

1 CO₂ flux characteristics of the grassland ecosystem and its 2 response to environmental factors in the dry-hot valley of Jinsha 3 River, China

4 Chaolei Yang^{a,b,c,d}, Yufeng Tian^{a,b,c,d,*}, Jingqi Cui^e, Guangxiong He^f, Jingyuan Li^e,
5 Canfeng Li^{a,b,c}, Haichuang Duan^a, Zong Wei^{a,b}, Liu Yan^{a,b}, Xin Xia^{a,b}, Yong Huang^{a,b},
6 Aihua Jiang^{a,b}

^a Kunming General Survey of Natural Resources Center, China Geological Survey, Kunming, 650111, China

⁹ ^b Yunnan Province Field Science Observation and Research Station on the Evolution of Soil and Water Resources
10 and the Carbon Sequestration Enhancement Effects in the Alpine Gorge Area of the Jinsha River, Chuxiong, 651400,
11 China

12 ^c Technology Innovation Center for Natural Carbon Sink, Kunming, 650111, China

¹³ ^dKey Laboratory of Coupling Process and Effect of Natural Resources Elements, Beijing, 100055, China

¹⁴ Institute of Space Weather, School of Atmospheric Physics, Nanjing University of Information Science and
¹⁵ Technology, Nanjing, 210044, China

^fTropical Eco-Agriculture Research Institute, Yunnan Academy of Agricultural Sciences, Chuxiong, 651300, China

17 Correspondence to: Yufeng Tian (yufeng_tian818@126.com)

ABSTRACT: The dry-hot valley of Jinsha River is distinguished by prolonged drought and high temperatures, making it a distinct non-zonal hot island habitat in the global temperate zone. It is an ideal location for studying changes in plant carbon budget under sustained drought and high-temperature conditions. However, there is currently a dearth of reports on CO₂ flux variations within plant ecosystems in this region. The study quantitatively analyzed the characteristics of CO₂ flux variation in the grassland ecosystem in this region and its response mechanisms to environmental factors using continuous observation data obtained from static assimilative chamber. The results indicate that both the environmental factors and CO₂ flux variations in grassland ecosystems exhibit significant seasonal characteristics. During the dry season (March to May), the grassland acts as a carbon source, exhibiting a daily average CO₂ flux of 0.1632 $\mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$, which cumulative CO₂ emissions for each month were 18.64 $\text{g}\cdot\text{m}^{-2}$, 15.96 $\text{g}\cdot\text{m}^{-2}$, and 20.64 $\text{g}\cdot\text{m}^{-2}$, respectively. The ecosystem showed noteworthy carbon absorption characteristics during the rainy season (August to October), with a daily average CO₂ flux of -0.1062 $\mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$, which cumulative CO₂ absorption for each month were 6.42 $\text{g}\cdot\text{m}^{-2}$, 24.41 $\text{g}\cdot\text{m}^{-2}$, and 5.14 $\text{g}\cdot\text{m}^{-2}$, respectively. Throughout the year, the ecosystem was a weak carbon source, emitting an annual cumulative CO₂ of 0.7078 $\text{t}\cdot\text{ha}^{-1}\cdot\text{a}^{-1}$, demonstrating carbon-neutral traits. In terms of environmental factors, there was a robust negative correlation exists with CO₂ flux between photosynthetically active radiation during the rainy season ($R = -0.578$, $P < 0.01$). The daily CO₂ flux in different seasons was positively correlated with precipitation and relative humidity ($P < 0.01$), and negatively correlated with air temperature, soil

38 temperature and vapor pressure deficit ($P<0.01$). The diurnal variation of CO₂ flux in dry season
39 was mainly affected by relative humidity, while that in rainy season was mainly affected by relative
40 humidity and vapor pressure deficit. The variation of CO₂ flux was most influenced by soil water
41 content, relative humidity, and vapor pressure deficit at both daily and monthly scales throughout
42 the year. The influence of temperature factor on CO₂ flux changes at different time scales is
43 generally weak.

44

45 **Key words:** dry-hot valley of Jinsha River; savanna; grassland ecosystem; CO₂ flux; environmental
46 factors

47

48 1 Introduction

49 Since the industrial revolution, human economic and social progress heavily relies on fossil
50 energy consumption, the excessive release of greenhouse gases has resulted in a rise in atmospheric
51 CO₂ concentration and climate warming (Sha et al., 2022; Wang et al., 2023), and has also produced
52 a series of ecological and environmental problems. The terrestrial ecosystem can absorb about
53 15.0%–30.0% of anthropogenic CO₂ emissions per year and carbon-neutrality-capacity index reach
54 27.14% (Green et al., 2019; Bai et al., 2023; Liu et al., 2023; Zeng et al., 2023), which is a significant
55 carbon sink (Piao et al., 2018; Yang et al., 2022), studying the dynamic shifts in the carbon budget
56 and carbon-neutrality-capacity within global terrestrial ecosystems, along with their environmental
57 driving factors, has emerged as a significant topic in the realm of global change (Houghton, 2001;
58 Bai et al., 2023). Constituting about 40.5% of the global land surface, grasslands serve as a crucial
59 element of terrestrial ecosystems, and its carbon storage represents around 1/3 of the total terrestrial
60 carbon storage globally, equivalent to the carbon storage of forest ecosystems (White et al., 2000;
61 Wang et al., 2021; Bai et al., 2022), in which organic carbon storage is about 525 Pg C (1Pg=10¹⁵
62 g) (Fang et al., 2007; Bai et al., 2022), significantly influencing the global carbon balance.

63 The savanna ecosystems cover 1/6 of the Earth's total land area (Grace et al., 2006), which
64 ecosystem structure and vegetation community composition are significantly controlled by
65 hydrological conditions (Yu et al., 2015; Lee et al., 2018; Jin et al., 2019; Zhang et al., 2019;
66 Hoffmann, 2023) and are composed of mixed forest and grassland ecosystems. The vegetation is
67 mainly composed of grass, with sparse distribution of trees and shrubs. Being a significant
68 component of the worldwide grassland ecosystem, and its net primary productivity (NPP) is about
69 30.0% of the terrestrial ecosystems (Grace et al., 2006; Peel et al., 2007; Dobson et al., 2022), which
70 has significant impacts on global material cycling, energy flow, and climate change. Related

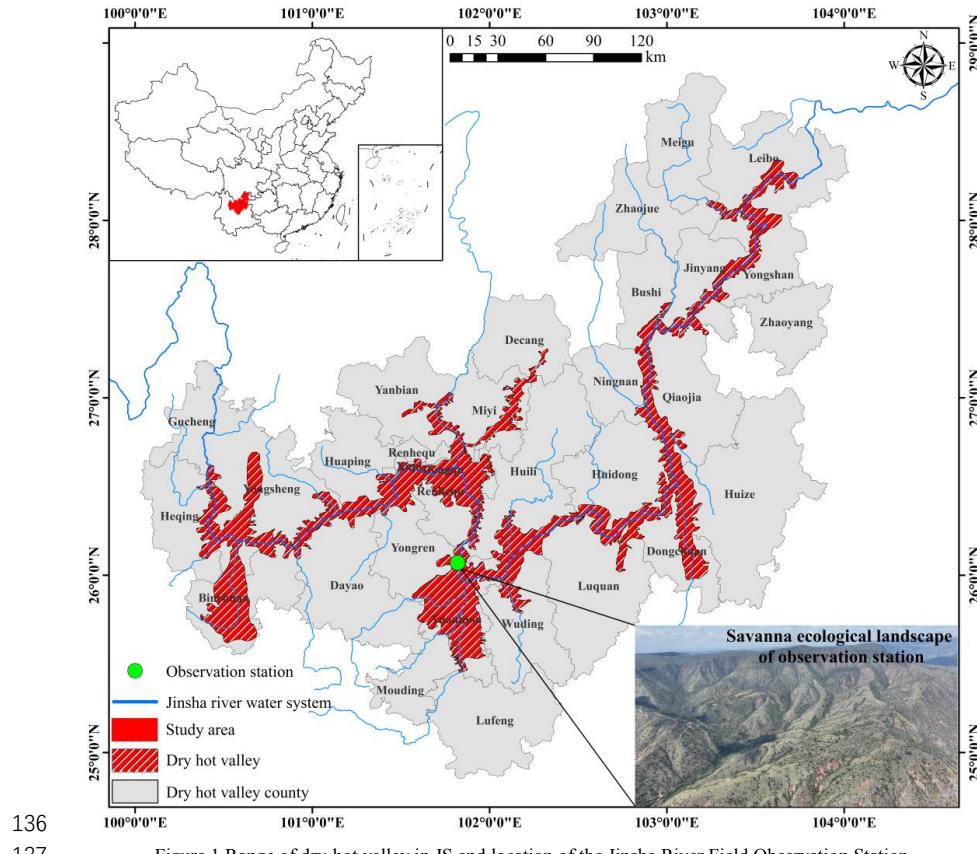
71 researches have indicated that the herbaceous plants in the savanna ecosystem are mainly C₄ grasses,
72 but only have medium productivity, and their carbon flux changes are highly seasonal (Grace et al.,
73 2006). The rainy season is mainly dominated by carbon absorption, and the maximum rate of carbon
74 fixation can reach 2/3 of the maximum value of the tropical rainforest. The dry season is marked by
75 weak carbon emission or weak carbon sinks (Grace et al., 1995; Malhi., 1998; Saleska et al., 2003;
76 Bousquet et al., 2006; Millard et al., 2008; Livesley et al., 2011; Fei et al., 2017a). Furthermore, in
77 the tropical savanna ecosystem, grass-derived carbon contributes to over half of the total soil organic
78 carbon in the soil up to a depth of 1 meter, even in the soil under the tree, that is, the carbon in the
79 soil mainly comes from herbaceous plants (Zhou et al., 2023). Simultaneously, ince the savanna
80 ecosystem mainly stores carbon in the soil rather than the biomass of trees, certain researchers have
81 suggested that it may emerge as a more significant carbon sink resource than forests in the future
82 (Dobson et al., 2022).

83 The savanna ecosystem in China is mainly manifested as the ecological landscape of the valley-
84 type sparsely shrub-grass vegetation distributed in the special geographical unit of the dry-hot valley,
85 which is similar to the tropical savanna grassland. It is also known as valley-type savanna vegetation
86 or semi-savanna vegetation (Jin et al., 1987; Shen et al., 2010). It is mainly distributed occurs in the
87 Yuanjiang (YJ), Nu River, and Jinsha River (JS), and their tributaries in southwest China. The
88 ecosystem is characterized by extremely high annual average temperature and lack of water source.
89 The species richness increases with altitude (He et al., 2024), which belongs to the non-regional
90 high temperature arid area evolved from the global temperate humid climate zone (Zhang, 1992).
91 At present, there are limited studies on the carbon balance of the savanna ecosystem in the dry-hot
92 valley of China. The existing studies primarily concentrate on the YJ. In the investigation of soil
93 respiration dynamics in the savanna ecosystem of the YJ, Yang et al. (2020) discovered that the
94 annual total carbon emission from soil respiration in this region is relatively low compared to global
95 savanna ecosystems, at 4.20 t·ha⁻¹·a⁻¹. Fei et al. (2017a) revealed that the savanna ecosystem of the
96 YJ was a carbon sink, and about 84.0% of the carbon sinks was mainly concentrated in the rainy
97 season (1.08 ± 0.35 t C ha⁻¹), and the dry season was carbon neutral. With the backdrop of
98 forthcoming climate change by rising temperatures and diminished rainfall, the ecosystem's carbon
99 sink capacity could potentially decrease. The dry-hot valley of JS is the largest dry-hot valley in
100 China, and it is also a typical representative of the valley-type savanna ecosystem in China. However,
101 monitor and research on the CO₂ flux (F_c) features in this region is still lacking.

102 The research focused on the grassland ecosystem in the dry-hot valley of JS, utilizing actual
103 observation data obtained by the static assimilative box method to explore the characteristics and

104 changes of the F_c in ecosystem, and its correlation with related environmental factors, and calculate
105 the annual F_c of the ecosystem. In order to offer a scientific reference for in-depth comprehension
106 of the key processes of carbon cycle in the valley-type savanna in China, and to study and predict
107 the ecological function changes of vegetation carbon sequestration under continuous drought and
108 high temperature stress in the future.

109 2 Data and methods


110 2.1 Observation sites

111 All observational data were derived from the Jinsha River Field Observation Station
112 (26°4'6.24" N, 101°49'41.68" E), whose test site is situated in the Shikanzi Daqing River Basin on
113 the west bank of JS (Fig. 1), with a representative savanna ecological landscape. The elevation of
114 the basin is 1200–1800 m, falling within the realm of the southern subtropical dry-hot monsoon
115 climate, with the characteristics of drought, high temperature and less rain. The ecosystem is
116 extremely fragile and sensitive. The annual average temperature is 22.93°C, with daily maximum
117 temperatures reaching over 43.00°C. The region has distinct rainy season (June to October) and dry
118 season (November to May of the subsequent year), and the annual precipitation is 428.50 mm, with
119 over 90.0% of the precipitation concentrated in the rainy season. The annual evaporation rate is high,
120 typically 3–6 times the annual precipitation (He et al., 2000). Herbaceous plants are mainly
121 *Heteropogon contortus* (Linn.) Beauv., *Eulaliopsis binate* (Retz.) C. E. Hubb., *Cymbopogon*
122 *goeringii* (Steud.) A. Camus, *Eulalia speciosa* (Debeaux) Kuntze, and so on. The shrubs include
123 *Phyllanthus emblica* L., *Pistacia weinmannifolia* J. Poisson ex Franch., *Quercus franchetii* Skan,
124 *Quercus cocciferaoides* Hand. –Mazz., *Dodonaea viscosa* (L.) Jacq., *Albizia kalkora* (Roxb.) Prain,
125 *Osteomeles schwerinae* Schneid., *Osyris wightiana*, and *Terminalia franchetii* Gagnep., etc.

126 2.2 Data source

127 2.2.1 Micrometeorological Factor Observation

128 The micro-meteorological factors were continuously monitored in real-time by the DL3000
129 small automatic meteorological observation system deployed in the test site of the observation
130 station. The observation time began on January 12, 2023, and the observation indexes included air
131 temperature (Ta), relative humidity (RH), soil temperature (Ts), soil water content (SWC), soil
132 conductivity (SC), precipitation (P), wind speed (Ws), wind direction (WD), and photosynthetically
133 active radiation (PAR). The average value of the environmental factors observation data for 5
134 minutes, 30 minutes, and 24 hour are automatically recorded through the CR1000X data collector.
135 The specific meteorological observation system sensor equipment information is listed in Table 1.

136
137 Figure 1 Range of dry-hot valley in JS and location of the Jinsha River Field Observation Station.
138

Table 1 Information of micrometeorological observation system.

Name of instrument	Observation parameter	Height (depth) of installation (m)
Temperature and humidity sensor	Ta (°C) and RH (%)	1.5
Photosynthetic effective radiometer	PAR ($\mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$)	1.5
Wind speed and direction sensor	Ws (m/s) and WD (°)	1.5
Rainfall sensor	P (mm)	1.5
Soil multi-parameter sensor	Ts (°C), SWC ($\text{m}^3 \cdot \text{m}^{-3}$), and SC (dS/m)	Soil horizon 0.1

139 2.2.2 CO₂ flux observation

140 In order to ensure the representativeness of the observation plots and the spatial integration of
141 the observation data, the typical grassland plots with small micro-habitat differences were selected
142 in the test site of the observation station to lay out and install static assimilative boxes for positioning
143 observation. The observation point is about 10 m away from the automatic meteorological
144 observation system. The observation time begins at 15:05 noon on March 3, 2023, and ends at 10:50

145 a.m. on November 1, 2023. The bottom area of the assimilative box is 0.25 m², and the volume in
146 the box is 125 L. The whole box is composed of transparent organic glass. There are two sets of
147 fans in the box, which can fully mix the gas evenly. The height of the base is 8cm, embedded in the
148 underground soil is 5 cm, and the aboveground part is 3 cm. The NEE is mainly measured by the
149 CARBOCAP ® carbon dioxide sensor GMP343 of Visala Company. The diffusion probe of the
150 sensor can effectively reduce the measurement error caused by the pressure difference of the
151 pumping system. It has the characteristics of flexibility and high precision and is widely used in
152 ecosystem CO₂ monitoring. The top cover of the assimilative box can be automatically opened and
153 closed, and the time of a single complete measurement cycle is 15 minutes. Before the measurement,
154 the top cover of the assimilative box will be automatically opened, so that the gas in the box and the
155 surrounding air are mixed evenly, and the time is 5 minutes. Then the top cover of the box is
156 automatically closed to a closed and stable state, the fan starts, and the gas change in the box is
157 measured. The measurement and recording time is 10 minutes, so repeated.

158 2.2.3 Other data

159 The boundary data of dry-hot valley was sourced from Deng (2022). The administrative
160 boundary data (Xu, 2023a; Xu, 2023b) and river data (Xu, 2018) were sourced from the Resources
161 and Environment Science Data Center (RESDC) from the Chinese Academy of Sciences.

162 2.2.4 Data processing

163 When the carbon flux is measured, the whole monitoring system will collect the original data
164 of GMP34 at a speed of 2 Hz through the CR1000X data collector, and make an average of 5 seconds
165 (main scan interval) to participate in the statistics. If the difference between the newly acquired data
166 and the average value exceeds 8 times the standard deviation, it is classified as an outlier, and such
167 data points are eliminated. The system performs linear regression fitting on the removed data and
168 calculates the ecosystem CO₂ exchange capacity, goodness of fit, etc.

169 The ecosystem CO₂ exchange capacity is calculated by the formula (1):

$$F_c = \frac{V \times P_{av} \times (1000 - W_{av})}{R \times S \times (T_{av} + 273)} \times \frac{\partial c}{\partial t} (1)$$

170 where F_c represents CO₂ flux (μmol·m⁻²·s⁻¹); V represents the volume of assimilative chamber (m³);
171 P_{av} represents the mean atmospheric pressure (kPa) inside the chamber during the observation
172 period; W_{av} represents the partial pressure of water vapor inside the chamber during the observation
173 period (mmol·mol⁻¹); R represents the atmospheric constant (8.314 J·mol⁻¹·K⁻¹); S represents the
174 area of assimilative chamber (m²); $\partial c / \partial t$ represents the diffusion rate of CO₂ in the chamber; T_{av}
175 represents the mean temperature (°C) inside the chamber during the observation period.
176

177 The linear regression method was employed to fit the CO₂ diffusion rate ($\partial c / \partial t$) (formula 2).

178 This method is the basic method for measuring the CO₂ diffusion rate of most soil respiration and
179 is widely used (Wen et al., 2007):

180
$$c(t) = c + \frac{\partial c}{\partial t} t \quad (2)$$

181 where $c(t)$ represents the CO₂ concentration within the assimilative chamber; t represents the
182 determination time; c represents the CO₂ concentration in the assimilative chamber when it is closed.

183 Taking into account the specific conditions of the study area, the recorded F_c data was
184 categorized into dry season (March 3rd–May 31st) and rainy season (June 1st–November 1st). Due
185 to the damage of the assimilative box from June 1st to August 6th and the lack of observation data,
186 considering the continuity of the data time series and the precision of the data, the dry season carbon
187 flux data is mainly based on the observation data from March 4th to May 31st, and the rainy season
188 carbon flux data is mainly based on the observation data from August 7th to October 31st. Quality
189 control was conducted on the raw data to remove invalid NAN values and abnormal data. Utilizing
190 the research results from Zhao et al. (2020), missing data points with a time difference of under 3
191 hours are filled in using linear interpolation. For data with a missing time gap exceeding 3 hours,
192 differentiate and interpolate the data based on different time intervals. Among them, the data of
193 daytime in the rainy season were interpolated by formula (3) rectangular hyperbolic model (Ruiym
194 et al., 1995) to simulate the relationship between NEE and PAR. The missing data of the rainy season
195 at nighttime and the dry season were interpolated by the multiplicative model (4) of the response of
196 ecosystem respiration to T_s and SWC:

197
$$NEE_{daytime} = R_{daytime} - \frac{A_{max} \times \alpha \times PAR_{daytime}}{A_{max} + \alpha \times PAR_{daytime}} \quad (3)$$

198 where $NEE_{daytime}$ represents the NEE during the daytime ($\mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$); A_{max} represents the
199 maximum photosynthetic rate ($\mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$); α represents the apparent quantum efficiency
200 ($\mu\text{mol} \cdot \text{mol}^{-1}$); $R_{daytime}$ represents the daytime ecosystem respiration rate ($\mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$); $PAR_{daytime}$
201 represents the PAR during the daytime ($\mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$).

202
$$ER = \alpha \times e^{\beta T_s} \times SWC^c \quad (4)$$

203 where ER represents the ecosystem respiration rate ($\mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$); α , β and c represents the fitting
204 parameters; T_s and SWC are shown in Table 1.

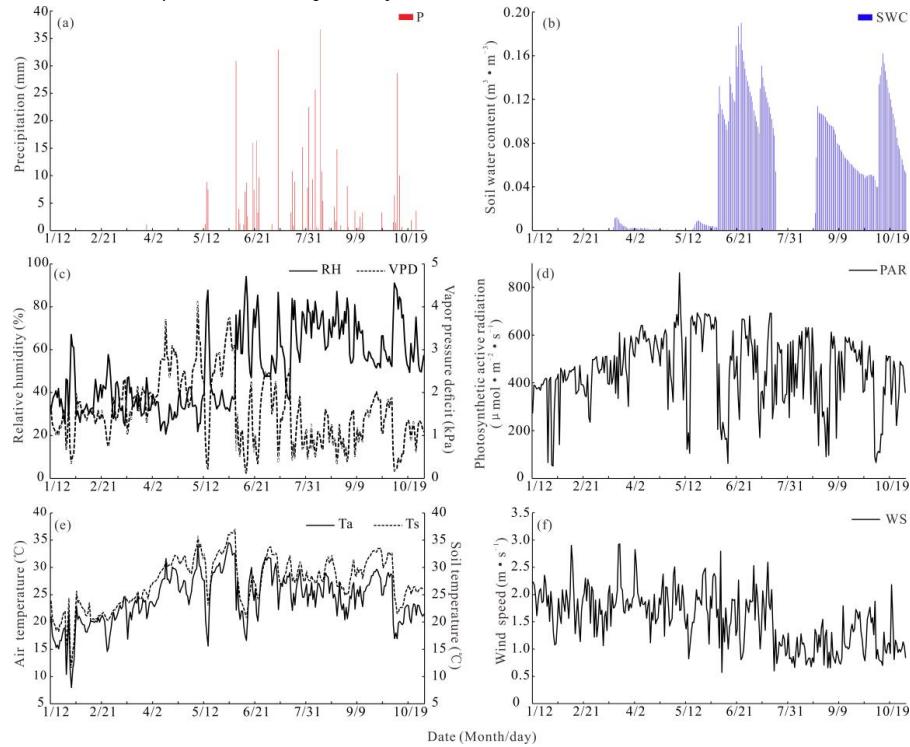
205 The vapor pressure deficit (VPD) is calculated by formula (5) (Campbell et al., 2012):

206
$$VPD = 0.61078 e^{\frac{17.27 T_a}{T_a + 237.3}} (1 - RH) \quad (5)$$

207 where RH and T_a are shown in Table 1.

208 3 Analysis of the effect

209 3.1 Dynamic changes in environmental factors

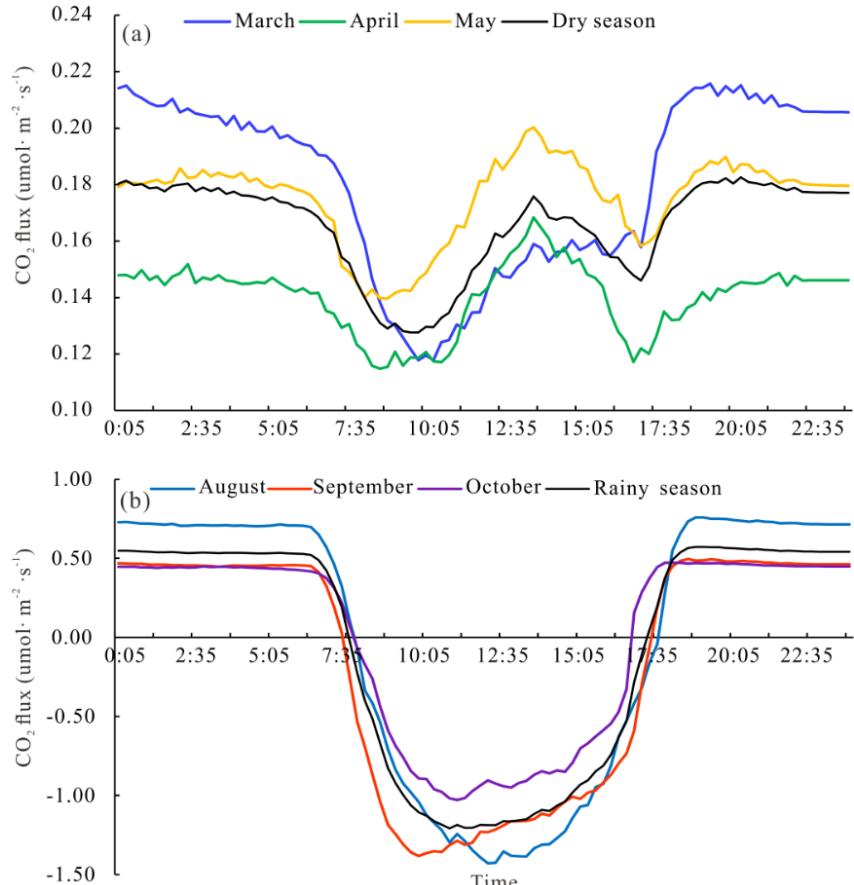

210 Utilizing the observational data of micrometeorological factors, the dynamic attributes of
211 environmental factors such as Ta, VPD, RH, P, Ws, PAR, Ts and SWC. It can be seen that these
212 environmental factors showed a high degree of seasonal characteristics, especially the P and SWC
213 were the most obvious. Among them, the P in the rainy season was 400.80 mm, and mainly
214 concentrated in August (142 mm), the precipitation frequency was 17 times, and the SWC changes
215 between 0–0.19 $\text{m}^3 \cdot \text{m}^{-3}$, also showing a strong response relationship with P (Fig. 2a and 2b). The
216 minimum RH was 20.65% and the maximum was 94.10%, showing a strong response relationship
217 with P. The VPD fluctuates between 0.11–4.13 kPa, and its value decreases significantly after May,
218 which was related to the increase of P and RH in the rainy season (Fig. 2a and 2c). During the
219 observation period, the PAR varied from 52.28–860.59 $\mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$, influenced by weather
220 conditions and displaying significant fluctuations (Fig. 2d). From different seasons, the daily
221 average of PAR in the dry season ($476.50 \mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$) exceeded that of the rainy season ($432.79 \mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$). During the dry season, the mean Ta was 23.04°C , while in the rainy season, it
222 averaged 25.38°C . The difference was small. Secondly, the highest and lowest values of Ta appear
223 in May of the dry season. The range of Ta and Ts was $8\text{--}34.52^\circ\text{C}$ and $11.58\text{--}36.97^\circ\text{C}$, respectively.
224 The seasonal variation characteristics of the two were similar, but the Ts was significantly higher
225 than the Ta, and the change time lags behind the Ta (Fig. 2e). In terms of changes in Ws
226 characteristics, the highest value of Ws appeared in March, reaching $2.93 \text{ m} \cdot \text{s}^{-1}$, and the lowest value
227 appeared in June, which was $0.57 \text{ m} \cdot \text{s}^{-1}$. The daily average Ws was the highest in February, which
228 was $1.90 \text{ m} \cdot \text{s}^{-1}$, and the lowest in August, which was $0.99 \text{ m} \cdot \text{s}^{-1}$. The Ws decreased significantly
229 after mid-July (Fig. 2f).

231 3.2 Diurnal variation of CO₂ flux

232 The Fc was positive, showing a carbon emission state, throughout the entire diurnal variation
233 process in the dry season. The diurnal variation showed a 'W'-type bimodal curve (Fig. 3a) of
234 decreasing → increasing → decreasing → increasing, that is, the Fc was lower in the morning and
235 afternoon, and the Fc was higher in the nighttime and noon, especially in April and May when this
236 diurnal variation pattern was most pronounced. The lowest Fc values appeared in the morning
237 (8:00–10:00) of each month, which were $0.1178 \mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$, $0.1148 \mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$, and $0.1397 \mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$, respectively. The highest Fc value appeared in the evening (19:20) in March, which
238 was $0.2158 \mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$. In April and May, it appeared at noon (13:35). They were $0.1148 \mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$

240 $\text{m}^2 \cdot \text{s}^{-1}$ and $0.1397 \mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$, respectively.

241
242 Figure 2 The variation characteristics of environmental factors in the study area.


243 The diurnal variation of the F_c was characterized by a 'U'-shaped single-peak curve, which
244 was stable at night and decreased first and then increased during the day (Fig. 3b), during the rainy
245 season. At about 7:35 in the morning, with the increase of PAR intensity, the photosynthesis of the
246 grassland ecosystem is continuously enhanced, and the F_c begins to become negative. At this time,
247 the grassland ecosystem changes from carbon emission at night to carbon absorption, forming the
248 source of CO_2 absorption and reaching the maximum peak of carbon absorption at 10:00–14:00.
249 Until about 17:20, the F_c becomes positive again. The grassland ecosystem transitions into a state
250 of carbon emission, releasing CO_2 into the atmosphere. The lowest F_c values appeared in the
251 morning (10:00–12:00) from the diurnal variation of flux in various months, which were -1.4286
252 $\mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$, $-1.3834 \mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$, and $-1.0278 \mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$, respectively. The highest F_c values
253 appeared in the evening (18:35–18:50), which were $0.7584 \mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$, $0.4959 \mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$ and
254 $0.5715 \mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$, respectively.

255 3.3 Seasonal variation of CO_2 flux

256 From Fig.4, we can find that the seasonal variation of the F_c in the grassland ecosystem was
257 evident. In the dry season, the ecosystem experiences severe drought and water scarcity, leading to

258 poor growth of herbaceous plants, which is characterized by carbon emissions. The monthly
259 cumulative CO_2 emission fluxes were $18.64 \text{ g}\cdot\text{m}^{-2}$, $15.96 \text{ g}\cdot\text{m}^{-2}$, and $20.64 \text{ g}\cdot\text{m}^{-2}$, respectively,
260 displaying an initial decline followed by a rise. The CO_2 emission flux was the highest in May. The
261 ecosystem has abundant P in the rainy season, the SWC is high, the herbaceous plants are in the
262 growing season, and the photosynthesis capacity is significant, so it is characterized by carbon sink
263 function. The monthly cumulative CO_2 absorption fluxes were $6.42 \text{ g}\cdot\text{m}^{-2}$, $24.41 \text{ g}\cdot\text{m}^{-2}$, and $5.14 \text{ g}\cdot\text{m}^{-2}$,
264 respectively, displaying a rise initially followed by a decline, and the carbon absorption
265 capacity in September was the most significant.

266
267

Figure 3 Diurnal variation characteristics of the F_c (a-dry season; b-rainy season).

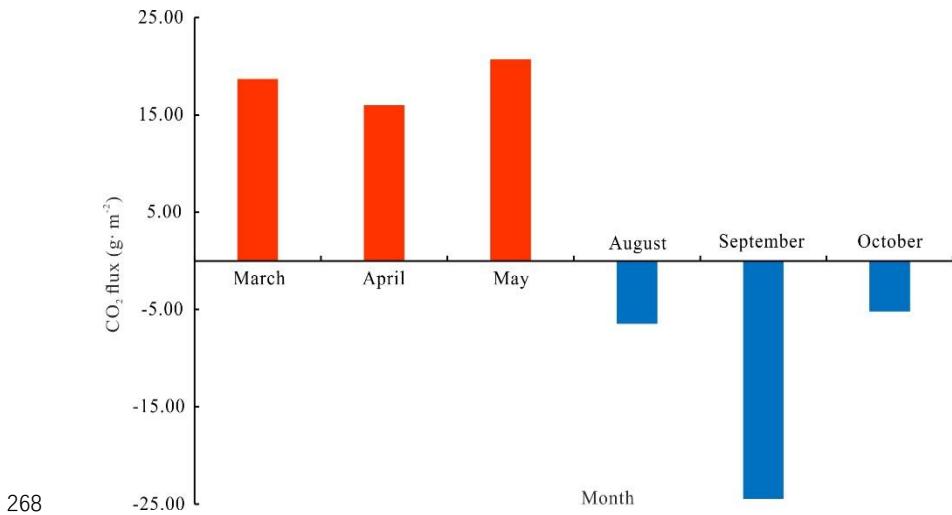
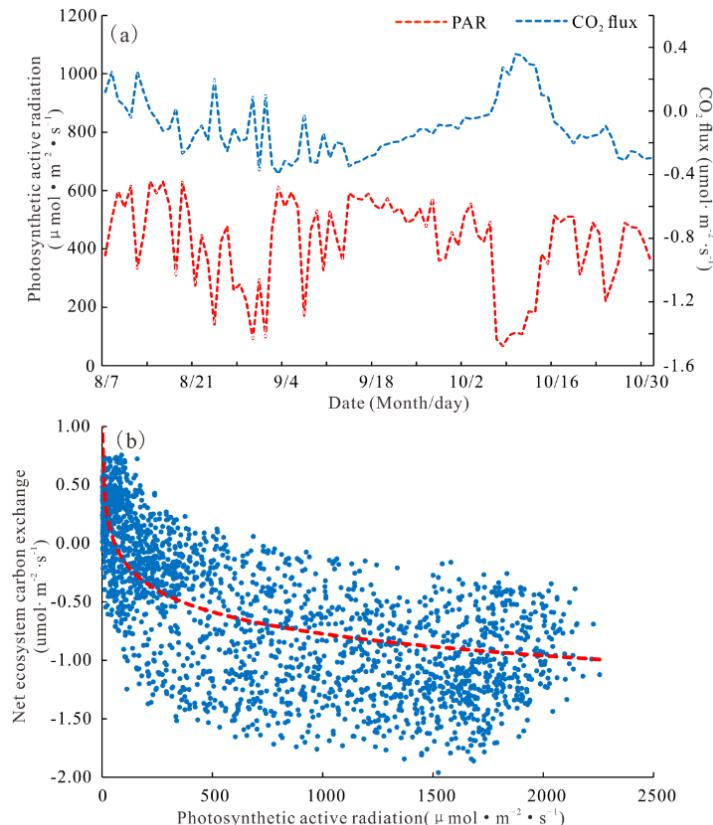


Figure 4 Monthly variation characteristics of the Fc.

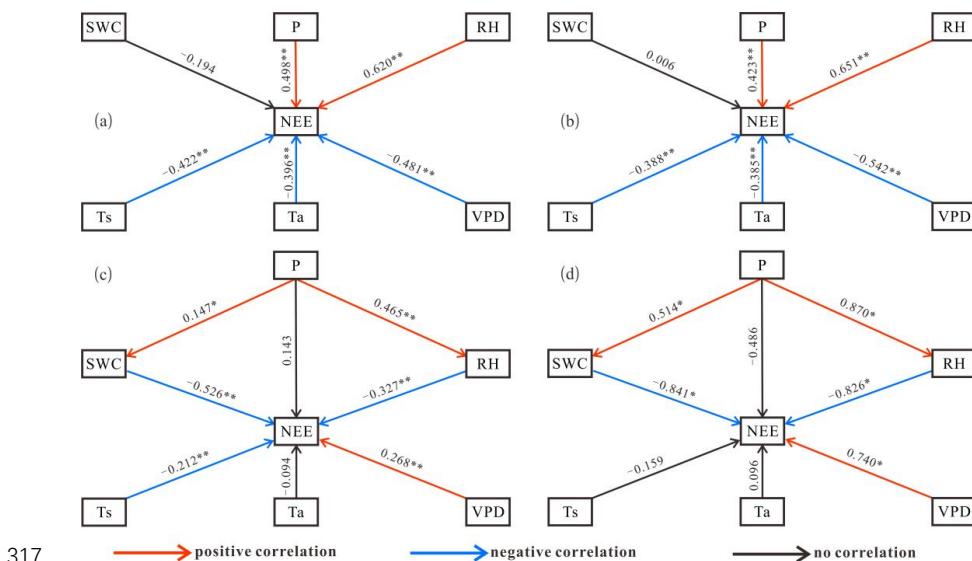
270 The existing observation data were averaged and calculated respectively in this study, and they
271 were used as the daily mean Fc of the two seasons in the whole year. According to the days of the
272 dry season (213 days) and the rainy season (152 days) in the whole year, the dry season, rainy season,
273 and annual Fc of the grassland ecosystem were calculated. The findings indicated that the mean
274 daily Fc was $0.1632 \mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$, and the cumulative CO₂ emission was $1.3215 \text{ t}\cdot\text{ha}^{-1}$ in the dry
275 season. The daily average Fc was $-0.1062 \mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$, and the cumulative CO₂ uptake was 0.6137
276 $\text{t}\cdot\text{ha}^{-1}$ in the rainy season. From the annual scale, the cumulative Fc of the grassland ecosystem was
277 $0.7078 \text{ t}\cdot\text{ha}^{-1}\cdot\text{a}^{-1}$ ($0.1926 \text{ t C}\cdot\text{ha}^{-1}\cdot\text{a}^{-1}$), making it a weak carbon source.


278 3.4 The relationship between CO₂ flux and environmental factors

279 3.4.1 Response of CO₂ flux to PAR

280 This study selected carbon flux data and micrometeorological observation data corresponding
281 to period and analyzed the mutual correlation between Fc and environmental factors. The research
282 area belongs to a typical semi-arid region, where vegetation growth and physiological processes are
283 mainly regulated by temperature and moisture factors (Jiang et al., 2007; Fei et al., 2017a).
284 Therefore, when analyzing the influencing factors of ecosystem CO₂ flux, we mainly selected
285 environmental factors including P, SWC, Ts, Ta, RH, PAR, and VPD for pearson analysis. No
286 significant correlation between PAR and Fc during the dry season was indicated by the results of
287 the pearson correlation analysis ($R = 0.180, P = 0.092$). Still, there was a strong negative correlation
288 between PAR and Fc during the rainy season ($R = -0.578, P < 0.01$), and this relationship was more
289 obvious in Fig. 5a. As a key environmental factor driving plant photosynthesis, photosynthetically
290 active radiation will directly affect the carbon absorption rate of grassland ecosystem and further

291 affect the carbon budget pattern of ecosystem. In the rainy season, the F_c of the grassland ecosystem
292 decreased with the increase of PAR, and the carbon absorption capacity increased continuously, and
293 the relationship between them could be expressed by formula (3). Secondly, when PAR was under
294 $500 \mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$ (Fig. 5b), the NEE of the ecosystem decreases rapidly with increasing PAR. At the
295 same time, the distribution of NEE with PAR was relatively concentrated. However, when PAR was
296 above $500 \mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$, the magnitude of the decrease in NEE with increasing PAR gradually
297 decreases, and the distribution of NEE with PAR was relatively scattered, indicating that the F_c was
298 also influenced by various other environmental factors present in the ecosystem when solar radiation
299 is high. Once PAR reaches the light saturation point at $1523.64 \mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$, the NEE of the
300 ecosystem reached to its minimum, and the light response curve gradually begins to flatten. These
301 research findings align with those of previous studies carried out in diverse grassland ecosystems
302 (Zhao et al., 2007; Wang et al., 2015; Guo et al., 2022).


303

304 Figure 5 The correlation between PAR and F_c (a—the relationship between PAR and F_c in the rainy season; b—the
305 response of F_c to PAR during daytime in the rainy season).

306 3.4.2 Relationship with other environmental factors

307 With no significant correlation with SWC (Fig. 6a and 6b) shown by the daily scale F_c of
 308 grassland ecosystems in the various seasons, there was a moderate negative correlation with Ta and
 309 Ts ($P<0.01$), a moderate positive correlation with P ($P<0.01$), and a strong positive correlation with
 310 RH ($P<0.01$). The daily scale F_c in the dry season has a moderate negative correlation with VPD
 311 ($P<0.01$), while the F_c in the rainy season shows a strong negative correlation with VPD ($P<0.01$).
 312 Throughout varying seasons, the F_c increases with the increase of P and RH, as well as the decrease
 313 of Ta, Ts, and VPD. Due to the small variations in SWC within the two seasons (Fig. 2b), therefore,
 314 the impact of SWC on the diurnal fluctuation of the F_c was not significant. In general, the diurnal
 315 variation of F_c in the dry season is mainly affected by RH, while the rainy season is mainly affected
 316 by RH and VPD, and the influence of other environmental factors is generally weak.

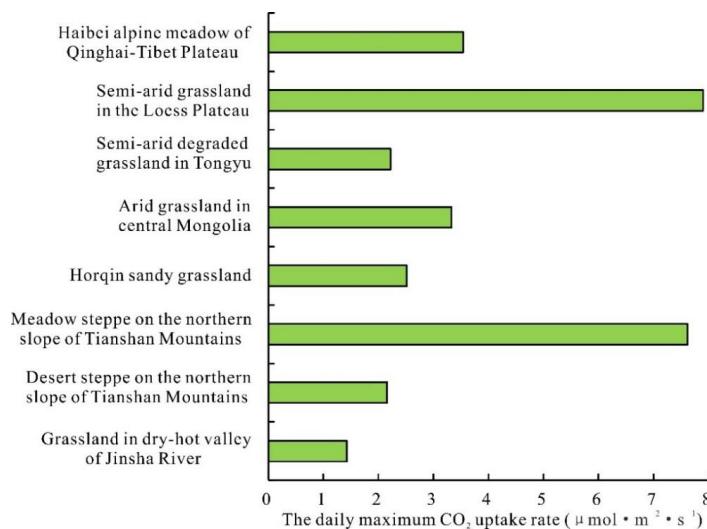
320 Throughout the year on a daily scale (Fig. 6c), the F_c showed no significant correlation with
 321 Ta and P, a weak positive correlation with VPD ($P<0.01$), a weak negative correlation with Ts
 322 ($P<0.01$), a moderate negative correlation with RH ($P<0.01$), and a strong negative correlation with
 323 SWC ($P<0.01$). It is evident that as the time series extends, the physiological responses of
 324 photosynthesis and respiration processes in the grassland ecosystem to specific environmental
 325 factors have undergone changes. As the VPD decreases, and RH, SWC, and Ts increase, and the F_c
 326 of ecosystem decreased gradually. Particularly, the impact of SWC was most significant, closely
 327 related to the distinct climatic characteristics of wet and dry seasons in the study area. Under such

328 climatic conditions, the variation in SWC throughout the year becomes the dominant factor
329 restricting regional vegetation growth and recovery (Jiang et al., 2007), significantly influencing the
330 intra-annual variation of the F_c .

331 The study also found that at the monthly scale, the F_c showed no significant correlation with
332 Ta, Ts, and P (Fig. 6d), but exhibits a strong negative correlation with SWC and RH ($P < 0.05$), and
333 a strong positive correlation with VPD ($P < 0.05$). As the temporal scale increases, the environmental
334 driving factors influencing the variation in F_c decrease, but the correlation significantly increases.
335 This may be attributed to the short monthly time series of the observational data. In general, at the
336 monthly scale, SWC, RH, and VPD emerge as the predominant factors influencing the variation in
337 F_c within the ecosystem. Furthermore, the change in time scale will also affect the correlation
338 between F_c and driving factors, aligning with the findings in Heihe River Basin (Bai et al., 2022).

339 4 Discussion

340 4.1 Carbon flux of grassland ecosystem

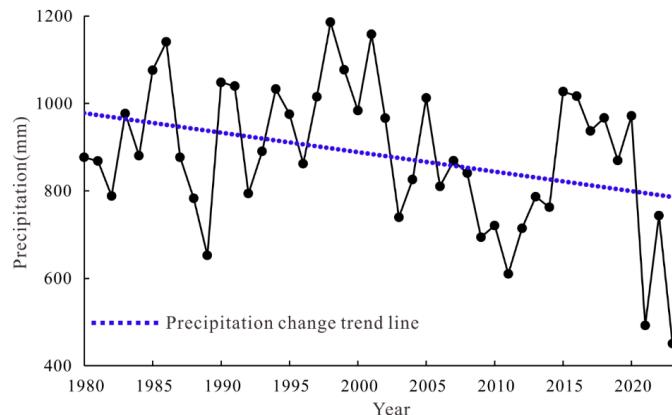

341 The herbs in the study area are mainly C_4 plants (Grace et al., 1995), which are called high-
342 efficiency photosynthetic plants, and the C_4 plants exhibit higher efficiency in photosynthesis and
343 resource utilization when compared to C_3 plants (Cui et al., 2021; Arslan et al., 2023; Xu et al.,
344 2023). However, similar to other savanna ecosystems, the study area has been in a dry, high-
345 temperature, and low-rainy climate for a long time. This extreme climatic condition makes the
346 productivity of C_4 herbaceous plants only maintain at a medium level (Grace et al., 1995), therefore,
347 the carbon sink capacity is relatively weak. The data analysis revealed that within the grassland
348 ecosystem situated in the study area, the daily maximum CO_2 uptake rate was recorded at only
349 $1.4286 \mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$, which stands notably lower in comparison to other grasslands found in arid
350 and semi-arid regions (Fig. 7) (Li et al., 2005; Kato et al., 2006; Du et al., 2012; Hu et al., 2018;
351 Niu et al., 2018; Zhang et al., 2020; Guo et al., 2022).

352 Through comparative analysis, it can be observed that various grasslands in arid/semi-arid
353 regions primarily function as carbon sinks, but some grasslands also show the characteristics of
354 carbon emissions (Table 2). Simultaneously, most savanna ecosystems globally demonstrate carbon
355 sequestration features (Table 2), with only a few exhibiting characteristics of carbon emissions, with
356 the NEE varying from around 1.28 to $-3.87 \text{ t C} \cdot \text{ha}^{-1} \cdot \text{a}^{-1}$. Consistent with findings from other savanna
357 ecosystems (Grace et al., 1995; Miranda et al., 1997; Fei et al., 2017a), the special hydrothermal
358 conditions make the vegetation growth of the grassland in the study area exhibiting pronounced
359 seasonal characteristics and affect the change of carbon flux. In the season of drought and water

360 shortage, the herbs growth is poor, and the ecosystem mainly emits carbon, showing a carbon source
361 characteristic. During the rainy season, the vegetation enters the peak period of growth, with strong
362 carbon fixation ability, and the ecosystem mainly absorbs carbon, showing a carbon sink function.
363 Overall, the grassland ecosystems in the study area predominantly exhibit carbon emissions, albeit
364 at relatively low levels, demonstrating a carbon-neutral attribute. The carbon flux characteristics are
365 the same as those of Sumbrugu Aguusi savanna grassland in Sudan (Quansah et al., 2015), Kruger
366 Park semi-arid savanna in South Africa (Archibald et al., 2009) and Virginia Park semi-arid savanna
367 in Australia (Hutley et al., 2005).

368 Through comparative analysis, we found that most of the grasslands in the savanna ecosystem
369 and arid and semi-arid areas are dominated by carbon sinks. The reason for the carbon emission
370 status of grassland in this study may be related to the continuous reduction of rainfall in the study
371 area in recent years (Fig. 8). Under this extremely dry and rainless climate condition, the carbon
372 sequestration capacity of herbaceous plants with low vegetation productivity is significantly reduced.
373 In the case of continuous reduction of rainfall in the future, the carbon emissions of grassland
374 ecosystems in the study area may continue to increase. At the same time, the study area as a special
375 heat island habitat in the global temperate zone. Under the climate scenario of continuous warming
376 and decreasing precipitation in the future, the vegetation community structure in some temperate
377 regions will success to the savanna vegetation community. With the extension of drought and
378 high temperature, grassland ecosystems in these areas may change from carbon sinks to carbon
379 sources, which is extremely important for the carbon balance of global terrestrial ecosystems.

380


381 Figure 7 The daily maximum CO_2 uptake rate of different grassland ecosystems.

382

Table 2 Comparison of NEE in grassland ecosystems and savanna ecosystems.

Country	Location	Latitude &longitude	Vegetation	NEE (t C ha ⁻¹ a ⁻¹)	References
China	Meitang	26°4'6.24"N, 107°28'12"E	subtropical grassland	-1.16	Sun et al., 2020
	Heihe Dashalong Observation Station	38°50'23.64"N, 98°56'16"E	marsh alpine meadow	-3.08	Bai et al., 2022
	Heihe Arou Observation Station	38°2'50.28"N, 100°27'51.48"E	alpine meadow	-2.28	
	Xilin River Basin	43°33'N, 116°40"E	semi-arid grassland	-0.61	
	Semi-arid Climate and Environment Observatory	35°57'N, 104°08"E	semi-arid grassland	-0.99	Du et al., 2012
	Tongyu Degraded Grassland Observatory	44°25'N, 122°52"E	semi-arid grassland	-0.37	
	Yunwu Mountain National Nature Reserve	36°19'N, 106°28"E	semi-arid grassland	-0.02	Zhang et al., 2020
	Naiman Desertification Research Station	42°55'N, 120°42"E	sandy grassland	0.91	Niu et al., 2018
	Naiman Desertification Research Station	42°55'N, 120°42"E	enclosure of sandy grassland	0.96	Chen et al., 2019
	Qinghai Lake	36°42'N, 100°46"E	<i>Kobresia tibetica</i> wet meadow	0.55	Wu et al., 2018
	Jinsha River Field Observation Station	26°4'6.24"N, 101°49'41.68"E	grassland savanna	0.19	This study
	Yuanjiang	23°28'26"N, 102°10'39"E	semi-arid savanna	-1.30	Fei et al., 2017b
	Yanchi Research Station	37°42.51'N, 107°13.62"E	semi-arid shrub	-0.77	Law et al., 2002
	Northwestern Benin	09°44'24"N, 01°36'00"E	cultivated savanna	-2.32	Ago et al., 2014
Sudan	Bontioli	10°51'56"N, 03°42'22"W	trees and shrub savanna	-3.04	Brümmer et al., 2008
	Kayoro Dakorenia	10°55'4.8"N, 01°19'15.6"W	fallow and cropland	1.08	
	Nazinga Park	11°09'7.20"N, 1°35'9.6"W	nature reserve savanna	-3.87	Quansah et al., 2015
	Sumbrugu Aguusi	10°50'45.6"N, 0°55'1.2"W	grassland savanna	1.28	
South Africa	Kruger Park	/	semi-arid savanna	0.25	Archibald et al., 2009
	Ca. 20 km east of Maun, Botswana	19°54'S, 23°33"E	woodland savanna	-0.12	Veenendaal et al., 2004
	Dahra field site	15°24'00"N, 15°24'48"W	shrub and tree savanna	-2.71	Tagesson et al., 2015
Brazil	Reserva Ecológica do IBGE	15°56'S, 47°51'W	trees and shrubs	-2.88	Santos et al., 2003
Spain	El Llano de los Juanes	36°55'41.7"N, 02°45'1.7"W	mediterranean shrubland	-0.02	Serrano-Ortiz et al., 2009
United States	Tonzi Ranch, California	38°25'48"N, 120°57'00"W	oak and grass savanna	-0.98	Ma et al., 2003
	Virginia Park	19°53'00"S, 146°33'14"E	semi-arid savanna	0.21	Hutley et al., 2005
	Howard Springs	12°30'24"S, 131°52'4"E	mesic savanna	-1.55	
Australia	Pine Hill cattle station	22°16'48"S, 133°15'00"E	woodland savanna	-1.25	Cleverly et al., 2013
	Central Australia	22°18'00"S, 133°12'00"E	acacia savanna	-2.58	Eamus et al., 2013
	Howard Springs	12°29.71"S, 131°09.03"E	open-forest savanna	-3.60	Beringer et al., 2007

383

384 Figure 8 The precipitation changes in the study area from 1980 to 2023 (The precipitation data from 1980 to 2022
385 are collected from Yunnan Statistical Yearbook, and the precipitation data in 2023 were the measured data of
386 Jinsha River Field Observation Station.).

387 4.2 Effects of environmental factors on CO₂ flux

388 4.2.1 Temperature factor

389 As a crucial environmental factor influencing the F_c of ecosystems, temperature mainly affects
390 the F_c of terrestrial ecosystems by regulating biological activities such as photosynthesis and
391 respiration (Woodwell et al., 1983; Pan et al., 2020; Johnston et al., 2021; Chen et al., 2023),
392 especially for grassland ecosystems, several prior studies have validated that temperature serves as
393 the primary driving force controlling the variation in F_c. Nevertheless, owing to variations in climate
394 and environmental conditions, the regulatory impact of temperature fluctuations on the F_c differs
395 significantly across various types of grassland ecosystems. Compared with temperate grassland and
396 semi-arid grassland, the warming effect has the most significant impact on the carbon flux of frigid
397 grasslands worldwide. However, in semi-arid grassland ecosystems, the effect of warming is not
398 significant (Wang et al., 2019). The rise in temperature (both annual average temperature and annual
399 average soil temperature) reduced the carbon flux of temperate grasslands in China, while the effect
400 on alpine grasslands was opposite (Liu et al., 2024). In the Inner Mongolia Plateau, with the increase
401 of temperature, the NEE of the grassland ecosystem will increase (Liu et al., 2018), while the change
402 of Qinghai-Tibet Plateau, compared with it, is very small, and there is no correlation between F_c
403 and temperature change in the Inner Mongolia grassland during the drought period (Hao et al., 2006).
404 Ta and Ts exhibit a negative correlation with the F_c at different seasonal daily scales in the grassland
405 ecosystem in dry-hot valley of JS, similar to the control mechanisms seen in other arid and semi-
406 arid grasslands (Li et al., 2015; Niu et al., 2018; Chen et al., 2019). As the time series extends and
407 the temporal scale increases, the impact of Ta and Ts on the fluctuations in the F_c in the grassland

408 of study region continues to weaken, which is related to the small differences in Ta and Ts within
409 different time scales in the study area. That is, the small temperature difference leads to the
410 distribution change of the F_c in time is not sensitive to temperature fluctuation, which is the same
411 as the characteristics of the savanna ecosystem in YJ (Fei et al., 2017a). This phenomenon is also
412 common in other arid regions (Wang et al., 2021).

413 4.2.2 Water factor

414 Previous studies have pointed out that a potential limiting factor affecting carbon uptake in
415 terrestrial ecosystems is soil moisture, which can diminish NPP through water stress in ecosystems,
416 leading to vegetation death (Green et al., 2019). Simultaneously, soil moisture may exacerbate
417 extreme climatic conditions through the intricate interaction between the land and the atmosphere.
418 Particularly in arid regions characterized by scarce water resources, there exists a significant
419 interaction between soil moisture and vegetation. Hence, in terms of carbon and water fluxes
420 affecting dryland ecosystems, SWC is a more important ecosystem control factor than Ta (Zhang et
421 al., 2012; Zou et al., 2016; Fei et al., 2017a; Tarin et al., 2020; Kannenberg et al., 2024). For instance,
422 in the herbs growth season of the Qinghai–Tibet Plateau, regions with plentiful precipitation in the
423 east and southeast primarily regulate carbon absorption capacity through temperature. Conversely,
424 SWC emerges as the principal determinant of carbon sequestration capability in the arid and water
425 shortage western region (Wang et al., 2021). Simultaneously, the SWC emerges also as the
426 predominant factor influencing the daily fluctuations of NEE in grassland ecosystems in the semi-
427 arid regions of northern China (Zhao et al., 2020). In the sandy grasslands of Horqin, the NEE during
428 the plant growth season increases with the rise in SWC, while it decreases during the non-growth
429 season (Chen et al., 2019). The research area is a classic dryland ecosystem characterized by scarce
430 and concentrated precipitation. The driving effect of water on the ecosystem is obvious. Plant
431 physiology is greatly affected by water stress. Higher SWC is conducive to promoting the recovery
432 and growth of herbs (Jiang et al., 2017), and this enhancement in vegetation growth contributes
433 significantly to augmenting the carbon sink capacity. Therefore, it can be observed that in the season
434 with more rainfall, the study area has a carbon sink function due to higher SWC (Figure 2b), whereas
435 in the dry season, it exhibits characteristics of carbon emissions.

436 In arid ecosystem, alterations in the P significantly affect plants and soil, especially the
437 grassland ecosystem has the greatest response to the change of the P. The effectiveness of water
438 dictates plants growth and the release and absorption of CO_2 . Therefore, prior researches have
439 indicated that the F_c of grasslands in arid regions exhibits greater sensitivity to variations in the P
440 (Knapp et al., 2002; Niu et al., 2007; Weltzin et al., 2003; Zhang et al., 2020). An increase in the P

441 led to a delay in the peak of gross primary productivity in vegetation growth stage of the Inner
442 Mongolia desert steppe, enhancing the ecosystem's carbon flux (Li et al., 2017; Zhang et al., 2019).
443 The decrease of the P significantly reduced the soil respiration in the early and middle vegetation
444 growth season of Horqin sandy grassland (Wang et al., 2023). The P of Xilinhot grassland changed
445 the Fc in the vegetation growth season mainly by affecting SWC (Wang et al., 2015). High water
446 levels (annual average precipitation and soil moisture) have continuously increased the carbon flux
447 of temperate grasslands and alpine grasslands in the Mongolian Plateau, Loess Plateau, and
448 Qinghai-Tibet Plateau (Liu et al., 2024).

449 Changes in hydrological conditions such as the P and SWC can significantly affect the water
450 balance characteristics and water redistribution of the savanna ecosystems due to the arid and hot
451 climate environment characteristics, thereby altering the ecological system structure and vegetation
452 community composition of woody and herbaceous plants coexisting (Yu et al., 2015; Lee et al.,
453 2018; Jin et al., 2019; Zhang et al., 2019; Hoffmann, 2023; Mattos et al., 2023), thereby affecting
454 vegetation productivity (Jin et al., 2018), ecological water use efficiency (Yu et al., 2015; Lee et al.,
455 2018; Mattos et al., 2023), plant diversity (He, et al., 2024), and carbon flux (Fei et al., 2017a).
456 Changes in hydrothermal conditions have formed the distinct vertical zonation structure of
457 vegetation communities in the savanna of the JS (He, et al., 2024). The continuous decrease in the
458 P led to a marked reduction in both the average height and coverage of the herbaceous community
459 in the YJ. However, it significantly increased the species richness and evenness index of the
460 herbaceous community (Jin et al., 2019). Observations of the Fc showed that the P determined the
461 carbon sink change of the savanna ecosystem in the YJ (Fei et al., 2017a). As for the study area, the
462 P shows a positive correlation with the Fc at different seasonal daily scales, with no significant
463 relationship observed with the Fc variation on the daily and monthly scales throughout the year.
464 However, the variation in P significantly affects the regional SWC and RH (Fig. 6c and 6d).
465 Therefore, we suggests that the impact mechanism of the P on the Fc in the JS dry-hot valley
466 grassland ecosystem may be similar to that of the Xilinhot grassland ecosystem, where the P mainly
467 controls vegetation growth by affecting SWC and RH, thereby indirectly influencing the Fc in the
468 grassland ecosystem.

469 4.2.3 Relative humidity and vapor pressure deficit factor

470 The arid/semi-arid grassland ecosystem is short of water resources, the soil nutrients are
471 relatively poor, and the ecosystem is fragile and sensitive. Especially with the change in global
472 climate, RH has become a key limiting factor restricting its sustainable development (Wang et al.,
473 2023). As an important measure of atmospheric dryness, the fluctuation of VPD is controlled by RH

474 and has a high correlation with other important driving factors of ecosystem productivity, such as
475 Ta and SWC, which is a key climate regulation factor affecting ecosystem photosynthesis and
476 transpiration. Multiple studies have shown that when RH decreases, vegetation stomata will be
477 closed due to an increase in VPD, thereby preventing excessive water loss (Williams et al., 2013;
478 Novick et al., 2016; Sulman et al., 2016; Hsu et al., 2021), leading to a decrease in the photosynthetic
479 rate of leaves and canopies, thereby inhibiting photosynthesis (McDowell et al., 2015; Sulman et
480 al., 2016; Yuan et al., 2019), reducing vegetation productivity and hindering vegetation growth.
481 Therefore, there is a mainly negative correlation between the intensity of plant photosynthesis and
482 VPD. Zhong et al. (2023) discovered that excluding the influences of Ta and soil moisture on
483 vegetation productivity, VPD negatively impacts vegetation productivity in the majority of Northern
484 Hemisphere regions. Globally, studies have also shown that increased VPD reduces global
485 vegetation growth and offsets the beneficial impacts of CO₂ fertilization (Yuan et al., 2019).
486 Simultaneously, the interannual variation of VPD shows a significant negative correlation with net
487 ecosystem productivity and affects the interannual variation of atmospheric CO₂ growth rate (He et
488 al., 2022). Because of variations in climatic conditions and the synergistic effects of multiple
489 environmental factors, the response mechanisms of the Fc in different grassland ecosystems to
490 changes in VPD and RH are also varied. For instance, in the savanna ecosystem of YJ, the Fc shows
491 a negative correlation with VPD (Fei et al., 2017a). Wang et al. (2021) found through a study on the
492 spatial variation of carbon flux of 10 distinct grassland types that a positive correlation exists
493 between VPD and NEE in the Qinghai–Tibet Plateau. In the arid grasslands of Heihe River Basin
494 (Bai et al., 2022), the Fc is positively correlated with VPD and RH. The Fc at the daily scale exhibit
495 a positive correlation with RH and a negative correlation with VPD during different seasons in the
496 study area. Taking into account the seasonal changes in different environmental factors (Fig. 2c),
497 during the dry season, the RH is low, VPD is high. The ecosystem exhibits a carbon emission state,
498 while the opposite is observed during the rainy season. Generally, the reduction in RH and the
499 increase in VPD will inhibit the ecosystem's carbon absorption capacity.

500 5 Conclusions

501 This study quantitatively analyzed the Fc variations and their relationships with environmental
502 factors in the grassland ecosystem of the dry-hot valley of JS, enriching the theoretical
503 understanding of key carbon cycling processes in the savanna ecosystem in China. Nonetheless, the
504 absence of long-term observational data on the Fc in our study precludes a more thorough
505 examination of the inter-annual variation characteristics of the Fc. Secondly, the study did not

506 effectively observe the dynamic characteristics of soil respiration, making it impossible to
507 accurately calculate the GPP of the ecosystem. Furthermore, we only observed and studied the
508 changes in F_c of the grassland ecosystem, while the savanna ecosystem has a vegetation community
509 structure with two levels of shrub and grass. Therefore, forthcoming our research will emphasize
510 the extended observation of the F_c changes in the savanna ecosystem with a complete vegetation
511 community structure, especially the use of eddy correlation methods to expand the scope of
512 ecosystem observation and reduce the uncertainty of measurement samples, so as to better clarify
513 the carbon budget pattern of the ecosystem. Through this research, we have arrived at the following
514 findings:

515 (1) The diurnal variation of F_c showed a 'W' shaped bimodal curve during the dry season. The
516 maximum daily CO_2 emission rate reached $0.2158 \mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$ in March, with the highest
517 cumulative CO_2 emission of $20.64 \text{ g}\cdot\text{m}^{-2}$ observed in May. During the rainy season, the diurnal
518 variation of F_c in the ecosystem showed a 'U' shaped unimodal curve. The maximum daily CO_2
519 absorption rate reached $1.4286 \mu\text{mol}\cdot\text{m}^{-2}\cdot\text{s}^{-1}$ in August, with the highest cumulative CO_2 absorption
520 of $24.41 \text{ g}\cdot\text{m}^{-2}$ observed in September.

521 (2) In the rainy season existed a notable correlation between PAR and F_c . Especially during
522 the daytime, the relationship between F_c and PAR followed a rectangular hyperbolic model. When
523 PAR reached the light saturation point, the photosynthetic rate of the ecosystem would peak, and
524 the light response curve would gradually level off. Additionally, when PAR was high, the F_c of the
525 ecosystem was also impacted by other driving factors.

526 (3) The diurnal variation of F_c in the dry season is mainly affected by RH, while the rainy
527 season is mainly affected by RH and VPD. Small temperature differences result in a relatively weak
528 overall impact of Ta and Ts on the F_c of the ecosystem. P mainly indirectly controls the vegetation
529 growth and the F_c by influencing SWC and RH. Overall, SWC, RH, and VPD were the main
530 environmental factors influencing the F_c . As SWC and RH rise while VPD declines, the ecosystem's
531 carbon absorption capacity experiences a notable enhancement.

532 (4) Affected by environmental factors, the F_c of the grassland ecosystem exhibited significant
533 seasonal characteristics. During the dry season, the ecosystem showed carbon emissions, with a
534 cumulative CO_2 emission of $1.3215 \text{ t}\cdot\text{ha}^{-1}$. During the rainy season, the ecosystem showed carbon
535 absorption, with a cumulative CO_2 absorption of $0.6137 \text{ t}\cdot\text{ha}^{-1}$. Throughout the year, the ecosystem
536 was a weak carbon source. In the case of continuous reduction of P in the future, the carbon
537 emissions of the ecosystem may continue to increase.

538 **Data availability**

539 The CO₂ flux data and environmental data used to support the findings of this study were
540 available from the corresponding author upon request. The administrative boundary data
541 (DOI:10.12078/2023010101; DOI:10.12078/2023010103) and river data
542 (DOI:10.12078/2018060101) were downloaded from the RESDC from the Chinese Academy of
543 Sciences (<https://www.resdc.cn/Default.aspx>).

544 **Author contributions**

545 All authors were involved in the preparation and design of the manuscript. Chaolei Yang wrote
546 the manuscript, and all authors provided feedback and suggestions for revision. Yufeng Tian and
547 Jingqi Cui processed and analyzed the research data. Zong Wei, Yong Huang, and Aihua Jiang are
548 mainly responsible for the daily maintenance and data collection of monitoring instruments. All the
549 authors have read and passed the final manuscript.

550 **Competing interests**

551 The authors has declared that no conflict of interest.

552 **Financial support**

553 This study received funding from the China Geological Survey (grant nos. DD20220888) and
554 the National Natural Science Foundation of China (grant nos. U2102209).

555

556 **References**

- 557 Archibald, S.A., Kirton, A., van der Merwe, M.R., Scholes, R.J., Williams, C.A., Hanan, N.: Drivers
558 of inter-annual variability in net ecosystem exchange in a semi-arid savanna ecosystem, South
559 Africa, *Biogeosci*, 6, 251–266, 2009.
- 560 Ago, E.E., Agbossou, E.K., Galle, S., Cohard, J.M., Heinesch, B., Aubinet, M.: Long term
561 observations of carbon dioxide exchange over cultivated savanna under a Sudanian climate in
562 Benin (West Africa), *Agric. For. Meteorol.*, 197, 13–25,
563 <https://doi.org/10.1016/j.agrformet.2014.06.005>, 2014.
- 564 Arslan, A.M., Wang, X., Liu, B.Y., Xu, Y.N., Li, L., Gong, X.Y.: Photosynthetic resource-use
565 efficiency trade-offs triggered by vapour pressure deficit and nitrogen supply in a C₄ species,
566 *Plant Physiol. Biochem.*, 197, 107666, <https://doi.org/10.1016/j.plaphy.2023.107666>, 2023.
- 567 Bousquet, P., Ciais, P., Miller, J.B., Dlugokencky, E.J., Hauglustaine, D.A., Prigent, C., White, J.:
568 Contribution of anthropogenic and natural sources to atmospheric methane variability, *Nature*,
569 443, 439–443, <https://doi.org/10.1038/nature05132>, 2006.
- 570 Beringer, J., Hutley, L.B., Tapper, N.J., Cernusak, L.A.: Savanna fires and their impact on net
571 ecosystem productivity in North Australia, *Global Change Biol.*, 13, 990–1004,
572 <https://doi.org/10.1111/j.1365-2486.2007.01334.x>, 2007.
- 573 Brümmer, C., Falk, U., Papen, H., Szałzynski, J., Wassmann, R., Brüggemann, N.: Diurnal, seasonal,
574 and interannual variation in carbon dioxide and energy exchange in shrub savanna in Burkina
575 Faso (West Africa), *J. Geophys. Res.: Biogeosci.*, 113, <https://doi.org/10.1029/2013JG036020>

- 576 G0203010.1029/2007jg000583, 2008.
- 577 Bai, Y.F., Cotrufo, M.F.: Grassland soil carbon sequestration: current understanding, challenges, and
578 solutions, *Science*, 377, 603–608, <https://doi.org/10.1126/science.abe2380>, 2022.
- 579 Bai, X.J., Wang, X.F., Liu, X.H., Zhou, X.Q.: Dynamics and driving factors of carbon fluxes in
580 wetland, cropland and grassland ecosystems in Heihe river basin, *Remote Sens, Technol. Appl.*,
581 37, 94–107, <https://doi.org/10.11873/j.issn.1004-0323.2022.1.0094>, 2022.
- 582 Bai, X.Y., Zhang, S.R., Li, C.J., Xiong, L., Song, F.J., Du, C.C., Li, M.H., Luo, Q., Xue, Y.Y., Wang,
583 S.J.: A carbon-neutrality-capacity index for evaluating carbon sink contributions, *Environ. Sci.*
584 *Ecotechnol.*, 15, 100237, <https://doi.org/10.1016/j.ese.2023.100237>, 2023.
- 585 Bureau of Statistics of Yunnan Province. *Yunnan Statistical Yearbook*; China Statistics Press:
586 Beijing, China, 2023.
- 587 Campbell, G.S., Norman, J.M.: An introduction to environmental biophysics, Springer Sci, Business
588 Media, 2012.
- 589 Cleverly, J., Boulain, N., Villalobos-Vega, R., Grant, N., Faux, R., Wood, C., Cook, P.G., Yu, Q.,
590 Leigh, A., Eamus, D.: Dynamics of component carbon fluxes in a semi-arid Acacia woodland,
591 central Australia, *J. Geophys. Res.: Biogeosci.*, 118, 1168–1185,
592 <https://doi.org/10.1002/jgrg.20101>, 2013.
- 593 Chen, Y.P., Niu, Y.Y., Li, W., Li, Y.Q., Gong, X.W., Wang, X.Y.: Characteristics of carbon flux in
594 sandy grassland ecosystem under natural restoration in Horqin sandy land, *Plateau Meteorol.*, 38,
595 650–659, <https://doi.org/10.7522/issn.1000-0534.2018.00133>, 2019.
- 596 Cui, H.C.: Challenges and approaches to crop improvement through C₃-to-C₄ engineering, *Front.*
597 *Plant Sci.*, 12, 715391, <https://doi.org/10.3389/fpls.2021.715391>, 2012.
- 598 Chen, W.N., Wang, S., Wang, J.S., Xia, J.Y., Luo, Y.Q., Yu, G.R., Niu, S.L.: Evidence for widespread
599 thermal optimality of ecosystem respiration, *Nat. Ecol. Evol.*, 7, 1379–1387,
600 <https://doi.org/10.1038/s41559-023-02121-w>, 2023.
- 601 Du, Q., Liu, H.Z., Feng, J.W., Wang, L., Huang, J.P., Zhang, W., Bernhofer, C.: Carbon dioxide
602 exchange processes over the grassland ecosystems in semiarid areas of China, *Sci. China, Ser.*
603 *D Earth Sci.*, 42, 711–722, <https://doi.org/10.1007/s11430-011-4283-1>, 2012.
- 604 Dobson, A., Hopcraft, G., Mduma, S., Ogutu, J.O., Fryxell, J., Anderson, M., Archibald, S.,
605 Lehmann, C., Poole, J., Caro, T., Mulder, M.B., Holt, R.D., Berger, J., Rubenstein, D.I.,
606 Kahumbu, P., Chidumayo, E.N., Milner-Gulland, E.J., Schlüter, D., Otto, S., Balmford, A.,
607 Wilcove, D., Pimm, S., Veldman, J.W., Olff, H., Noss, R., Holdo, R., Beale, C., Hempson, G.,
608 Kiwango, Y., Lindenmayer, D., Bond, W., Ritchie, M., Sinclair, A.R.E.: Savannas are vital but
609 overlooked carbon sinks, *Science*, 375, 392, <https://doi.org/10.1126/science.abn4482>, 2022.
- 610 Deng, Y.: The boundary definition and studyon the land use/cover change and landscape pattern of
611 the dry-hot valley in Hengduan Mountains, Yunnan University, <https://doi.org/10.27456/d.cnki.gyndu.2022.000408>, 2022.
- 613 Eamus, D., Hutley, L.B., O'Grady, A.P.: Daily and seasonal patterns of carbon and water fluxes
614 above a north Australian savanna, *Tree Physiol.*, 21, 977–988, 2001.
- 615 Fang, J.Y., Guo, Z.D., Piao, S.L., Chen, A.P.: Terrestrial vegetation carbon sinks in China, 1981–
616 2000. *Sci. China Ser. D: Earth Sci.*, 50, 1341–1350, <https://doi.org/10.1007/s11430-007-0049-1>,
617 2007.
- 618 Fei, X.H., Song, Q.H., Zhang, Y.P., Liu, Y.T., Sha, L.Q., Yu, G.R., Zhang, L.M., Duan, C.Q., Deng,
619 Y., Wu, C.S., Lu, Z.Y., Luo, K., Chen, A.G., Xu, K., Liu, W.W., Huang, H., Jin, Y.Q., Zhou,

- 620 R.W., Li, J., Lin, Y.X., Zhou, L.G., Fu, Y., Bai, X.L., Tang, X.H., Gao, J.B., Zhou, W.J., Grace,
621 J.: Carbon exchanges and their responses to temperature and precipitation in forest ecosystems
622 in Yunnan, Southwest China, *Sci. Total Environ.*, 616–617, 824–840,
623 <https://doi.org/10.1016/j.scitotenv.2017.10.239>, 2017a.
- 624 Fei, X.H., Jin, Y.Q., Zhang, Y.P., Sha, L.Q., Liu, Y.T., Song, Q.H., Zhou, W.J., Liang, N.S., Yu, G.R.,
625 Zhang, L.M., Zhou, R.W., Li, J., Zhang, S.B., Li, P.G.: Eddy covariance and biometric
626 measurements show that a savanna ecosystem in Southwest China is a carbon sink, *Sci Rep*, 7,
627 41025, <https://doi.org/10.1038/srep41025>, 2017b.
- 628 Grace, J., Lloyd, J., McIntyre, J., Miranda, A.C., Meir, P., Miranda, H., Moncrieff, J.M., Massheder,
629 J., Wright, I.R., Gash, J.: Fluxes of carbon dioxide and water vapour over an undisturbed
630 tropical forest in south-west Amazonia, *Global Change Biol.*, 1, 1–12,
631 <https://doi.org/10.1111/j.1365-2486.1995.tb00001.x>, 1995.
- 632 Grace, J., José, J. S., Meir, P., Miranda, H. S., Montes, R.A.: Productivity and carbon fluxes of
633 tropical savannas, *J. Biogeogr.*, 33, 387–400, <https://doi.org/10.1111/j.1365-2699.2005.01448.x>,
634 2006.
- 635 Green, J. K., Seneviratne, S. I., Berg, A. M., Findell, K. L., Hagemann, S., Lawrence, D. M., Gentine,
636 P.: Large influence of soil moisture on long-term terrestrial carbon uptake, *Nature*, 565, 476–479,
637 <https://doi:10.1038/s41586-018-0848-x>, 2019.
- 638 Guo, W.Z., Jing, C.Q., Deng, X.J., Chen, C., Zhao, W.K., Hou, Z.X., Wang, G.X.: Variations in
639 carbon flux and factors influencing it on the northern slopes of the Tianshan Mountains, *Acta
640 Prataculturae Sin.*, 31, 1–12. <https://doi.org/10.11686/cyx2021137>, 2022.
- 641 He, Y.B., Lu, P.Z., Zhu, T.: Causes for the formation of dry-hot valleys in Hengduan Mountain-
642 Yunnan plateau, *Resour. Sci.*, 22, 69–72, <https://www.resci.cn/CN/Y2000/V22/I5/69>, 2000.
- 643 Houghton, R.A.: Counting terrestrial sources and sinks of carbon, *Clim. Change*, 48, 525–534,
644 <https://doi.org/10.1023/A:1005658316062>, 2001.
- 645 Hutley, L.B., Leuning, R., Beringer, J., Cleugh, H.A.: The utility of the eddy covariance techniques
646 as a tool in carbon accounting: tropical savanna as a case study, *Aust. J. Bot.*, 53, 663–675,
647 <https://doi.org/10.1071/Bt04147>, 2005.
- 648 Hao, Y.B., Wang, Y.F., Sun, X.M., Huang, X.Z., Cui, X.Y., Niu, H.S., Zhang, Y.H., Yu, G.R.:
649 Seasonal variation in carbon exchange and its ecological analysis over *Leymus chinensis* steppe
650 in Inner Mongolia, *Sci. China, Ser. D Earth Sci.*, 49, 186–195, <https://doi.org/10.1007/s11430-006-8186-5>, 2006.
- 652 Hu, Y., Zhu, X.P., Jia, H.T., Han, D.L., Hu, B.A., Li, D.P.: Effects of fencing on ecosystem carbon
653 exchange at meadow steppe in the northern slope of the Tianshan Mountains, *Chinese J. Plant
654 Eco.*, 42, 372–381, <https://doi.org/10.17521/cjpe.2016.0049>, 2018.
- 655 Hsu, P.K., Takahashi, Y., Merilo, E., Costa, A., Zhang, L., Kernig, K., Lee, K.H., Schroeder, J.I.:
656 Raf-like kinases and receptor-like (pseudo)kinase GHR1 are required for stomatal vapor
657 pressure difference response, *PNAS*, 118, e2107280118, <https://doi.org/10.1073/pnas.2107280118>,
658 2021.
- 659 He, B., Chen, C., Lin, S.R., Yuan, W.P., Chen, H.W., Chen, D.L., Zhang, Y.F., Guo, L.L., Zhao, X.,
660 Liu, X.B., Piao, S.L., Zhong, Z.Q., Wang, R., Tang, R.: Worldwide impacts of atmospheric vapor
661 pressure deficit on the interannual variability of terrestrial carbon sinks, *Natl. Sci. Rev.*, 9,
662 nwab150, <https://doi.org/10.1093/nsr/nwab150>, 2022.
- 663 Hoffmann, W.A.: Seasonal flooding shapes forest–savanna transitions, *PNAS*, 120, e2312279120,

- 664 https://doi.org/10.1073/pnas.2312279120, 2023.
- 665 He, G.X., Shi, Z.T., Fang, H.D., Shi, L.T., Wang, Y.D., Yang, H.Z., Yan, B.G., Yang, C.L., Yu, J.L.,
666 Liang, Q.L., Zhao, L., Jiang, Q.: Climate and soil stressed elevation patterns of plant species to
667 determine the aboveground biomass distributions in a valley-type Savanna, *Front. Plant Sci*, 15,
668 1324841, <https://doi.org/10.3389/fpls.2024.1324841>, 2024.
- 669 Jin, Z.Z., Ou, X.K., Zhou, Y.: The general situation of natural vegetation in dry-hot river valley of
670 Yuanmou, Yunnan Province, *Chin. J. Plant Ecol*, 11, 308–317, 1987.
- 671 Jiang, J.M., Fei, S.M., He, Y.P., Zhang, F., Kong, Q.H.: Study on vegetation restoration in dry-hot
672 valleys of the Jinsha River, *J. Southwest For. Univ*, 27, 11–15,
673 <https://doi.org/10.11929/j.issn.2095-1914.2007.06.003>, 2007.
- 674 Jin, Y.Q., Li, J., Liu, C.G., Liu, Y.T., Zhang, Y.P., Song, Q.H., Sha, L.Q., Chen, A.G., Yang, D.X.,
675 Li, P.G.: Response of net primary productivity to precipitation exclusion in a savanna ecosystem,
676 *For. Ecol. Manage*, 29, 69–76, <https://doi.org/10.1016/j.foreco.2018.07.007>, 2018.
- 677 Jin, Y.Q., Li, J., Liu, C.G., Liu, Y.T., Zhang, Y.P., Song, Q.H., Sha, L.Q., Balasubramanian, D., Chen,
678 A.G., Yang, D.X., Li, P.G.: Precipitation reduction alters herbaceous community structure and
679 composition in a savanna, *J. Veg. Sci*, 30, 821–831, <https://doi.org/10.1111/jvs.12766>, 2019.
- 680 Johnston, A.S.A., Meade, A., Ardö, J., Arriga, N., Black, A., Blanken, P.D., Bonaldo, D., Brümmer,
681 C., Cescatti, A., Dušek, J., Grafo, A., Gioli, B., Godedo, I., Gougho, C.M., Ikawa, H., Jassalo,
682 R., Kobayashi, H., Magliulo, V., Mancao, G., Montagnani, L., Moyano, F.E., Olesen, J.E., Sachs,
683 T., Shao, C.L., Tagesson, T., Wohlfahrt, G., Wolfo, S., Woodgate, W., Varlagin, A., Venditti, C.:
684 Temperature thresholds of ecosystem respiration at a global scale, *Nat. Ecol. Evol*, 5, 487–494,
685 <https://doi.org/10.1038/s41559-021-01398-z>, 2021.
- 686 Knapp, A., Fay, P.A., Blair, J.M., Collins, S., Smith, M.D., Carlisle, J.D., Harpper, C.W., Danner,
687 B.T., Lett, M.S., Mccarron, J.: Rainfall variability, carbon cycling, and plant species diversity in
688 a mesic grassland, *Science*, 298, 2202–2205, <https://doi.org/10.1126/science.1076347>, 2002.
- 689 Kato, T., Tang, Y.H., Gu, S., Hirota, M., Du, M.Y., Li, Y.N., Zhao, X.Q.: Temperature and biomass
690 influences on interannual changes in CO₂ exchange in an alpine meadow on the Qinghai-Tibetan
691 Plateau, *Global Change Biol*, 12, 1285–1298, <https://doi.org/10.1111/j.1365-2486.2006.01153.x>, 2006.
- 692 Kannenberg, S.A., Anderegg, W.R.L., Barnes, M.L., Dannenberg, M.P., Knapp, A.K.: Dominant
693 role of soil moisture in mediating carbon and water fluxes in dryland ecosystems, *Nat. Geosci*,
694 17, 38–43, <https://doi.org/10.1038/s41561-023-01351-8>, 2024.
- 695 Law, B.E., Falge, E., Gu, L., Baldocchi, D.D., Bakwin, P., Berbigier, P., Davis, K., Dolman, A.J.,
696 Falk, M., Fuentes, J.D., Goldstein, A., Granier, A., Grelle, A., Hollinger, D., Janssens, I.A.,
697 Jarvis, P., Jensen, N.O., Katul, G., Mahli, K., Matteucci, G., Meyers, T., Monson, R., Munger,
698 W., Oechel, W., Olson, R., Pilegaard, K., Paw U, K. T., Thorgeirsson, H., Valentini, R., Verma,
699 Shashi, Vesala, T., Wilson, K., Wofsy, S.: Environmental controls over carbon dioxide and water
700 vapor exchange of terrestrial vegetation, *Agric. For. Meteorol*, 113, 97–120,
701 [https://doi.org/10.1016/S0168-1923\(02\)00104-1](https://doi.org/10.1016/S0168-1923(02)00104-1), 2002.
- 702 Li, S.G., Asanuma, J., Eugster, W., Kotani, A., Liu, J.J., Urano, T., Oikawa, T., Davaa, G.,
703 Oyunbaatar, D., Sugita, M.: Net ecosystem carbon dioxide exchange over grazed steppe in
704 central Mongolia, *Global Change Biol*, 11, 1941–1955, <https://doi.org/10.1111/j.1365-2486.2005.01047.x>, 2005.
- 705 Livesley, S. J., Grover, S., Hutley, L.B., Jamali, H., Butterbach-Bahl, K., Fest, B., Arndt, S. K.:

- 708 Seasonal variation and fire effects on CH₄, N₂O and CO₂ exchange in savanna soils of northern
709 Australia, Agric. For. Meteorol, 151, 1440–1452,
710 <https://doi.org/10.1016/j.agrformet.2011.02.001>, 2011.
- 711 Li, J.X., Zeng, H., Zhu, J.T., Zhang, Y.J., Chen, N., Liu, Y.J.: Responses of different experimental
712 warming on ecosystem respiration in Tibetan alpine meadow, Ecol. Environ. Sci, 25, 1612–1620,
713 <https://doi.org/10.16258/j.cnki.1674-5906.2016.10.004>, 2016.
- 714 Li, G.Y., Han, H.Y., Du, Y., Hui, D.F., Xia, J.Y., Niu, S.L., Li, X.N., Wan, S.Q.: Effects of warming
715 and increased precipitation on net ecosystem productivity: a long-term manipulative experiment
716 in a semiarid grassland, Agric. For. Meteorol, 232, 359–366,
717 <http://dx.doi.org/10.1016/j.agrformet.2016.09.004>, 2017.
- 718 Liu, D., Li, Y., Wang, T., Peylin, P., MacBean, N., Ciais, P., Jia, G., Ma, M.G., Ma, Y.M., Shen,
719 M.G., Zhang, X.Z., Piao, S.L.: Contrasting responses of grassland water and carbon exchanges
720 to climate change between Tibetan Plateau and Inner Mongolia, Agric. For. Meteorol, 249, 163–
721 175, <https://doi.org/10.1016/j.agrformet.2017.11.034>, 2018.
- 722 Lee, E., Kumar, P., Barron-Gafford, G.A., Hendryx, S.M., Sanchez-Cañete, E.P., Minor, R.L.,
723 Colella, T., Scott, R.L.: Impact of hydraulic redistribution on multispecies vegetation water use
724 in a semiarid savanna ecosystem: an experimental and modeling synthesis, Water Resour. Res,
725 54, 4009–4027, <https://doi.org/10.1029/2017WR021006>, 2018.
- 726 Liu, J.X., Wang, Z., Duan, Y.F., Li, X.R., Zhang, M.Y., Liu, H.Y., Xue, P., Gong, H.B., Wang, X.,
727 Chen, Y., Geng, Y.N.: Effects of land use patterns on the interannual variations of carbon sinks
728 of terrestrial ecosystems in China, Ecol. Indic, 146, 109914,
729 <https://doi.org/10.1016/j.ecolind.2023.109914>, 2023.
- 730 Liu, Z.G., Chen, Z., Yang, M., Hao, T.X., Yu, G.R., Zhu, X.J., Zhang, W.K., Ma, L.X., Dou, X.J.,
731 Lin, Y., Luo, W.X., Han, L., Sun, M.Y., Chen, S.P., Dong, G., Gao, Y.H., Hao, Y.B., Jiang, S.C.,
732 Li, Y.N., Li, Y.Z., Liu, S.M., Shi, P.L., Tang, Y.K., Xin, X.P., Zhang, F.W., Zhang, Y.J., Zhao, L.,
733 Zhou, L., Zhu, Z.L.: Precipitation consistently promotes, but temperature oppositely drives
734 carbon fluxes in temperate and alpine grasslands in China, Agric. For. Meteorol, 344, 109811,
735 <https://doi.org/10.1016/j.agrformet.2023.109811>, 2024.
- 736 Miranda, A.C., Miranda, H.S., Lloyd, J., Grace, J., Francey, R.J., McIntyre, J.A., Meir, P., Riggan,
737 P., Lockwood, R., Brass, J.: Fluxes of carbon, water and energy over Brazilian cerrado, an
738 analysis using eddy covariance and stable isotopes, Plant Cell Environ, 20, 315–328,
739 <https://doi.org/10.1046/j.1365-3040.1997.d01-80.x>, 1997.
- 740 Malhi, Y., Nobre, A., Grace, J., Kruijt, B., Pereira, M., Culf, A., Scott, S.: Carbon dioxide transfer
741 over a central Amazonian rain forest, J. Geophys. Res, 103, 31593–31612,
742 <https://doi.org/10.1029/98JD02647>, 1998.
- 743 Ma, S.Y., Baldocchi, D.D., Xu, L.K., Hehn, T.: Inter-annual variability in carbon dioxide exchange
744 of an oak/grass savanna and open grassland in California, Agric. For. Meteorol, 147, 157–171.
745 <https://doi.org/10.1016/j.agrformet.2007.07.008>, 2007.
- 746 Millard, P., Midwood, A. J., Hunt, J.E., Whitehead, D., Boutton, T.W.: Partitioning soil surface CO₂
747 efflux into autotrophic and heterotrophic components, using natural gradients in soil δ¹³C in an
748 undisturbed savannah soil, Soil Biol. Biochem, 40, 1575–1582,
749 <https://doi.org/10.1016/j.soilbio.2008.01.011>, 2008.
- 750 McDowell, N.G., Allen, C.D.: Darcy's law predicts widespread forest mortality under climate
751 warming, Nat. Clim. Change, 5, 669–72, <https://doi.org/10.1038/nclimate2641>, 2015.

- 752 Mattos, C.R.C., Hirota, M., Oliveira, R.S., Flores, B.M., Miguez-Macho, G., Pokhrel, Y., Fan, Y.:
753 Double stress of waterlogging and drought drives forest–savanna coexistence, *PNAS*, 120,
754 e2301255120, <https://doi.org/10.1073/pnas.2301255120>, 2023.
- 755 Niu, S.L., Wu, M.Y., Han, Y., Xia, J.Y., Li, L.H., Wan, S.Q.: Water-mediated responses of ecosystem
756 carbon fluxes to climatic change in a temperate steppe, *New Phytol.*, 177, 209–219,
757 <https://doi.org/10.1111/j.1469-8137.2007.02237.x>, 2017.
- 758 Novick, K.A., Miniat, C.F., Vose, J.M.: Drought limitations to leaf-level gas exchange: results from
759 a model linking stomatal optimization and cohesion–tension theory, *Plant Cell Environ.*, 39, 583–
760 96, <https://doi.org/10.1111/pce.12657>, 2016.
- 761 Niu, Y.Y., Li, Y.Q., Wang, X.Y., Gong, X.W., Luo, Y.Q., Tian, D.Y.: Characteristics of annual
762 variation in net carbon dioxide flux in a sandy grassland ecosystem during dry years, *Acta
763 Prataculturae Sin.*, 27, 215–221, <https://doi.org/10.11686/cyx2017231>, 2018.
- 764 Peel, M.C., Finlayson, B.L., McMahon, T.A.: Updated world map of the Köppen-Geiger climate
765 classification, *Hydrol. Earth Syst. Sci.* 11, 1633–1644, <https://doi.org/10.5194/hess-11-1633-2007>, 2007.
- 766 Piao, S.L., Huang, M.T., Liu, Z., Wang, X.H., Ciais, P., Canadell, J.G., Wang, K., Bastos, A.,
767 Friedlingstei, P., Houghton, R.A., Quéré, C.L., Liu, Y.W., Myneni, R.B., Peng, S.S., Pongratz, J.,
768 Sitch, S., Yan, T., Wang, Y.L., Zhu, Z.C., Wu, D.H., Wang, T.: Lower land-use emissions
769 responsible for increased net land carbon sink during the slow warming period, *Nat. Geosci.* 11,
770 739–743, <https://doi.org/10.1038/s41561-018-0204-7>, 2018.
- 771 Pan, S.F., Yang, J., Tian, H.Q., Shi, H., Chang, J.F., Ciais, P., Francois, L., Frieler, K., Fu, B.J.,
772 Hickler, T., Ito, A., Nishina, K., Ostberg, S., Reyer, C.P.O., Schaphoff, S., Steinkamp, J., Zhao,
773 F.: Climate extreme versus carbon extreme: responses of terrestrial carbon fluxes to temperature
774 and precipitation, *J. Geophys. Res.: Biogeosci.*, 125, e2019JG005252,
775 <https://doi.org/10.1029/2019JG005252>, 2020.
- 776 Quansah, E., Mauder, M., Balogun, A.A., Amekudz, L.K., Hingerl, L., Bliefernicht, J., Kunstmann,
777 H.: Carbon dioxide fluxes from contrasting ecosystems in the Sudanian savanna in West Africa,
778 *Carbon Balance Manage.*, 10, 1, <https://doi.org/10.1186/s13021-014-0011-4>, 2015.
- 779 Ruimy, A., Jarvis, P.G., Baldocchi, D.D., Saugier, B.: CO₂ fluxes over plant canopies and solar
780 radiation: a review, *Adv. Ecol. Res.*, 26, 1–68, [https://doi.org/10.1016/s0065-2504\(08\)60063-x](https://doi.org/10.1016/s0065-2504(08)60063-x),
781 1995.
- 782 Santos, A.J.B., Silva, G.T.D.A., Miranda, H.S., Miranda, A.C., Lloyd, J.: Effects of fire on surface
783 carbon, energy and water vapour fluxes over campo sujo savanna in central Brazil, *Funct. Ecol.*,
784 17, 711–719, <https://doi.org/10.1111/j.1365-2435.2003.00790.x>, 2003.
- 785 Saleska, S.R., Millar, S.D., Martos, D.M., Goulden, M.L., Wofsy, S.C., da Rocha, H.R., De Camargo,
786 P.B., Crill, P., Daule, B.C., De Freitas, H.C., Hutyra, L., Keller, M., Kirchhoff, V., Menton, M.,
787 Munger, J.W., Pyle, E.H., Rice, A.H., Silva, H.: Carbon in Amazon forests: unexpected seasonal
788 fluxes and disturbance-induced losses, *Science*, 302, 1554–1557,
789 <https://doi.org/10.1126/science.1091165>, 2003.
- 790 Serrano-Ortiz, P., Domingo, F., Cazorla, A., Were, A., Cuevva, S., Villagarcía, L., Alados-Arboledas,
791 L., Kowalski, A.S.: Interannual CO₂ exchange of a sparse mediterranean shrubland on a
792 carbonaceous substrate, *J. Geophys. Res.: Biogeosci.*, 114, <https://doi.org/10.1029/2009jg000983>, 2009.
- 793 Shen, R., Zhang, J.L., He, B., Li, F., Zhang, Z.M., Zhou, R., Ou, X.K.: The structure characteristic
794

- 796 and analysis on similarity of grassland community in dry-hot valley of Yuanjiang, *Ecol. Environ. Sci.*, 19, 2821–2825, <https://doi.org/10.16258/j.cnki.1674-5906.2010.12.011>, 2010.
- 797 Sulman, B.N., Roman, D.T., Yi, K., Wang, L.X., Phillips, R.P., Novick, K.A.: High atmospheric
798 demand for water can limit forest carbon uptake and transpiration as severely as dry soil,
800 *Geophys. Res. Lett.*, 43, 9686–95, <https://doi.org/10.1002/2016GL069416>, 2016.
- 801 Sun, S.S., Wu, Z.P., Xiao, Q.T., Yu, F., Gu, S.H., Fang, D., Li, L., Zhao, X.B.: Factors influencing
802 CO₂ fluxes of a grassland ecosystem on the Yunnan-Guizhou Plateau, China, *Acta Prataculturae
803 Sin.*, 29, 184–191, <https://doi.org/10.7522/10.11686/cyx2019410>, 2020.
- 804 Sha, Z.Y., Bai, Y.F., Li, R.R., Lan, H., Zhang, X.L., Li, J., Liu, X.F., Chang, S.J., Xie, Y.C.: The
805 global carbon sink potential of terrestrial vegetation can be increased substantially by optimal
806 land management, *Commun. Earth Environ.*, 3, 8, <https://doi.org/10.1038/s43247-021-00333-1>,
807 2022.
- 808 Tagesson, T., Fensholt, R., Cropley, F., Guiro, I., Horion, S., Ehammer, A., Ardö, J.: Dynamics in
809 carbon exchange fluxes for a grazed semi-arid savanna ecosystem in West Africa, *Agric. Ecosyst.
810 Environ.*, 205, 15–24, <https://doi.org/10.1016/j.agee.2015.02.017>, 2015.
- 811 Tarin, T., Nolan, R.H., Eamus, D., Cleverly, J.: Carbon and water fluxes in two adjacent Australian
812 semi-arid ecosystems, *Agric. For. Meteorol.*, 281, 107853,
813 <https://doi.org/10.1016/j.agrformet.2019.107853>, 2020.
- 814 Veenendaal, E.M., Kolle, O., Lloyd, J.: Seasonal variation in energy fluxes and carbon dioxide
815 exchange for a broad-leaved semiarid savanna (Mopane woodland) in Southern Africa, *Global
816 Change Biol.*, 10, 318–328, <https://doi.org/10.1111/j.1365-2486.2003.00699.x>, 2004.
- 817 Woodwell, G.M., Hobbie, J.E., Houghton, R.A., Melillo, J.M., Mooer, B., Peterson, B.J., Shaver,
818 G.R.: Global deforestation: contribution to atmospheric carbon dioxide, *Science*, 222, 1081–
819 1086, <https://doi.org/10.1126/science.222.4628.1081>, 1983.
- 820 White, R.P., Murray, S., Rohweder, M.: Pilot analysis of global ecosystems: grassland ecosystems,
821 World Resources Institute, Washington, DC, <http://www.wri.org/wr2000>, 2000.
- 822 Weltzin, J.F., Loik, M.E., Schwinnning, S., Williams, D.G., Fay, P.A., Haddad, B.M., Harte, J.,
823 Huxman, T.E., Knapp, A.K., Lin, G.H., Pockman, W.T., Shaw, R.M., Small, E.E., Smith, M.D.,
824 Smith, S.D., Tissue, D.T., Zak, J.C.: Assessing the response of terrestrial ecosystems to potential
825 changes in precipitation, *BioScience*, 53, 941–952, [https://doi.org/10.1641/0006-3568\(2003\)053\[0941:ATROTE\]2.0.CO;2](https://doi.org/10.1641/0006-3568(2003)053[0941:ATROTE]2.0.CO;2), 2003.
- 826 Wen, X.F., Sun, X.M., Liu, Y.F., Li, X.B.: Effect of linear and exponential fitting on the initial rate
827 of change in CO₂ concentration across the soil surface, *Chin. J. Plant Ecol.*, 31, 380–385,
828 <https://doi.org/10.17521/cjpe.2007.0046>, 2007.
- 829 Williams, A.P., Allen, C.D., Macalady, A.K., Griffin, D., Woodhouse, C.A., Meko, D.M., Swetnam,
830 T.W., Rauscher, S.A., Seager, R., Grissino-Mayer, H.D., Dean, J.S., Cook, E.R.,
831 Gangodagamage, C., Cai, M., McDowell, N.G.: Temperature as a potent driver of regional forest
832 drought stress and tree mortality, *Nat. Clim. Change*, 3, 292–297,
833 <https://doi.org/10.1038/nclimate1693>, 2013.
- 834 Wang, W.Y., Guo, J.X., Wang, Y.S., Wu, K.: Observing characteristics of CO₂ flux and its
835 influencing factors over Xilinhot grassland, *J. Meteorol. Sci.*, 35, 100–107, <https://doi.org/10.3969/2013jms.0065>, 2015.
- 836 Wu, F.T., Cao, S.K., Cao, G.C., Han, G.Z., Lin, Y.Y., Cheng, S.Y.: Variation of CO₂ flux of alpine
837 wetland ecosystem of *Kobresia tibetica* wet meadow in Lake Qinghai, *J. Ecol. Rural Environ.*,

- 840 34, 124–131, <https://doi.org/10.11934/I.19n.1673-4831.2018.02.004>, 2018.
- 841 Wang, N., Quesada, B., Xia, L.L., Butterbach-Bahl, K., Goodale, C.L., Kiese, R.: Effects of climate
842 warming on carbon fluxes in grasslands – a global meta-analysis, *Global Change Biol*, 25, 1839–
843 1851, <https://doi.org/10.1111/gcb.14603>, 2019.
- 844 Wang, Y.Y., Xiao, J.F., Ma, Y.M., Luo, Y.Q., Hu, Z.Y., Li, F., Li Y.N., Gu, L.L., Li, Z.G., Yuan, L.:
845 Carbon fluxes and environmental controls across different alpine grassland types on the Tibetan
846 Plateau, *Agric. For. Meteorol.*, 311, 1–14, <https://doi.org/10.1016/j.agrformet.2021.108694>,
847 2021.
- 848 Wang, H.H., Huang, W.D., He, Y.Z., Zhu, Y.Z.: Effects of warming and precipitation reduction on
849 soil respiration in Horqin sandy grassland, northern China, *Catena*, 233, 107470,
850 <https://doi.org/10.1016/j.catena.2023.107470>, 2023.
- 851 Wang, F., Harindintwalli, J.D., Wei, K., Shan, Y.L., Mi, Z.F., Costello, M.J., Grunwald, S., Feng,
852 Z.Z., Wang, F.M., Guo, Y.M., Wu, X., Kumar, P., Kästner, M., Feng, X.J., Kang, S.C., Liu, Z., Fu,
853 Y.H., Zhao, W., Ouyang, C.J., Shen, J.L., Wang, H.J., Chang, S.X., Evans, D.L., Wang, R., Zhu,
854 C.W., Xiang, L.L., Rinklebe, J., Du, M.M., Huang, L., Bai, Z.H., Li, S., Lal, R., Elsner, M.,
855 Wigneron, J.P., Florindo, F., Jiang, X., Shaheen, S.M., Zhong, X.Y., Bol, R., Vasques, G.M., Li,
856 X.F., Pfautsch, S., Wang, M.G., He, X., Agathokleous, E., Du, H.B., Kengara, F.O., Brahusi, F.,
857 Long, X.E., Pereira, P., Ok, Y.S., Rillig, M.C., Jeppesen, E., Barceló, D., Yan, X.Y., Jiao, N.Z.,
858 Han, B.X., Schäffer, A., Chen, J.M., Zhu, Y.G., Cheng, H., Amelung, W., Spötl, C., Zhu, J.K.,
859 Tiedje, J.M.: Climate change: Strategies for mitigation and adaptation, *The Innovation Geosci*, 1,
860 100015, [https://doi. 10.59717/j.xinn-geo.2023.100015](https://doi.org/10.59717/j.xinn-geo.2023.100015), 2023.
- 861 Xu, X.L.: China watershed and river network datasets based on DEM extraction, *Resource and*
862 *Environmental Science Data Registration and Publishing System* [data set],
863 <https://doi.org/10.12078/2018060101>, 2018.
- 864 Xu, X.L.: China's multi-year provincial administrative division boundary data, *Resource and*
865 *Environmental Science Data Registration and Publishing System* [data set],
866 <https://doi.org/10.12078/2023010103>, 2023a.
- 867 Xu, X.L.: China's multi-year county administrative division boundary data, *Resource and*
868 *Environmental Science Data Registration and Publishing System* [data set],
869 <https://doi.org/10.12078/2023010101>, 2023b.
- 870 Xu, Y.N., Wang, X., Sun, Y.R., Liu, H.T., Li, L., Schäufele, R., Gong, X.Y.: Response of
871 photosynthetic ¹³C discrimination to vapour pressure deficit reflects changes in bundle-sheath
872 leakiness in two C₄ grasses, *Environ. Exp. Bot.*, 216, 105529,
873 <https://doi.org/10.1016/j.envexpbot.2023.105529>, 2023.
- 874 Yu, K., D'Odorico, P.: Hydraulic lift as a determinant of tree–grass coexistence on savannas, *New*
875 *Phytol.*, 207, 1038–1051, <https://doi.org/10.1111/nph.13431>, 2015.
- 876 Yuan, W.P., Zheng, Y., Piao, S.L., Ciais, P., Lombardozzi, D., Wang, Y.P., Ryu, Y., Chen, G.X., Dong,
877 W.J., Hu, Z.M., Jain, A.K., Jiang, C.Y., Kato, E., Li, S.H., Lienert, S., Liu, S.G., Nabel, J.E.M.S.,
878 Qin, Z.C., Quine, T., Sitch, S., Smith, W.K., Wang, F., Wu, C.Y., Xiao, Z.Q., Yang, S.: Increased
879 atmospheric vapor pressure deficit reduces global vegetation growth, *Sci. Adv.*, 5, eaax1396,
880 <https://doi.org/10.1126/sciadv.aax1396>, 2019.
- 881 Yang, K.Y., Gong, H.D., Li, J., Liu, Y.T., Sha, L.Q., Song, Q.H., Jin, Y.Q., Yang, D.X., Li, P.G., Wen,
882 G.J., Chen, A.G., Pang, Z.Q., Zhang, Y.P.: Dynamic characteristics of soil respiration of savanna
883 ecosystem in dry hot valley of Yuanjiang, *J. Zhejiang Agric. For. Univ.*, 37, 849–859,

- 884 https://doi.org/10.11833/j.issn.2095-0756.20190647, 2020.
- 885 Yang, Y.H., Shi, Y., Sun, W.J., Chang, J.F., Zhu, J.X., Chen, L.Y., Wang, X., Guo, Y.P., Hongtu, Z.,
886 Yu, L.F., Zhao, S.Q., Xu, K., Zhu, J.L., Shen, H.H., Wang, Y.Y., Peng, Y.F., Zhao, X., Wang, X.Q.,
887 Hu, H.F., Chen, S.Q., Huang, M., Wen, X.F., Wang, S.P., Zhu, B., Niu, S.L., Tang, Z.Y., Liu, L.L.,
888 Fang, J.Y.: Terrestrial carbon sinks in China and around the world and their contribution to carbon
889 neutrality, *Sci. China Life Sci.*, 65, 861–895, <https://doi.org/10.1007/s11427-021-2045-5>, 2022.
- 890 Zhang, R.Z.: The dry valley of the Henduan Mountains region, Beijing Sci. Press, ISBN
891 703002916X, 1992.
- 892 Zhao, L., Gu, S., Xu, S.X., Zhao, X.Q., Li, Y.N.: Carbon flux and controlling process of alpine
893 meadow on Qinghai-Tibetan plateau, *Acta Botan. Boreali-Occidentalia Sin.*, 27, 1054–1060,
894 2007.
- 895 Zhang F.W., Li, Y.N., Cao, G.M., Li, F.X., Ye, G.J., Liu, J.H., Wei, Y.L., Zhao, X.Q.: CO₂ fluxes and
896 their driving factors over alpine meadow grassland ecosystems in the northern shore of Qinghai
897 Lake, China, *Chin. J. Plant Ecol.*, 36, 187–198, <https://doi.org/10.3724/SP.J.1258.2012.00187>,
898 2012.
- 899 Zou, H., Gao, G.Y., Fu, B.J.: The relationship between grassland ecosystem and soil water in arid
900 and semi-arid areas: a review, *Acta Ecol. Sin.*, 36, 3127–3136,
901 <https://doi.org/10.5846/stxb201506211251>, 2016.
- 902 Zhang, W.M., Brandt, M., Penuelas, J., Guichard, F., Tong, X., Tian, F., Fensholt, R.: Ecosystem
903 structural changes controlled by altered rainfall climatology in tropical savannas, *Nat. Commun.*, 10, 671, <https://doi.org/10.1038/s41467-019-08602-6>, 2019.
- 904 Zhang, R., Zhao, X.Y., Zuo, X.A., Qu, H., Degen, A.A., Luo, Y.Y., Ma, X.J., Chen, M., Liu, L.X.,
905 Chen, J.L.: Impacts of precipitation on ecosystem carbon fluxes in desert–grasslands in Inner
906 Mongolia, China, *J. Geophys. Res. Atmos.*, 124, 1266–1276,
907 <https://doi.org/10.1029/2018JD028419>, 2019.
- 908 Zhao, H.C., Jia, G.S., Wang, H.S., Zhang, A.Z., Xu, X.Y.: Diurnal variations of the carbon fluxes of
909 semiarid meadow steppe and typical steppe in China, *Clim. Environ. Res.*, 25, 172–184,
910 <https://doi.org/10.3878/j.issn.1006-9585.2019.19096>, 2020.
- 911 Zhang, Y.J., Qiu, L.P., Gao, H.L., Liu, J., Wei, X.R., Zhang, X.C.: Responses of ecosystem CO₂
912 exchange to clipping in a semi-arid typical grassland on the Loess Plateau, *Acta Ecol. Sin.*, 40,
913 336–344, <https://doi.org/10.5846/stxb201810172244>, 2020.
- 914 Zeng, Z.Q., Wu, W.X., Li, Y.M., Huang, C., Zhang, X.Q., Peñuelas, J., Zhang, Y., Gentine, P., Li,
915 Z.L., Wang, X.Y., Huang, H., Ren, X.S., Ge, Q.S.: Increasing meteorological drought under
916 climate change reduces terrestrial ecosystem productivity and carbon storage, *One Earth*, 6,
917 1326–1339, <https://doi.org/10.1016/j.oneear.2023.09.007>, 2023.
- 918 Zhou, Y., Bomfim, B., Bond, W.J., Boutton, T.W., Case, M.F., Coetsee, C., Davies, A.B., February,
919 E.C., Gray, E.F., Silva, L.C.R., Wright, J., Staver, A.C.: Soil carbon in tropical savannas mostly
920 derived from grasses, *Nat. Geosci.*, 16, 710–716, <https://www.nature.com/articles/s41561-023-01232-0>, 2023.
- 921 Zhong, Z.Q., He, B., Wang, Y.P., Chen, H.W., Chen, D.L., Fu, Y.S.H., Chen, Y.N., Guo, L.L., Deng,
922 Y., Huang, L., Yuan, W.P., Hao, X.M., Tang, R., Liu, H.M., Sun, L.Y., Xie, X.M., Zhang, Y.F.:
923 Disentangling the effects of vapor pressure deficit on northern terrestrial vegetation productivity,
924 *Sci. Adv.*, 9, eadf3166, <https://doi.org/10.1126/sciadv.adf3166>, 2023.