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Abstract. The warming of high mountain regions caused by climate change is leading to glacier retreat, decreasing snow 

cover, and thawing permafrost, which has far-reaching effects on ecosystems and societies. Landsat Collection 2 provides 10 

multi-decadal land surface temperature (LST) data, principally suited for large-scale monitoring at high spatial resolution. In 

this study, we assess the potential to extract LST trends using Landsat 5, 7, and 8 time series. We conduct a comprehensive 

comparison of both LST and LST trends with data from 119 ground stations of the IMIS network, located at high elevations 

in the Swiss Alps. The direct comparison of Landsat and IMIS LST yields robust satellite data with a mean accuracy and 

precision of 0.26 K and 4.68 K, respectively. For LST trends derived from a 22.6-year record length, as imposed by the IMIS 15 

data, we obtain a mean accuracy and precision of -0.02 K yr-1 and 0.13 K yr-1, respectively. However, we find that Landsat-

LST trends are biased due to unstable diurnal acquisition times, especially for Landsat 5 and 7. Consequently, LST trend maps 

derived from the 38.5-year Landsat data exhibit systematic variations with topographic slope and aspect that we attribute to 

changes in direct shortwave radiation between different acquisition times. We discuss the origin of the magnitude and spatial 

variation of the LST trend bias in comparison with modelled changes in direct shortwave radiation and propose a simple 20 

approach to estimate the LST trend bias. After correcting for the LST trend bias, remaining LST trend values average between 

0.07 and 0.10 K yr-1. Further, the comparison of Landsat- and IMIS-derived LST trends suggests the existence of a clear-sky 

bias, with an average value of 0.027 K yr-1. Despite these challenges, we conclude that Landsat LST data offer valuable high-

resolution records of spatial and temporal LST variations in mountainous terrain. In particular, changes in the mountain 

cryosphere such as glacier retreat, glacier debris cover evolution and changes in snow cover, are preserved in the LST trends 25 

and potentially contribute to improved prediction of permafrost temperatures with large spatial coverage. Our study highlights 

the significance of understanding and addressing biases in LST trends for reliable monitoring in such challenging terrains. 

1 Introduction  

The Earth's surface temperature, at the land-atmosphere interface, is a key parameter of the surface energy budget 

and influences a range of biological, chemical, and physical processes within the critical zone (e.g., Brantley et al., 2007). It 30 
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reflects both climate change and land surface processes and is defined as an essential climate variable by the World 

Meteorological Organisation (Bojinski et al., 2014). Increasing surface temperature is expected to have a severe adverse impact 

on ecosystems, human health, and infrastructure (IPCC, 2023). With time, surface warming propagates to greater depths, 

resulting in additional changes. High mountain regions that often host glaciers, snow cover, and permafrost, are particularly 

sensitive to increasing temperatures. Where mean annual ground temperatures rise to above 0°C, permafrost thaws, thereby 35 

destabilizing steep hillslopes (Gruber and Haeberli, 2007; Huggel, 2009; Allen et al., 2009). Indeed, increased rockfall activity 

and several recent significant slope failures in the European Alps (Gruber et al., 2004; Harris et al., 2009; Walter et al., 2020) 

have been linked to permafrost thaw. Such catastrophic events pose serious hazards to both people and infrastructure in 

numerous mountain ranges on Earth. Monitoring Earth’s surface temperature and its spatiotemporal variation, therefore, 

significantly contributes to the improved prediction of the impacts of Global Warming. Ground-based instrumental monitoring 40 

of the surface temperature, however, is laborious and difficult to implement over large regions and in remote mountainous 

areas with steep hillslopes. Therefore, the spatial coverage of station-based surface temperature data is limited, especially when 

it comes to long-term records.  

Satellite platforms equipped with thermal infrared sensors, allow measuring the land surface temperature (LST) at a 

range of spatial and temporal resolutions and have long been used in a variety of research fields (Li et al., 2013, Hulley et al., 45 

2019, Reiners et al., 2023; Li et al., 2023). Temporal LST analysis for climate change studies or environmental monitoring 

requires multi-decadal time series data, which often encounters the challenge of maintaining the temporal coherence of the 

thermal data (Kuenzer and Dech, 2013). Many LST studies rely on data from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) sensor onboard the Terra and Aqua satellites (Reiners et al., 2023). MODIS LST records are 

temporally consistent (Hulley and Hook, 2011) and LST trends have been recently derived globally (Sobrino et al., 2020). 50 

However, the relatively coarse spatial resolution of the thermal bands (1000 m) restricts the applicability of MODIS LST in 

high mountainous regions, where the steep terrain results in large spatial gradients in surface temperatures. In addition to 

altitudinal gradients in temperature, due to the decreasing air temperature, temperature variations also exist in response to 

variable exposition to the sun.  

As the robustness of trends increases with longer time series, LST records from the Advanced Very-High-Resolution 55 

Radiometer (AVHRR) with 1000 m spatial resolution and the Landsat Program (60 – 120 m spatial resolution), are particularly 

useful for this purpose (Prata, 1994; Gutman and Masek, 2012). Both suffer, although in different manner, from orbital drift 

effects, causing the acquisition time to vary over time (Julien and Sobrino, 2022, Zhang and Roy, 2016). Orbital drift 

corrections for AVHRR LST time series are continuously developed (e.g., Gutman et al., 1999; Mao and Treadon, 2013; Dech 

et al., 2021, Julien and Sobrino, 2022), as the daily temporal resolution allows unique insights into long-term dynamics of 60 

LST. Landsat, with its lower temporal but higher spatial resolution, has so far been underutilized for time series analysis (Fu 

and Weng, 2015). The recently released Landsat Collection 2, with improved radiometric calibration and geolocation 

information (Crawford et al., 2023), provides consistently generated LST data (Malakar, 2018). Landsat-derived LST time 
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series therefore present a unique opportunity to explore the dynamics of high mountain landscapes in response to climate 

change and human land cover modifications.  65 

For instance, recently published LST trends of glacier surfaces in High Mountain Asia show enhanced surface 

warming trends due to supraglacial debris cover and its expansion (Ren et al., 2024). Spatial patterns in LST trends are also 

expected in areas of seasonal snow cover. Especially at altitudes near the 0 °C isotherm, small changes in air temperature can 

have a significant impact on snow cover (Pepin and Lundquist et al., 2008). Observations show that in the European Alps snow 

cover declines in extent, duration and depth (Matiu et al., 2021) with vegetation expanding into higher elevations and thus 70 

changing the surface albedo (Rumpf et al., 2022). Furthermore, because mountain permafrost temperatures vary in response 

to changes in air temperature and snow cover (Smith et al., 2022), spatial patterns in LST and LST trends have the potential to 

inform about expected spatial variations in permafrost temperature, depth and extent. Despite sufficiently long records and the 

high spatial resolution of Landsat observations, deriving LST trends is complicated as acquisition times have changed by up 

to 1 h (Roy et al., 2020), due to orbit changes over the last decades (Zhang and Roy, 2016). 75 

Here, we explore the opportunities of monitoring LST trends in steep mountainous regions using Landsat Collection 

2. We first assessed the reliability of Landsat-derived LST and LST trends by comparison with ground observations from the 

Intercantonal Measurement and Information System (IMIS) network, which provides comparable radiometric surface 

temperatures at high-elevation sites across the Swiss Alps (Figure 1Figure 1). We then calculated spatially distributed LST 

trends and identify a spatially variable bias that we associate with orbital drift of the satellites. We analyse the magnitude and 80 

spatial variation of this bias and present a simple approach to correct for it. Additionally, we address issues related to the clear-

sky bias and explore opportunities and limitations for studying cryosphere changes using the corrected Landsat LST trends. 

 

Figure 1. Intercantonal Measurement and Information System (IMIS) network of automated weather stations distributed across the 

Swiss Alps.  The presented 115 stations provide data provide radiometric surface temperatures at 30-minute intervals with varying 85 
time spans greater than 5 years, indicated by inset color. The red rectangle identifies the upper Rhone Valley shown in Figure 

7Figure 7. The black dashed rectangle indicates the Landsat footprint at path 194 and row 27, referred to in Figure 2. 
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2 Materials and Methods 

2.1 Landsat-derived LST 

Landsat Collection 2 (C2) - Level-2 Science Products provide multi-decadal observational remote sensing data that 90 

is geometrically and radiometrically consistent and has harmonized quality assessment bands (Dwyer et al., 2018). We used 

the Google Earth Engine (GEE) to analyze LST data (Malakar et al., 2018) from Landsat 5 Thematic Mapper (TM), Landsat 

7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Thermal Infrared Sensor (TIR) (hereafter LT05, LE07, LC08) 

covering a timespan from 1984 to 2022. The native spatial resolutions of LT05 (120 m), LE07 (60 m) and LC08 (100 m) have 

been resampled in Collection 2 to 30 m, which is the spatial resolution that we used in our study. Throughout the study, we 95 

use unit degrees Celsius (°C) for absolute temperatures and Kelvin (K) for temperature differences and rates. 

The Landsat C2 LST calculation is based on the single-channel algorithm (Malakar et al., 2018) that relies only on 

one thermal infrared band and which has been widely used to retrieve LST from Landsat data (Jiménez‐Muñoz and Sobrino, 

2003; Cook et al., 2014). The conversion of at-sensor radiometric temperature to LST requires an atmospheric correction and 

knowledge of the surface emissivity. The atmospheric correction in the Landsat C2 LST calculation is based on the total 100 

column water vapor derived from NCEP atmospheric reanalysis data (Kalnay et al., 1996). Mean emissivity estimates over the 

time period 2000-2008 are based on the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global 

Emissivity Dataset (ASTER GED) (Hulley et al., 2015) and temporally adjusted using Landsat-derived NDVI and NDSI 

(Normalized difference snow index). Inspection of the ASTER GED reveals several artifacts, which appear to align with 

artiefacts in the Landsat LST data. To avoid erroneous LST data and mask out clouds in the Landsat images, we applied several 105 

filters and masks that we describe in more detail in section 2.3.section 0. 

The scene acquisition time of Landsat for the Swiss Alps lies mostly between 09:30 and 10:30 UTC. Figure 2 shows 

the acquisition times from the different Landsat sensors during the study period. Whereas LC08 has a relatively stable 

acquisition time, LE07 shows slightly continuous drift before and strong drift after about 2018, due to depleted onboard fuel 

resources (Qiu et al., 2021). LT05 on the other hand shows both sporadic and continuous orbit changes that lead to significant 110 

variations in acquisition time (Zhang and Roy, 2016). Although orbit variations are often due to sporadic orbit keeping 

maneuvers, a gradual increase in overpass times is evident too (Roy et al., 2020). When fitting a linear model to all satellites 

together (but excluding LE07 data after 2018 due to strong orbital decay), the acquisition time has increased approximately 

from 9:29 in 1984 to 10:16 in 2022 (Figure 2, dotted line). We expect that LST trends derived from the 38.5-year time series 

are likely biased by the progressively delayed acquisition times, probably towards more positive values, due to gradual 115 

warming of the land surface in the morning. Because different acquisition times also lead to geometric changes in the sun-

target-sensor configuration, this bias may additionally vary with slope and aspect of the topography. We describe our approach 

to analyze this issue in section 2.4. section 0. 
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Figure 2. Acquisition times (UTC) of Landsat LT05 (red), LE07 (blue), and LC08 (orange) at path 194 and row 027. LE07's 120 
noticeable orbital drift after 2018 (hollow blue circles), causes a significant shift in revisit timing and has been excluded from the 

analysis. Linear regression lines (dotted and dashed) depict acquisition time trends, with and without abrupt LT05 orbit changes 

prior to 2000. The gray-shaded area indicates the time period for which IMIS station data exists, although with variable record 

length.  

2.2 IMIS-derived LST 125 

We evaluated the Landsat-derived LST data by comparing them with in situ surface temperature measurements from 

automated weather stations of the IMIS network. The IMIS network was set up by the Swiss Federal Institute for Snow and 

Avalanche Research (SLF) and consists of 186 stations distributed across the Swiss Alps. We used a subset of 119 stations 

(Table A.1) that record provide radiometric surface temperature records  in 30 min intervals. The IMIS stations measure 

radiometric surface temperature with an infrared sensor measuring in a wavelength range of 7 to 20 μm (David Liechti, person. 130 

communication, 2023. The record length per station varies, with the longest record covering a period from 1996 to 2019 (Figure 

1Figure 1). The IMIS stations are located between 1258 m and 2953 m elevation above sea level and are usually installed on 

flat to gentle sloping ground. As the stations are primarily used for snow monitoring, the reported surface temperature is 

calibrated using an emissivity of 0.98 (for snow), which may thus introduce a bias towards colder temperatures during snow-

free conditions. Because the transition between snow-covered and snow-free conditions cannot be unambiguously determined 135 

based on the IMIS data alone, and because of unknown actual emissivity values of the ground surface, we refrained from 

efforts to correct this bias. For a surface temperature of 15 °C, a change in emissivity of 0.01 would result in a temperature 

change of 0.73 K (Kuenzer and Dech, 2013). This bias decreases for lower LST values. Despite potential measurement 

deviations under snow-free conditions, the IMIS stations measure radiometric surface temperatures and are thus well suited to 

compare with Landsat derived LST. Additionally, the high temporal resolution of the IMIS data allows to compare LST clear-140 

sky and cloudy-sky conditions using the Landsat overpass times. We expect the large difference in spatial resolution to 

introduce additional uncertainty as Landsat most likely provides a mixed-pixel signal of potentially spatially-varying LSTs, 

compared to the IMIS data. 

2.3 LST processing and trend estimation 

For the studied period and the chosen Landsat sensors, we obtained for each 30-m pixel in the co-registered image 145 

collection several hundred LST observations scattered across different times of a year. We used a harmonic model including 
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a linear trend (Eq. 1Eq. 1) to perform an ordinary least squares regression (Shumway and Stoffer, 2016; Fu and Weng, 2015) 

on the LST time series data in order to estimate (1) the mean annual LST (MALST), (2) the annual LST amplitude, (3) the 

long-term LST trend and (4) the phase shift: 

 𝐿𝑆𝑇𝑡 = 𝛽0 + 𝛽1𝑡 + 𝐴𝑐𝑜𝑠(2𝜋𝜔𝑡 − 𝜑) Eq. 1 

where 𝛽0 is the mean annual LST (K), 𝛽1 is the slope (K yr-1) of the linear trend, 𝑡 is the time in years, 𝐴 is the amplitude (K), 150 

𝜔 is the frequency (equal to one for one cycle per year) and 𝜑 is the phase. The harmonic term can be decomposed into a sine 

and a cosine term, and thus Eq. 1Eq. 1 is linearized to: 

 𝐿𝑆𝑇𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑐𝑜𝑠(2𝜋𝜔𝑡) + 𝛽3𝑠𝑖𝑛(2𝜋𝜔𝑡) Eq. 2 

Where 𝛽2  and 𝛽3are the newly introduced coefficients that are equal to 𝐴𝑐𝑜𝑠(𝜑) and 𝐴𝑠𝑖𝑛(𝜑), respectively. GEE allows 

ordinary least squares regression of Eq. 2Eq. 2 and thus the determination of the four coefficients 𝛽0 to 𝛽3. We acknowledge 

that LST time series may contain abrupt changes due to land cover change, for example, which may not be well captured by a 155 

linear model (Zhu and Woodcock, 2012). Different approaches have been proposed to detect such changes and simultaneously 

obtain trend values (see the recent review by Li et al., 2022). However, the change detection approaches currently available in 

GEE are more limited (Kennedy et al., 2010; Zhu and Woodcock, 2012) and, as we will show later, the segmentation of the 

time series affects our ability to account for LST trend bias due to orbital drift. 

Prior to fitting Eq. 2 to the Landsat LST data, we implemented filters to mask (1) cloud-contaminated pixels and (2) 160 

duplicate LST observations with the same date that result from along-track overlapping Landsat scenes, and (2) cloud-

contaminated pixels. The along-track duplicates were removed by creating image pairs of each Landsat scene and its temporal 

neighbour in the same path and masking the overlapping region of the adjacent scene. The pairs of subsequent Landsat scenes 

were identified by a difference in acquisition time of less than 100 seconds which is small enough to only select the directly 

following scene. Cloud masking was done using the Landsat C2 Pixel Quality Assessment Band (QA) cloud flag with at least 165 

medium confidence (Dwyer et al., 2018; Zhu and Woodcock, 2012). Although the cloud flag of the QA band provides good 

accuracy (Foga et al., 2017), bright surfaces such as snow and ice in high mountain settings, can still be challenging. 

Predominantly in LT05 data, we find extremely cold LST values, which are likely clouds that were not captured by the cloud 

detection algorithm. To overcome this issue, we applied an additional filter that masks outliers, by applying a threshold to the 

residuals between modeled and observed LST. We first calculated the 𝛽 coefficients on the cloud-filtered data, including 170 

potential outliers missed by the QA cloud flag, and then uploaded them to GEE. In a second step, we predicted for each Landsat 

acquisition time the corresponding LST using the uploaded 𝛽 coefficients (Eq. 2Eq. 2) and applied a threshold of +/-30 K to 

the residuals to mask extreme LST values (due to undetected clouds or wildfires, for example) that might otherwise bias the 

LST trend (cf., Weng and Fu, 2014). The procedure was applied to the complete Landsat time series data. Figure 3 shows an 

exemplary LST time series from each sensor, the harmonic model with linear trend, the residuals, and the filtered outliers at 175 

the location of IMIS station AMD2. Identical figures from all IMIS locations can be found in the supplement file B.  
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Figure 3. Time series of Landsat LT05 (red), LE07 (blue) and LC08 (orange)-derived Land Surface Temperature (LST) at location 

47.17° N, 9.15° E (IMIS station AMD2). The harmonic model (solid sinusoidal line) was derived by least squared regression including 

linear trend component (dashed line). Outliers (hollow circles) were detected by applying a threshold of +/-30 K to the (b) residuals 180 
and removed from further analysis. Panel (c) and (d) show the distribution of the LST and residuals respectively. 

 

To assess the reliability of the Landsat-derived LSTs and LST trends, we compared them with LST data derived from 

the IMIS network. We first extracted the Landsat LST time series at the locations of the IMIS stations. As IMIS records are 

only available in 30-minute intervals, we linearly interpolated LSTs at the Landsat acquisition times to obtain comparable LST 185 

time series of equal length. Based on Eq. 2, we derived the mean annual LST, the LST amplitude, the phase of the harmonic 

oscillation, and LST trends for both datasets. We further assessed the sensitivity of LST trends to the LT05, LE07, and LC08 

sensors by comparing data from each sensor with the corresponding IMIS LST data, where the observation periods overlap. 

Because the temporal overlap of the individual Landsat sensors and the IMIS data varies, this comparison also results in 

different record lengths.  190 

We used student’s t-test to draw statistical inference for the regression slope and evaluate the significance of LST 

trends (Muro et al., 2018). Pixels with non-significant trends (p-values < 0.05) were flagged. Note that the comparison of LST 

trends between Landsat and IMIS data, as well as the spatial analysis of LST trends in relation to the LST trend bias is based 

on all trend data and does not require statistical significance of trend values. 

2.4 LST trend bias analysis 195 

We expect the LST trend to be biased due to the variations in acquisition time caused by orbital change of the satellites 

(Figure 2). Within the 47 minutes time difference in image acquisition between the beginning and the end of the 38.5-year 

Landsat observation period, the sun's position and thus also the solar zenith angle changes notably, modifying the amount of 

incoming shortwave radiation received by the surface. In mountainous terrain with variably steep and exposed topography, we 

expect this effect to be spatially non-uniform. Based on the fitted linear model of the acquisition time, we analyzed changes in 200 
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the incoming direct solar radiation (∆Sin) for the Swiss Alps using the “insol” functional library (Corripio, 2003). We studied 

the relationship of LST trends and ∆Sin with topography by aggregating mean values for 2° slope and 10° aspect sections 

derived from the 10-m resolution Copernicus digital elevation model (Copernicus DEM, 2022). Prior to averaging LST trends 

we excluded glaciers and recently deglaciated areas using a mask based on glacier outlines from the Randolph Glacier 

Inventory V6 (RGI Consortium, 2017), which we expanded by 10 pixels in the 30-m resolution LST trend images. 205 

Additionally, we excluded all regions below 1700 m elevation, which are likely influenced by anthropogenic land cover 

changes (Rumpf et al., 2022). 

2.5 Validation metrics 

The LST data used in this study, obtained from the Landsat C2 archive, is based on three different sensors (LT05, 

LE07 and LC08) and auxiliary datasets such as the ASTER GED and NCEP reanalysis data. Since all these datasets have their 210 

limitations, it is important to validate LST data to ensure its accuracy and reliability. We compared the Landsat-derived LST 

with in situ LST measurements from the IMIS stations at the Landsat acquisition time. We followed the “Land Surface 

Temperature Product Validation Best Practice Protocol” (Guillevic et al., 2018) by using metrics of accuracy, precision and 

uncertainty for reporting LST validation results. The accuracy (), as a measure of the systematic error/bias, is given by the 

arithmetic mean of the difference between the satellite derived LST and the in situ measured reference LST (∆LST ref). The 215 

precision () describes the spread of the LST around the expected value (∆LSTref) and can be approximated by the standard 

deviation. The uncertainty is given by the Root Mean Square Error (RMSE) and describes the dispersion of the LST values. 

Because the accuracy and precision of LST data can be strongly affected by outliers, we also report the median of the ∆LSTref 

for the accuracy and the median absolute deviation of the residuals for the precision as additional validation metrics (Guillevic 

et al., 2018). We apply these validation metrics to both the LST data and the LST trends. We emphasize that in our study the 220 

term “validation” may be slightly misleading as it suggests that the ground-based IMIS measurements provide the correct LST 

values. However, we note that even the IMIS data is most likely biased during snow-free conditions (see section 2.2) and 

subject to measurement uncertainties. In addition, the different footprint of the ground- (~10 cm) and space-borne (~10-100 

m) measurements allow for deviations due to spatial heterogeneity in LST. We will come back to this issue in our discussion. 

Nevertheless, we argue that the comparison of these data sets is a valuable effort and that consistency between both temperature 225 

measurements provides confidence. 

3 Results 

3.1 LST comparison 

For comparing Landsat-derived LST with ground-based LST from the IMIS network, we interpolated IMIS LST’s at 

the Landsat acquisition time. In total 44981 Landsat observations are available for comparison with IMIS observations. The 230 
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LST data from all three Landsat sensors are scattered about the 1:1 line in comparison with the IMIS data (Figure 4 a-d). At 

around 0°C IMIS LST, the spread in Landsat-derived LST is considerably larger than the observations at the IMIS stations.the 

highest, which is likely related to differences in spatial resolution and the presence or absence of snow cover in the different 

measurement areas. It furthermore appears that LSTs derived from each Landsat sensor tend to be slightly warmer for LSTs 

above 0 °C compared to those below 0 °C. Mean- and median-based metrics of accuracy (μ), precision (σ) and uncertainty 235 

(RMSE) between Landsat and IMIS LST for each sensor and the entire time series, as shown in Figure 4 and Table 1. The 

accuracy (µ) ranges from +0.05 K (LC08) to +0.45 36 K (LE07) and indicates a slight positive bias. The precision (σ) ranges 

from 4.09 04 K (LE07) to 6.13 06 K (LT05). Considering data from all three sensors together (Figure 4d), the accuracy is 

+0.26 K, the precision is 4.69 K and the uncertainty is 4.7 K (Table 1). Considering median values, the precision improves but 

the accuracy deteriorates.  240 

 

Figure 4. Comparison of Landsat-derived Land Surface Temperature (LST) with IMIS LST for sensors (a) Thematic Mapper 

(LT05), (b) Enhanced Thematic Mapper Plus (LE07), (c) Thermal Infrared Sensor (LC08) and (d) LT05, LE07, and LC08 together 

(L578). Colors denote the number of data points by decadal logarithm. Inset figures show histograms of LST residuals: ∆LST = 

Landsat LST-IMIS LST. 245 

Table 1. Validation metrics of Landsat-derived LST in comparison with IMIS-derived LST. 
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Quantity  Symbol Unit LT05 LE07 LC08 L578 

Accuracy 

(mean/median) 

μ K 0.26/0.72 0.36/0.5 0.05/0.31 0.26/0.5 

Precision (mean/median) σ K 6.06/2.47 4.04/1.7

0 

4.26/2.05 4.69/2.0

1 

Uncertainty (RMSE) RMSE K 6.07 4.06 4.26 4.7 

Sample number n - 11526 21853 11602 44981 

 

3.2 LST trend comparison 

We also compared Landsat-derived LST trends with trends derived from IMIS LST data interpolated at Landsat 

observation times, for each sensor as well as the complete time series (Figure 5, Table 2). We excluded stations with record 250 

lengths of less than 5 years. Short time series result from different temporal overlaps between the IMIS records and Landsat 

sensors, in particular LT05 and LC08 (Figure 5 a, c). These show large scatter about the 1:1 line compared to trends derived 

from longer time series, resulting in relatively large uncertainties (Table 2). Therefore, amongst the different sensors, LE07 

provides the most reliable results (Figure 5b), with better accuracy and precision (Table 2), due to the large temporal overlap 

with the IMIS data. Consequently, our comparison of trends derived from all sensors with IMIS-derived LST trends (Figure 255 

5d) is primarily dominated by LE07. Considering data from all three sensors together, the accuracy is -0.02 K yr-1 and the 

precision is 0.13 K yr-1, improving considerably when referring to median values. 
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Figure 5. Comparison of Landsat-derived Land Surface Temperature (LST) trends with IMIS LST trends for sensors (a) Thematic 

Mapper (LT05), (b) Enhanced Thematic Mapper Plus (LE07), (c) Thermal Infrared Sensor (LC08) and (d) LT05, LE07, and LC08 260 
together (L578). Stations with a record length (marker color) of less than five years have been omitted. Trend residuals (Landsat 

LST trends – IMIS LST trends) together with the accuracy (μ) and precision (σ) values are shown in the inset histograms. Note the 

strong impact of record length on the comparison of LST trends. 

Table 2. Validation metrics of Landsat-derived LST trends in comparisons with IMIS-derived LST trends. 

Quantity  Symbol Unit LT05 LE07 LC08 L578 

Accuracy (mean/median) μ K yr-1 0.12/ 0.11  -0.03/ -0.02  -0.07/ -0.06 -0.02/ -

0.01 

Precision (mean/median) σ K yr-1 0.20/ 0.13 0.09/ 0.05 0.31/ 0.19 0.13/ 0.04 

Uncertainty (RMSE) RMSE K yr-1 0.23 0.10 0.31 0.13 

Sample number n - 97 115 113 115 

3.3 Spatiotemporal variations of LST 265 

We applied Eq. 2Eq. 2 to the Landsat LST time series (LT05, LE07 and LC08) across Switzerland using GEE. The 

model results are presented as maps of the mean annual land surface temperature (MALST), the LST amplitude, the phase of 

the harmonic oscillation and the LST trend in Figure 6, with a focus on the upper Rhone Valley shown in Figure 7Figure 7. 
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The presented MALST values are for the year 2000 and range from -25°C to +25°C. We observe consistently the highest 

MALST values at low elevations and the lowest at high elevations, where snow- and ice-covered areas range from 0°C to -270 

20°C. As seen in the detailed map in Figure 7Figure 7a, MALST values show reasonable spatial variations with terrain aspect 

and no significant processing artefacts are present. East-facing slopes consistently display higher MALST compared to west-

facing ones, which aligns with expectations due to the late morning overpass of the Landsat satellites (Figure 7Figure 7a). Data 

gaps, which are in Figure 6 most evident in southern Germany, are due to data gaps in the ASTER GED data and consistent 

across all variables. LST amplitude values range between 3 and 25 K (Figure 6b), with the lowest values where snow or ice 275 

cover is present all year round. High amplitude values are found in regions with seasonal snow cover that also heat up during 

the summer (Figure 7Figure 7b). The phase of the harmonic oscillation (Figure 7Figure 7c), shows spatial variations in seasonal 

shifts, which we report as the day of the year with the highest (peak) temperature in the annual LST cycle. The phase values 

display an altitudinal gradient (Figure 6c) with a slight aspect dependence (Figure 7Figure 7c).  

 280 
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Figure 6. Landsat land surface temperature (LST) time series derived (a) mean annual LST (MALST), (b) LST amplitude and (c) 

phase of the harmonic oscillation and (d) LST trend across Switzerland and adjacent areas.  

 

 285 
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Figure 7. Landsat land surface temperature (LST) time series derived (a) mean annual LST (MALST), (b) LST amplitude, (c) phase 

of the harmonic oscillation and (d) LST trend, across the upper Rhone Valley. 

 

Averaged across the entire study area, the mean LST trend is 0.14 K yr-1 with the 5th and 95th percentile of 0.08 K yr-1 and 290 

0.21 K yr-1, respectively. (Figure 6d). Areas with high population density often appear to exhibit trend values exceeding 0.2 K 

yr-1. Notably, the highest trend values are observed in areas where retreating glaciers expose sediment or bedrock (Figure 

7Figure 7d). Compared to the MALST, LST amplitude and the phase of the harmonic oscillation, the LST trend values display 

more artefacts. Subtle but systematic across-track jumps in LST trends are visible in the northeast of the map in Figure 6d. 

These artefacts align with the Landsat orbit and variations in the number of observations due to overlapping scenes from 295 

adjacent orbital tracks (Figure C1, see supplementary material). Similarly, the post-2003 Landsat LE07 scan line corrector 

failure induces across-track stripes in the number of LST observations that also appear in some parts of the LST trend maps 
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(only faintly visible on some glacier surfaces in Figure 7Figure 7d). These patterns in LST trend values are consistent with the 

sensitivity to record length we observed in our comparison of Landsat- and IMIS-derived LST trends (section 3.2). We further 

discuss this point in section 4.1. Finally, LST trends in the detailed map display an aspect dependency, with generally lower 300 

values at east-facing and higher values at west-facing slopes (Figure 7Figure 7d). Regions with flat topography, as in the 

foreland, wide valleys, or lakes show more continuous trend values. We suspect that this effect is related to the shift towards 

later acquisition times and thus to variations in the solar zenith angle over the 38.5 years Landsat record. In the following 

section we examine this trend bias in more detail using IMIS station data. 

 305 

3.4 LST trend bias 

To estimate the LST trend bias in flat to gently sloping terrain, we used LST data from the IMIS stations. We pointed 

out in section 2.1 that Landsat acquisition times have changed between 1984 and 2022. Approximating this change by a linear 

model for the acquisition time, yields a time difference of 47 minutes over a period of 38.5 years (from 9:29 in 1984 to 10:16 

in 2022; Figure 2). To estimate how much LST difference we would expect to result purely from this 47-minute delay in image 310 

acquisition,The linear change in Landsat acquisition time ranges from 9:29 in 1984 to 10:16 in 2022 over a period of 38.5 

years. To estimate how much LST difference can occur in 47 minutes, we exploit the high temporal resolution IMIS data, by 

calculating for every day and every IMIS station the LST difference between 10:16 and 9.29. The daily LST differences 

(∆LST) show a bimodal distribution (Figure 8), which we separated using bimodal Gaussian regression. The daily LST 

differences (∆LST) at 9:29 h and 10:16 h UTC across all 119 IMIS stations, derived from linear interpolation of the 30-minute 315 

interval raw data, show a bimodal distribution (Figure 8), which we separated using bimodal Gaussian regression. During 

melting periods, snow surfaces remain locked at the melting point and ∆LST values are essentially zero (blue curve). The 

remaining ∆LST values are normally distributed (red curve) with a mean ∆LST of 1.72 K and a standard deviation of 0.93 K. 

Over a 38.5-year period, this suggests an average LST trend bias of 0.045 K yr-1 . However, the IMIS stations are located on 

for flat to gently sloping terrain and the LST trend bias varies with topography. 320 
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Figure 8. Bimodal distribution of IMIS-derived land surface temperature differences (∆LST) of daily LST interpolated at 9:29 h 

and 10:16 h. Mean (μ) and standard deviation (σ) were obtained from bimodal gaussian regression. Over the 38.5-year time period, 

a mean ∆LST of 1.72 K may thus explain 0.045 𝐊𝐲𝐫−𝟏 of the LST trend bias over flat and gentle sloping terrain where IMIS stations 

are typically located. 325 

The influence of topographic slope and aspect on the LST trends is shown by aggregated mean values for 2° slope 

and 10° aspect bins in Figure 9c. For slope angles above ~10° LST trends are generally lower on east-facing slopes whereas 

they are higher on west-facing slopes. Mean LST trend values for slope angles above 75° are noisy due to very few samples 

(pixels) and have been excluded from analysis. We compared this pattern with modeled differences in incoming solar radiation 

between 9:29 h and 10:16 h (∆Sin) for the 1st of all months of the year using terrain parameters from the DEM of our study 330 

area. In Figure 9d we show the pattern for July, which turned out to resemble the LST trend pattern the most, although 

differences in ∆Sin patterns between May and September are generally small. 

Overall, we find large similarities in the general pattern of how mean LST trends and ∆Sin vary with slope and aspect (Figure 

9c, d; note that one the colorbar in d is diverging while the other is continuous). Specifically, the cross sections shown for 

slope angles of 30° and 50° (Figure 9e, f), highlight the similar sinusoidal variation of LST trend and ∆Sin with aspect. We 335 

observe that the maximum and minimum values of LST trends for a given slope appear progressively translated to lower aspect 

values for slopes >30°. This pattern is absent in the ∆Sin values. As expected, LST trend and ∆Sin variations with aspect are 

low for slope angles <10°. However, whereas the average ∆Sin value for any given slope and across all aspects is relatively 

similar, this is not the case for LST trends. There, we observe higher trend values for small slope angles when averaged across 

all aspects, compared to higher slope angles.  340 
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Figure 9. Incoming shortwave radiation at 9:29 h (a) and 10:16 h (b), land surface temperature (LST) trend (c) and shortwave 

radiation difference between both times (∆Sin) (d) across Switzerland, excluding glaciers and all regions below 1700 m. Values are 

averaged for 2° slope and 15° aspect bins. Cross-sections of 30° and 50° slope angles show a similar sinusoidal pattern between mean 

LST trend (e) and mean ∆Sin (f), indicating LST trends biased by orbital drift. 345 

 

4 Discussion 

4.1 Uncertainties related to LST and LST trends 

Our comparison of Landsat-derived and in situ-measured IMIS LSTs has shown good agreement with a mean 

accuracy of 0.26 K for the combined Landsat sensors (Figure 4, Table 1). We observed no significant deviations in accuracy 350 

for the individual sensors, but the number of data points vary due to different temporal overlap of IMIS records and Landsat 

sensors. The slight positive bias of Landsat-derived LSTs greater than 0 °C, compared to those measured from the IMIS 

stations, is likely due to inaccurate IMIS LST data during snow-free conditions. The radiometric temperature measurements 

at the IMIS stations are based on a constant emissivity value of 0.98 for snow, resulting in biased temperatures for snow-free 

conditions. This explanation is consistent with greater accuracy at negative IMIS-derived LSTs, which often fall together with 355 

snow cover. The relatively large precision value of 4.69 K is likely in part due to the scatter around 0 °C, which is not 
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necessarily a faulty or inaccurate measurement but rather caused by mixed-pixel effects due to the large resolution differences 

between IMIS and Landsat. During snowmelt periods, the IMIS sensor records ~0°C LST as long as snow persists under the 

sensor. Simultaneously, however, the larger footprint (60-1200 m) of the Landsat measurement may record a mixed signal in 

the wider area around the IMIS station, potentially ranging from snow-free patches in sun-exposed areas to non-melting snow 360 

cover in shadows, for example. By excluding data points where IMIS LST is between -3.5 °C and +3.5 °C, which are XY30% 

of all data points, the precision and uncertainty for L578 reduces to 4.37 and 4.38, respectively. Despite the relatively large 

uncertainty and a slight warm temperature bias, we find that the comparison of almost 4.5 × 104 LST measurements shows 

good agreement. We note, however, that the IMIS network's spatial distribution does not fully represent the topographic 

complexity encountered in high mountains, as the stations are mostly installed on flat to gentle sloping surfaces below 3000 365 

m elevation.  

The robustness of LST trends varies among Landsat sensors due to different temporal overlaps with the IMIS station 

data (Figure 2). Using LST data from all three sensors, the temporal overlap with IMIS LST data covers a record length of 

22.6 years. Trends with such large temporal overlap are aligned well about the 1:1 line with a mean accuracy of -0.02 Kyr−1, 

based on the residual s while record lengths < 15 years show significantly more variability. However, this long record 370 

comparison is dominated by LE07, which has the longest most overlap in the observation period (Figure 2). Although we are 

unable to evaluate LST trends from LT05 and LC08 based on long time series, our comparison together with the prevcious 

comparison of Landsat-derived and IMIS-derived LSTs for the different sensors provides confidence that LST trends derived 

from different Landsat sensors, spanning 38.5 years in total, are robust.  

Besides the record length, the total number of LST observations also plays an important role to derive robust LST trends. 375 

Although the Landsat archive covers four decades of LST observations, its temporal resolution of 16-day revisit interval is 

rather low. In addition, cloud cover renders many scenes unusable, highlighting the need for reliable cloud masking. This raises 

two problems, especially for mountainous terrain. First, frequent cloud cover leads to inevitable data gaps; and second, cloud 

detection algorithms are prone to failure over bright surfaces like snow and ice, which are common at high elevations. Our 

filter procedure, which is based on an initial LST model and thresholding the model-observation residuals in a second step, 380 

provides a way to detect unreasonably high or low LST values by taking the existing seasonal trend into account. We found 

that this filter more often removes unreasonable cold LSTs, which are likely misclassified clouds, rather than warm LSTs, 

potentially linked to wildfires. Yet, it is also possible that the Landsat cloud flag might have classified bright surfaces as clouds, 

resulting in the possible removal of valid LST observations. A robust and reliable cloud detection algorithm is currently the 

only practical way to minimize such problems. 385 

The number of observations in the LST time series vary not only due to clouds, but also due to other systematic 

factors. Substantial spatial differences in LST counts arise from partial overlapping of adjacent Landsat paths (Figure C.1), 

which tends to increase towards the poles. In our study area, these overlaps yield approximately twice as many observations 

for a third of the area. Furthermore, the Landsat 7 scan line corrector failure further reduces data availability at smaller spatial 

scales. MALST, amplitude and phase derived from LST time series seem to be generally unaffected by the variable number 390 
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of observations as no large-scale patterns following the mentioned limitations can be observed (Figure 6a, b, c). However, the 

LST trend is more sensitive to the number of observations and subtle artefacts in some regions can be identified that align with 

the flight path of the satellite (Figure 6d). In some regions faint stripes can be seen that correspond to the Landsat 7 scan line 

failure and thus reduced data availability. We assessed the robustness of LST trend calculations with respect to the number of 

observations through a systematic Monte Carlo simulation. By iteratively reducing the time series size (n=100) and performing 395 

repeated trend analyses (1000 repetitions), we quantified the impact of data reduction on trend stability. Each value of the 1000 

repetition was compared to the LST trend of the full time series (difference) and summarized as the mean and standard 

deviation. We chose the Landsat LST time series at the IMIS location of OFE2, comprising 1009 observations with a LST 

trend of 0.11 Kyr−1, as an illustrative test site. The analysis revealed that although mean LST trend value remains stable across 

sample sizes, the standard deviation, which represents the precision, varies more strongly. For common sample sizes of around 400 

750 LST observations over the 38.5-year period, the 1-sigma value is 0.01. 

 

Figure 10. Sensitivity Analysis of land surface temperature (LST) trend stability. LST trend anomaly shows the difference of LST 

trend derived from full time series and repeated LST trend calculations (1000 repetitions) with iteratively reduced sample sizes 

(n=100). Results are given as mean and standard deviation. 405 

4.2 Clear-sky bias 

LST measurements based on thermal infrared remote sensing are biased towards clear-sky conditions (Ermida et al., 

2019). The effect of such a bias on LST trends has not yet received much attention (Yang et al., 2024). A recent study indicated 

no discernible impact of clear-sky bias on LST trends (Good et al., 2022) by comparing satellite-derived LST with 2-meter air 

temperatures under clear-sky and all-sky conditions. Further, Zhao et al. (2021) compared mean annual LST trends with trends 410 

in the frequency of clear-sky days occurrence and did found not identify a clear correlation for daytime LST but emphasized 

the challenges arising from changing surface conditions in the analysis. The Landsat data provides us with the timing of cloud 

cover and thus allows us to estimate the impact of cloud cover on LST trends at the IMIS locations. We compared IMIS LST 

trends derived during Landsat overpass days at clear-sky days with IMIS LST trends derived during all Landsat overpass times, 

including clear- sky and cloudy- sky conditions. We found that on average LST trends during clear-sky conditions are 0.027 415 

K yr-1 warmer than during all-weather conditions (Figure 11). We note however that the spread in the data is relatively large 

and we are reluctant to generalize this finding. Nevertheless, this exercise suggests that for our study area an additional 

uncertainty of ~0.03 K yr-1 is associated for comparison between clear-sky and all-weather conditions. 
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Figure 11. Relationship between IMIS land surface temperature (LST) trends during clear-sky and during all-weather conditions. 420 
LST data were interpolated at Landsat overpass times. 

4.3 LST trend bias due to changing acquisition times 

Our analysis of changes in IMIS LST during 9:29 h and 10:16 h UTC (Figure 8) and the spatial patterns of Landsat-

derived LST trends with slope and aspect (Figure 9) suggest the existence of an LST trend bias due to changing acquisition 

times. A linear fit of the acquisition times of all three sensors together does obviously not cover all the individual variations in 425 

orbit position. However, the close similarity of the slope and aspect dependency in LST trends and ∆S in suggests that this 

approach appears to recover the first-order bias reasonably well. The dominant process that influences diurnal variations in 

LST during clear-sky conditions is the incoming solar radiation (Ghausi et al., 2023). Surfaces that are exposed to direct solar 

radiation receive particularly high amounts of energy and are thus prone to heating up quickly during the morning hours, 

especially during the summer months. The additional radiation flux received during the 47-minute time window peaks for 430 

surfaces that are oriented orthogonal to the sun position, at an aspect value of approximately 130°, whereas the LST trend and 

∆Sin peaks at approximately 75° and 255° respectively (Figure 9a, b). Instead, our results suggest that, rather than the total 

amount of energy received, the spatial pattern in LST trend is more strongly controlled by the relative changes in direct solar 

radiation (∆Sin) during the 47-minute time window, with positive and negative peaks at approximately westerly- and easterly-

exposed surfaces, respectively. As a result, the greatest temperature changes occur where surfaces have an orientation that 435 

results in a switch between sun-exposure and shadow during the 47-minute time window. Observed differences in the slope-

aspect dependence of ∆Sin and LST trends (Figure 9 a, b) are probably related to actual LST trends that are unrelated to slope 

and aspect.  

Possibly the simplest way to deal with the LST trend bias due to changing acquisition times would be to choose an 

observation time period in which the orbital drift was minimal, such as 1998-2018, or by neglecting Landsat 5 data altogether 440 

and Landsat 7 after 2018 (Figure 2). We tested this shorter time period (Figure C2-4) and obtained LST trend values that were 
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considerably noisier and more strongly affected by artefacts seemingly related to the number of observations (see section 04.1). 

We attribute this lower signal-to-noise ratio to the shorter observation time period, which also happened to be a limiting factor 

in our comparison with IMIS-derived trend values (Figure 5). Previous studies concerned with the removal of the influence of 

orbital satellite drift on LST data – mostly for NOAA-AVHRR – employed different techniques (e.g., Julien and Sobrino, 445 

2012) that are, however, difficult to implement for Landsat, due to substantially fewer observations and more heterogeneous 

terrain. In addition, correcting each observation to a consistent time before fitting Eq. 2 is prone to unquantified errors and 

spurious trends (Julien and Sobrino, 2012), and difficult to implement in GEE. We thus tested another possible approach, 

which is to estimate the LST trend bias after the fitting, based on the strong observed terrain influence (Figure 9). This approach 

is probably less accurate as it neglects potential influences of different ground surface materials, but it is easier to implement. 450 

To do so, we first smoothed the map of mean ∆Sin for slope and aspect using local linear regression and normalized the values 

by the standard score. We then scaled the normalized model to approximate the observed LST trend pattern as a function of 

slope and aspect by least squares regression. Finally, we used the mean amount of surface warming (0.045 Kyr−1) within the 

47-minutes time window for flat and gentle sloping terrain from the IMIS stations (Figure 8) to align the model data for slope 

angles less than 10° (Figure 12). 455 

 

Figure 12. Mean LST trends (a), modeled LST trend bias (b) and corrected mean LST trends (c) for 2° slope and 10° aspect angles. 

The modeled LST trend bias ranges between approximately 0 and 0.07 Kyr−1, depending on slope and aspect. After 

removing the estimated bias, the remaining LST trends (Figure 12c) still show some residual pattern that follows the 

topography, with about 0.02 Kyr−1 lower trend values centered on ~160° aspect and ~35° slope. The slope-aspect position of 460 

this residual LST trend feature is similar to the position of the highest Sin values in Figure 9a & b. If there would be an additional 

influence of the additional Sin, received during the 47-minutes time period, we would expect LST trend values to be higher on 

surfaces approximately orthogonal to the sun vector, not lower, as suggested by the observations. Therefore, it presently 

remains unclear, whether the residual LST trend feature is due to the LST trend bias and an inadequate correction, or possibly 

related to other processes. Applying the LST trend bias correction to the LST trends (Figure 13 derived from GEE (Figure 13) 465 

results in overall lower trend values and less spatial differences in LST trends with respect to aspect. Further spatial variations 

that are still present after the bias correction appear to be related to differences as well as changes in land cover types and 
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warrant further detailed inspection. LST trends related to changes in the mountain cryosphere are discussed in section 4.4, but 

a detailed analysis of land cover changeswhich is beyond the scope of this study.  

 470 

 

Figure 13. Corrected land surface temperature (LST) trends of the Swiss Alps. Significance was estimated using a t-test and only 

significant (p < 0.05) LST trends are shown in the map.  

 

4.4 Prospects for studying changes of the cryosphere  475 

Based on the corrected LST trend map (Figure 13), the spatially-averaged (±1σ) Landsat-derived clear-sky LST trend 

for all of Switzerland and for the time period 1984-2022, is 0.1 ± 0.05 K yr-1. Insignificant (p>0.05) LST trends, determined 

by a t-test, were masked out and not considered. Most LST trend values range from 0.07 to 0.09 K yr-1, with higher trends in 

populated valley bottoms like the Rhone Valley and lower trends over vegetated hillslopes at higher elevations (Figure 7Figure 

7). A detailed analysis of LST trend variations with respect to different land cover types and properties as well as their change 480 

is beyond the scope of this study. However, we here briefly present examples of how changes in the mountain cryosphere map 

into spatial patterns of LST trends at high spatial resolution. For instance, the rapid changes of mountain glaciers correlate well 

with patterns observed in the LST trends. Figure 14 shows as an example the Unteraar Glacier, where by far the highest LST 

trends occur along the glacier margin due to ice retreat and exposure of bedrock. Additionally, high LST trends are associated 

with the expansion of supraglacial debris, which is well shown on the southern branch of the Unteraar Glacier, and the 485 
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disappearance of clean ice in the lower few kilometers of the glacier. In contrast, LST trends are lower in magnitude and 

spatially more homogenous in the accumulation zone, which experiences minimal changes in surface type. 

 

Figure 14. Changes of the Unteraar Glacier, Switzerland, evidenced by late summer Landsat scenes from (a) 1984 and (b) 2022, and 

by (c) land surface temperature (LST) trends. The satellite images show false color composites using the shortwave infrared 1, near 490 
infrared and red bands as red, green and blue channels. The blue line in all panels indicates the outline of the Unteraar Glacier 

based on the Randolph Glacier Inventory (RGI Consortium, 2017). 

 

How changes in snow cover influence LST trends would require a detailed analysis with respect to snow extent, 

duration, depth and seasonality, which is beyond the scope of this study. However, in order to assess the first order sensitivity 495 

of LST trends to potential changes in snow cover, we spatially averaged LST trends for 100 m elevation bins and 1 °C MALST 

bins across the study area (Figure 1Figure 1), excluding glaciers and glacier retreat zones (see section 2.4). Based on a previous 

global scale study of air temperatures we expect the highest positive temperature trends at altitudes where the MALST is 

between -10 and +5 °C, due to reduced snow cover and increased absorption of solar radiation (Pepin & Lundquist, 2008). 

Observed mean LST trends at elevations where MALST is between -10 °C and 0 °C are among the highest trend values, 500 

consistent with an influence of snow cover on LST trends (Figure 15). In fact, LST trend magnitudes display a systematic 

pattern with MALST and elevation that merit more detailed examination. We note that MALST differences of up to ~20 K at 

similar elevation, are easily explained by different aspects, that is, exposure to the sun (see Figure 7a), which may coincide 

with different long-term trends in snow cover duration. Although dominantly negative mean annual snow depth trends, derived 

from the IMIS stations by linear regression of annual mean snow depths further supports the effect of snow decline on LST 505 

trends, we did not find a clear correlation between LST trends and mean annual snow depth trends (Figure 14b). In addition, 

we do observe mostly positive trends in the number of snow-free days per year (Figure 15c), and these trends appear to increase 

in elevation. It is reasonable to assume that LST trends are higher where changes in snow cover are associated with more snow-

free days, and that LST trends are likely smaller where snow depth declines but the surface remains nevertheless mostly snow 

covered, similar as in glacier accumulation zones. However, a clear correlation between trends in the number of snow free 510 

days and LST are not obvious, which could be related to the rather short record length of the IMIS stations and significant 

year-to-year variability in snow depth and cover. 
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Figure 15. Relationship between (a) mean land surface temperature (LST) trends for 100 m elevation bins and 1 °C mean annual 

land surface temperature (MALST) bins, (b) annual mean snow depth trends and (c) trend in number of annual snow-free days at 515 
the IMIS stations with more than 10 years record length.  

5 Conclusions 

Our study has shown that Landsat-derived Land Surface Temperature (LST) since 1984 offer opportunities to study 

the spatial variability of LST in complex topography at high spatial resolution. Our comparison with ground observations from 

the IMIS network provides confidence in the remote sensing derived LST data and LST trends, despite challenges due to 520 

differences in spatial resolution. The analysis of Landsat C2 LST time series, using harmonic regression including a linear 

component, exploits the periodic nature of the intra-annual LST variation and yields maps of the mean annual LST (MALST), 

the annual amplitude, the timing of the harmonic oscillation (phase), and the long-term LST trend. We observe reasonable 

meaningful spatial patterns with elevation, slope and aspect that allow identifying the influence of surface orientation or type 

(e.g., glacier surfaces) on annual LST variations. However, all LST time series components (i.e., MALST, amplitude, phase, 525 

trend) presented in this study are based on LST at around ~10 h UTC, i.e., ~11 h local time, and thus must be interpreted 

accordingly. In principle, the Landsat archive provides a sufficiently long time series to obtain LST trends, as shown from our 

comparison with IMIS LST data. LST trend values obtained from Landsat and the IMIS network converge for record lengths 

>15 years, whereas shorter records exhibit considerably more noise. However, our analysis of the slope-aspect dependence of 

LST trends strongly suggests that trend values are biased due to the long-term orbit changes that cause spurious LST trends. 530 

As orbit variations are not uniform with time and sensor, a temporal coherence correction is challenging. Assuming a long-

term linear change in acquisition time, we have shown that the change in incident solar radiation can explain, at least in large 

parts, the spatial slope-aspect patterns of Landsat derived ‘apparent’ LST trends. By modeling and removing the LST trend 

bias due to changing acquisition time, we obtain a spatially-averaged (1) Landsat-derived clear-sky LST trend for the time 

period 1984-2022 of 0.1  0.05 K yr-1. The corrected LST trends respond to changes in the mountain cryosphere such as glacier 535 
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retreat and debris cover evolution, snow decline and can potentially contribute to an improved prediction of permafrost 

temperatures, as surface temperatures propagate into greater depth. Further analysis is needed to disentangle the effect of land 

cover and land cover changes on the observed LST trends. 

6 Data availability 

Geotiff files of mean annual land surface temperature, amplitude, land surface temperature trend, RMSE and phase of the 540 
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