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Abstract. This work presents an approach for reconstructing displacement patterns and unknown soil properties of slow-

moving landslides, using a special form of so-called Kalman filter or observer. The approach relies on a model for the prediction

step, with online correction based on available measurements. The observer proposed here relies on a simplified viscoplastic

sliding model consisting of a rigid block sliding on an inclined surface. Landslide (slide block) motion is controlled by a balance

between gravity and sliding resistance provided by friction, basal pore fluid pressure, cohesion, and viscosity. In order to5

improve the observer performance upon abrupt changes in parameters, a resetting method is proposed. A novel tuning method,

based on a combination of synthetic and actual test cases, is introduced to overcome the sensitivity to observer coefficients.

Known parameter values (landslide geometrical parameters and known material properties) as well as water-table height time

series are provided as inputs. The observer then reconstructs landslide displacement and the evolution of unknown parameters

over time. The case of Super-Sauze landslide (French Alps), with data taken from the literature, is used to illustrate the potential10

of the approach. Finally, the observer is extended to forecast displacement patterns over different temporal horizons assuming

that future water-table height variations are known.

1 Introduction

Landslides can have severe consequences in terms of fatalities and injuries as well as of damages to infrastructures and ecosys-

tems (Petley, 2012). The capacity to detect and forecast such disasters in advance through Early Warning Systems (EWS) is15

critical to take timely corrective measures and reduce economic and life losses (Pecoraro et al., 2019; Guzzetti et al., 2020). In

this context, combination of landslide monitoring and modelling techniques can help determining the stability of the slopes and

identifying landslide triggering factors, with the objective of predicting ground movements (Pradhan et al., 2019; Bernardie

et al., 2014; Springman et al., 2013; Herrera et al., 2013; Corominas et al., 2005).

Monitoring slopes provides information on kinematic, hydrological, and meteorological parameters. A large variety of in-20

struments and geophysical methods can be used, e.g., Global Positioning System (GPS), photogrammetry, remote sensing

(LiDAR, InSAR, etc.), Electrical Resistivity Tomography (ERT), Ground Penetrating Radar (GPR), geotechnical techniques

(inclinometers, piezometers, extensometer, Radio Frequency Identification (RFID), Shape Acceleration Arrays (SAA), etc.
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(Casagli et al., 2023; Pecoraro et al., 2019; Breton et al., 2019; Bottelin et al., 2017; Larose et al., 2015; Angeli et al., 2000;

Gili et al., 2000). The most commonly measured parameters are ground displacement, groundwater pressure head and rainfall25

These parameters can then be used to develop and inform landslide mobility models for forecasting purposes. Broadly-

speaking, two main categories of models can be utilized to predict landslide mobility. Phenomenological models are based on

empirical relationships (Guzzetti et al., 2008; Larsen and Simon, 1993; Caine, 1980), statistical approaches (Capparelli and

Versace, 2011; Capparelli and Tiranti, 2010), or artificial neural networks (Kumar et al., 2021; Bui et al., 2020; Yang et al.,

2019; Mayoraz and Vulliet, 2002), to establish relations between soil displacement and landslide-inducing factors, e.g., rainfall30

or water table fluctuations. However, as these models generally lack temporal aspects, they are unable to account for changes in

landslide-controlling conditions (Westen, 2004). Alternatively, mechanics-based models rely on deterministic laws to represent

the physical processes controlling landslide occurrence and dynamics (Dikshit et al., 2019; Kim et al., 2016; Pradhan and Kim,

2014; Teixeira et al., 2014; Alvioli et al., 2014; Ali et al., 2014; Herrera et al., 2013; Van Asch et al., 2007; Corominas et al.,

2005; Angeli et al., 1998; Asch and Genuchten, 1990; Hutchinson, 1986). Some combined statistical-mechanical models have35

also been developed for the investigation of landslide displacement, pore water pressure, and rainfall (Bernardie et al., 2014).

It can be noticed that physically-based landslide models are sensitive to initial conditions and to a number of parameters

(related to geometrical and geotechnical properties) that can be constant or time-varying. Some of these parameters can be

inferred from field observations, laboratory, and in situ tests, while others need to be estimated through inversion techniques.

The most frequently used approach to estimate unknown parameters is by minimizing the difference between measured dis-40

placement and displacement computed by the model. Several optimization schemes have been employed in past studies, such

as sequential quadratic programming (SQP) (Bernardie et al., 2014) and non-linear regression (Herrera et al., 2013; Corominas

et al., 2005). Both methods are adapted for the optimization of non-linear dynamical systems, which can result in sub-optimal

solutions, i.e., different sets of estimated parameters depending on optimization initiation. Apart from optimization methods

(deterministic approach), probabilistic back analysis can also be used (Zuo et al., 2020). Once the unknown parameters are45

estimated, the model equation can then be solved to forecast displacements patterns (Bernardie et al., 2014).

In general, the sensitivity to initial conditions and parameters can be handled by simulating a model iteratively and adjusting

the parameter values to obtain consistency with measured data (iterative approach). Alternatively, another efficient approach is

to run a model over time and continually fine-tune the parameters to synchronize with measured data, as in the so-called Kalman

filter (or ‘observer’) approach (Kalman, 1960) (continuous approach). In former studies, we applied both of these approaches50

to a landslide sliding consolidation model, based on synthetically generated data: see (Mishra et al., 2020a) for the iterative

scheme (and ‘adjoint method’), and (Mishra et al., 2020b) for the continuous scheme (and observer design). Based on these

results, we found that a continuous scheme can be more suitable for the case of time-varying parameters. Therefore, a Kalman

filter approach will be considered here, and applied to real displacement and water table height data measured on a landslide

(Bernardie et al., 2014). The main goal in this context is the reconstruction of displacement patterns and unknown parameters.55

For an improved performance, the present paper proposes the use of a discrete-time exponential forgetting factor observer

(Ţiclea and Besançon, 2013, 2009). In addition, a resetting method is introduced in the observer for a better convergence of
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the estimates. Finally, a novel approach for tuning observer coefficients is proposed, considering both actual and synthetic test

cases.

Since the primary objective of this paper is to present the methodology and illustrate its potential on real data, the work relies60

- as in our former studies - on a simplified physically-based landslide model depicting block sliding behavior. Accordingly,

targeted applications mainly concern slow-moving landslides, whose dynamics is controlled by rainfall and water table fluctu-

ations. In addition, we assume that water table height is known, and focus on the reconstruction of landslide displacement and

parameters at a single location. Extension of the approach to coupled hydromechanical models and/or to more complex 2D or

3D mobility models (Chae et al., 2017) shall be considered in future work, but will require more extensive spatial datasets for65

estimation and prediction purposes.

The structure of the paper is as follows: The considered simplified viscoplastic sliding model is introduced in Section 2,

together with the corresponding estimation problem. Section 3 presents the proposed reconstruction scheme. In Section 4, sim-

ulation results illustrate the effectiveness of the estimation scheme on the considered test case, namely Super-Sauze landslide

(French Alps). Section 5 extends the proposed observer to the purpose of landslide displacement forecasting, assuming that70

future water table height variations are known. Finally, Section 6 provides a conclusion and discusses future directions of the

work.

2 Simplified landslide viscoplastic sliding model

The viscoplastic sliding model (Corominas et al., 2005; Herrera et al., 2013; Bernardie et al., 2014) represents the dynamics

of the landslide as that of a rigid sliding block overlying a thin shear zone, as shown in Fig. 1. The motion is controlled by75

difference between the driving force Fg due to gravity and resisting forces Fr due to effective friction, cohesion, and viscosity.

Hence, net acceleration of the block a is given by

ρHa(t) = ρgH sinθ− [ρgH cosθ tanϕ− p(t)tanϕ + C + ηv(t)/st] (1)

where ρ is the soil density, H is the slide block height, g is the acceleration due to gravity, θ is the inclination angle, p(t)

is the basal pore water pressure at time t, v(t) is velocity of the slide block, and st is the basal shear zone thickness. The80

three mechanical parameters ϕ, C and η denote the friction angle, the cohesion, and the viscosity of the shear zone material,

respectively.

For slow-moving landslides, the inertia is expected to remain much smaller than the other terms in Eq. (1), namely ρHa≈ 0.

Assuming also that groundwater flow is parallel to the slope surface, the pore water pressure can be expressed as (Bernardie

et al., 2014)85

p(t) = ρwg cos2 θ wt(t) (2)

where ρw is the pore water density and wt(t) is water table height, as shown in Fig. 1. Therefore, Eq. (1) can be rewritten as

ḋ = v(t) =
(

ρ

η

)
stHgsinθ−

(
ρtanϕ

η

)
stHgcosθ−

(
1
η

)
stC +

(
tanϕ

η

)
stρwgcos2θwt(t) (3)
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Fr  

Figure 1. Schematic representation illustrating geometrical variables used to model slide block motion (left picture is taken from Wyoming

State Geological Survey website)

where d is the displacement of the slide block.

As upslope motion of the rigid slide block is physically impossible, the landslide velocity can not be negative. Such a90

situation arises whenever water table height wt(t) goes below a critical water table height wcrit
t . From Eq. (3) the value of

wcrit
t is given by

wcrit
t =

C − ρHg sinθ + ρHg cosθ tanϕ

ρwg cos2 θ tanϕ
. (4)

When wt(t)≤ wcrit
t , landslide dynamics reduces to ḋ = v(t) = 0.

For known parameter values and water-table height (or pore water pressure), time series of displacement can be computed95

using Eq. (3) for wt > wcrit
t and the above reduced dynamics otherwise. However, some material properties of the landslide

(notably friction angle, cohesion and viscosity) are generally unknown, and therefore need to be estimated. In this paper, an

observer-based approach is proposed to estimate friction angle ϕ, and viscosity η from measured displacement dmea(t) and

water table height wt(t) time series, assuming cohesion C is known.

4
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3 Reconstruction scheme100

3.1 Observer-oriented representation

To address the observer problem, let us first normalize the unknown parameter η by introducing a typical viscosity scale η̄ in

Eq. (3) as follows:

η̄ḋ =
(

η̄

η

)
stρHgsinθ−

(
η̄tanϕ

η

)
stρHgcosθ−

(
η̄

η

)
stC +

(
η̄tanϕ

η

)
stρwgcos2θwt(t). (5)

This normalization is introduced to bring all parameters of interest in the same order of magnitude, as friction angle ϕ is105

dimensionless and usually comprised between 0 and 1.

Further, η/η̄ and ϕ being now the parameters to be estimated, let us define:

θ1

θ2


 := st


(ρHg sinθ−C) −ρHg cosθ

0 ρwgcos2θ





 η̄/η

η̄ tanϕ/η


 . (6)

This substitution linearizes the model equation, making it more suitable for observer design. In order to estimate parameters,

and assuming that those parameters vary slowly, the model can be extended by two additional differential equations, namely110

θ̇1 = 0, θ̇2 = 0. Substituting Eq. (6) into (5), and taking the expression of wcrit
t into account, the system equations finally

become:

ḋ =





θ1
η̄ + θ2

η̄ wt(t) if wt(t) > wcrit
t

0 otherwise

θ̇1 = 0, θ̇2 = 0. (7)

3.2 Discrete-time model

Instruments used for landslide monitoring collect data with a particular time resolution, e.g., hourly. Therefore, to adapt with115

discrete measurements (at times denoted by tk), let us express the system dynamics in discrete time as follows

xk+1

︷ ︸︸ ︷


dk+1

θk+1
1

θk+1
2


 =





Āk
1︷ ︸︸ ︷



1 dt
η̄

dt
η̄ wk

t

0 1 0

0 0 1




xk

︷ ︸︸ ︷


dk

θk
1

θk
2




, if wk
t > wcrit

t




1 0 0

0 1 0

0 0 1




︸ ︷︷ ︸
Āk

2




dk

θk
1

θk
2




︸ ︷︷ ︸
xk

otherwise

(8)
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where dt = tk+1− tk is the discrete-time step, and xk gathers all system variables. The measurement model is given as

yk = dk
mea =

C̄︷ ︸︸ ︷[
1 0 0

]

xk

︷ ︸︸ ︷


dk

θk
1

θk
2


+rk (9)

where yk denotes the actually available measurement, and rk some measurement noise.120

3.3 Discrete-time exponential forgetting factor observer

Discrete-time exponential forgetting factor observer (or Kalman filtering with forgetting factor) provides least mean-square

estimate with an added feature of giving more weight to the most recent measurements. If γ denotes the forgetting factor and

x̂0 denotes the initial guess for xk, the approach optimizes the following objective function:

Jk(x̂k
0) = γk(x̂k

0 − x̂0)T P−1
0 (x̂k

0 − x̂0) +
k∑

l=0

γk−l(ŷl− yl)T W−1(ŷl− yl) (10)125

subject to system dynamics

x̂k+1 = Ākx̂k

ŷk = C̄x̂k (11)

as constraints, with γ ∈ (0,1),P0 = PT
0 > 0,W = WT > 0. The solution of this optimization problem (Ţiclea and Besançon,

2013) is provided through measurement update equations:

x̂k
c = x̂k

p −Kk(C̄x̂k
p − yk), (12)130

with

Kk = P kC̄⊺(C̄P k
p C̄⊺ + W )−1, (13)

and time update equations,

x̂k+1
p = Ākx̂k

c (14)

135

P k+1 = γ−1Āk[I −KkC̄]P kĀk⊺
+ Q (15)

with initialization P0. Here Kk is the Kalman gain, P is the auto-covariance of state estimation error, W is the auto-covariance

of measurement noise r, γ ∈ (0,1) is the forgetting factor, and Q is the process noise auto-covariance matrix.
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For dynamics (8)-(9), observer (12)-(15) provides estimates of d̂, θ̂1 and θ̂2. Based on these estimates at each time step,

firstly η̄/η̂ and η̄ tan ϕ̂/η̂ are reconstructed using Eq. (6):140


 η̄/η̂

η̄ tan ϕ̂/η̂


 =

1
st


ρHg sinθ−C −ρHg cosθ

0 ρwgcos2θ



−1 

θ̂1

θ̂2


 , (16)

followed by

η̂ =
η̄

[η̄/η̂]
& ϕ̂ = tan−1

([
η̄ tan ϕ̂/η̂

]
× η̂

η̄

)
. (17)

In the proposed estimation scheme, wcrit
t plays an important role. This quantity itself depends on the parameter values, there-

fore at each step it is estimated using Eq. (4).145

3.4 State estimation error covariance matrix P resetting

In the design presented so far, unknown parameters are assumed to be constant or slowly varying. However, in practical applica-

tions, these parameters may also be subject to abrupt changes. In order to handle such situations, a resetting of state estimation

error covariance matrix P is proposed here. In order to detect abrupt variations, the Mahalanobis distance (Gnanadesikan and

Kettenring, 1972) between actual and predicted measurements for some previous times (tk−m to tk), with more weight on the150

most recent times, is calculated as:

Dk =
k∑

j=k−m

γk−j(Cj x̂j − yj)T W−1(Cj x̂j − yj). (18)

At times for which Dk exceeds a given threshold (Dk > χ2), P k is reset to P0. This threshold can be obtained from the chi-

square table (Pearson, 1900) according to the confidence level of the measurement system. For example, when confidence level

is 99% and the dimension of the measurement system vector is 1, the corresponding chi-square value is χ2 = 6.635. Note that155

there is a possibility of multiple successive resettings, which could hamper the overall performance of the estimation scheme.

Such a scenario is avoided by forbidding resetting for some short duration (e.g., m instances) after each detected resetting.

3.5 Observer coefficients tuning

Observer coefficients (P0,W,Q,γ,χ2,m) should be properly chosen to recover model information (see Fig. 2). In usual appli-

cations, these coefficients are manually tuned until proper convergence in estimates are obtained. However, such applications160

require some nominal values of the parameters being known (e.g. Ţiclea and Besançon, 2009), which is not the case in the

present study. Therefore, a novel approach is introduced, which considers both synthetic and actual data cases to verify the

estimates, according to the methodology summarized in Fig. 3.
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Figure 2. Principle of discrete-time exponential forgetting factor observer.

In this approach, given an assumed confidence level in the measurement model and a known dimension of the measurement

vector, the value of χ2 is fixed throughout the tuning process. Along with χ2, P0 and m are also fixed. The matrix P0 is obtained165

from its definition with guessed initial states x̂0. The coefficient m is guessed from some rough initial simulation results on

synthetic test cases and can be chosen from the time steps required for first convergence. Once filter coefficients χ2,P0 and m

are fixed, the estimation scheme is applied on real measurements with some initial values of Q, γ and W . For the actual data

case, W is manually tuned until W ≈Wm where, Wm is the variance of signal dmea− d̂. Then synthetic measurements are

generated by solving Eq. (3) using water table height measurements and estimated parameters (smoothed estimated viscosity170

and averaged estimated frictional angle) from an actual data case. Now estimation scheme is employed on these synthetic

measurements keeping filter coefficients W , γ, and Q indentical as in the actual case. If estimated parameters from both actual

case and synthetic test are consistent, filter coefficients tuning process can be stopped; else γ and Q are adjusted with the help

of quantitative indicator Iq given as

Iq =
n∑

k=1

∣∣∣∣
qk − q̂k

qk

∣∣∣∣ (19)175

where qk is the parameter of interest (viscosity and friction angle) at time k and q̂k is the corresponding estimated parameter.

Indicator Iq provides information on how close the estimated parameters are to the parameters used to generate the synthetic

test case. The above process of tuning W from actual case, followed by tuning γ and Q on synthetic test cases, is continued

until parameter estimates in both cases are consistent to each other, as shown in Fig. 3.

4 Estimation results180

4.1 Super-Sauze landslide data

Super-Sauze landslide is a slow-moving mudslide located in the southern French Alps which is monitored by the French Multi-

disciplinary Observatory of Versant Instabilities (OMIV) for meteorological parameters, slope hydrology and slope kinematics.

Detailed descriptions of this landslide and of the monitoring system can be found in previous studies (Malet et al., 2005; Trav-
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Figure 3. Observer coefficients tuning methodology

elletti and Malet, 2012; Bernardie et al., 2014). It should be mentioned that the landslide, whose volume is estimated around185

560 000 m3, is characterized by a spatially heterogeneous displacement pattern and the existence of different mechanical units.

Clearly, the simple slide block model used in this study cannot aim to reproduce this complex process. However, in line with

model assumptions, surface velocities are mainly controlled by evolutions of the water table level (Bernardie et al., 2014), with

largest velocities typically observed during spring. We thus take advantage of the rich dataset available in this site to illustrate

the proposed estimation methodology and show the robustness of the approach, focusing on one specific monitoring location.190

Namely the observer approach is applied to displacement dk
mea and pore water pressure pk data taken from Bernardie

et al. (2014). Those data, acquired with a time resolution dt = 2.4 h (8640 s), correspond to one of the most active parts of

the landslide for a period of high groundwater level from 07/05/1999 to 23/05/1999 (16 days). At that location [B2 in Fig.
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Figure 4. Super-Sauze landslide data from 07/05/1999 to 23/05/1999: Displacement measurement dk
mea and reconstructed water table height

time-series wk
t obtained from Bernardie et al. (2014)

Table 1. Known geometrical and material parameter values

Parameters Value Unit

Initial block displacement, d0 0 m

Slide block thickness, H 9 m

Average inclination angle, θ 25 deg

Shear zone thickness, st 0.2 m

Acceleration due to gravity, g 9.8 m/s2

Pore water density, ρw 1000 kg/m3

Cohesion, C 14000 Pa

Slide block mass density, ρ 1700− 2140 kg/m3

4 of Bernardie et al. (2014)], displacement and pore water pressure are measured by a wire extensometer and piezometer,

respectively. The piezometer is located at −4m depth, while the slip surface is at a depth of −9m. In the proposed scheme,195

a water table height time-series wk
t is required as an input. Water-table height is reconstructed from pore pressure pk using

assumption of groundwater flow parallel to the slope surface (Eq. 2): wk
t = 5+pk/(ρwgcos2θ). The reconstructed water-table

height time-series along with the measured displacement are shown in Fig. 4. Known parameter values are indicated in Table

1. The value of density ρ = 1700 kg.m−3 is chosen to correspond to saturated soil density as the water table height is close to

full saturation level (Fig. 4).200

4.2 Observer results

Displacement pattern d̂ along with unknown soil properties (η̂,ϕ̂) are reconstructed with the help of the proposed estimation

scheme (see Section 3), for known parameter values (Table 1), displacement measurements and water table height time-series

(Fig. 4). As mentioned in Section 3.5, for an assumed confidence level of 99% on measurements with a dimension equal to 1,

the value of χ2 is set to 6.635. The value of m is fixed to 5 (see Section 3.5). Initial auto-covariance of state estimation error P0

10
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is defined as the variance of x0− x̂0, where, x0 =
[
d0 θ10 θ20

]T

(generally assumed to be a diagonal matrix). Here, d0 and

d̂0 are equal to 0; therefore the first entry in P0 is assumed equal to W , which represents the auto-covariance of measurement

noise r. Further, since the actual values of θ1 and θ2 are not known, we assume initial errors of few percents of the expected

values (order of magnitude), considering guesses on θ̂1 and θ̂2 calculated with Eq. (6) for assumed η0 and ϕ0 equal to 108 Pa.s

and 35° respectively. Finally, the matrix P0 is thus set to

P0 ≈




W 0 0

0 10000 0

0 0 100


 .

For fixed observer coefficients χ2, m and P0, and starting from initial values γ = 0.95, W = 10−12, and Q = 10−12I3×3

(where I3×3 is the identity matrix of dimension 3) for the other coefficients, the estimation scheme is applied on real measure-

ments. Based on the actual Super-Sauze data, W is manually tuned until W ≈Wm, where Wm is the variance of dmea−d̂. This

condition gets satisfied for W = 7.7× 10−6. For this set of observer coefficients (χ2,m,P0,γ,W,Q), the obtained estimation205

results are shown in Fig. 5. It is observed that the friction angle ϕ̂ is almost constant, while the viscosity η̂ varies with time in

correlation with water table height. Synthetic measurements are then generated based on an average value of ϕ̂ (ϕ̂avg) and a

filtered viscosity timeseries η̂fil obtained by applying a Savitzky-Golay filter on η̂ (Savitzky and Golay, 1964; Sharifi et al.,

2022) (Fig. 5). In the synthetically generated displacement, a random Gaussian noise with variance W is injected. Using those

synthetically generated data, the estimation scheme is applied again with identical observer coefficients as in the actual case.210

Corresponding results can be seen in Fig. 6. It is observed that the parameter estimates are not converging to ϕ̂avg and η̂fil

(Fig. 6(a),(b)). Therefore, the values of γ and Q are adjusted with the help of the quantitative indicator Iη (see Eq. (19)). Notice

that the indicator Iη is found to be more sensitive to variations in observer coefficients than Iϕ and Id. This is explained by the

fact that the friction angle is almost constant, while displacement is well estimated with measurement update equation (12) of

the observer.215

Table 2. Sensitivity analysis for tuning observer coefficients γ and Q based on Super-Sauze synthetic test case: values of indicator Iη

(minimum value is highlighted in bold).

γ/Q 10−13 10−12 10−11 10−10

0.95 0.7768 0.5244 0.4666 0.5628

0.96 0.7666 0.5128 0.4531 0.5534

0.93 0.7628 0.5022 0.4005 0.4501

0.92 0.7657 0.6103 0.5130 0.5567

Based on the sensitivity analysis (Table 2), the minimum value Iη = 0.4005 is obtained for γ = 0.93 and Q = 10−11I3×3.

Hence, values of γ and Q in the estimation scheme are updated accordingly, and new simulation results for synthetic and actual

cases are computed. Still, obtained parameter estimates are not consistent. Therefore, the process of tuning W for the actual
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Figure 5. Initial estimation results for Super-Sauze case with real data and observer coefficient values γ = 0.95, W = 7.7× 10−6, Q =

10−12I3×3: (a)-(b) parameter estimates (η̂,ϕ̂), filtered viscosity η̂fil and averaged friction angle ϕ̂avg , (c) Mahalanobis distance between

estimated and measured displacement Dk, (d) displacement estimate d̂ and displacement measurement dmea, (e) critical water table height

estimate ŵcrit
t and water table height measurement wk

t , (f) resetting times of the covariance matrix.

case with condition W ≈Wm, and tuning γ and Q with the indicator for a synthetic test case, is continued. After 6 iterations,

consistency in parameter estimates is obtained between the synthetic test case (Fig. 7 (a)-(b)) and the actual case (Fig. 8 (a)-220

(b)). In both cases, the average value of the estimated friction angle is found to be equal to 36.8°, while approximately similar

variations in estimated viscosity are observed.

Notice that in the final results, water-table height always remains always above critical water-table height (wk
t > ŵcrit

t ), as

shown in Fig. 8 (e). Resetting of the covariance matrix takes place when Dk > χ2 as shown in Fig. 7 (c) and Fig. 8 (c), and the

corresponding times can be seen in Fig. 7 (f) and Fig. 8 (f). Note that, as expected, these resetting times correspond to abrupt225

changes in viscosity.
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Figure 6. Initial estimation results for Super-Sauze synthetic test case with observer coefficient values γ = 0.95,W = 7.7× 10−6, Q =

10−12I3×3: (a)-(b) parameter estimates (η̂syn,ϕ̂syn), (c) Mahalanobis distance between estimated and synthetic displacement Dk
syn, (d)

displacement estimate d̂syn and synthetic displacement measurement dsyn, (e) critical water table height estimate ŵcrit
t syn, (f) resetting

times of the covariance matrix.

5 Landslide displacement forecasting

The reconstruction scheme (Section 3) is based on on the principle of prediction (14) followed by correction (12) of the230

information of interest: At each time step ‘k’, information is predicted for the next time step ‘k + 1’ with the help of Eq. (Eq.

8) and then corrected based on the measurement. This corrected information is then used to predict for the next time step, etc.

In the present case, ’information’ refers to displacement and parameters, i.e., x̂k =
[
d̂k θ̂k

1 θ̂k
2

]T

. Hence, inherently, the

proposed scheme can predict information for the next time step only. However, with minor update in Eq. (14), the prediction

horizon can be extended to L time steps on the basis of the following law:235

x̄k+l
p =





Ākx̄k
c for l = 1

Ākx̄k+l−1
p for l = 2 to L− 1

(20)

Notice that in order to account for the critical water table height, when a displacement value computed by (20) is lower than

the former one, displacement is frozen.
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Figure 7. Final estimation results for Super-Sauze synthetic test case with observer coefficient values γ = 0.9,W = 6× 10−5, Q =

10−11I3×3: (a)-(b) parameter estimates (η̂syn,ϕ̂syn), (c) Mahalanobis distance between estimated and synthetic displacement Dk
syn, (d)

displacement estimate d̂syn and synthetic displacement measurement dsyn, (e) critical water table height estimate ŵcrit
t syn, (f) resetting

times of the covariance matrix.

To validate this extension of the approach, let us again consider the 16-day Super-Sauze landslide data. The prediction step

is initiated after day eight, assuming that water table height time-series is known and that, at each time step, corresponding240

displacement is being measured. Two different prediction horizons are considered, namely 1 day (L = 10 as step size dt =

2.4 hr) and 2 days (L = 20). In Fig. 9 (a)-(c), displacement and parameter forecasts until day 9 and day 10 are presented. As

the dynamics of time-varying parameters are a priori unknown, in model equations (7) these parameters are assumed constant,

as clearly visible in Fig. 9 (b)-(c). As a consequence, it is observed that the forecast gets rapidly less accurate as we move

away from the actual time (Fig. 9 (a)). Fig. 9 (d)-(f) present moving horizon (1 day and 2 day) predictions, i.e., at instance k245

the forecasts for k + 10 and k + 20, respectively are shown. As time advances, the estimated parameters start varying based

on displacement measurements and the measurement update equation of the observer (see Fig. 9 (e)-(f)). Overall, predicted

displacements appear to agree reasonably well with the estimate obtained in Sec. 4. However, as it could be expected, accuracy

of the forecast reduces as the prediction horizon L is increased.
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Figure 8. Final estimation results for Super-Sauze case with real data and observer coefficient values γ = 0.9, W = 6× 10−5, Q =

10−11I3×3: (a)-(b) parameter estimates (η̂,ϕ̂), filtered viscosity ηfil and averaged friction angle ϕavg , (c) Mahalanobis distance between

estimated and measured displacement Dk, (d) displacement estimate d̂ and displacement measurement dmea, (e) critical water table height

estimate ŵcrit
t and water table height measurement wk

t , (f) resetting times of the covariance matrix.

6 Discussion and conclusions250

Mechanical models capable to simulate the dynamics of landslides and predict landslide displacement over time can be of

great value for the design of early warning systems. However, these models generally involve parameters (slope geometry,

mechanical properties, interstitial pore pressure, etc.) that strongly influence the predictions. Among these parameters, several

may be unknown and/or variable over time. In practice, the models thus need to be complemented by specific methods for

parameter estimation and back-analysis. Previous studies that addressed this issue made use of relatively simple approaches,255

such as nonlinear regression and sequential quadratic programming (Bernardie et al., 2014; Corominas et al., 2005).

In this paper, a Kalman filter methodology is proposed for the reconstruction and forecasting of landslide displacement and

parameters. To illustrate the principle and capabilities of the approach, it is applied to a simplified viscoplastic sliding model

involving two unknown and possibly time-varying material parameters (friction angle ϕ and viscosity η). The reconstruction is

based on displacement and water table height measurements. As the Kalman filter itself depends on several coefficients, a novel260

method for tuning these coefficients is proposed based on a combination of actual and synthetic test cases. The coefficients

are adjusted until the estimation results obtained for both scenarios are consistent. This methodology is tested on a series of

15

https://doi.org/10.5194/egusphere-2024-1227
Preprint. Discussion started: 5 June 2024
c© Author(s) 2024. CC BY 4.0 License.



0 4 8 12 16
0

1

2

3

Time (days)

D
is

pl
ac

em
en

t(
m

)

(a)

d̂ d̄1 d̄2 d̂a

0 4 8 12 16
1

1.1

1.2

1.3

1.4
·108

Time (days)

V
is

co
si

ty
(P

a
.s

)

(b)

η̂ η̄1 η̄2 η̂a

0 4 8 12 16
35

36

37

38

Time (days)

Fr
ic

tio
n

an
gl

e
(d

e
g

)

(c)

ϕ̂ ϕ̄1 ϕ̄2 ϕ̂a

0 4 8 12 16
0

1

2

3

Time (days)

D
is

pl
ac

em
en

t(
m

)

(d)

d̂ d̄1 d̄2 d̂a

0 4 8 12 16
1

1.1

1.2

1.3

1.4
·108

Time (days)

V
is

co
si

ty
(P

a
.s

)

(e)

η̂ η̄1 η̄2 η̂a

0 4 8 12 16
35

36

37

38

Time (days)
Fr

ic
tio

n
an

gl
e

(d
e
g

)

(f)

ϕ̂ ϕ̄1 ϕ̄2 ϕ̂a

Figure 9. Landslide displacement [d̄] and unknown parameters [η̄, ϕ̄] forecasting: (a) - (c) forecasts with prediction horizon 1 day [d̄1, η̄1, ϕ̄1]

and 2 days [d̄2, η̄2, ϕ̄2], (d)-(f) forecasts with moving prediction horizon 1 day [d̄1, η̄1, ϕ̄1] and 2 days [d̄2, η̄2, ϕ̄2]. Plots (a) - (f) also show

estimated displacement, viscosity and friction angle [d̂a, η̂a, ϕ̂a] from Section 4

16-days real data measured in Super-Sauze landslide (France). The results show that the friction angle ϕ was almost constant

during the simulated period, while the viscosity η varied in correlation to water table height variations. Even though their are

based on a very simplified model, those results appear to be in good agreement with values reported in previous studies for the265

same landslide.

The proposed scheme works on the principle of prediction followed by correction of the information of interest, i.e., at each

time step, information is predicted for the next time step and then corrected based on the measurements. An approach to extend

the prediction horizon over more time steps is also presented. To illustrate this extended scheme, two different prediction

horizons are chosen (one day and two days). As the dynamics of time-varying parameters are unknown, they are assumed270

constant for the prediction horizon. As new measurements become available, the correction step takes place, and with these

corrected parameters, displacement and parameters are again predicted for the respective prediction horizon. The obtained

performances are promising regarding the possibility to use such a forecast for operational predictions.

In summary, the results presented in this paper demonstrate that observer-based approaches coupled to landslide mechanical

models – even simple – constitute promising tools both for parameter estimation and displacement forecasting. It can be noted275

that the values of friction coefficient and viscosity obtained with our model (namely, 36.8° for ϕ and 1.1108− 1.25108 for η)
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are fairly consistent with the typical ranges indicated in Bernardie et al. (2014) (18 to 35° for ϕ, and 108 to 31011 Pa.s for η).

This quantitative agreement can be seen as a validation of our approach.

In this paper, the application of the proposed methodology was however limited to a single landslide case-study, and to

a single period of time. More thorough validations over longer time periods, possibly including marked acceleration events280

as in the study of Bernardie et al. (2014), will be required. In particular, the aforementioned reference showed that growing

discrepancies between predicted and observed displacements during sudden fluidization phases might be used to define alert

thresholds. Investigating whether similar thresholds can be derived from our model represents an interesting prospect. Let

us also recall that water table height variations for the prediction horizon were assumed to be known in the present study.

Extending the model to estimate water table height variations from precipitation forecasts through statistical or physically-285

based approaches shall also be considered.
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