CO₂ flux characteristics of the grassland ecosystem and its response to environmental factors in the dry-hot valley of Jinsha River, China

Chaolei Yang¹,²,³, Yufeng Tian¹,²,³,⁴*, Jingqi Cui², Guangxiong He¹, Jingyuan Li¹,
Canfeng Li³,⁴, Haichuang Duan¹, Zong Wei³,², Liu Yan³,², Xin Xia³,², Yong Huang³,²,
Aihua Jiang³,²

¹Kunming General Survey of Natural Resources Center, China Geological Survey, Kunming, 650111, China
²Yunnan Province Field Science Observation and Research Station on the Evolution of Soil and Water Resources and the Carbon Sequestration Enhancement Effects in the Alpine Gorge Area of the Jinsha River, Chuxiong, 651400, China
³Technology Innovation Center for Natural Carbon Sink, Kunming, 650111, China
⁴Key Laboratory of Coupling Process and Effect of Natural Resources Elements, Beijing, 100055, China
⁵Institute of Space Weather, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing, 210044, China
⁶Tropical Eco-Agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Chuxiong, 651300, China

Correspondence to: Yufeng Tian (yufeng_tian818@126.com)

ABSTRACT: The dry-hot valley of Jinsha River is distinguished by prolonged drought and high temperatures, making it a distinct non-zonal hot island habitat in the global temperate zone. It is an ideal location for studying changes in plant carbon budget under sustained drought and high-temperature conditions. However, there is currently a dearth of reports on CO₂ flux variations within plant ecosystems in this region. The study quantitatively analyzed the characteristics of CO₂ flux variation in the grassland ecosystem in this region and its response mechanisms to environmental factors using continuous observation data obtained from static assimilative chamber. The results indicate that both the environmental factors and CO₂ flux variations in grassland ecosystems exhibit significant seasonal characteristics. During the dry season (March to May), the grassland acts as a carbon source, exhibiting a daily average CO₂ flux of 0.1632 μmol·m⁻²·s⁻¹, which cumulative CO₂ emissions for each month were 18.64 g·m⁻², 15.96 g·m⁻², and 20.64 g·m⁻², respectively. The ecosystem showed noteworthy carbon absorption characteristics during the rainy season (August to October), with a daily average CO₂ flux of -0.1062 μmol·m⁻²·s⁻¹, which cumulative CO₂ absorption for each month were 6.42 g·m⁻², 24.41 g·m⁻², and 5.14 g·m⁻², respectively. Throughout the year, the ecosystem was a weak carbon source, emitting an annual cumulative CO₂ of 0.7078 t·ha⁻¹·a⁻¹, demonstrating carbon-neutral traits. In terms of environmental factors, there was a robust negative correlation exists with CO₂ flux between photosynthetically active radiation during the rainy season (R= -0.578, P<0.01). The daily CO₂ flux in different seasons was positively correlated with precipitation and relative humidity (P<0.01), and negatively correlated with air temperature, soil
temperature and vapor pressure deficit ($P<0.01$). The diurnal variation of CO$_2$ flux in dry season was mainly affected by relative humidity, while that in rainy season was mainly affected by relative humidity and vapor pressure deficit. The variation of CO$_2$ flux was most influenced by soil water content, relative humidity, and vapor pressure deficit at both daily and monthly scales throughout the year. The influence of temperature factor on CO$_2$ flux changes at different time scales is generally weak.

Key words: dry-hot valley of Jinsha River; savanna; grassland ecosystem; CO$_2$ flux; environmental factors

1 Introduction

Since the industrial revolution, human economic and social progress heavily relies on fossil energy consumption, the excessive release of greenhouse gases has resulted in a rise in atmospheric CO$_2$ concentration and climate warming (Sha et al., 2022; Wang et al., 2023), and has also produced a series of ecological and environmental problems. The terrestrial ecosystem can absorb about 15.0%–30.0% of anthropogenic CO$_2$ emissions per year and carbon-neutrality-capacity index reach 27.14% (Green et al., 2019; Bai et al., 2023; Liu et al., 2023; Zeng et al., 2023), which is a significant carbon sink (Piao et al., 2018; Yang et al., 2022), studying the dynamic shifts in the carbon budget and carbon-neutrality-capacity within global terrestrial ecosystems, along with their environmental driving factors, has emerged as a significant topic in the realm of global change (Houghton, 2001; Bai et al., 2023). Constituting about 40.5% of the global land surface, grasslands serve as a crucial element of terrestrial ecosystems, and its carbon storage represents around 1/3 of the total terrestrial carbon storage globally, equivalent to the carbon storage of forest ecosystems (White et al., 2000; Wang et al., 2021; Bai et al., 2022), in which organic carbon storage is about 525 Pg C ($1\text{Pg}=10^{15}$ g) (Fang et al., 2007; Bai et al., 2022), significantly influencing the global carbon balance.

The savanna ecosystems cover 1/6 of the Earth’s total land area (Grace et al., 2006), which ecosystem structure and vegetation community composition are significantly controlled by hydrological conditions (Yu et al., 2015; Lee et al., 2018; Jin et al., 2019; Zhang et al., 2019; Hoffmann, 2023) and are composed of mixed forest and grassland ecosystems. The vegetation is mainly composed of grass, with sparse distribution of trees and shrubs. Being a significant component of the worldwide grassland ecosystem, and its net primary productivity (NPP) is about 30.0% of the terrestrial ecosystems (Grace et al., 2006; Peel et al., 2007; Dobson et al., 2022), which has significant impacts on global material cycling, energy flow, and climate change.
researches have indicated that the herbaceous plants in the savanna ecosystem are mainly C4 grasses, but only have medium productivity, and their carbon flux changes are highly seasonal (Grace et al., 2006). The rainy season is mainly dominated by carbon absorption, and the maximum rate of carbon fixation can reach 2/3 of the maximum value of the tropical rainforest. The dry season is marked by weak carbon emission or weak carbon sinks (Grace et al., 1995; Malhi., 1998; Saleska et al., 2003; Bousquet et al., 2006; Millard et al., 2008; Livesley et al., 2011; Fei et al., 2017a). Furthermore, in the tropical savanna ecosystem, grass-derived carbon contributes to over half of the total soil organic carbon in the soil up to a depth of 1 meter, even in the soil under the tree, that is, the carbon in the soil mainly comes from herbaceous plants (Zhou et al., 2023). Simultaneously, in the savanna ecosystem mainly stores carbon in the soil rather than the biomass of trees, certain researchers have suggested that it may emerge as a more significant carbon sink resource than forests in the future (Dobson et al., 2022).

The savanna ecosystem in China is mainly manifested as the ecological landscape of the valley-type sparsely shrub-grass vegetation distributed in the special geographical unit of the dry-hot valley, which is similar to the tropical savanna grassland. It is also known as valley-type savanna vegetation or semi-savanna vegetation (Jin et al., 1987; Shen et al., 2010). It is mainly distributed occurs in the Yuanjiang (YJ), Nu River, and Jinsha River (JS), and their tributaries in southwest China. The ecosystem is characterized by extremely high annual average temperature and lack of water source. The species richness increases with altitude (He et al., 2024), which belongs to the non-regional high temperature arid area evolved from the global temperate humid climate zone (Zhang, 1992).

At present, there are limited studies on the carbon balance of the savanna ecosystem in the dry-hot valley of China. The existing studies primarily concentrate on the YJ. In the investigation of soil respiration dynamics in the savanna ecosystem of the YJ, Yang et al. (2020) discovered that the annual total carbon emission from soil respiration in this region is relatively low compared to global savanna ecosystems, at 4.20 t·ha⁻¹·a⁻¹. Fei et al. (2017a) revealed that the savanna ecosystem of the YJ was a carbon sink, and about 84.0% of the carbon sinks was mainly concentrated in the rainy season (1.08 ± 0.35 t·C·ha⁻¹), and the dry season was carbon neutral. With the backdrop of forthcoming climate change by rising temperatures and diminished rainfall, the ecosystem’s carbon sink capacity could potentially decrease. The dry-hot valley of JS is the largest dry-hot valley in China, and it is also a typical representative of the valley-type savanna ecosystem in China. However, monitor and research on the CO₂ flux (F) features in this region is still lacking.

The research focused on the grassland ecosystem in the dry-hot valley of JS, utilizing actual observation data obtained by the static assimilative box method to explore the characteristics and
changes of the \(F_c \) in ecosystem, and its correlation with related environmental factors, and calculate
the annual \(F_c \) of the ecosystem. In order to offer a scientific reference for in-depth comprehension
of the key processes of carbon cycle in the valley-type savanna in China, and to study and predict
the ecological function changes of vegetation carbon sequestration under continuous drought and
high temperature stress in the future.

2 Data and methods

2.1 Observation sites

All observational data were derived from the Jinsha River Field Observation Station
(26°46.24" N, 101°49'41.68" E), whose test site is situated in the Shikanzi Daqing River Basin on
the west bank of JS (Fig. 1), with a representative savanna ecological landscape. The elevation of
the basin is 1200–1800 m, falling within the realm of the southern subtropical dry-hot monsoon
climate, with the characteristics of drought, high temperature and less rain. The ecosystem is
extremely fragile and sensitive. The annual average temperature is 22.93°C, with daily maximum
temperatures reaching over 43.00°C. The region has distinct rainy season (June to October) and dry
season (November to May of the subsequent year), and the annual precipitation is 428.50 mm, with
over 90.0% of the precipitation concentrated in the rainy season. The annual evaporation rate is high,
typically 3–6 times the annual precipitation (He et al., 2000). Herbaceous plants are mainly
Heteropogon contortus (Linn.) Beauv., Eulaliopsis binate (Retz.) C. E. Hubb, Cymbopogon
goeringii (Stead.) A. Camus, Eulalia speciosa (Debeaux) Kuntze, and so on. The shrubs include
Phyllanthus emblica L., Pistacia weinmannifolia J. Poisson ex Franch, Quercus franchetii Skan,
Quercus cocciferaeoides Hand. –Mazz, Dodonaea viscosa (L.) Jacq., Albizia kalkora (Roxb.) Prain,
Osteomeles schwerinae Schneid., Osyris wightiana, and Terminalia franchetii Gagnep., etc.

2.2 Data source

2.2.1 Micrometeorological Factor Observation

The micro-meteorological factors were continuously monitored in real-time by the DL3000
small automatic meteorological observation system deployed in the test site of the observation
station. The observation time began on January 12, 2023, and the observation indexes included air
temperature (Ta), relative humidity (RH), soil temperature (Ts), soil water content (SWC), soil
conductivity (SC), precipitation (P), wind speed (Ws), wind direction (WD), and photosynthetically
active radiation (PAR). The average value of the environmental factors observation data for 5
minutes, 30 minutes, and 24 hour are automatically recorded through the CR1000X data collector.
The specific meteorological observation system sensor equipment information is listed in Table 1.
Figure 1 Range of dry-hot valley in JS and location of the Jinsha River Field Observation Station.

Table 1 Information of micrometeorological observation system.

<table>
<thead>
<tr>
<th>Name of instrument</th>
<th>Observation parameter</th>
<th>Height (depth) of installation (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature and humidity sensor</td>
<td>Ta (°C) and RH (%)</td>
<td>1.5</td>
</tr>
<tr>
<td>Photosynthetic effective radiometer</td>
<td>PAR (μmol·m⁻²·s⁻¹)</td>
<td>1.5</td>
</tr>
<tr>
<td>Wind speed and direction sensor</td>
<td>Ws (m/s) and WD (°)</td>
<td>1.5</td>
</tr>
<tr>
<td>Rainfall sensor</td>
<td>P (mm)</td>
<td>1.5</td>
</tr>
<tr>
<td>Soil multi-parameter sensor</td>
<td>Ts (°C), SWC (m³·m⁻³), and SC (dS/m)</td>
<td>Soil horizon 0.1</td>
</tr>
</tbody>
</table>

2.2.2 CO₂ flux observation

In order to ensure the representativeness of the observation plots and the spatial integration of the observation data, the typical grassland plots with small micro-habitat differences were selected in the test site of the observation station to lay out and install static assimilative boxes for positioning observation. The observation point is about 10 m away from the automatic meteorological observation system. The observation time begins at 15:05 noon on March 3, 2023, and ends at 10:50
a.m. on November 1, 2023. The bottom area of the assimilative box is 0.25 m², and the volume in the box is 125 L. The whole box is composed of transparent organic glass. There are two sets of fans in the box, which can fully mix the gas evenly. The height of the base is 8 cm, embedded in the underground soil is 5 cm, and the aboveground part is 3 cm. The NEE is mainly measured by the CARBOCAP ® carbon dioxide sensor GMP343 of Visala Company. The diffusion probe of the sensor can effectively reduce the measurement error caused by the pressure difference of the pumping system. It has the characteristics of flexibility and high precision and is widely used in ecosystem CO₂ monitoring. The top cover of the assimilative box can be automatically opened and closed, and the time of a single complete measurement cycle is 15 minutes. Before the measurement, the top cover of the assimilative box will be automatically opened, so that the gas in the box and the surrounding air are mixed evenly, and the time is 5 minutes. Then the top cover of the box is automatically closed to a closed and stable state, the fan starts, and the gas change in the box is measured. The measurement and recording time is 10 minutes, so repeated.

2.2.3 Other data

The boundary data of dry-hot valley was sourced from Deng (2022). The administrative boundary data (Xu, 2023a; Xu, 2023b) and river data (Xu, 2018) were sourced from the Resources and Environment Science Data Center (RESDC) from the Chinese Academy of Sciences.

2.2.4 Data processing

When the carbon flux is measured, the whole monitoring system will collect the original data of GMP34 at a speed of 2 Hz through the CR1000X data collector, and make an average of 5 seconds (main scan interval) to participate in the statistics. If the difference between the newly acquired data and the average value exceeds 8 times the standard deviation, it is classified as an outlier, and such data points are eliminated. The system performs linear regression fitting on the removed data and calculates the ecosystem CO₂ exchange capacity, goodness of fit, etc.

The ecosystem CO₂ exchange capacity is calculated by the formula (1):

\[
F_c = \frac{V \times P_{av} \times (1000 - W_{av})}{R \times S \times (T_{av} + 273)} \times \frac{\partial c}{\partial t} (1)
\]

where \(F_c \) represents CO₂ flux (μmol·m⁻²·s⁻¹); \(V \) represents the volume of assimilative chamber (m³); \(P_{av} \) represents the mean atmospheric pressure (kPa) inside the chamber during the observation period; \(W_{av} \) represents the partial pressure of water vapor inside the chamber during the observation period (mmol·mol⁻¹); \(R \) represents the atmospheric constant (8.314 J·mol⁻¹·K⁻¹); \(S \) represents the area of assimilative chamber (m²); \(\partial c / \partial t \) represents the diffusion rate of CO₂ in the chamber; \(T_{av} \) represents the mean temperature (°C) inside the chamber during the observation period.

The linear regression method was employed to fit the CO₂ diffusion rate \((\partial c / \partial t) \) (formula 2).
This method is the basic method for measuring the CO₂ diffusion rate of most soil respiration and is widely used (Wen et al., 2007):

\[c(t) = c + \frac{dc}{dt}t \quad (2) \]

where \(c(t) \) represents the CO₂ concentration within the assimilative chamber; \(t \) represents the determination time; \(c \) represents the CO₂ concentration in the assimilative chamber when it is closed.

Taking into account the specific conditions of the study area, the recorded \(F_c \) data was categorized into dry season (March 3rd–May 31st) and rainy season (June 1st–November 1st). Due to the damage of the assimilative box from June 1st to August 6th and the lack of observation data, considering the continuity of the data time series and the precision of the data, the dry season carbon flux data is mainly based on the observation data from March 4th to May 31st, and the rainy season carbon flux data is mainly based on the observation data from August 7th to October 31st. Quality control was conducted on the raw data to remove invalid NAN values and abnormal data. Utilizing the research results from Zhao et al. (2020), missing data points with a time difference of under 3 hours are filled in using linear interpolation. For data with a missing time gap exceeding 3 hours, differentiate and interpolate the data based on different time intervals. Among them, the data of daytime in the rainy season were interpolated by formula (3) rectangular hyperbolic model (Ruimy et al., 1995) to simulate the relationship between \(\text{NEE} \) and \(\text{PAR} \). The missing data of the rainy season at nighttime and the dry season were interpolated by the multiplicative model (4) of the response of ecosystem respiration to \(T_s \) and \(\text{SWC} \):

\[\text{NEE}_{\text{daytime}} = R_{\text{daytime}} - \frac{A_{\text{max}} \times \alpha \times \text{PAR}_{\text{daytime}}}{A_{\text{max}} \times \alpha \times \text{PAR}_{\text{daytime}}} (3) \]

where \(\text{NEE}_{\text{daytime}} \) represents the NEE during the daytime (\(\mu \text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1} \)); \(A_{\text{max}} \) represents the maximum photosynthetic rate (\(\mu \text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1} \)); \(\alpha \) represents the apparent quantum efficiency (\(\mu \text{mol} \cdot \text{mol}^{-1} \)); \(R_{\text{daytime}} \) represents the daytime ecosystem respiration rate (\(\mu \text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1} \)); \(\text{PAR}_{\text{daytime}} \) represents the PAR during the daytime (\(\mu \text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1} \)).

\[ER = a \times e^{\beta T_s} \times \text{SWC}^c (4) \]

where \(ER \) represents the ecosystem respiration rate (\(\mu \text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1} \)); \(a, \beta \) and \(c \) represents the fitting parameters; \(T_s \) and \(\text{SWC} \) are shown in Table 1.

The vapor pressure deficit (VPD) is calculated by formula (5) (Campbell et al., 2012):

\[VPD = 0.61078 e^{17.27T_a} (1 - RH) (5) \]

where \(RH \) and \(T_a \) are shown in Table 1.
3 Analysis of the effect

3.1 Dynamic changes in environmental factors

Utilizing the observational data of micrometeorological factors, the dynamic attributes of environmental factors such as Ta, VPD, RH, P, Ws, PAR, Ts and SWC. It can be seen that these environmental factors showed a high degree of seasonal characteristics, especially the P and SWC were the most obvious. Among them, the P in the rainy season was 400.80 mm, and mainly concentrated in August (142 mm), the precipitation frequency was 17 times, and the SWC changes between 0–0.19 m·m⁻³, also showing a strong response relationship with P (Fig. 2a and 2b). The minimum RH was 20.65% and the maximum was 94.10%, showing a strong response relationship with P. The VPD fluctuates between 0.11–4.13 kPa, and its value decreases significantly after May, which was related to the increase of P and RH in the rainy season (Fig. 2a and 2c). During the observation period, the PAR varied from 52.28–860.59 μmol·m⁻²·s⁻¹, influenced by weather conditions and displaying significant fluctuations (Fig. 2d). From different seasons, the daily average of PAR in the dry season (476.50 μmol·m⁻²·s⁻¹) exceeded that of the rainy season (432.79 μmol·m⁻²·s⁻¹). During the dry season, the mean Ta was 23.04°C, while in the rainy season, it averaged 25.38°C. The difference was small. Secondly, the highest and lowest values of Ta appear in May of the dry season. The range of Ta and Ts was 8–34.52°C and 11.58–36.97°C, respectively. The seasonal variation characteristics of the two were similar, but the Ts was significantly higher than the Ta, and the change time lags behind the Ta (Fig. 2e). In terms of changes in Ws characteristics, the highest value of Ws appeared in March, reaching 2.93 m·s⁻¹, and the lowest value appeared in June, which was 0.57 m·s⁻¹. The daily average Ws was the highest in February, which was 1.90 m·s⁻¹, and the lowest in August, which was 0.99 m·s⁻¹. The Ws decreased significantly after mid-July (Fig. 2f).

3.2 Diurnal variation of CO₂ flux

The Fc was positive, showing a carbon emission state, throughout the entire diurnal variation process in the dry season. The diurnal variation showed a ‘W’-type bimodal curve (Fig. 3a) of decreasing → increasing → decreasing → increasing, that is, the Fc was lower in the morning and afternoon, and the Fc was higher in the nighttime and noon, especially in April and May when this diurnal variation pattern was most pronounced. The lowest Fc values appeared in the morning (8:00–10:00) of each month, which were 0.1178 μmol·m⁻²·s⁻¹, 0.1148 μmol·m⁻²·s⁻¹, and 0.1397 μmol·m⁻²·s⁻¹, respectively. The highest Fc value appeared in the evening (19:20) in March, which was 0.2158 μmol·m⁻²·s⁻¹. In April and May, it appeared at noon (13:35). They were 0.1148 μmol·m⁻
The diurnal variation of the F_c was characterized by a ‘U’-shaped single-peak curve, which was stable at night and decreased first and then increased during the day (Fig. 3b), during the rainy season. At about 7:35 in the morning, with the increase of PAR intensity, the photosynthesis of the grassland ecosystem is continuously enhanced, and the F_c begins to become negative. At this time, the grassland ecosystem changes from carbon emission at night to carbon absorption, forming the source of CO$_2$ absorption and reaching the maximum peak of carbon absorption at 10:00–14:00. Until about 17:20, the F_c becomes positive again. The grassland ecosystem transitions into a state of carbon emission, releasing CO$_2$ into the atmosphere. The lowest F_c values appeared in the morning (10:00–12:00) from the diurnal variation of flux in various months, which were -1.4286 μmol·m$^{-2}$·s$^{-1}$, -1.3834 μmol·m$^{-2}$·s$^{-1}$, and -1.0278 μmol·m$^{-2}$·s$^{-1}$, respectively. The highest F_c values appeared in the evening (18:35–18:50), which were 0.7584 μmol·m$^{-2}$·s$^{-1}$, 0.4959 μmol·m$^{-2}$·s$^{-1}$ and 0.5715 μmol·m$^{-2}$·s$^{-1}$, respectively.

3.3 Seasonal variation of CO$_2$ flux

From Fig.4, we can find that the seasonal variation of the F_c in the grassland ecosystem was evident. In the dry season, the ecosystem experiences severe drought and water scarcity, leading to
poor growth of herbaceous plants, which is characterized by carbon emissions. The monthly cumulative CO$_2$ emission fluxes were 18.64 g·m$^{-2}$, 15.96 g·m$^{-2}$, and 20.64 g·m$^{-2}$, respectively, displaying an initial decline followed by a rise. The CO$_2$ emission flux was the highest in May. The ecosystem has abundant P in the rainy season, the SWC is high, the herbaceous plants are in the growing season, and the photosynthesis capacity is significant, so it is characterized by carbon sink function. The monthly cumulative CO$_2$ absorption fluxes were 6.42 g·m$^{-2}$, 24.41 g·m$^{-2}$, and 5.14 g·m$^{-2}$, respectively, displaying a rise initially followed by a decline, and the carbon absorption capacity in September was the most significant.

Figure 3 Diurnal variation characteristics of the Fc (a–dry season; b–rainy season).
The existing observation data were averaged and calculated respectively in this study, and they were used as the daily mean F_c of the two seasons in the whole year. According to the days of the dry season (213 days) and the rainy season (152 days) in the whole year, the dry season, rainy season, and annual F_c of the grassland ecosystem were calculated. The findings indicated that the mean daily F_c was 0.1632 μmol·m$^{-2}$·s$^{-1}$, and the cumulative CO$_2$ emission was 1.3215 t·ha$^{-1}$ in the dry season. The daily average F_c was -0.1062 μmol·m$^{-2}$·s$^{-1}$, and the cumulative CO$_2$ uptake was 0.6137 t·ha$^{-1}$ in the rainy season. From the annual scale, the cumulative F_c of the grassland ecosystem was 0.7078 t·ha$^{-1}$·a$^{-1}$ (0.1926 t·C·ha$^{-1}$·a$^{-1}$), making it a weak carbon source.

3.4 The relationship between CO$_2$ flux and environmental factors

3.4.1 Response of CO$_2$ flux to PAR

This study selected carbon flux data and micrometeorological observation data corresponding to period and analyzed the mutual correlation between F_c and environmental factors. The research area belongs to a typical semi-arid region, where vegetation growth and physiological processes are mainly regulated by temperature and moisture factors (Jiang et al., 2007; Fei et al., 2017a). Therefore, when analyzing the influencing factors of ecosystem CO$_2$ flux, we mainly selected environmental factors including P, SWC, Ts, Ta, RH, PAR, and VPD for pearson analysis. No significant correlation between PAR and F_c during the dry season was indicated by the results of the pearson correlation analysis ($R = 0.180, P = 0.092$). Still, there was a strong negative correlation between PAR and F_c during the rainy season ($R = -0.578, P < 0.01$), and this relationship was more obvious in Fig. 5a. As a key environmental factor driving plant photosynthesis, photosynthetically active radiation will directly affect the carbon absorption rate of grassland ecosystem and further
affect the carbon budget pattern of ecosystem. In the rainy season, the Fc of the grassland ecosystem decreased with the increase of PAR, and the carbon absorption capacity increased continuously, and the relationship between them could be expressed by formula (3). Secondly, when PAR was under 500 µmol·m⁻²·s⁻¹ (Fig. 5b), the NEE of the ecosystem decreases rapidly with increasing PAR. At the same time, the distribution of NEE with PAR was relatively concentrated. However, when PAR was above 500 µmol·m⁻²·s⁻¹, the magnitude of the decrease in NEE with increasing PAR gradually decreases, and the distribution of NEE with PAR was relatively scattered, indicating that the Fc was also influenced by various other environmental factors present in the ecosystem when solar radiation is high. Once PAR reaches the light saturation point at 1523.64 µmol·m⁻²·s⁻¹, the NEE of the ecosystem reached to its minimum, and the light response curve gradually begins to flatten. These research findings align with those of previous studies carried out in diverse grassland ecosystems (Zhao et al., 2007; Wang et al., 2015; Guo et al., 2022).

Figure 5 The correlation between PAR and Fc (a - the relationship between PAR and Fc in the rainy season; b - the response of Fc to PAR during daytime in the rainy season).
3.4.2 Relationship with other environmental factors

With no significant correlation with SWC (Fig. 6a and 6b) shown by the daily scale Fc of grassland ecosystems in the various seasons, there was a moderate negative correlation with Ta and Ts ($P<0.01$), a moderate positive correlation with P ($P<0.01$), and a strong positive correlation with RH ($P<0.01$). The daily scale Fc in the dry season has a moderate negative correlation with VPD ($P<0.01$), while the Fc in the rainy season shows a strong negative correlation with VPD ($P<0.01$).

Throughout varying seasons, the Fc increases with the increase of P and RH, as well as the decrease of Ta, Ts, and VPD. Due to the small variations in SWC within the two seasons (Fig. 2b), therefore, the impact of SWC on the diurnal fluctuation of the Fc was not significant. In general, the diurnal variation of Fc in the dry season is mainly affected by RH, while the rainy season is mainly affected by RH and VPD, and the influence of other environmental factors is generally weak.

Figure 6 The pearson correlation between Fc and environmental factors (a–daily scales of the dry season; b–daily scales of the rainy season; c–annual daily scales; d–monthly scales, the ** is $P<0.01$; the * is $P<0.05$).

Throughout the year on a daily scale (Fig. 6c), the Fc showed no significant correlation with Ta and P, a weak positive correlation with VPD ($P<0.01$), a weak negative correlation with Ts ($P<0.01$), a moderate negative correlation with RH ($P<0.01$), and a strong negative correlation with SWC ($P<0.01$). It is evident that as the time series extends, the physiological responses of photosynthesis and respiration processes in the grassland ecosystem to specific environmental factors have undergone changes. As the VPD decreases, and RH, SWC, and Ts increase, and the Fc of ecosystem decreased gradually. Particularly, the impact of SWC was most significant, closely related to the distinct climatic characteristics of wet and dry seasons in the study area. Under such
climatic conditions, the variation in SWC throughout the year becomes the dominant factor restricting regional vegetation growth and recovery (Jiang et al., 2007), significantly influencing the intra-annual variation of the Fc.

The study also found that at the monthly scale, the Fc showed no significant correlation with Ta, Ts, and P (Fig. 6d), but exhibits a strong negative correlation with SWC and RH (P<0.05), and a strong positive correlation with VPD (P<0.05). As the temporal scale increases, the environmental driving factors influencing the variation in Fc decrease, but the correlation significantly increases. This may be attributed to the short monthly time series of the observational data. In general, at the monthly scale, SWC, RH, and VPD emerge as the predominant factors influencing the variation in Fc within the ecosystem. Furthermore, the change in time scale will also affect the correlation between Fc and driving factors, aligning with the findings in Heihe River Basin (Bai et al., 2022).

4 Discussion

4.1 Carbon flux of grassland ecosystem

The herbs in the study area are mainly C₄ plants (Grace et al., 1995), which are called high-efficiency photosynthetic plants, and the C₄ plants exhibit higher efficiency in photosynthesis and resource utilization when compared to C₃ plants (Cui et al., 2021; Arslan et al., 2023; Xu et al., 2023). However, similar to other savanna ecosystems, the study area has been in a dry, high-temperature, and low-rainy climate for a long time. This extreme climatic condition makes the productivity of C₄ herbaceous plants only maintain at a medium level (Grace et al., 1995), therefore, the carbon sink capacity is relatively weak. The data analysis revealed that within the grassland ecosystem situated in the study area, the daily maximum CO₂ uptake rate was recorded at only 1.4286 μmol·m⁻²·s⁻¹, which stands notably lower in comparison to other grasslands found in arid and semi-arid regions (Fig. 7) (Li et al., 2005; Kato et al., 2006; Du et al., 2012; Hu et al., 2018; Niu et al., 2018; Zhang et al., 2020; Guo et al., 2022).

Through comparative analysis, it can be observed that various grasslands in arid/semi-arid regions primarily function as carbon sinks, but some grasslands also show the characteristics of carbon emissions (Table 2). Simultaneously, most savanna ecosystems globally demonstrate carbon sequestration features (Table 2), with only a few exhibiting characteristics of carbon emissions, with the NEE varying from around 1.28 to −3.87 t C·ha⁻¹·a⁻¹. Consistent with findings from other savanna ecosystems (Grace et al., 1995; Miranda et al., 1997; Fei et al., 2017a), the special hydrothermal conditions make the vegetation growth of the grassland in the study area exhibiting pronounced seasonal characteristics and affect the change of carbon flux. In the season of drought and water
shortage, the herbs growth is poor, and the ecosystem mainly emits carbon, showing a carbon source characteristic. During the rainy season, the vegetation enters the peak period of growth, with strong carbon fixation ability, and the ecosystem mainly absorbs carbon, showing a carbon sink function. Overall, the grassland ecosystems in the study area predominantly exhibit carbon emissions, albeit at relatively low levels, demonstrating a carbon-neutral attribute. The carbon flux characteristics are the same as those of Sumbrugu Aguusi savanna grassland in Sudan (Quansah et al., 2015), Kruger Park semi-arid savanna in South Africa (Archibald et al., 2009) and Virginia Park semi-arid savanna in Australia (Hutley et al., 2005).

Through comparative analysis, we found that most of the grasslands in the savanna ecosystem and arid and semi-arid areas are dominated by carbon sinks. The reason for the carbon emission status of grassland in this study may be related to the continuous reduction of rainfall in the study area in recent years (Fig. 8). Under this extremely dry and rainless climate condition, the carbon sequestration capacity of herbaceous plants with low vegetation productivity is significantly reduced. In the case of continuous reduction of rainfall in the future, the carbon emissions of grassland ecosystems in the study area may continue to increase. At the same time, the study area as a special heat island habitat in the global temperate zone. Under the climate scenario of continuous warming and decreasing precipitation in the future, the vegetation community structure in some temperate regions will succession to the savanna vegetation community. With the extension of drought and high temperature, grassland ecosystems in these areas may change from carbon sinks to carbon sources, which is extremely important for the carbon balance of global terrestrial ecosystems.
<table>
<thead>
<tr>
<th>Country</th>
<th>Location</th>
<th>Latitude & longitude</th>
<th>Vegetation</th>
<th>NEE (t C·ha⁻¹·a⁻¹)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yunwu Mountain</td>
<td>National Nature Reserve</td>
<td>36°31'59.54"N, 106°27'12.7"E</td>
<td>semi-arid forest</td>
<td>−0.02</td>
<td>Zhang et al., 2020</td>
</tr>
<tr>
<td>Sudan</td>
<td>Yanchi Research Station</td>
<td>42°52'34.5"N, 101°30'20.5"E</td>
<td>sandy grassland</td>
<td>0.91</td>
<td>Niu et al., 2018</td>
</tr>
<tr>
<td>Sudan</td>
<td>Northwestern Benin</td>
<td>37°47'19.5"N, 134°46'14.7"E</td>
<td>semi-arid shrub</td>
<td>−0.77</td>
<td>Law et al., 2002</td>
</tr>
<tr>
<td>Sudan</td>
<td>Bontoli</td>
<td>10°55'43.5"N, 15°56'32.7"E</td>
<td>savanna</td>
<td>−3.04</td>
<td>Brümmer et al., 2008</td>
</tr>
<tr>
<td>Sudan</td>
<td>Nazinga Park</td>
<td>10°50'45.6"N, 9°38'51.2"W</td>
<td>savanna</td>
<td>−3.87</td>
<td>Quansah et al., 2015</td>
</tr>
<tr>
<td>Sudan</td>
<td>Sunbrugu Aguessi</td>
<td>9°38'51.2"W</td>
<td>savanna</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>Kruger Park</td>
<td>/</td>
<td>semi-arid savanna</td>
<td>0.25</td>
<td>Archibald et al., 2009</td>
</tr>
<tr>
<td>South Africa</td>
<td>Ca. 20 km east of Maun, Botswana</td>
<td>19°50'24.5"S, 23°32'14.5"E</td>
<td>woodland savanna</td>
<td>−0.12</td>
<td>Veenendaal et al., 2004</td>
</tr>
<tr>
<td>West Africa</td>
<td>Dahra field site</td>
<td>15°24'00.2"N, 15°24'48.7"W</td>
<td>shrub and tree savanna</td>
<td>−2.71</td>
<td>Tagesson et al., 2015</td>
</tr>
<tr>
<td>Brazil</td>
<td>Reserva Ecológica do IBGE</td>
<td>15°14'57.7"W, 47°30'14.7"W</td>
<td>trees and shrubs</td>
<td>−2.88</td>
<td>Santos et al., 2003</td>
</tr>
<tr>
<td>Spain</td>
<td>El Llano de los Juanes</td>
<td>36°55'41.7"N, 02°45'1.7"W</td>
<td>mediterranean shrubland</td>
<td>−0.02</td>
<td>Serrano-Ortiz et al., 2009</td>
</tr>
<tr>
<td>United States</td>
<td>Tonzi Ranch, California</td>
<td>38°25'48.7"N, 120°57'00.7"W</td>
<td>oak and grass savanna</td>
<td>−0.98</td>
<td>Ma et al., 2003</td>
</tr>
<tr>
<td>United States</td>
<td>Virginia Park</td>
<td>19°53'00.2"S, 146°50'14.7"E</td>
<td>semi-arid savanna</td>
<td>0.21</td>
<td>Hutley et al., 2005</td>
</tr>
<tr>
<td>Australia</td>
<td>Howard Springs</td>
<td>12°29'14.7"S, 131°09'03.7"E</td>
<td>mesic savanna</td>
<td>−1.55</td>
<td>Cleverly et al., 2013</td>
</tr>
<tr>
<td>Australia</td>
<td>Pine Hill cattle station</td>
<td>22°16'48.7"S, 133°10'03.7"E</td>
<td>woodland savanna</td>
<td>−1.25</td>
<td>Eamus et al., 2013</td>
</tr>
<tr>
<td>Australia</td>
<td>Central Australia</td>
<td>22°18'00.2"S, 133°12'00.2"E</td>
<td>acacia savanna</td>
<td>−2.58</td>
<td>Eamus et al., 2013</td>
</tr>
<tr>
<td>Australia</td>
<td>Howard Springs</td>
<td>12°29'14.7"S, 131°09'03.7"E</td>
<td>open-forest savanna</td>
<td>−3.60</td>
<td>Beringer et al., 2007</td>
</tr>
</tbody>
</table>

Table 2: Comparison of NEE in grassland ecosystems and savanna ecosystems.
Figure 8 The precipitation changes in the study area from 1980 to 2023 (The precipitation data from 1980 to 2022 are collected from Yunnan Statistical Yearbook, and the precipitation data in 2023 were the measured data of Jinsha River Field Observation Station.).

4.2 Effects of environmental factors on CO\textsubscript{2} flux

4.2.1 Temperature factor

As a crucial environmental factor influencing the F\textsubscript{c} of ecosystems, temperature mainly affects the F\textsubscript{c} of terrestrial ecosystems by regulating biological activities such as photosynthesis and respiration (Woodwell et al., 1983; Pan et al., 2020; Johnston et al., 2021; Chen et al., 2023), especially for grassland ecosystems, several prior studies have validated that temperature serves as the primary driving force controlling the variation in F\textsubscript{c}. Nevertheless, owing to variations in climate and environmental conditions, the regulatory impact of temperature fluctuations on the F\textsubscript{c} differs significantly across various types of grassland ecosystems. Compared with temperate grassland and semi-arid grassland, the warming effect has the most significant impact on the carbon flux of frigid grasslands worldwide. However, in semi-arid grassland ecosystems, the effect of warming is not significant (Wang et al., 2019). The rise in temperature (both annual average temperature and annual average soil temperature) reduced the carbon flux of temperate grasslands in China, while the effect on alpine grasslands was opposite (Liu et al., 2024). In the Inner Mongolia Plateau, with the increase of temperature, the NEE of the grassland ecosystem will increase (Liu et al., 2018), while the change of Qinghai–Tibet Plateau, compared with it, is very small, and there is no correlation between F\textsubscript{c} and temperature change in the Inner Mongolia grassland during the drought period (Hao et al., 2006). Ta and Ts exhibit a negative correlation with the F\textsubscript{c} at different seasonal daily scales in the grassland ecosystem in dry-hot valley of JS, similar to the control mechanisms seen in other arid and semi-arid grasslands (Li et al., 2015; Niu et al., 2018; Chen et al., 2019). As the time series extends and the temporal scale increases, the impact of Ta and Ts on the fluctuations in the F\textsubscript{c} in the grassland
of study region continues to weaken, which is related to the small differences in Ta and Ts within
different time scales in the study area. That is, the small temperature difference leads to the
distribution change of the F_c in time is not sensitive to temperature fluctuation, which is the same
as the characteristics of the savanna ecosystem in YJ (Fei et al., 2017a). This phenomenon is also
common in other arid regions (Wang et al., 2021).

4.2.2 Water factor

Previous studies have pointed out that a potential limiting factor affecting carbon uptake in
terrestrial ecosystems is soil moisture, which can diminish NPP through water stress in ecosystems,
leading to vegetation death (Green et al., 2019). Simultaneously, soil moisture may exacerbate
extreme climatic conditions through the intricate interaction between the land and the atmosphere.
Particularly in arid regions characterized by scarce water resources, there exists a significant
interaction between soil moisture and vegetation. Hence, in terms of carbon and water fluxes
affecting dryland ecosystems, SWC is a more important ecosystem control factor than Ta (Zhang et
al., 2012; Zou et al., 2016; Fei et al., 2017a; Tarin et al., 2020; Kannenberg et al., 2024). For instance,
in the herbs growth season of the Qinghai–Tibet Plateau, regions with plentiful precipitation in the
east and southeast primarily regulate carbon absorption capacity through temperature. Conversely,
SWC emerges as the principal determinant of carbon sequestration capability in the arid and water
shortage western region (Wang et al., 2021). Simultaneously, the SWC emerges also as the
predominant factor influencing the daily fluctuations of NEE in grassland ecosystems in the semi-
arid regions of northern China (Zhao et al., 2020). In the sandy grasslands of Horqin, the NEE during
the plant growth season increases with the rise in SWC, while it decreases during the non-growth
season (Chen et al., 2019). The research area is a classic dryland ecosystem characterized by scarce
and concentrated precipitation. The driving effect of water on the ecosystem is obvious. Plant
physiology is greatly affected by water stress. Higher SWC is conducive to promoting the recovery
and growth of herbs (Jiang et al., 2017), and this enhancement in vegetation growth contributes
significantly to augmenting the carbon sink capacity. Therefore, it can be observed that in the season
with more rainfall, the study area has a carbon sink function due to higher SWC (Figure 2b), whereas
in the dry season, it exhibits characteristics of carbon emissions.

In arid ecosystem, alterations in the P significantly affect plants and soil, especially the
grassland ecosystem has the greatest response to the change of the P. The effectiveness of water
dictates plants growth and the release and absorption of CO$_2$. Therefore, prior researches have
indicated that the F_c of grasslands in arid regions exhibits greater sensitivity to variations in the P
(Knapp et al., 2002; Niu et al., 2007; Weltzin et al., 2003; Zhang et al., 2020). An increase in the P
led to a delay in the peak of gross primary productivity in vegetation growth stage of the Inner Mongolia desert steppe, enhancing the ecosystem’s carbon flux (Li et al., 2017; Zhang et al., 2019). The decrease of the P significantly reduced the soil respiration in the early and middle vegetation growth season of Horqin sandy grassland (Wang et al., 2023). The P of Xilinhot grassland changed the Fc in the vegetation growth season mainly by affecting SWC (Wang et al., 2015). High water levels (annual average precipitation and soil moisture) have continuously increased the carbon flux of temperate grasslands and alpine grasslands in the Mongolian Plateau, Loess Plateau, and Qinghai–Tibet Plateau (Liu et al., 2024).

Changes in hydrological conditions such as the P and SWC can significantly affect the water balance characteristics and water redistribution of the savanna ecosystems due to the arid and hot climate environment characteristics, thereby altering the ecological system structure and vegetation community composition of woody and herbaceous plants coexisting (Yu et al., 2015; Lee et al., 2018; Jin et al., 2019; Zhang et al., 2019; Hoffmann, 2023; Mattos et al., 2023), thereby affecting vegetation productivity (Jin et al., 2018), ecological water use efficiency (Yu et al., 2015; Lee et al., 2018; Mattos et al., 2023), plant diversity (He et al., 2024), and carbon flux (Fei et al., 2017a).

Changes in hydrothermal conditions have formed the distinct vertical zonation structure of vegetation communities in the savanna of the JS (He et al., 2024). The continuous decrease in the P led to a marked reduction in both the average height and coverage of the herbaceous community in the YJ. However, it significantly increased the species richness and evenness index of the herbaceous community (Jin et al., 2019). Observations of the Fc showed that the P determined the carbon sink change of the savanna ecosystem in the YJ (Fei et al., 2017a). As for the study area, the P shows a positive correlation with the Fc at different seasonal daily scales, with no significant relationship observed with the Fc variation on the daily and monthly scales throughout the year. However, the variation in P significantly affects the regional SWC and RH (Fig. 6c and 6d). Therefore, we suggest that the impact mechanism of the P on the Fc in the JS dry-hot valley grassland ecosystem may be similar to that of the Xilinhot grassland ecosystem, where the P mainly controls vegetation growth by affecting SWC and RH, thereby indirectly influencing the Fc in the grassland ecosystem.

4.2.3 Relative humidity and vapor pressure deficit factor

The arid/semi-arid grassland ecosystem is short of water resources, the soil nutrients are relatively poor, and the ecosystem is fragile and sensitive. Especially with the change in global climate, RH has become a key limiting factor restricting its sustainable development (Wang et al., 2023). As an important measure of atmospheric dryness, the fluctuation of VPD is controlled by RH.
and has a high correlation with other important driving factors of ecosystem productivity, such as Ta and SWC, which is a key climate regulation factor affecting ecosystem photosynthesis and transpiration. Multiple studies have shown that when RH decreases, vegetation stomata will be closed due to an increase in VPD, thereby preventing excessive water loss (Williams et al., 2013; Novick et al., 2016; Sulman et al., 2016; Hsu et al., 2021), leading to a decrease in the photosynthetic rate of leaves and canopies, thereby inhibiting photosynthesis (McDowell et al., 2015; Sulman et al., 2016; Yuan et al., 2019), reducing vegetation productivity and hindering vegetation growth. Therefore, there is a mainly negative correlation between the intensity of plant photosynthesis and VPD. Zhong et al. (2023) discovered that excluding the influences of Ta and soil moisture on vegetation productivity, VPD negatively impacts vegetation productivity in the majority of Northern Hemisphere regions. Globally, studies have also shown that increased VPD reduces global vegetation growth and offsets the beneficial impacts of CO$_2$ fertilization (Yuan et al., 2019). Simultaneously, the interannual variation of VPD shows a significant negative correlation with net ecosystem productivity and affects the interannual variation of atmospheric CO$_2$ growth rate (He et al., 2022). Because of variations in climatic conditions and the synergistic effects of multiple environmental factors, the response mechanisms of the Fc in different grassland ecosystems to changes in VPD and RH are also varied. For instance, in the savanna ecosystem of YJ, the Fc shows a negative correlation with VPD (Fei et al., 2017a). Wang et al. (2021) found through a study on the spatial variation of carbon flux of 10 distinct grassland types that a positive correlation exists between VPD and NEE in the Qinghai–Tibet Plateau. In the arid grasslands of Heihe River Basin (Bai et al., 2022), the Fc is positively correlated with VPD and RH. The Fc at the daily scale exhibit a positive correlation with RH and a negative correlation with VPD during different seasons in the study area. Taking into account the seasonal changes in different environmental factors (Fig. 2c), during the dry season, the RH is low, VPD is high. The ecosystem exhibits a carbon emission state, while the opposite is observed during the rainy season. Generally, the reduction in RH and the increase in VPD will inhibit the ecosystem’s carbon absorption capacity.

5 Conclusions

This study quantitatively analyzed the Fc variations and their relationships with environmental factors in the grassland ecosystem of the dry-hot valley of JS, enriching the theoretical understanding of key carbon cycling processes in the savanna ecosystem in China. Nonetheless, the absence of long-term observational data on the Fc in our study precludes a more thorough examination of the inter-annual variation characteristics of the Fc. Secondly, the study did not
effectively observe the dynamic characteristics of soil respiration, making it impossible to accurately calculate the GPP of the ecosystem. Furthermore, we only observed and studied the changes in F_c of the grassland ecosystem, while the savanna ecosystem has a vegetation community structure with two levels of shrub and grass. Therefore, forthcoming our research will emphasize the extended observation of the F_c changes in the savanna ecosystem with a complete vegetation community structure, especially the use of eddy correlation methods to expand the scope of ecosystem observation and reduce the uncertainty of measurement samples, so as to better clarify the carbon budget pattern of the ecosystem. Through this research, we have arrived at the following findings:

(1) The diurnal variation of F_c showed a ‘W’ shaped bimodal curve during the dry season. The maximum daily CO$_2$ emission rate reached 0.2158 μmol·m$^{-2}$·s$^{-1}$ in March, with the highest cumulative CO$_2$ emission of 20.64 g·m$^{-2}$ observed in May. During the rainy season, the diurnal variation of F_c in the ecosystem showed a ‘U’ shaped unimodal curve. The maximum daily CO$_2$ absorption rate reached 1.4286 μmol·m$^{-2}$·s$^{-1}$ in August, with the highest cumulative CO$_2$ absorption of 24.41 g·m$^{-2}$ observed in September.

(2) In the rainy season existed a notable correlation between PAR and F_c. Especially during the daytime, the relationship between F_c and PAR followed a rectangular hyperbolic model. When PAR reached the light saturation point, the photosynthetic rate of the ecosystem would peak, and the light response curve would gradually level off. Additionally, when PAR was high, the F_c of the ecosystem was also impacted by other driving factors.

(3) The diurnal variation of F_c in the dry season is mainly affected by RH, while the rainy season is mainly affected by RH and VPD. Small temperature differences result in a relatively weak overall impact of T_a and T_s on the F_c of the ecosystem. P mainly indirectly controls the vegetation growth and the F_c by influencing SWC and RH. Overall, SWC, RH, and VPD were the main environmental factors influencing the F_c. As SWC and RH rise while VPD declines, the ecosystem’s carbon absorption capacity experiences a notable enhancement.

(4) Affected by environmental factors, the F_c of the grassland ecosystem exhibited significant seasonal characteristics. During the dry season, the ecosystem showed carbon emissions, with a cumulative CO$_2$ emission of 1.3215 t·ha$^{-1}$. During the rainy season, the ecosystem showed carbon absorption, with a cumulative CO$_2$ absorption of 0.6137 t·ha$^{-1}$. Throughout the year, the ecosystem was a weak carbon source. In the case of continuous reduction of P in the future, the carbon emissions of the ecosystem may continue to increase.

Data availability
The CO₂ flux data and environmental data used to support the findings of this study were available from the corresponding author upon request. The administrative boundary data (DOI:10.12078/2023010101; DOI:10.12078/2023010103) and river data (DOI:10.12078/2018060101) were downloaded from the RESDC from the Chinese Academy of Sciences (https://www.resdc.cn/Default.aspx).

Author contributions

All authors were involved in the preparation and design of the manuscript. Chaolei Yang wrote the manuscript, and all authors provided feedback and suggestions for revision. Yufeng Tian and Jingqi Cui processed and analyzed the research data. Zong Wei, Yong Huang, and Aihua Jiang are mainly responsible for the daily maintenance and data collection of monitoring instruments. All the authors have read and passed the final manuscript.

Competing interests

The authors has declared that no conflict of interest.

Financial support

This study received funding from the China Geological Survey (grant nos. DD20220888) and the National Natural Science Foundation of China (grant nos. U2102209).

References

Hoffmann, W.A.: Seasonal flooding shapes forest–savanna transitions, PNAS, 120, e2312279120,

