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Abstract. Computing hydrological fluxes at the Earth’s surface is crucial for landscape evolution models, topographic analysis,

and geographic information systems. However, existing formalisms, like single or multiple flow algorithms, often rely on ad-

hoc rules based on local topographic slope and drainage area, neglecting the physics of water flow. While more physics-oriented

solutions offer accuracy (e.g. shallow water equations), their computational costs limit their use in term of spatial and temporal

scales. In this conrtibution, we introduce GraphFlood, a novel and efficient iterative method for computing river depth and5

water discharge in 2D on a digital elevation model (DEM). Leveraging the Directed Acyclic Graph structure of surface water

flow, GraphFlood iteratively solves the 2D shallow water equations. This algorithm aims to find the correct hydraulic surface

by balancing discharge input and output over the topography. At each iteration, we employ fast graph theory algorithms to

calculate flow accumulation on the hydraulic surface, approximating discharge input. Discharge output is then computed using

the Manning flow resistance equation, similar to the River.lab model (Davy and Lague, 2009). Iteratively, the divergence of10

discharges increments flow depth until reaching a stationary state. This algorithm can also solve for flood wave propagation

by approximating the input discharge function of the immediate upstream neighbours. We validate water depths obtained

with the stationary solution against analytical solutions for rectangular channels and the River.lab and Caesar Lisflood models

for natural DEMs. GraphFlood demonstrates significant computational advantages over previous hydrodynamic models, with

approximately a 10-fold speed-up compared to the River.lab model (Davy and Lague, 2009). Additionally, its computational15

time scales slightly more than linearly with the number of cells, making it suitable for large DEMs exceeding 106 - 108 cells.

We demonstrate the versatility of GraphFlood in integrating realistic hydrology into various topographic and morphometric

analyses, including channel width measurement, inundation pattern delineation, floodplain delineation, and the classification

of hillslope, colluvial, and fluvial domains. Furthermore, we discuss its integration potential in landscape evolution models,

highlighting its simplicity of implementation and computational efficiency.20

1 Introduction

River dynamics encompass key processes of landscape evolution at different temporal and spatial scales. Rivers transfer sed-

iments downstream, they control the baselevel of hillslopes, and set the pace of denudation rates (e.g. Clubb et al., 2019).

Modelling landscape evolution and the development of fluvial landforms, in particular, thus requires a sound representation
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of how rivers erode, transport and deposit material. As landscape evolution models are used to simulate the dynamics of to-25

pography over 105-107 years and at continental scales (Salles et al., 2023), accounting for short-term processes (e.g. daily

variations of discharge, flood) at local scales remains a methodological and numerical challenge. Simulating flow in open en-

vironments in two or three dimensions requires sophisticated numerical methods which are computationally demanding and

which are thus mostly inapt for the challenge of simulating landscape evolution over geological time scales (Davy et al., 2017).

Instead, a common approach to model water flow across landscapes consists in applying the single or multiple flow algorithms30

(e.g. Tarboton, 1997; O’Callaghan and Mark, 1984). These techniques route water along topographic gradients towards one

or multiple neighboring pixels in a DEM and approximate discharge by drainage area weighted by precipitation rates (Adams

et al., 2020). The approximation of steady flow using drainage-area based discharge has been the cornerstone of integrating

hydrodynamics in long-term erosion laws (e.g. Whipple and Tucker, 1999). This approach has the compelling advantage that it

reduces flow patterns to a network of flow lines, and has been widely used to establish empirical scaling laws relating drainage35

area to channel steepness and uplift (Wobus et al., 2006), or to unravel landscape evolution from the planform shape of the

river networks (Schumm et al., 2000; Willett et al., 2014). Moreover, these methods rely on efficient algorithms, which leverage

graph theory to compute drainage area (e.g. Braun and Willett, 2013; Anand et al., 2020), flow across complex terrain (e.g.

Barnes et al., 2014; Cordonnier et al., 2018; Barnes et al., 2021; Schwanghart and Scherler, 2017) or geomorphological metrics

(e.g. Gailleton et al., 2019; Mudd et al., 2018; Grieve et al., 2018; Schwanghart et al., 2021). In particular the single flow40

direction algorithm is thus the numerical workhorse for simulation software for landscape evolution (Hergarten, 2020; Braun

and Sambridge, 1997; Willgoose et al., 1994; Campforts et al., 2017; Braun and Willett, 2013, e.g.) and numerical frameworks

for quantitative geomorphology (e.g. Barnhart et al., 2020; Gailleton et al., 2023; Schwanghart and Scherler, 2014; Mudd et al.,

2019).

However, reducing rivers to lines in landscape evolution models may overtly simplify the dynamics and feedbacks of fluvial45

processes (Armitage, 2019). In fact, the response of rivers to climate variability, tectonic movements or baselevel changes is

more varied than the simple propagation of a wave of vertical changes through 1D network of lines. For example, changes

in boundary conditions cause rivers to adjust their width (e.g. Dunne and Jerolmack, 2020; Baynes et al., 2022) and their

planform flow pattern (e.g. Schuurman et al., 2013), both of which feedback on sediment fluxes (e.g. Davy and Lague, 2009).

In addition, the past decade has seen the rising availability of high resolution lidar-derived DEMs (<1 m resolution). This50

means, however, that for a variety of geomorphological applications (e.g. Steer et al., 2022; Stammberger et al., 2024) rivers

cannot be realistically represented by one pixel-wide paths (Figure 1 d). Several recent studies demonstrate the advantages of

integrating 2D hydrodynamics to inform the study of landforms, even on long timescales (Costabile et al., 2019; Costabile and

Costanzo, 2021; Bernard et al., 2022). However, these methods are difficult to upscale for more generalized analysis due to

their reliance on closed-source software and are not straightforward for non-specialists to adapt and reuse.55

Here we present GraphFlood, a new and efficient method, based on graph theory and finite differences, to fill this method-

ological gap and allow the efficient approximation of 2D hydrodynamics on high resolution topography and/or longer term

landscape evolution model.
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Figure 1. Comparison between water flows approximated with GraphFlood (a and c), calculating flow depth and discharge vectors, and

with a classic drainage area based method (D8 Steepest descent route) (b and d). The panels detail a channel junction and highlight how

GraphFlood models flow patterns and how these differ from one-pixel wide flows derived from the D8 algorithm. The black arrows on panel

c represents the flow velocity vectors and are scaled to their magnitude. For panel d, the red arrows represent the D8 flow direction. h is the

flow depth and A drainage area.

1.1 Existing solutions

A range of numerical models incorporating 2D to 3D hydrodynamics to study river systems and their morphological evolu-60

tion exists, with widely different methods and levels of complexity, depending on the temporal and spatial scales of interest.

Finite-element models are commonly used for reach-scale models, such as DELFT3D (Roelvink and Banning, 1995), HEC

RAS (Brunner, 2002), BASEMENT (Vanzo et al., 2021) or TELEMAC (Villaret et al., 2013). These models are designed for

simulating the evolution of fluvial landforms over scales of 1-100 km and over 1-100 years, and therefore fall outside the scope

of this study.65

Bates et al. (2010) developed a two-dimensional hydrodynamic model Lisflood-FP, solving for the 2D shallow water

equations. Their cellular-automata approach has been successfully incorporated in the landscape evolution model CAESAR

Coulthard et al. (2013) to simulate reach-to-catchment scale fluvial hydro-morphodynamics (e.g. Yu and Coulthard, 2015; Liu

and Coulthard, 2015; Coulthard and Van De Wiel, 2017). Lisflood-FP adopts a finite difference scheme on the bidirectional wa-

ter fluxes between pixel. While it has been applied to catchment scales over potentially thousands of years (Liu and Coulthard,70

2017, e.g.), its potential for longer-term and larger-scale studies remains hampered by the physics behind which explicitly and

gradually transfer water from a cell to another. Specifically, any upstream change in runoff input (e.g., precipitation) must be

gradually propagated downstream one pixel per computational time step. Although modeling non-steady flows is crucial for

simulating transient responses to individual storm events (e.g., Van De Wiel and Coulthard, 2010), it becomes a limiting factor

when simulating over longer timescales or larger scales. Bates et al. (2010) and subsequent improvements by de Almeida et al.75

(2012) have been utilized in other landscape evolution framework (e.g. Barnhart et al., 2020) following the same principle.
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An alternative to propagating wave is to focus on the stationary state of the river network (i.e., in equilibrium with the input

field of runoff). The main challenge in estimating efficiently the stationary solution lies in spreading the flow to its equilibrium

field. The latter depends on the final geometry of the hydraulic surface, which cannot be deduced from the geometry of the

terrain alone. To address this point, Davy et al. (2017) developed an efficient particle-based solution to solve the shallow water80

equations. In this approach, precipitons (i.e. elementary volumes of water) are released onto the landscape. Each precipiton

follows a stochastic path down the hydraulic surface, increasing the flow depth by a constant value, representing the total

water influx. This increase is balanced by a decrease in flow depth, calculated using Manning’s equations and where each

precipiton has its own timestamp. The frequency at which precipitons pass through a cell determines the final, stationary

flow depth field. This method is computationally efficient in areas where flow converges and a high frequency of precipitons85

passes through (e.g., fluvial valleys). However, the efficiency and accuracy of Floodos depend on the frequency of precipiton

passage. Accurately approximating the shallow water equation becomes challenging in regions with lower drainage areas or

any domains where the frequency of precipiton passage is very low (e.g., flat areas, hilltops, hillslopes, smaller tributaries).

This behaviour is accentuated in large DEMs, where the probability of precipiton passage is even lower.

Finally, Pelletier (2008) outlined the prototype of a highly-iterative solution that repeatedly runs a multiple flow direction90

flow routing a DEM (e.g. Tarboton, 1997). This process incrementally and arbitrarily increases the flow height until satisfying

an equilibrium between flow depth and input discharge. However, it requires a significant number of iteration to ensure all the

cells have converged to the final result.

1.2 A new solution based on graph theory

In this contribution, we introduce GraphFlood, a novel iterative approach that is both efficient and adaptable for solving the95

shallow water equations across entire landscapes. Numerically, each DEM location is linked to its neighbors through unique

directional connections, either upstream or downstream. In graph theory, this structure is known as a directed acyclic graph,

which allows for the application of efficient algorithms for information propagation through landscapes (e.g., Anand et al.,

2020; Braun and Willett, 2013; Gailleton et al., 2023; Hergarten and Neugebauer, 2001). Similar to Davy et al. (2017), Graph-

Flood assumes steady flow to focus on the stationary solution, meaning that flow is propagated across the landscape instan-100

taneously. However, unlike Davy et al. (2017), whose accuracy and efficiency vary depending on the frequency of passage

of discrete particles, GraphFlood leverages the graph structure to process the entire landscape in each iteration, including do-

mains with low drainage areas. Runoff is propagated using drainage area weighted by precipitation rates, and local discharge

is calculated using Manning’s friction equations. At each iteration, the balance of input and output discharges is incrementally

adjusted for every cell in the landscape, refining the flow depth until hydraulic equilibrium is achieved. This global approach105

is scalable and allows for targeting larger DEMs without compromising the efficiency or accuracy of the algorithm.

In the following sections, we first describe the theory behind our method, then explain the algorithm and the associated finite

difference scheme. We then test different case studies to demonstrate the method’s potential for flood modeling, morphometric

analysis, and landscape evolution modeling. Finally, we discuss the limitations and potential future developments of the model.
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2 Theoretical background110

First, we outline the governing equations behind GraphFlood. We use the 2D shallow water equations to approximate the

physics of water flow in open-environment. They integrate the three-dimensional Navier-Stokes equations over the vertical

dimension, assuming that the velocity field varies primarily in the horizontal direction. Different variants of the shallow water

equations are commonly used to model flooding beyond reach scale (e.g. Bates et al., 2010; de Almeida et al., 2012; Davy et al.,

2017; Bates, 2022). The 2D shallow water equations consist in a mass conservation equation and a momentum conservation115

equation. Using the notations of Davy et al. (2017), the mass conservation equation can be written:

∂h

∂t
−∇ · (q) = 0 (1)

h is the water depth in [L], t the time in [T] and q the discharge per unit width in [L
2

T ].

Neglecting inertia, (Manning et al., 1890) demonstrated that the momentum equation can be simplified into Manning’s

equations where flow velocity u (in L
T ) is expressed as:120

u=
hα

n

s

∥s∥ 1
2

(2)

where α is Manning’s exponent, usually assumed equal to 2
3 , n is Manning’s friction coefficient and s the steepest gradient

of the hydraulic surface. The hydraulic surface is Zh = Z +h, the elevation of the flow depth h on the top of the topographic

surface Z.

In order to insert equation 2 into equation 1, discharge per unit width and velocity are related via flow depth:125

q = u ·h (3)

Unlike similar methods (Bates et al., 2010, e.g.) or more sophisticated formulations (e.g. Brunner, 2002) incorporating

additional physical elements (e.g. inertia, turbulence), our method is designed to be optimized when these components can

be neglected (Davy et al., 2017). We use Q to refer to the volumetric flux in [L
3

T ] and the subscript Qin and Qout to refer

respectively to quantities entering or leaving a given cell.130

These equations can simulate the propagation of water through space and time dynamically, solving a transient flood wave.

∇ · q is the difference between qin made of qout from upstream neighbours and qout from the current cell to its downstream

neighbours. For a constant input of qin on a landscape (e.g. constant precipitation rates, fixed input discharge), the system has

an equilibrium state - or stationary solution - where the water depth and hydraulic slope lead to a qout balancing qin. The total

Qin for the stationary state for a given location becomes the integration of all the source terms (e.g. precipitations, resurgence)135

over the drainage area upstream of a given location.

In this contribution, we refer to the transient solution when we seek to solve the transient propagation of Q through space

and time and to the stationary solution when we are only interested in the equilibrated fields.
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3 A graph-based iterative method

We present a numerical framework to solve the governing equations outlined in section 2. Our developed scheme applies140

different variants of an explicit finite difference scheme on a directed acyclic graph (see Braun and Willett, 2013; Barnhart

et al., 2020; Gailleton et al., 2023, for other geomorphological models using this family of methods). It aims to provide

efficient solution suitable for large-scale DEMs and landscape evolution models. Our iterative scheme is optimised for the

stationary solution, but can be used for transient simulation. In the following, we detail the numerical graph structure required

by our method, we describe the finite difference scheme, explain the transient and stationary solutions and validate them against145

analytical solutions.

3.1 Numerical structure

We use the following terms adopted from graph theory (see Heckmann et al., 2015, for a comprehensive review about the use

of graph theory applied to geomorphological applications): a discrete location is represented by a node, linked to its neighbour

nodes via links. The links are directed edges linking donors to their downstream receivers. In our referential donors have150

higher hydraulic surface (Z +h) than their receivers. The algorithm is compatible with any type of grid (e.g. hexagonal grid

or triangular network), as long as the directed acyclic graph structure defines the topology between the pixels or facets. Each

link is characterized by a specific length ∂l representing the distance between the two neighbour nodes and a link width ∂w

representing the local width. Each node represents a cell area Ac. The scheme also requires common directed acyclic graph

algorithms: topological ordering, which provides a list of nodes sorted from upstream to downstream, and sink filling, a method155

for filling local minima disconnected from the rest of the graph (e.g., lakes, local noise). The directed acyclic graph can utilize

either a single flow direction topology (Braun and Willett, 2013), where each node has a single receiver (e.g., steepest descent

or D8), or a multiple flow direction directed acyclic graph where each nodes is linked to multiple receivers (e.g. Tarboton,

1997; Anand et al., 2020). This distinction is important because operations on single flow direction directed acyclic graphs

are generally simpler and more efficient than those on multiple flow direction directed acyclic graphs (e.g. Braun and Willett,160

2013; Anand et al., 2020). However, it is worth noting that the latter captures more details about flow topology and tends to

increase the accuracy of the represented processes (e.g., Armitage, 2019).

In this contribution, we developed the method for regular grids. In the stationary case, we use the algorithms of Barnes et al.

(2014) and Cordonnier et al. (2018) to ensure flow continuity and proceed to an initial filling of the local minimas (e.g. noise,

lake). Topological sorting operations use a modified version of Braun and Willett (2013) for single flow direction and a variant165

of Anand et al. (2020) for multiple flow direction. The modifications are minor changes of data structure that do not change

the overall functioning while improving performance and readability (see Gailleton et al. (2023) for detailed implementations).

One advantage of GraphFlood is that it can be implemented using existing computational frameworks for DEM analysis and

LEM simulation (e.g. Schwanghart and Scherler, 2014; Gailleton and Mudd, 2021; Barnhart et al., 2020): the base of the

algorithm only needs to calculate flow direction and topological order. A notable difference compared to existing framework170

is that we calculate the directed acyclic graph using the hydraulic surface rather than the topography.
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3.2 Iterative explicit finite difference scheme

We use an explicit finite difference scheme to solve equation 1. In the transient case, the numerical solution predicts flow depth

change for every node i:

ht+1
i −ht

i

∆t
=

∑
d=donors(i)

Qind
−

∑
r=receivers(i)

Qoutr

Ac
(4)175

where Qind
represent the discharge from a donor d to the node i and Qoutr the discharge from the node i and a receiver r. For

the latter, in the case of single flow direction (i.e. single receiver), equation 3 becomes:

Qouti =
∆W

n
hα
i

√
sir (5)

where i and r are respectively a given node and its single receiver and ∆W the flow width in the given direction. Because

flow can only go through one link, ∆W is easy to determine. For example for our case of a regular grid, it is ∆x in the y180

direction, ∆y in the x direction and the diagonal length for the other cases. As noted by Coulthard et al. (2013), multiple flow

direction can become increasingly more complicated: multiple receivers mean ∆W “overlaps” and using the direct width of

flow for each links can break the conservation of mass. Let’s imagine a regular grid considering D8 neighbouring (cardinal and

diagonal directions), a node that would discharge to all these directions would integrate twice the total flow width. Porting this

formulation to multiple flow direction requires then a correction factor. Equation 3 in multiple flow direction directed acyclic185

graph therefore becomes:

Qouti =
C

n
hα
i

∑
j in receivers

sij∆Wij

√
sijmax

(6)

where sijmax is the hydraulic slope in the direction of maximum descent.

By definition, for a given flow depth, both single flow direction and multiple flow direction discharge should be equal.

Therefore, the correction factor is:190

C =
sijmax∆Wijmax∑

j in receivers

Sij∆Wij
(7)

and equation 6 is then equivalent to equation 5, and the difference between the two solvers only remains in the partitioning of

Qin which becomes proportional to sij∆Wij .

Both transient and stationary solutions follow that scheme to calculate the output discharge, the difference is the calculation

Qin for all nodes. The overall process is outlined on algorithm 1.195
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Algorithm 1 Iterative stationary solver

Initialise directed acyclic graph structure on hydraulic surface

while Convergence criterion1 not met do

Update directed acyclic graph with hydraulic surface

for each node n in downstream topological order do

Calculate s(n) and weight partitioning

Determine Qin(n) from upstream nodes

Calculate Qout(n)

Transfer Q to receivers of n

end for

Increment hw for all nodes

end while

3.3 Transient solution

For the transient solution, Qindi
is Qoutdi calculated between the donor and this node plus an eventual local external Qin

source term (e.g., resurgence, precipitation, grid edge input). The method becomes similar to (Bates et al., 2010) - only that

their formulation includes an approximation of inertia and have a D4 flow topology. Although straightforward and massively

parallelisable (e.g. Apel et al., 2022), this method does not benefit from the directed acyclic graph data structure as signals are200

propagated from one node to their immediate neighbours. If external Qin is kept constant long enough, this solution converges

toward a unique equilibrium stationary state and is not efficient if the intermediate transient steps are not important.

Like any explicit finite difference methods, higher time steps leads to less iterations and more efficient spread, but also more

instability. Equation 2 expresses the velocity of a flood wave and therefore its stability can be approximated using the Courant

Friedrich Levy conditions (CFL):205

Cr =∆t
umax

∆xmax
(8)

where Cr is the Courant number.

The transient solution converges toward an equilibrium hydraulic surface and Q field. We estimate convergence based on

both median h and ∆h
∆t for the whole landscape. We stopped the iterative process once the first plateaus and, when increment

in flow depth becomes lower than an acceptable ad hoc threshold (e.g. 10−9 m).210

3.4 Stationary solution

The stationary solution optimises convergence towards the equilibrated solution - i.e. the steady state flow depth and discharge

fields to an input runoff. Ultimately, the amount of water flowing through a landscape equates the runoff rate propagated into

the drainage network. Numerically speaking, it falls down to calculating a weighted drainage area, a procedure already in use
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in GIS applications and LEMs when it comes to integrating the effect of spatial variations in precipitations (Leonard et al.,215

2023, e.g.). In the case of effective precipitations, each nodes receive a local P (x,y)∆x∆y. In reach mode, the model receives

Qin in the boundary cells corresponding to the upstream section of the river. In both cases, received water is then recursively

transferred to all the downstream nodes following the topological order. It effectively reduces the need to propagate a signal

gradually from upstream to downstream one node at a time. However, the final hydraulic surface being different than the

topographic surface, the algorithm needs to iterate to gradually build the hydraulic surface. From the first iteration, discharge is220

propagated through the full landscape and starts “piling up” h on the whole flow path. Every iteration recomputes the directed

acyclic graphs from the updated hydraulic surface, effectively spreading Qin towards its final geometry balanced by Qout.

Time step in the stationary mode is a numerical stability criterion modulating the magnitude of flow depth increment. Similarly

to the transient solution, we estimate convergence based on both median h and ∆h between each iterations for the whole

landscape and considered convergence reached once median ∆h < 1e− 9 m.225

3.5 Validation

We validate the numerical scheme against an analytical solution (Figure 3) in the case of a rectangular channel (Bates et al.,

2010; Davy et al., 2017). We combine equation 1 and equation 3 to obtain an analytical stationary flow depth noted h∗
W :

h∗ =
nQin

dx
√
s

1
α

(9)

Equation 2 predicts that in the case of a rectangular channel with a constant slope S0, the slope of the water surface s should230

be equal to S0. Assuming a boundary condition of fixed hydraulic slope equals to S0, we can determine h∗ suitable for an

analytical calibration.

We run GraphFlood with the transient and stationary solvers, and multiple flow direction and single flow direction schemes

on a 200m × 40m rectangular channel with a regular dx= 1m (more details in the figure caption). Figure 3a shows the

results for all runs. Each simulation converges towards h∗, validating the numerical methods. The number of iterations to reach235

h∗ - directly linked to the computational efficiency of the algorithms - is significantly higher for the transient model as it

needs to propagate the flood wave through the whole channel one node per iteration. This behaviour is likely to worsen with

the complexity of a natural river network where any junction would need catchment-wise upstream information before being

equilibrated and being able to propagate signal downstream. Figure 3b zooms on the stationary models that reach stationary

state in about 300-1000 iterations, roughly 400 times faster than the transient model. Adaptive time stepping based on the CFL240

condition slightly reduces the number of iterations required to reach the analytical solution and the single flow direction model

converges in less iterations than the multiple flow direction model.

3.6 Test sites

We test GraphFlood on two lidar-derived DEMs and aim to explore the effect of different geographical contexts on the algo-

rithm, both in term of relief and climate. Our first test site is located near Green River (Utah, USA), a low-relief area in an arid245
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Figure 2. Graphical representation of a single iteration with GraphFlood. Panels a and b show the flow routing structuring the graph, respec-

tively for single flow and multiple flow directions in map view. Note that it only displays flow routing from a single source for clarity. Panel

c illustrates in cross sectional view the increment or decrement of flow depth at the end of the iteration depending on calculated/propagated

discharges.
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Figure 3. Validation tests for the multiple flow direction and single flow direction stationary and transient simulation for a given Qin =

15m3.s−1. The scenarios with constant dt were set to 1e−3 seconds and the scenarios with CFL condition were calculated with Cr = 3e−3.

Both were chosen empirically as values balancing model performances, stability and cleanness of the final results. Panel a displays the full

results for all the simulations while b zooms on the stationary model results. Panel c describes the model setting in map view. 1000 iterations

of graphflood on this small rectangular channel take about 0.7 seconds for single flow direction and 1.2 second for multiple flow direction

with a CPU intel i9-11950H.

context with smooth hillslopes. The second test site is the Hanalei river catchment in Hawai (USA), with sharp relief made

of volcanic rocks, steep hillslopes and entrenched valleys. The original spatial resolution of both DEMs is 1 m, provided pre-

processed from point clouds and provided by opentopography.org (OpenTopography, 2020, 2012). We also downsample the

DEM of the Hanalei river catchment to a resolution of 5 m using a cubic resampling implemented by GDAL/OGR contributors

(2023) to process a larger watershed and test GraphFlood on multiple resolutions.250
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4 Results

4.1 Numerical behavior for a single simulation

We first explore the behavior of the model during a single simulation, where we run the multiple flow direction stationary

algorithm on both test sites for a high-intensity rainfall rate of 100mm h−1. We deliberately chose an extreme rainfall rate to

test the algorithm under high flow conditions during which multiple diverging river channels are activated.255

We run the model to convergence (figure 4 - see caption for the full simulation parameters). In term of channel network

topology, GraphFlood is able to reproduce diverging and converging flow patterns that follow converging and diverging channel

networks. This behaviour is striking on Green River, where the broad valleys consist of an interwoven network of channels,

but also well-captured on the clearer channel beds of Hanalei. GraphFlood in that way contrasts with drainage-area based flow

patterns which by nature converge toward a single line of flow (e.g. fig. 1). In both cases the majority of the DEM pixels are260

displaying insignificant flow depth (<1 cm) as one should expecting from natural landscapes where rivers only represent small

portions of the landscape.

GraphFlood reaches convergence in respectively 4000 and 3000 numerical iterations for Green river and Hanalei (fig. 5

a and b) based on the criterion outlined in sections 3.3 and 3.4. At first glance, this number is high, but we observe a huge

discrepancy in the spatial and temporal patterns of convergence. The model converges asymptotically in the rivers where less265

than 200 iteration for Green River and less than 60 for Hanalei are enough, as illustrated by the striking spatial variations on

figure 5 c and d. Low drainage area on the hillslopes induces lower increments of flow depth, which combined with high slopes

explain the slower convergence on the hillslopes.

We test the sensitivity of the model to its numerical parameter ∆t and its discretisation ∆x. ∆t controls the magnitude

of h increment. Maximising it optimises the spreading of Q to its equilibrium field. However, our tests also highlight that270

while significant over-estimation provokes numerical divergence, slight overestimation converges to an underestimated final

h. Spatial resolution of DEM, ∆x, can be dictated by the availability of source data, but it can be interesting to reduce the

resolution of a DEM in order to process larger area (if computing speed or memory are limiting factors). For this test, we use

the Green River DEM resampled from dx = 1m to dx = 10m. Flow patterns remain relatively similar from a resolution

to another. However loss of details are observed at lower resolution as expected. Lowering resolution leads to lower hydraulic275

slopes on averaged and subsequently a decrease of Qout and an increase of total volume of water stored on the DEM.

We also test the sensitivity to the physical parameters. Manning’s coefficient is an empirical friction parameter reflecting

the local surface condition (e.g. vegetation, bed roughness, see Arcement and Schneider (1989) for different measurements).

Higher friction values predicts a higher and more distributed water surface required to reach the same Qout. Higher input

discharge or precipitation rates lead to higher flow velocity and therefore lower the stability condition, thus impacting speed of280

convergence.
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Figure 4. Flow depth field calculated with GraphFlood for fluvial valleys in Green River, Wyoming, USA (a) and Hanalei, Hawaii, USA

(b). The maps are zoomed on major fluvial valleys for clarity. Both histograms show the distribution of water height for the multiple flow

direction stationary solutions calculated during a high storm event (precipitation rate = 100 mm/h). Note the logarithmic y scale on the

histogram demonstrating the huge majority of points have low flow depth (< 1cm).
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Figure 5. Rate of convergence for the simulation of figure 4 with respectively ∆t= 1× 10−2 s and ∆t= 2× 10−2 s. On panels a and b,

we show in black the median flow depth function of the number of numerical iterations and in red the changes in flow depth between each

iterations. Panels c and d demonstrate the spatial variability in the rate of convergence. Note that GraphFlood converges significantly faster

in fluvial domain. The number of iterations before convergence is defined as the first iteration reaching 95% of its equillibrium value .
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4.2 Comparison with existing models

We compared GraphFlood with previous models sharing similar applications (relatively large-scale and medium term hydrol-

ogy): Caesar Lisflood (Coulthard et al., 2013) and River.Lab (formerly Eros/Floodos - Davy et al. (2017)). We ran the three

models on Green River with a constant rainfall rate of 30mm h−1 and a classical friction coefficient of 0.033. We ran the three285

stationary simulations, as detailed in section 3.4. We compared the fields of flow depth by pairs of models (figure 6). Overall,

the differences between the models are minimal, centered between 3 10−4 and 5 10−4 m. The differences can be linked to

the differences in flow routing. Caesar Lisflood can only route flow to cardinal directions therefore the distribution of slopes

is not exactly the same than GraphFlood and River.lab which include diagonals. River.Lab relies on a stack of consecutive 1D

stochastic paths on a 2D grid while GraphFlood offers a continuous solution in space and time, explaining the small differences290

in the final solutions.

Figure 6. Benchmark comparing the difference in stationary field of flow depth between CAESAR-LISFLOOD, River.Lab (formerly

EROS/FLOODOS) and GraphFlood. The data expresses the distribution of flow depth differences for each pairs of the models. The dis-

tributions are estimated using a Kernel Density Estimation.

5 Applications and potential

5.1 Flood extent

The computational efficiency of GraphFloods enables the rapid simulation of stationary flow depth and extents under different

runoff intensities. We ran the model for effective precipitation rates ranging from 5mm h−1 - approximating low-flow condi-295

tions - to 300mm h−1 - extreme storm conditions. Figure 7 shows the flood extent for each different scenario on a per node

basis. In addition to fast engineering application or flood risk assessment, (e.g., Bates, 2022), Bernard et al. (2022) noted that

using flow metrics calculated from different precipitation rates could be used to determine the extent of flood plains and of the

different channels of a river system. While more computationally demanding than geometrical method (e.g. Clubb et al., 2022),

GraphFlood offers a physics-based method self-emerging the floodplain geometry. Low flow conditions in purple in Figure 7300
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emphasise the geometry of channel beds while higher, storm-related flow conditions in blue indicate the maximum extent of

the floodplain. We only computed uniform precipitation rate scenarios, but GraphFlood can ingest spatially variable matrices

of effective precipitations if coupled with more sophisticated precipitation/infiltration data or model.

Figure 7. Flood extent at stationary solutions for different precipitation rates. The color represent the minimum precipitation rate at which

the area is flooded by at least 10 cm of water. Note the self-emergence of bedforms and floodplains.

5.2 Flood wave

While the model is primarily designed and optimised for the stationary state, we illustrate its capabilities to model the transient305

propagation of a flood wave (e.g. sudden increase of input discharge in reach mode) in Figure 8. We isolated a small section of

a river from the Green River site and started from equilibrated low flow conditions (time=0s). We instantly increase the input

discharge by a factor 3 and the different panels display the spatial propagation of the resulting flood wave through time.
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Figure 8. Propagation of flood wave thorugh time using GraphFlood in transient mode. The initial conditions correspond to a steady flow for

a total input of 3m3/s, which is triple at the start of the simulation. The times indicated on the different panels are the simulation times.
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5.3 Hydromorphometry

One of the main technical challenge in topographic analysis studies is to determine from topographic data the transitions310

between the fluvial network, the colluvial channels, and the hillslopes. Such classification is useful for understanding landscape

dynamics (e.g. Grieve et al., 2016; Hurst et al., 2019), to constrain geomorphological laws (Perron, 2011, e.g.). Landscape

Evolution Models also routinely apply different process laws based on that transition (e.g. Perron, 2011), or to assess the

response of landscape to tectonics or climate changes (e.g. Willett, 1999). A common approach consists in isolating breaks

in the Slope-Area distributions to determine a critical drainage area value (DiBiase et al., 2010; Whipple et al., 2013, e.g.).315

A number of geometrical/empirical method have also been developed to isolate individual channel heads in higher resolution

DEMs (Pelletier, 2013; Clubb et al., 2014; Lurin et al., 2023, e.g.). These methods intrinsic limitation is the use of surface

topography: the latter by nature cannot express the actual geometry of water bodies there making them harder to detect.

Recent studies (Costabile et al., 2019; Costabile and Costanzo, 2021; Bernard et al., 2022) demonstrated that approaches ex-

plicitly approximating hydrodynamics effectively overcome that limitation by computing hydrology-derived geomorphological320

metrics from hydraulic surface and discharge. In particuler, Bernard (2022) show that the slope-area relationship can incorpo-

rate hydrological information by replacing topographic slope by the hydraulic slope at equilibrium and D8 drainage area by a

specific drainage area as(r) =
q
r , where r is the runoff precipitation rate and q the discharge per unit width. s and as(r) are

naturally embedded within the directed acyclic graph structure of GraphFlood allowing a more systematic and straightforward

bulk computation.325

First, as illustrated in Figure 7, applying GraphFlood with high precipitation rates proves to be an efficient method for

determining the extent of the floodplain. Next, we extracted s and as(r) for both test sites and applied thresholds based on

the breaks in slope of the logas(r)− logs plots to delineate different domains (Figure 9 a and b). Following the approach

of Bernard (2022), we isolated domains I, II, and III, which correspond to the classic geomorphological features of convex

hillslopes, concave valleys, and fluvial regions, respectively.330

The s - as(r) relationships for both catchments (fig.9 c and d) generally exhibit patterns similar to those observed in classic

Slope-Area techniques. In domain I, s increases and then plateaus before decreasing, with breaks in slope in the log-log space

defining the transitions to domains II and III (e.g., Montgomery, 2001). Notably, domains I and III define hillslopes and fluvial

areas, as discussed in Bernard (2022). Domain II reveals a variety of patterns: (i) including convergent hillslopes that gradually

concentrate flow into small channels; and (ii) and divergent branches of fluvial channels in partially flooded regions. For each335

domain, we calculated θ and kw, which are equivalent to the concavity and steepness indices in Flint’s law (Flint, 1974). The

observed variation in θ values is greater than that typically seen in Flint’s law (Gailleton et al., 2021). The significant scatter

in the logs - logas(r) plots is consistent with common Slope-Area plots. However, the incorporation of hydraulic information

and the reduction of topographic noise by using the hydraulic surface allow us to link local outliers to specific morphological

features. For example, low s and low as(r) values reflect a flat surface disconnected from the active channel (e.g., a fluvial340

terrace), a feature that traditional methods might struggle to detect. The fluvial domains also exhibit an interesting surge in s

for high as(r), a novel feature compared to traditional Slope-Area plots, decoupled from the typical monotonic downstream
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Figure 9. Classification of different domains on the test sites based on s - as(r) relationship. a and b show the classification on area of

interest for respectively Green River and Hanalei test sites. c and d show the corresponding logs - logas(r) plots. The colour of the points

correspond to their domains. As described in the main text, we determined the separations of the domains using the breaks in slope in the

binned data. Outliers, belonging to nodes showing high as(r) and potentially high s are displayed on appendix figure A1.
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increase in drainage area. We isolated these outliers using the last break in slope in figure9 c and d and visualized some of them

in appendix figure A1. Few of these points represent numerical artifacts linked to local minima that artificially increase h and,

consequently, the discharge and as(r). Most of them correspond to areas of accelerated flow and concentrated discharge where345

channels narrow, branches converge, and potentially where hydraulic slopes increase due to topographic knickpoints.

This last observation highlights the kind of additional information the hydrology-aware approach unravels. Bernard et al.

(2022) built on earlier work restricted on hillslope (Gallant and Hutchinson, 2011) where s≡ dz
dx to develop this principle

further and express a proxy for channel width, called specific width ws(r). The specific width is calculated from the ratio

between single flow direction drainage area (i.e. most convergent flow lines) and the specific drainage area (i.e. representing350

the flow field spread to its natural extent). As acknowledge by the authors, the challenge lies in the choice of the single flow

path which will determine A: if the latter does not coincide with that main discharge field, the results are highly noisy and

difficult to interpret. With the precipiton method, Bernard et al. (2022) suggest the calculation should be post-processed on the

discharge field calculated at low-flow condition and following its maximum values.

We leverage GraphFlood integrated directed acyclic graph data structure to optimise this process and generalise it to the355

2D channel network. Indeed, using the directed acyclic graph calculated from the equillibrated hydraulic surface, we repeat a

stochastic walk to calculate A where the steepest receivers of each nodes is determined from the multiple flow receivers using

the hydraulic surface and a probability function of these receivers’ Qout. Repeating this walk about 50 times and keeping track

of node-wise max(ws) ensures all the channel pixels are visited. Figure 10 displays the resulting field of flow width where we

simply apply a threshold to filter out unreasonable values happening when A gets out of the main channel for few nodes. This360

method effectively highlights fine-grained variations in flow width and allows its systematic, efficient extraction unravelling

patterns of “width” knickpoints.

6 Discussion

6.1 Controls on numerical efficiency and accuracy

Computational efficiency to reach the stationary solution is one of the main advantage of GraphFlood and figure 12 provides a365

number or benchmarks function of the number of nodes of the DEM. However, computational efficiency depends on multiple

factors making the efficiency partly case dependent.

First, part of the method relies on subjective choices. As demonstrated on figure 5, there are spatial discrepancies in Graph-

Flood convergence speed. A study focusing on fluvial domains (e.g. flood extent) often only require <100 iterations, while

obtaining convergence for the entire landscape (e.g. separate the different process-based domains) can take up to few thou-370

sands iterations. The time step also dictates the speed and accuracy of the algorithm. Maximising the time step reduces the

number of iterations to reach convergence. Yet, it also impacts the accuracy, consistency, computational time and stability of

the solution (i.e., a higher time step plateau to a fluctuating hydraulic surface).

Secondly, switching the model from multiple flow direction to single flow direction mode reduces the number of operations

to compute and therefore the computational time. However the resulting water surface is impacted by this choice due to the375
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Figure 10. Effective width for a section of Hanalei river, reflecting channel widening and narrowing.

over-focusing of flow in the single flow routing (figure 11). The line concentrating all the flow overestimates Qin while all the

other channel nodes overestimate Qout resulting in a global underestimation of h. The error on Green River is concentrated

around 10%.

Finally the performances of GraphFlood are tightly linked to the numerical framework used for its implementation. The

simplicity and versatility of GraphFlood make it straightforward to re-implement in different frameworks as long as they380

offer basic graph data structure and local minima handling. Computing the directed acyclic graph and the related algorithms

for each iteration accounts for a big part of of the computational time. Therefore, the implementations of these algorithms

strongly impact the overall performances. For example, the exact same simulation takes approximately 250 ms or 800 ms in

the python/c++ implementation or using MATLAB©/ TopoToolBox (Schwanghart and Scherler, 2014) respectively. The time

consuming algorithms are the topological ordering (e.g. Anand et al., 2020; Braun and Willett, 2013; Carretier et al., 2016),385

the local minima resolver (e.g. Cordonnier et al., 2018; Barnes et al., 2014; Gailleton et al., 2023) and the receivers and donors

computations as they need updtates at each iterations.

Detailed time-benchmark comparison with other methods can also quickly be misleading because of the divergence of

scopes: GraphFlood focuses on steady flow which is conceptually too different to compare to transient solvers (e.g. Bates
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et al., 2010; Brunner, 2002). River.Lab (Davy et al., 2017, formerly Floodos, ) also targets stationary solution. Bernard (2022)390

demonstrated that the method could reach the same orders of magnitude for the time required to get a convergent solution in

the main rivers in specific cases where the influx of precipitons is optimised to enter only the main channel via discrete inlets

from tributary junctions. However, the efficiency of this method decreases when simulating other parts of the landscape, such

as hillslopes, due to the low frequency of precipitation passage on non-convergent areas.

Nevertheless it is worth noting the algorithm is scalable: Green River site converges in about 20 seconds for the main rivers,395

with less than 200 ms per iterations. We also tested GraphFlood on an 83 Million pixels DEM on a laptop with 32 Gb of

memory and the model converged for the main rivers in about 20 hours with 100 seconds per iterations.

Figure 11. Differences in final results for Single flow solver and Multiple flow solvers. The multiple flow direction solution is cleaner and

has less artifacts. The magnitude of the differences is function of the frequency at which the D8 single flow direction flow passes through a

cell (proxied here by multiple flow direction as(r)). While single flow direction solvers are faster and simpler, their accuracy will be function

of diverging flow patterns. Smaller ∆t can reduce the differences.

6.2 Potential optimisations

An obvious optimization consists in developing a parallel version of GraphFlood. In this paper, we made the choice to remain

on single threaded CPU for (i) simplicity, (ii) flexibility and (iii) favouring the possibility to run concurrent models to explore400

parameter space. Transient mode can be parallelised, even on GPU, as each node is independent from one another at a time t
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similar to Apel et al. (2022). Stationary GraphFlood, on the other hand, has a strong non-local component in the calculation of

Qin and would require significant modification to be partially parallelised, using for example Barnes et al. (2021) .

Another optimisation consists in improving our management of time stepping. CFL conditions only theoretically apply

to our calculation of Qout, but not on the propagation of Qin in stationary mode. Alternative finite difference formulation405

like Runge-Kutta or an implicit formulation could allow larger time steps. However these methods would only increase the

efficiency of a single iteration but would still suffer from the highly-iterative nature of the algorithm to reach an equilibrated

hydraulic surface.

Finally, we can significantly reduce the computation time of studies interested in the fluvial domain only. As suggested

in Bernard (2022) and illustrated in figure 4, GraphFlood converges significantly faster in areas with higher Q. The fluvial410

domain only represents a minor subset of the total number of nodes in a landscape and theoretically, focusing only on these

nodes could significantly speed up the process. Induced sub-graph methods offer solutions to apply algorithms in a subset of

a directed acyclic graph without the need to process its entirety. In the case of rivers, it requires the identification of all the

nodes of interest, i.e. downstream of a given discharge or drainage area threshold. Taking full advantage of this optimisation is

challenging as it requires the dynamic identifications of the nodes of interest without processing the whole graph.415

We developed an induced sub-graph method to take advantage of that optimisation. The principle remains the same than

section 3.1, except that graph-realted operations are computed in a node-to-node basis (e.g. computing the directed acyclic

graph donors and receivers, handling of local minimas, topological ordering). A pre-computing step determines input points

based on drainage area thresholds or arbitrary input points (Tarboton, 1997). These points are pushed in a priority queue sorting

active nodes per decreasing elevation (opposite to Barnes et al. (2014)), ensuring that the most upstream node of interest that has420

not been processed yet is always the next in queue. The nodes are popped and processed from the priority queue sequentially.

Once Qin and Qout computed according to section 3.1, we push in the priority queue the receivers of the active node. The

process is repeate until emptying the queue. Note that if a node has no receiver and is not a model edge, we gradually fill the

local depression until finding an outlet, in a similar way to Davy et al. (2017) or Gailleton et al. (2023).

This version of the algorithm reproduces the results from the original one, except minor artifacts near the input points. One425

iteration takes 250 ms with GraphFlood and 15 ms with the induced graph method. For a discharge threshold of 36000m2 and

a precipitation rate of 50 mm yrs−1, the models converge for the main rivers in about 50 s for GraphFlood vs 3 s for the induced

graph method demonstrating strong potential for studies focusing on the fluvial domain. The complexity of the algorithm is tied

to the priority queue and is therefore O(n logn) with n being the number of nodes in each traversal, meaning computation time

increases non linearly as the drainage area threshold decreases. Figure 12 provides an extensive time benchmark comparing430

the efficiency of both methods in a global and per-iteration perspective.

6.3 Potential for hydromorphometry and Landscape Evolution Models

Bernard et al. (2022) demonstrated the potential of informing common scaling laws used in tectonic geomorphology (e.g.

Kirby and Whipple, 2012) with hydrodynamics. GraphFlood represents a step toward making the inclusion of hydrology more

systematic in geomorphological analysis. For example s−as(r) plots, as illustrated by both Bernard et al. (2022) and figure 9,435
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Figure 12. Time benchmark comparing the computational efficiency of GraphFlood and its induced graph variant for the Green River DEM

resampled at various resolutions. The global convergence time represents the timing for converging the model for the fluvial and colluvial

domains while the time per iterations is an important metric when considering GraphFlood for LEMs.

isolate more signals than classic S−A as per originally designed by Morisawa (1962) and Flint (1974). as(r) is not strictly

function of the downstream distance like A and has the potential to express a wider range of landform. Data points with high

as(r) and/or high s are likely to represent areas of increased stream power beyond the common geometrical knickpoint (e.g.,

increased discharge due to local channel narrowing) as demonstrated in appendix figure A1. Alternatively, low s and as testify

of abnormally flat areas (i.e., flat areas not visited by rivers), which if calculated from multiple runoff rates could unravel440

families of terraces. Commonly used metrics linked to S−A (e.g., concavity index, steepness index) are likely to express a

wider range of signals when extracted from s− as(r). Both our test sites and the study of Bernard (2022) show similar global

patterns in s− as(r) plots while displaying notably different values, regression coefficient and intercept, and absolute values.

Combined with effective width or the direct calculation of shear stress from h, hydromorphometrics can help identify and

quantify new family of responses to perturbations. Alongside with geometrical knickpoints (e.g. Gailleton et al., 2019), area of445

channel narrowing or widening or accelerated flow can be caught unravelling wider ranges of landscapes responses to pertur-

bations. Systematic calculations of all these metrics for multiple ranges of runoff rates could help redefining and completing

global scaling laws comparing discharge, drainage area, channel width and hydraulic slopes.

GraphFlood’s ability to extract metrics for various precipitation rates also opens possibilities for indirect metrics. For in-

stance, Clubb et al. (2022) and Clubb et al. (2023) highlighted the importance of valley width in understanding landscape450

evolution. By using extremely high precipitation rates with GraphFlood, it becomes possible to flood the valley and systemati-
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cally determine its width. Another potential application could involve gradually increasing precipitation rates to progressively

flood a fluvial system from its bed to its floodplain, revealing multiple families of terraces.

GraphFlood allows the fast approximation of hydrodynamics, and therefore shear stress. Coupling GraphFlood with physics

based morphodynamics (e.g. Davy and Lague, 2009; Minor et al., 2022) would allow the upscaling of short term fluvial455

dynamics to longer time scale and larger spatial scales.

7 Conclusion

This study introduces GraphFlood, an efficient algorithm for solving 2D hydrodynamics based on 2D shallow water equations

and specifically tailored for large DEMs. By employing Manning’s equation within a graph theory framework, GraphFlood

iteratively computes a stationary flow depth and discharge equilibrated to prescribed runoff rates. Leveraging graph theory460

algorithms ensures numerical efficiency, enabling GraphFlood to compute solutions for rivers in just seconds for a million-

pixel DEM. Validation against analytical solutions and established models demonstrates the accuracy of GraphFlood. The

simplicity, efficiency, and versatility of GraphFlood position it as a promising engine for incorporating 2D hydrodynamics into

large-scale topographic analysis and landscape evolution models. Future work could utilize GraphFlood to investigate river

inundation patterns, systematically extract river width as a function of water discharge, or focus on classifying landscapes to465

better relate landscape shape to geomorphological processes.

Code availability. The static version of the code used in this contribution can be found in Gailleton (2024). Updates on newer versions and

more material will be posted on https://github.com/bgailleton/Gailleton_et_al_2024_GraphFlood_esurf .

Data availability. The DEM utilised in this study are openly available from opentopography.org under the datasets OpenTopography (2012)

and OpenTopography (2020).470

Appendix A: Notations
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Table A1. Nomenclature for Scientific Notations

Notation Meaning Dimension Unit

Physical quantities

Z Topogrpahic surface [L] m

Zh Hydraulic surface [L] m

s Hydraulic slope [L/L] m/m

h Flow Depth [L] m

u Flow velocity [L/T ] m/s

q Water discharge per unit width [L2/T ] m2/s

Q Volumetric water discharge [L3/T ] m3/s

P Precipitation rate [L/T ] m/s

α Manning’s exponent - -

n Manning’s friction coefficient [TLα−1] smα−1

t Time [T ] s

as(r) Effective drainage area for a runoff rate [L] m

Wr Effective width [L] m

Discrete Quantities

i Generic index of cell - -

donors(i) list of cell directly upstream of i - -

receivers(i) list of cell directly downstream of i - -

h∗ Analytically determined flow Depth [L] m

qin Water discharge per unit width entering a cell [L3/T ] m3/s

qout Water discharge per unit width leaving a cell [L3/T ] m3/s

Qin Volumetric water discharge entering a cell [L3/T ] m3/s

Qout Volumetric water discharge leaving a cell [L3/T ] m3/s

Ac Surface area of a single cell [L2] m2

A D8 Drainage Area [L2] m2

∆W Flow width for a given cell [L2] m2

C Correction factor for Multiple flow partitionning - -

Cr Courant Number - -
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Appendix B: Outliers in s - as(r)

Figure A1. Zoom on some outliers for Hanalei test site, isolated using the data on figure 9. From the left to the right, the maps show the flow

depth with the localisation of the outliers, the specific area and the hydraulic slope. Panel a displays outliers concentrating flow on narrowing

section of the river or on its bends. Panel b shows the case of a converging branches. In both cases, outliers are accompanied with a slight

increase in s.
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