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19  ABSTRACT: The dry-hot valley of Jinsha River is distinguished by prolonged drought and high
20  temperatures, making it a distinct non-zonal hot island habitat in the global temperate zone. It is an
21 ideal location for studying changes in plant carbon budget under sustained drought and high-
22  temperature conditions. However, there is currently a dearth of reports on CO; flux variations within
23 plant ecosystems in this region. The study quantitatively analyzed the characteristics of CO; flux
24 variation in the grassland ecosystem in this region and its response mechanisms to environmental
25  factors using continuous observation data obtained from static assimilative chamber. The results
26 indicate that both the environmental factors and CO; flux variations in grassland ecosystems exhibit
27  significant seasonal characteristics. During the dry season (March to May), the grassland acts as a
28  carbon source, exhibiting a daily average CO> flux of 0.1632 pmol-m?-s”!, which cumulative CO,
29  emissions for each month were 18.64 g'm?, 15.96 g'm?, and 20.64 g-m?, respectively. The
30  ecosystem showed noteworthy carbon absorption characteristics during the rainy season (August to
31  October), with a daily average CO flux of ~0.1062 umol-ms"!, which cumulative CO, absorption
32  for each month were 6.42 g'm?, 24.41 g-m?, and 5.14 g-m, respectively. Throughout the year, the
33  ecosystem was a weak carbon source, emitting an annual cumulative CO> of 0.7078 t-ha’l-al,
34  demonstrating carbon-neutral traits. In terms of environmental factors, there was a robust negative
35  correlation exists with CO: flux between photosynthetically active radiation during the rainy season
36  (R=-0.578, P<0.01). The daily CO; flux in different seasons was positively correlated with
37  precipitation and relative humidity (P<0.01), and negatively correlated with air temperature, soil
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38  temperature and vapor pressure deficit (P<0.01). The diurnal variation of CO; flux in dry season
39  was mainly affected by relative humidity, while that in rainy season was mainly affected by relative
40  humidity and vapor pressure deficit. The variation of CO» flux was most influenced by soil water
41  content, relative humidity, and vapor pressure deficit at both daily and monthly scales throughout
42  the year. The influence of temperature factor on CO: flux changes at different time scales is

43  generally weak.

44

45  Key words: dry-hot valley of Jinsha River; savanna; grassland ecosystem; CO; flux; environmental
46  factors

47

48 1 Introduction

49 Since the industrial revolution, human economic and social progress heavily relies on fossil
50  energy consumption, the excessive release of greenhouse gases has resulted in a rise in atmospheric
51  CO; concentration and climate warming (Sha et al., 2022; Wang et al., 2023), and has also produced
52  a series of ecological and environmental problems. The terrestrial ecosystem can absorb about
53 15.0%-30.0% of anthropogenic CO; emissions per year and carbon-neutrality-capacity index reach
54 27.14% (Green et al., 2019; Bai et al., 2023; Liu et al., 2023; Zeng et al., 2023), which is a significant
55  carbon sink (Piao et al., 2018; Yang et al., 2022), studying the dynamic shifts in the carbon budget
56  and carbon-neutrality-capacity within global terrestrial ecosystems, along with their environmental
57  driving factors, has emerged as a significant topic in the realm of global change (Houghton, 2001;
58  Baietal.,, 2023). Constituting about 40.5% of the global land surface, grasslands serve as a crucial
59  element of terrestrial ecosystems, and its carbon storage represents around 1/3 of the total terrestrial
60  carbon storage globally, equivalent to the carbon storage of forest ecosystems (White et al., 2000;
61  Wang et al., 2021; Bai et al., 2022), in which organic carbon storage is about 525 Pg C (1Pg=10'3
62  g) (Fang etal., 2007; Bai et al., 2022), significantly influencing the global carbon balance.

63 The savanna ecosystems cover 1/6 of the Earth’s total land area (Grace et al., 2006), which
64  ecosystem structure and vegetation community composition are significantly controlled by
65 hydrological conditions (Yu et al., 2015; Lee et al., 2018; Jin et al., 2019; Zhang et al., 2019;
66  Hoffmann, 2023) and are composed of mixed forest and grassland ecosystems. The vegetation is
67  mainly composed of grass, with sparse distribution of trees and shrubs. Being a significant
68  component of the worldwide grassland ecosystem, and its net primary productivity (NPP) is about
69 30.0% of the terrestrial ecosystems (Grace et al., 2006; Peel et al., 2007; Dobson et al., 2022), which

70  has significant impacts on global material cycling, energy flow, and climate change. Related
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71  researches have indicated that the herbaceous plants in the savanna ecosystem are mainly C4 grasses,
72 but only have medium productivity, and their carbon flux changes are highly seasonal (Grace et al.,
73 2006). The rainy season is mainly dominated by carbon absorption, and the maximum rate of carbon
74  fixation can reach 2/3 of the maximum value of the tropical rainforest. The dry season is marked by
75  weak carbon emission or weak carbon sinks (Grace et al., 1995; Malhi., 1998; Saleska et al., 2003;
76 Bousquet et al., 2006; Millard et al., 2008; Livesley et al., 2011; Fei et al., 2017a). Furthermore, in
77  the tropical savanna ecosystem, grass-derived carbon contributes to over half of the total soil organic
78  carbon in the soil up to a depth of 1 meter, even in the soil under the tree, that is, the carbon in the
79  soil mainly comes from herbaceous plants (Zhou et al., 2023). Simultaneously, ince the savanna
80  ecosystem mainly stores carbon in the soil rather than the biomass of trees, certain researchers have
81 suggested that it may emerge as a more significant carbon sink resource than forests in the future
82  (Dobson et al., 2022).
83 The savanna ecosystem in China is mainly manifested as the ecological landscape of the valley-
84  type sparsely shrub-grass vegetation distributed in the special geographical unit of the dry-hot valley,
85  which is similar to the tropical savanna grassland. It is also known as valley-type savanna vegetation
86  orsemi-savanna vegetation (Jin et al., 1987; Shen et al., 2010). It is mainly distributed occurs in the
87  Yuanjiang (YJ), Nu River, and Jinsha River (JS), and their tributaries in southwest China. The
88  ecosystem is characterized by extremely high annual average temperature and lack of water source.
89  The species richness increases with altitude (He et al., 2024), which belongs to the non-regional
90  high temperature arid area evolved from the global temperate humid climate zone (Zhang, 1992).
91 At present, there are limited studies on the carbon balance of the savanna ecosystem in the dry-hot
92  valley of China. The existing studies primarily concentrate on the YJ. In the investigation of soil
93  respiration dynamics in the savanna ecosystem of the YJ, Yang et al. (2020) discovered that the
94  annual total carbon emission from soil respiration in this region is relatively low compared to global
95  savanna ecosystems, at 4.20 t-ha'-a’l. Fei et al. (2017a) revealed that the savanna ecosystem of the
96  YJ was a carbon sink, and about 84.0% of the carbon sinks was mainly concentrated in the rainy
97  season (1.08 + 0.35 t C ha'), and the dry season was carbon neutral. WithfiebackdroploT
98 fortheomifigiclimate change by rising temperatures and diminished rainfall, the ecosystem’s carbon
99  sink capacity could potentially decrease. The dry-hot valley of JS is the largest dry-hot valley in

100  China, and it is also a typical representative of the valley-type savanna ecosystem in China. However,

101  monitor|and research on the CO> flux (Fc) features in this region is still lacking.

102 The research focused on the grassland ecosystem in the dry-hot valley of JS, utilizing actual

103  observation data obtained by the static assimilative box method to explore the characteristics and
3
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104  changes of the Fc in ecosystem, and its correlation with related environmental factors, and calculate
105  the annual Fc of the ecosystem. In order to offer a scientific reference for in-depth comprehension
106  of the key processes of carbon cycle in the valley-type savanna in China, and to study and predict
107  the ecological function changes of vegetation carbon sequestration under continuous drought and

108  high temperature stress in the future.

109 2 Data and methods

110 2.1 Observation sites

111 All observational data were derived from the Jinsha River Field Observation Station
112 (26°4'6.24" N, 101°49'41.68" E), whose test site is situated in the Shikanzi Daqing River Basin on
113 the west bank of JS (Fig. 1), with a representative savanna ecological landscape. The elevation of
114  the basin is 1200-1800 m, falling within the realm of the southern subtropical dry-hot monsoon
115  climate, with the characteristics of drought, high temperature and less rain. The ecosystem is
116  extremely fragile and sensitive. The annual average temperature is 22.93°C, with daily maximum
117  temperatures reaching over 43.00°C. The region has distinct rainy season (June to October) and dry
118  season (November to May of the subsequent year), and the annual precipitation is 428.50 mm, with
119  over 90.0% of the precipitation concentrated in the rainy season. The annual evaporation rate is high,
120  typically 3-6 times the annual precipitation (He et al., 2000). Herbaceous plants are mainly
121 Heteropogon contortus (Linn.) Beauv., Eulaliopsis binate (Retz.) C. E. Hubb, Cymbopogon
122 goeringii (Steud.) A. Camus, Eulalia speciosa (Debeaux) Kuntze, and so on. The shrubs include
123 Phyllanthus emblica L., Pistacia weinmannifolia J. Poisson ex Franch, Quercus franchetii Skan,
124 Quercus cocciferoides Hand. -Mazzz, Dodonaea viscosa (L.) Jacq., Albizia kalkora (Roxb.) Prain,
125  Osteomeles schwerinae Schneid., Osyris wightiana, and Terminalia franchetii Gagnep. , etc.

126 2.2 Data source

127 2.2.1 Micrometeorological Factor Observation

128 The micro-meteorological factors were continuously monitored in real-time by the DL3000
129  small automatic meteorological observation system deployed in the test site of the observation
130  station. The observation time began on January 12, 2023, and the observation indexes included air
131  temperature (Ta), relative humidity (RH), soil temperature (Ts), soil water content (SWC), soil
132 conductivity (SC), precipitation (P), wind speed (Ws), wind direction (WD), and photosynthetically
133 active radiation (PAR). The average value of the environmental factors observation data for 5
134 minutes, 30 minutes, and 24 hourh are automatically recorded through the CR1000X data collector.

135  The specific meteorological observation system sensor equipment information is listed in Table 1.
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Figure 1 Range of dry-hot valley in JS and location of the Jinsha River Field Observation Station.
Table 1 Information of micrometeorological observation system.

Height (depth) of

Name of instrument Observation parameter i .
installation (m)
Temperature and humidity sensor Ta (°C) and RH (%) 15
Photosynthetic effective
. PAR (umol-m2-st) 15
radiometer
Wind speed and direction sensor Ws (m/s) and WD (9 15
Rainfall sensor P (mm) 15
Soil multi-parameter sensor Ts (°C), SWC (m? + m), and SC (dS/m) Soil horizon 0.1
2.2.2 CO; flux observation

In order to ensure the representativeness of the observation plots and the spatial integration of
the observation data, the typical grassland plots with small micro-habitat differences were selected
in the test site of the observation station to lay out and install static assimilative boxes for positioning
observation. The observation point is about 10 m away from the automatic meteorological

observation system. The observation time begins at 15:05 noon on March 3, 2023, and ends at 10:50
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145 a.m. on November 1, 2023. The bottom area of the assimilative box is 0.25 m?, and the volume in
146 the box is 125 L. The whole box is composed of transparent organic glass. There are two sets of
147  fans in the box, which can fully mix the gas evenly. The height of the base is 8cm, embedded in the
148  underground soil is 5 cm, and the aboveground part is 3 cm. The NEE is mainly measured by the
149  CARBOCAP ® carbon dioxide sensor GMP343 of Visala Company. The diffusion probe of the
150  sensor can effectively reduce the measurement error caused by the pressure difference of the
151  pumping system. It has the characteristics of flexibility and high precision and is widely used in
152  ecosystem CO> monitoring. The top cover of the assimilative box can be automatically opened and
153  closed, and the time of a single complete measurement cycle is 15 minutes. Before the measurement,
154 the top cover of the assimilative box will be automatically opened, so that the gas in the box and the
155  surrounding air are mixed evenly, and the time is 5 minutes. Then the top cover of the box is
156  automatically closed to a closed and stable state, the fan starts, and the gas change in the box is

157  measured. The measurement and recording time is 10 minutes, so repeated.
158  2.2.3 Other data

159 The boundary data of dry-hot valley was sourced from Deng (2022). The administrative
160  boundary data (Xu, 2023a; Xu, 2023b) and river data (Xu, 2018) were sourced from the Resources

161  and Environment Science Data Center (RESDC) from the Chinese Academy of Sciences.
162  2.2.4 Data processing

163 When the carbon flux is measured, the whole monitoring system will collect the original data
164  of GMP34 ata speed of 2 Hz through the CR1000X data collector, and make an average of 5 seconds
165  (main scan interval) to participate in the statistics. If the difference between the newly acquired data
166 and the average value exceeds 8 times the standard deviation, it is classified as an outlier, and such
167  data points are eliminated. The system performs linear regression fitting on the removed data and

168  calculates the ecosystem CO» exchange capacity, goodness of fit, etc.

169 The ecosystem CO, exchange capacity is calculated by the formula (1):
_ VXPgyX(1000—Way) ., Oc
170 ke = RXSX(Tap+273) x at(l)

171 where F. represents CO; flux (umol-m™-s™!); V represents the volume of assimilative chamber (m?);
172 P represents the mean atmospheric pressure (kPa) inside the chamber during the observation
173  period; W, represents the partial pressure of water vapor inside the chamber during the observation
174 period (mmol-mol!); R represents the atmospheric constant (8.314 J-mol-'-K-'); S represents the
175  area of assimilative chamber (m?); O./ O; represents the diffusion rate of CO; in the chamber; T,
176  represents the mean temperature (°C) inside the chamber during the observation period.

177 The linear regression method was employed to fit the CO, diffusion rate (O./ 9) (formula 2).
6



https://doi.org/10.5194/egusphere-2024-1226
Preprint. Discussion started: 1 July 2024 EG U
sphere

(© Author(s) 2024. CC BY 4.0 License.

178  This method is the basic method for measuring the CO, diffusion rate of most soil respiration and
179  is widely used (Wen et al., 2007):

180 o) =c+2t ()
t

181  where c¢(?) represents the CO> concentration within the assimilative chamber; ¢ represents the
182  determination time; ¢ represents the CO; concentration in the assimilative chamber when it is closed.
183 Taking into account the specific conditions of the study area, the recorded Fc data was
184  categorized into dry season (March 3rd-May 31st) and rainy season (June 1st-November 1st). Due
185  to the damage of the assimilative box from June 1st to August 6th and the lack of observation data,
186  considering the continuity of the data time series and the precision of the data, the dry season carbon
187  flux data is mainly based on the observation data from March 4th to May 3 1st, and the rainy season
188  carbon flux data is mainly based on the observation data from August 7th to October 31st. Quality
189  control was conducted on the raw data to remove invalid NAN values and abnormal data. Utilizing
190  the research results from Zhao et al. (2020), missing data points with a time difference of under 3
191  hours are filled in using linear interpolation. For data with a missing time gap exceeding 3 hours,
192  differentiate and interpolate the data based on different time intervals. Among them, the data of
193  daytime in the rainy season were interpolated by formula (3) rectangular hyperbolic model (Ruimy
194  etal., 1995)to simulate the relationship between NEE and PAR. The missing data of the rainy season
195  atnighttime and the dry season were interpolated by the multiplicative model (4) of the response of

196  ecosystem respiration to Ts and SWC:

AmaxXAXPARgqytime

197 NEEdaytime = Rdaytime -

AmaxtaXPARgqytime

198  where NEEayime represents the NEE during the daytime (umol'm?:s™); Aa represents the
199  maximum photosynthetic rate (umol'm?'s'); o represents the apparent quantum efficiency
200 (umol'mol™"); Rqyime represents the daytime ecosystem respiration rate (umol-m=2-s™); PARdaysime
201  represents the PAR during the daytime (umol-m2-s).

202 ER = a x ePTs x SWCC(4)

203 where ER represents the ecosystem respiration rate (umol-m?-s); @, § and c represents the fitting
204 parameters; 75 and SWC are shown in Table 1.

205 The vapor pressure deficit (VPD) is calculated by formula (5) (Campbell et al., 2012):

17.27Ta
206 VPD = 0.61078eTa+2373(1 — RH)(5)

207  where RH and Ta are shown in Table 1.
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208 3 Analysis of the effect

209 3.1 Dynamic changes in environmental factors

210 Utilizing the observational data of micrometeorological factors, the dynamic attributes of
211 environmental factors such as Ta, VPD, RH, P, Ws, PAR, Ts and SWC. It can be seen that these
212 environmental factors showed a high degree of seasonal characteristics, especially the P and SWC
213  were the most obvious. Among them, the P in the rainy season was 400.80 mm, and mainly
214 concentrated in August (142 mm), the precipitation frequency was 17 times, and the SWC changes
215  between 0-0.19 m?-m, also showing a strong response relationship with P (Fig. 2a and 2b). The
216  minimum RH was 20.65% and the maximum was 94.10%, showing a strong response relationship
217  with P. The VPD fluctuates between 0.11-4.13 kPa, and its value decreases significantly after May,
218  which was related to the increase of P and RH in the rainy season (Fig. 2a and 2c). During the
219  observation period, the PAR varied from 52.28-860.59 pmol-m?2-s”!, influenced by weather
220  conditions and displaying significant fluctuations (Fig. 2d). From different seasons, the daily
221 average of PAR in the dry season (476.50 umol-m?2-s') exceeded that of the rainy season (432.79
222 pmol-m?-s). During the dry season, the mean Ta was 23.04°C, while in the rainy season, it
223  averaged 25.38°C. The difference was small. Secondly, the highest and lowest values of Ta appear
224 in May of the dry season. The range of Ta and Ts was 8—34.52°C and 11.58-36.97°C, respectively.
225  The seasonal variation characteristics of the two were similar, but the Ts was significantly higher
226  than the Ta, and the change time lags behind the Ta (Fig. 2e). In terms of changes in Ws
227  characteristics, the highest value of Ws appeared in March, reaching 2.93 m's’, and the lowest value
228  appeared in June, which was 0.57 m-s™!. The daily average Ws was the highest in February, which
229  was 1.90 m's!, and the lowest in August, which was 0.99 m's™.. The Ws decreased significantly
230  after mid-July (Fig. 2f).

231 3.2 Diurnal variation of CO> flux

232 The Fc was positive, showing a carbon emission state, throughout the entire diurnal variation
233  process in the dry season. The diurnal variation showed a ‘W’-type bimodal curve (Fig. 3a) of
234 decreasing — increasing — decreasing — increasing, that is, the Fc was lower in the morning and
235  afternoon, and the Fc was higher in the nighttime and noon, especially in April and May when this
236  diurnal variation pattern was most pronounced. The lowest Fc values appeared in the morning
237 (8:00-10:00) of each month, which were 0.1178 pmol-m™2-s”!, 0.1148 pmol'm?-s’!, and 0.1397
238  pmol-m?-s!, respectively. The highest Fc value appeared in the evening (19:20) in March, which
239  was 0.2158 umol-m?'s™!. In April and May, it appeared at noon (13:35). They were 0.1148 pmol'm-

8
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Figure 2 The variation characteristics of environmental factors in the study area.

The diurnal variation of the Fc was characterized by a ‘U’-shaped single-peak curve, which
was stable at night and decreased first and then increased during the day (Fig. 3b), during the rainy
season. At about 7:35 in the morning, with the increase of PAR intensity, the photosynthesis of the
grassland ecosystem is continuously enhanced, and the Fc begins to become negative. At this time,
the grassland ecosystem changes from carbon emission at night to carbon absorption, forming the
source of CO; absorption and reaching the maximum peak of carbon absorption at 10:00-14:00.
Until about 17:20, the Fc becomes positive again. The grassland ecosystem transitions into a state
of carbon emission, releasing CO; into the atmosphere. The lowest Fc values appeared in the
morning (10:00-12:00) from the diurnal variation of flux in various months, which were —1.4286
umol-m?2-s7!, —1.3834 umol-m2-s!, and —1.0278 pmol-m-s’, respectively. The highest Fc values
appeared in the evening (18:35-18:50), which were 0.7584 pumol-m2-s!, 0.4959 pmol-m?-s’! and
0.5715 pmol-m2-s°!, respectively.

3.3 Seasonal variation of CO; flux
From Fig.4, we can find that the seasonal variation of the Fc in the grassland ecosystem was

evident. In the dry season, the ecosystem experiences severe drought and water scarcity, leading to
9
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poor growth of herbaceous plants, which is characterized by carbon emissions. The monthly
cumulative CO; emission fluxes were 18.64 g-m?, 15.96 g-m?, and 20.64 g-m?, respectively,
displaying an initial decline followed by a rise. The CO; emission flux was the highest in May. The
ecosystem has abundant P in the rainy season, the SWC is high, the herbaceous plants are in the
growing season, and the photosynthesis capacity is significant, so it is characterized by carbon sink
function. The monthly cumulative CO> absorption fluxes were 6.42 g'm?, 24.41 g'm?, and 5.14
g'm2, respectively, displaying a rise initially followed by a decline, and the carbon absorption

capacity in September was the most significant.
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Figure 3 Diurnal variation characteristics of the Fc (a—dry season; b-rainy season).
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269 Figure 4 Monthly variation characteristics of the Fc.
270 The existing observation data were averaged and calculated respectively in this study, and they

271  were used as the daily mean Fc of the two seasons in the whole year. According to the days of the
272  dryseason (213 days) and the rainy season (152 days) in the whole year, the dry season, rainy season,
273 and annual Fc of the grassland ecosystem were calculated. The findings indicated that the mean
274 daily Fc was 0.1632 pmol-m?-s!, and the cumulative CO, emission was 1.3215 t-ha’! in the dry
275  season. The daily average Fc was —0.1062 pmol-m2-s’!, and the cumulative CO, uptake was 0.6137
276  t-ha’l in the rainy season. From the annual scale, the cumulative Fe of the grassland ecosystem was
277 0.7078 t-ha'-a™! (0.1926 t C-ha''-a’'), making it a weak carbon source.

278 3.4 The relationship between CO> flux and environmental factors

279  3.4.1 Response of CO; flux to PAR

280 This study selected carbon flux data and micrometeorological observation data corresponding
281  to period and analyzed the mutual correlation between Fc and environmental factors. The research
282  areabelongs to a typical semi-arid region, where vegetation growth and physiological processes are
283  mainly regulated by temperature and moisture factors (Jiang et al., 2007; Fei et al., 2017a).
284  Therefore, when analyzing the influencing factors of ecosystem CO: flux, we mainly selected
285 environmental factors including P, SWC, Ts, Ta, RH, PAR, and VPD for pearson analysis. No
286  significant correlation between PAR and Fc during the dry season was indicated by the results of
287  the pearson correlation analysis (R = 0.180, P =0.092). Still, there was a strong negative correlation
288  between PAR and Fc during the rainy season (R =-0.578, P <0.01), and this relationship was more
289  obvious in Fig. 5a. As a key environmental factor driving plant photosynthesis, photosynthetically
290  active radiation will directly affect the carbon absorption rate of grassland ecosystem and further
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affect the carbon budget pattern of ecosystem. In the rainy season, the Fc of the grassland ecosystem
decreased with the increase of PAR, and the carbon absorption capacity increased continuously, and
the relationship between them could be expressed by formula (3). Secondly, when PAR was under
500 umol-m2-s”! (Fig. 5b), the NEE of the ecosystem decreases rapidly with increasing PAR. At the
same time, the distribution of NEE with PAR was relatively concentrated. However, when PAR was
above 500umol-m™-s”!, the magnitude of the decrease in NEE with increasing PAR gradually
decreases, and the distribution of NEE with PAR was relatively scattered, indicating that the Fc was
also influenced by various other environmental factors present in the ecosystem when solar radiation
is high. Once PAR reaches the light saturation point at 1523.64 pmol-m?'s”!, the NEE of the
ecosystem reached to its minimum, and the light response curve gradually begins to flatten. These
research findings align with those of previous studies carried out in diverse grassland ecosystems

(Zhao et al., 2007; Wang et al., 2015; Guo et al., 2022).
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Figure 5 The correlation between PAR and Fc (a-the relationship between PAR and Fc in the rainy season; b-the

response of Fc to PAR during daytime in the rainy season).
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306  3.4.2 Relationship with other environmental factors

307 With no significant correlation with SWC (Fig. 6a and 6b) shown by the daily scale Fc of
308  grassland ecosystems in the various seasons, there was a moderate negative correlation with Ta and
309  Ts(P<0.01), a moderate positive correlation with P (P<0.01), and a strong positive correlation with
310  RH (P<0.01). The daily scale Fc in the dry season has a moderate negative correlation with VPD
311  (P<0.01), while the Fc in the rainy season shows a strong negative correlation with VPD (P<0.01).
312  Throughout varying seasons, the Fc increases with the increase of P and RH, as well as the decrease
313  ofTa, Ts, and VPD. Due to the small variations in SWC within the two seasons (Fig. 2b), therefore,
314  the impact of SWC on the diurnal fluctuation of the Fc was not significant. In general, the diurnal
315  variation of Fc in the dry season is mainly affected by RH, while the rainy season is mainly affected

316 by RH and VPD, and the influence of other environmental factors is generally weak.

317 ——————> positive correlation ————> negative correlation ————> no correlation

318 Figure 6 The pearson correlation between Fc and environmental factors (a—daily scales of the dry season; b—daily
319 scales of the rainy season; c—annual daily scales; d—monthly scales, the ** is P<0.01; the * is P<0.05).

320 Throughout the year on a daily scale (Fig. 6¢), the Fc showed no significant correlation with

321  Ta and P, a weak positive correlation with VPD (P<0.01), a weak negative correlation with Ts
322  (P<0.01), a moderate negative correlation with RH (P<0.01), and a strong negative correlation with
323  SWC (P<0.01). It is evident that as the time series extends, the physiological responses of
324  photosynthesis and respiration processes in the grassland ecosystem to specific environmental
325 factors have undergone changes. As the VPD decreases, and RH, SWC, and Ts increase, and the Fc
326  of ecosystem decreased gradually. Particularly, the impact of SWC was most significant, closely
327  related to the distinct climatic characteristics of wet and dry seasons in the study area. Under such
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328  climatic conditions, the variation in SWC throughout the year becomes the dominant factor
329  restricting regional vegetation growth and recovery (Jiang et al., 2007), significantly influencing the
330  intra-annual variation of the Fe.

331 The study also found that at the monthly scale, the Fc showed no significant correlation with
332  Ta, Ts, and P (Fig. 6d), but exhibits a strong negative correlation with SWC and RH (P<0.05), and
333  astrong positive correlation with VPD (P<0.05). As the temporal scale increases, the environmental
334  driving factors influencing the variation in Fc decrease, but the correlation significantly increases.
335  This may be attributed to the short monthly time series of the observational data. In general, at the
336 monthly scale, SWC, RH, and VPD emerge as the predominant factors influencing the variation in
337  Fc within the ecosystem. Furthermore, the change in time scale will also affect the correlation

338  between Fc and driving factors, aligning with the findings in Heihe River Basin (Bai et al., 2022).

339 4 Discussion

340 4.1 Carbon flux of grassland ecosystem

341 The herbs in the study area are mainly C4 plants (Grace et al., 1995), which are called high-
342  efficiency photosynthetic plants, and the Cy4 plants exhibit higher efficiency in photosynthesis and
343 resource utilization when compared to C3 plants (Cui et al., 2021; Arslan et al., 2023; Xu et al.,
344 2023). However, similar to other savanna ecosystems, the study area has been in a dry, high-
345  temperature, and low-rainy climate for a long time. This extreme climatic condition makes the
346  productivity of C4 herbaceous plants only maintain at a medium level (Grace et al., 1995), therefore,
347  the carbon sink capacity is relatively weak. data analysis revealed that within the grassland
348  ecosystem situated in the study area, the dagaximum CO> uptake rate was recorded at only
349 1.4286 pmol-m?-s”!, which stands notably lower in comparison to other grasslands found in arid
350 and semi-arid regions (Fig. 7) (Li et al., 2005; Kato et al., 2006; Du et al., 2012; Hu et al., 2018;
351 Niu et al., 2018; Zhang et al., 2020; Guo et al., 2022).

352 Through comparative analysis, it can be observed that various grasslands in arid/semi-arid
353  regions primarily function as carbon sinks, but some grasslands also show the characteristics of
354  carbon emissions (Table 2). Simultaneously, most savanna ecosystems globally demonstrate carbon
355  sequestration features (Table 2), with only a few exhibiting characteristics of carbon emissions, with
356  the NEE varying from around 1.28 to —3.87 t C-ha™!-a”!. Consistent with findings from other savanna
357 ecosystems (Grace et al., 1995; Miranda et al., 1997; Fei et al., 2017a), the special hydrothermal
358  conditions make the vegetation growth of the grassland in the study area exhibiting pronounced

359  seasonal characteristics and affect the change of carbon flux. In the season of drought and water
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shortage, the herbs growth is poor, and the ecosystem mainly emits carbon, showing a carbon source
characteristic. During the rainy season, the vegetation enters the peak period of growth, with strong
carbon fixation ability, and the ecosystem mainly absorbs carbon, showing a carbon sink function.
Overall, the grassland ecosystems in the study area predominantly exhibit carbon emissions, albeit
at relatively low levels, demonstrating a carbon-neutral attribute. The carbon flux characteristics are
the same as those of Sumbrugu Aguusi savanna grassland in Sudan (Quansah et al., 2015), Kruger
Park semi-arid savanna in South Africa (Archibald et al., 2009) and Virginia Park semi-arid savanna
in Australia (Hutley et al., 2005).

Through comparative analysis, we found that most of the grasslands in the savanna ecosystem
and arid and semi-arid areas are dominated by carbon sinks. The reason for the carbon emission
status of grassland in this study may be related to the continuous reduction of rainfall in the study
area in recent years (Fig. 8). Under this extremely dry and rainless climate condition, the carbon
sequestration capacity of herbaceous plants with low vegetation productivity is significantly reduced.
In the case of continuous reduction of rainfall in the future, the carbon emissions of grassland
ecosystems in the study area may continue to increase. At the same time, the study area as a special
heat island habitat in the global temperate zone. Under the climate scenario of continuous warming
and decreasing precipitation in the future, the vegetation community structure in some temperate
regions will succession to the savanna vegetation community. With the extension of drought and
high temperature, grassland ecosystems in these areas may change from carbon sinks to carbon

sources, which is extremely important for the carbon balance of global terrestrial ecosystems.
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Figure 7 The daily maximum CO: uptake rate of different grassland ecosystems.
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382

Table 2 Comparison of NEE in grassland ecosystems and savanna ecosystems.

EGUsphere\

. Latitude . NEE
Country Location &longitude Vegetation (tC hat a) References
. 269'6.24" N, subtropical Sunetal.,
Meitang 10728'12" E grassland 116 2020
Heihe Dashalong 385023.64" N, marsh alpine 308
Observation Station 98%56'16" E meadow ! Bai et al.,
Heihe Arou Observation 38<2'50.28" N, aline meadow 208 2022
Station 100275148"E 2P :
A . 43<33'N, semi-arid
Xilin River Basin 11690E grassland -0.61
Semi-arid Climate and IBBTN, semi-arid 099 Ducetal,
1049V8'E grassland ’ 2012
Observatory
Tongyu Degraded 4425'N, semi-arid 037
Grassland Observatory 122952'E grassland ’
China Yunwu Mountain 36<19'N, semi-arid 002 Zhang et al.,
National Nature Reserve 106 <28'E grassland e 2020
Naiman Desertification 4255'N, sandv arassland 0.91 Niu et al.,
Research Station 120942'E 9 ' 2018
Naiman Desertification 4255'N, enclosure of 0.96 Chenetal.,
Research Station 120942'E sandy grassland ' 2019
. . 3642'N, Kobresia tibetica Wu etal.,
Qinghai Lake 10046 wet meadow 0.5 2018
Jinsha River Field 269'6.24" N, grassland .
Observation Station 101249'41.68" E savanna 0.19 This study
uaniian 2328'26"N, semi-arid 130 Feietal.,
Jiang 10291039"E savanna - 2017b
. . 3742.51'N, - Law et al.,
Yanchi Research Station 107913.62'E semi-arid shrub -0.77 2002
. 094424"N, cultivated Ago et al.,
Northwestern Benin 0196'00"E savanna -2.32 2014
Bontioli 1051'56"N, trees and shrub 304 Brimmer et
0324'22"W savanna ! al., 2008
. 10%5'4.8"N, fallow and
Sudan Kayoro Dakorenia 01919'15.6"W cropland 1.08
. 1199'7.20"N, nature reserve Quansah et
Nazinga Park 1935'9.6"W savanna 387 al., 2015
. 10%0'45.6"N, grassland
Sumbrugu Aguusi 0%51 2"W savanna 1.28
semi-arid Avrchibald et
South Kruger Park ! savanna 0.25 al., 2009
Africa Ca. 20 km east of 19%4'S, woodland 012 Veenendaal
Maun, Botswana 23383'E savanna ’ etal., 2004
West . . 1524'00"N, shrub and tree Tagesson et
Africa Dahra field site 1524'48"W savanna 27l al., 2015
. Reserva Ecoldgica do 1556'S, Santos et al.,
Brazil IBGE 27F1W trees and shrubs -2.88 2003
. 36%55'41.7"N, mediterranean Serrano-Ortiz
Spain El Llano de los Juanes 02951 7"W shrubland -0.02 etal., 2009
United ; . 3825'48"N, oak and grass Maetal.,
States Tonzi Ranch, California 12057'00"W savanna 098 2003
- 19%3'00"S, semi-arid
Virginia Park 146<33'14"E savanna 0.21 Hutley et al.,
. 1230'24"S, . 2005
Howard Springs 131%24"E mesic savanna -1.55
. . . . 2216'48"S, woodland Cleverly et
Australia Pine Hill cattle station 133915'00"E savanna -1.25 al, 2013
. 2218'00"S, . Eamus et al.,
Central Australia 133902'00"E acacia savanna -2.58 2013
. 1229.71'S, open-forest Beringer et
Howard Springs 131909.03E savanna 360 al., 2007
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384 Figure 8 The precipitation changes in the study area from 1980 to 2023 (The precipitation data from 1980 to 2022

385 are collected from Yunnan Statistical Yearbook, and the precipitation data in 2023 were the measured data of

386 Jinsha River Field Observation Station.).
387 4.2 Effects of environmental factors on CO> flux

388  4.2.1 Temperature factor

389 As a crucial environmental factor influencing the Fc of ecosystems, temperature mainly affects
390 the Fc of terrestrial ecosystems by regulating biological activities such as photosynthesis and
391 respiration (Woodwell et al., 1983; Pan et al., 2020; Johnston et al., 2021; Chen et al., 2023),
392  especially for grassland ecosystems, several prior studies have validated that temperature serves as
393 the primary driving force controlling the variation in Fe. Nevertheless, owing to variations in climate
394  and environmental conditions, the regulatory impact of temperature fluctuations on the Fe differs
395  significantly across various types of grassland ecosystems. Compared with temperate grassland and
396  semi-arid grassland, the warming effect has the most significant impact on the carbon flux of frigid
397  grasslands worldwide. However, in semi-arid grassland ecosystems, the effect of warming is not
398  significant (Wang et al., 2019). The rise in temperature (both annual average temperature and annual
399  average soil temperature) reduced the carbon flux of temperate grasslands in China, while the effect
400  on alpine grasslands was opposite (Liu et al., 2024). In the Inner Mongolia Plateau, with the increase
401  oftemperature, the NEE of the grassland ecosystem will increase (Liu et al., 2018), while the change
402  of Qinghai-Tibet Plateau, compared with it, is very small, and there is no correlation between Fc
403  and temperature change in the Inner Mongolia grassland during the drought period (Hao et al., 2006).
404  Taand Ts exhibit a negative correlation with the Fc at different seasonal daily scales in the grassland
405  ecosystem in dry-hot valley of JS, similar to the control mechanisms seen in other arid and semi-
406 arid grasslands (Li et al., 2015; Niu et al., 2018; Chen et al., 2019). As the time series extends and
407  the temporal scale increases, the impact of Ta and Ts on the fluctuations in the Fc in the grassland
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408  of study region continues to weaken, which is related to the small differences in Ta and Ts within
409  different time scales in the study area. That is, the small temperature difference leads to the
410  distribution change of the Fc in time is not sensitive to temperature fluctuation, which is the same
411  as the characteristics of the savanna ecosystem in YJ (Fei et al., 2017a). This phenomenon is also

412  common in other arid regions (Wang et al., 2021).
413 4.2.2 Water factor

414 Previous studies have pointed out that a potential limiting factor affecting carbon uptake in
415  terrestrial ecosystems is soil moisture, which can diminish NPP through water stress in ecosystems,
416  leading to vegetation death (Green et al., 2019). Simultaneously, soil moisture may exacerbate
417  extreme climatic conditions through the intricate interaction between the land and the atmosphere.
418  Particularly in arid regions characterized by scarce water resources, there exists a significant
419  interaction between soil moisture and vegetation. Hence, in terms of carbon and water fluxes
420  affecting dryland ecosystems, SWC is a more important ecosystem control factor than Ta (Zhang et
421 al.,2012; Zou et al., 2016; Fei et al., 2017a; Tarin et al., 2020; Kannenberg et al., 2024). For instance,
422  in the herbs growth season of the Qinghai-Tibet Plateau, regions with plentiful precipitation in the
423  east and southeast primarily regulate carbon absorption capacity through temperature. Conversely,
424 SWC emerges as the principal determinant of carbon sequestration capability in the arid and water
425  shortage western region (Wang et al., 2021). Simultaneously, the SWC emerges also as the
426  predominant factor influencing the daily fluctuations of NEE in grassland ecosystems in the semi-
427  arid regions of northern China (Zhao et al., 2020). In the sandy grasslands of Horqin, the NEE during
428  the plant growth season increases with the rise in SWC, while it decreases during the non-growth
429  season (Chen et al., 2019). The research area is a classic dryland ecosystem characterized by scarce
430  and concentrated precipitation. The driving effect of water on the ecosystem is obvious. Plant
431  physiology is greatly affected by water stress. Higher SWC is conducive to promoting the recovery
432  and growth of herbs (Jiang et al., 2017), and this enhancement in vegetation growth contributes
433 significantly to augmenting the carbon sink capacity. Therefore, it can be observed that in the season
434 with more rainfall, the study area has a carbon sink function due to higher SWC (Figure 2b), whereas
435 in the dry season, it exhibits characteristics of carbon emissions.

436 In arid ecosystem, alterations in the P significantly affect plants and soil, especially the
437  grassland ecosystem has the greatest response to the change of the P. The effectiveness of water
438  dictates plants growth and the release and absorption of CO». Therefore, prior researches have
439  indicated that the Fc of grasslands in arid regions exhibits greater sensitivity to variations in the P
440 (Knapp et al., 2002; Niu et al., 2007; Weltzin et al., 2003; Zhang et al., 2020). An increase in the P
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441  led to a delay in the peak of gross primary productivity in vegetation growth stage of the Inner
442  Mongolia desert steppe, enhancing the ecosystem’s carbon flux (Li et al., 2017; Zhang et al., 2019).
443  The decrease of the P significantly reduced the soil respiration in the early and middle vegetation
444 growth season of Horqin sandy grassland (Wang et al., 2023). The P of Xilinhot grassland changed
445 the Fc in the vegetation growth season mainly by affecting SWC (Wang et al., 2015). High water
446  levels (annual average precipitation and soil moisture) have continuously increased the carbon flux
447  of temperate grasslands and alpine grasslands in the Mongolian Plateau, Loess Plateau, and
448  Qinghai-Tibet Plateau (Liu et al., 2024).

449 Changes in hydrological conditions such as the P and SWC can significantly affect the water
450  balance characteristics and water redistribution of the savanna ecosystems due to the arid and hot
451  climate environment characteristics, thereby altering the ecological system structure and vegetation
452  community composition of woody and herbaceous plants coexisting (Yu et al., 2015; Lee et al.,
453 2018; Jin et al., 2019; Zhang et al., 2019; Hoffmann, 2023; Mattos et al., 2023), thereby affecting
454 vegetation productivity (Jin et al., 2018), ecological water use efficiency (Yu et al., 2015; Lee et al.,
455  2018; Mattos et al., 2023), plant diversity (He, et al., 2024), and carbon flux (Fei et al., 2017a).
456  Changes in hydrothermal conditions have formed the distinct vertical zonation structure of
457  vegetation communities in the savanna of the JS (He, et al., 2024). The continuous decrease in the
458 P led to a marked reduction in both the average height and coverage of the herbaceous community
459  in the YJ. However, it significantly increased the species richness and evenness index of the
460  herbaceous community (Jin et al., 2019). Observations of the Fc showed that the P determined the
461  carbon sink change of the savanna ecosystem in the YJ (Fei et al., 2017a). As for the study area, the
462 P shows a positive correlation with the Fc at different seasonal daily scales, with no significant
463  relationship observed with the Fc variation on the daily and monthly scales throughout the year.
464  However, the variation in P significantly affects the regional SWC and RH (Fig. 6¢ and 6d).
465  Therefore, we suggests that the impact mechanism of the P on the Fc in the JS dry-hot valley
466  grassland ecosystem may be similar to that of the Xilinhot grassland ecosystem, where the P mainly
467  controls vegetation growth by affecting SWC and RH, thereby indirectly influencing the Fc in the

468  grassland ecosystem.

469  4.2.3 Relative humidity and vapor pressure deficit factor

470 The arid/semi-arid grassland ecosystem is short of water resources, the soil nutrients are
471  relatively poor, and the ecosystem is fragile and sensitive. Especially with the change in global
472 climate, RH has become a key limiting factor restricting its sustainable development (Wang et al.,
473 2023). As an important measure of atmospheric dryness, the fluctuation of VPD is controlled by RH
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474  and has a high correlation with other important driving factors of ecosystem productivity, such as
475  Ta and SWC, which is a key climate regulation factor affecting ecosystem photosynthesis and
476  transpiration. Multiple studies have shown that when RH decreases, vegetation stomata will be
477  closed due to an increase in VPD, thereby preventing excessive water loss (Williams et al., 2013;
478 Novick etal., 2016; Sulman et al., 2016; Hsu et al., 2021), leading to a decrease in the photosynthetic
479  rate of leaves and canopies, thereby inhibiting photosynthesis (McDowell et al., 2015; Sulman et
480  al., 2016; Yuan et al., 2019), reducing vegetation productivity and hindering vegetation growth.
481  Therefore, there is a mainly negative correlation between the intensity of plant photosynthesis and
482 VPD. Zhong et al. (2023) discovered that excluding the influences of Ta and soil moisture on
483  vegetation productivity, VPD negatively impacts vegetation productivity in the majority of Northern
484  Hemisphere regions. Globally, studies have also shown that increased VPD reduces global
485  vegetation growth and offsets the beneficial impacts of CO» fertilization (Yuan et al., 2019).
486  Simultaneously, the interannual variation of VPD shows a significant negative correlation with net
487  ecosystem productivity and affects the interannual variation of atmospheric CO growth rate (He et
488  al, 2022). Because of variations in climatic conditions and the synergistic effects of multiple
489  environmental factors, the response mechanisms of the Fc in different grassland ecosystems to
490  changes in VPD and RH are also varied. For instance, in the savanna ecosystem of YJ, the Fc shows
491  anegative correlation with VPD (Fei et al., 2017a). Wang et al. (2021) found through a study on the
492  spatial variation of carbon flux of 10 distinct grassland types that a positive correlation exists
493  between VPD and NEE in the Qinghai—Tibet Plateau. In the arid grasslands of Heihe River Basin
494 (Baietal., 2022), the Fc is positively correlated with VPD and RH. The Fc at the daily scale exhibit
495  apositive correlation with RH and a negative correlation with VPD during different seasons in the
496  study area. Taking into account the seasonal changes in different environmental factors (Fig. 2¢),
497 during the dry season, the RH is low, VPD is high. The ecosystem exhibits a carbon emission state,
498  while the opposite is observed during the rainy season. Generally, the reduction in RH and the

499  increase in VPD will inhibit the ecosystem’s carbon absorption capacity.

500 5 Conclusions

501 This study quantitatively analyzed the Fc variations and their relationships with environmental
502  factors in the grassland ecosystem of the dry-hot valley of JS, enriching the theoretical
503  understanding of key carbon cycling processes in the savanna ecosystem in China. Nonetheless, the
504  absence of long-term observational data on the Fc in our study precludes a more thorough

505  examination of the inter-annual variation characteristics of the Fc. Secondly, the study did not
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506  effectively observe the dynamic characteristics of soil respiration, making it impossible to
507  accurately calculate the GPP of the ecosystem. Furthermore, we only observed and studied the
508  changes in Fc of the grassland ecosystem, while the savanna ecosystem has a vegetation community
509  structure with two levels of shrub and grass. Therefore, forthcoming our research will emphasize
510  the extended observation of the Fc changes in the savanna ecosystem with a complete vegetation
511  community structure, especially the use of eddy correlation methods to expand the scope of
512  ecosystem observation and reduce the uncertainty of measurement samples, so as to better clarify
513  the carbon budget pattern of the ecosystem. Through this research, we have arrived at the following
514  findings:

515 (1) The diurnal variation of Fc showed a ‘W’ shaped bimodal curve during the dry season. The
516  maximum daily CO> emission rate reached 0.2158 pmol'm?'s”' in March, with the highest
517  cumulative CO; emission of 20.64 g'm™ observed in May. During the rainy season, the diurnal
518  variation of Fc in the ecosystem showed a ‘U’ shaped unimodal curve. The maximum daily CO»
519  absorption rate reached 1.4286 pmol-m-s’! in August, with the highest cumulative CO, absorption
520  of24.41 g'm™ observed in September.

521 (2) In the rainy season existed a notable correlation between PAR and Fc. Especially during
522  the daytime, the relationship between Fc and PAR followed a rectangular hyperbolic model. When
523  PAR reached the light saturation point, the photosynthetic rate of the ecosystem would peak, and
524 the light response curve would gradually level off. Additionally, when PAR was high, the Fc of the
525  ecosystem was also impacted by other driving factors.

526 (3) The diurnal variation of Fc in the dry season is mainly affected by RH, while the rainy
527  season is mainly affected by RH and VPD. Small temperature differences result in a relatively weak
528  overall impact of Ta and Ts on the Fc of the ecosystem. P mainly indirectly controls the vegetation
529  growth and the Fc by influencing SWC and RH. Overall, SWC, RH, and VPD were the main
530  environmental factors influencing the Fc. As SWC and RH rise while VPD declines, the ecosystem’s
531  carbon absorption capacity experiences a notable enhancement.

532 (4) Affected by environmental factors, the Fc of the grassland ecosystem exhibited significant
533  seasonal characteristics. During the dry season, the ecosystem showed carbon emissions, with a
534  cumulative CO; emission of 1.3215 t-ha!. During the rainy season, the ecosystem showed carbon
535  absorption, with a cumulative CO; absorption of 0.6137 t-ha’!. Throughout the year, the ecosystem
536  was a weak carbon source. In the case of continuous reduction of P in the future, the carbon
537  emissions of the ecosystem may continue to increase.

538  Data availability
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539 The CO» flux data and environmental data used to support the findings of this study were
540  available from the corresponding author upon request. The administrative boundary data
541  (DOI:10.12078/2023010101; DOI:10.12078/2023010103) and river data
542  (DOI:10.12078/2018060101) were downloaded from the RESDC from the Chinese Academy of
543  Sciences (https://www.resdc.cn/Default.aspx).
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