood for LEMs.

increases non linearly as the drainage area threshold decreases. Figure 12 provides an extensive time benchmark comparing410

the efficiency of both methods in a global and per-iteration perspective.

6.3 Potential for hydromorphometry and Landscape Evolution Models

Bernard et al. (2022) demonstrated the potential of informing common scaling laws used in tectonic geomorphology (e.g.

Kirby and Whipple, 2012) with hydrodynamics. GraphFlood represents a step toward making the inclusion of hydrology more

systematic in geomorphological analysis. For example s−as(r) plots, as illustrated by both Bernard et al. (2022) and figure 9,415

isolate more signals than classic S−A as per originally designed by Morisawa (1962) and Flint (1974). as(r) is not strictly

function of the downstream distance like A and has the potential to express a wider range of landform. Data points with high

as(r) and high s are likely to represent areas of increased stream power beyond the common geometrical knickpoint (e.g.,

increased discharge due to local channel narrowing). Alternatively, low s and as testify of abnormally flat areas (i.e., flat areas

not visited by rivers), which if calculated from multiple runoff rates could unravel families of terraces. Commonly used metrics420

linked to S−A (e.g., concavity index, steepness index) are likely to express a wider range of signals when extracted from

s−as(r). Combined with effective width or the direct calculation of shear stress from h, hydromorphometrics can help identify

and quantify new family of responses to perturbations. Alongside with geometrical knickpoints (e.g. Gailleton et al., 2019),

area of channel narrowing or widening or accelerated flow can be caught unravelling wider ranges of landscapes responses
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to perturbations. Systematic calculations of all these metrics for multiple ranges of runoff rates could help redefining and425

completing global scaling laws comparing discharge, drainage area, channel width and hydraulic slopes. GraphFlood allows the

fast approximation of hydrodynamics, and therefore shear stress. Coupling GraphFlood with physics based morphodynamics

(e.g. Davy and Lague, 2009; Minor et al., 2022) would allow the upscaling of short term fluvial dynamics to longer time scale

and larger spatial scales.

7 Conclusion430

This study introduces GraphFlood, an efficient algorithm for solving 2D hydrodynamics based on 2D shallow water equations

and specifically tailored for large DEMs. By employing Manning’s equation within a graph theory framework, GraphFlood

iteratively computes a stationary flow depth and discharge equilibrated to prescribed runoff rates. Leveraging graph theory

algorithms ensures numerical efficiency, enabling GraphFlood to compute solutions for rivers in just seconds for a million-

pixel DEM. Validation against analytical solutions and established models demonstrates the accuracy of GraphFlood. The435

simplicity, efficiency, and versatility of GraphFlood position it as a promising engine for incorporating 2D hydrodynamics into

large-scale topographic analysis and landscape evolution models. Future work could utilize GraphFlood to investigate river

inundation patterns, systematically extract river width as a function of water discharge, or focus on classifying landscapes to

better relate landscape shape to geomorphological processes.

Code availability. The static version of the code used in this contribution can be found in Gailleton (2024). Updates on newer versions and440
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