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Abstract. To address the issues of over-reliance on deformation data and model singularity in existing surface deformation

prediction methods in high mountain canyon areas, this study proposes the improvement of Elman neural network using10

cuckoo search algorithm and grey wolf optimization algorithm (CS-Elman and GWO-Elman) from the perspective of

multi-temporal and multi-factor analysis. Firstly, surface deformation in the study area is monitored using SBAS-InSAR and

PS-InSAR techniques. Then, the optimal evaluation factors are determined from 13 evaluation factors including digital

elevation model (DEM) and slope using grey correlation analysis and correlation matrix analysis in SPSSAU software.

These optimal factors, combined with surface deformation monitoring values obtained from InSAR technology, are used to15

construct CS-Elman and GWO-Elman prediction models from a multi-factor and multi-temporal perspective. Finally, the

optimal prediction model is determined through comparative experiments and its prediction performance is validated.

Results indicate: (1) SBAS-InSAR and PS-InSAR techniques exhibit a high correlation coefficient (R2=0.85) between

monitored radar line of sight (LOS) deformation rates, demonstrating the feasibility of joint analysis of the two techniques.

(2) The CS-Elman model has a smaller absolute error range compared to the GWO-Elman model. The optimal convergence20

iteration number, mean square error, mean absolute error (MAE) and mean absolute percentage error (MAPE) of the

CS-Elman model are 3 iterations, 0.020 mm/a, 1.620 mm/a and 21.500%, respectively, which are all superior to the

GWO-Elman model. This indicates that the Elman network optimized by the CS algorithm exhibits better performance and

higher accuracy in predicting surface deformation in high mountain canyon areas. (3) Comparative analysis with SVM,

LSTM and PSO-BP models, as well as prediction of temporal deformation trends at deformation points, validate the25

advantages and effectiveness of the CS-Elman model in surface deformation prediction. This method can serve as an

effective means for long-term deformation prediction in high mountain canyon areas.
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1 Introduction

China is a country prone to geological disasters, and various types of geological disasters have caused enormous losses to the

lives and property security of its people (Derbyshire, 2001; Xu and Wang, 2022; Liu and Wang, 2024). Landslides, debris

flows and collapses are major geological disasters characterized by strong concealment, significant hazards and high

suddenness, and they are widely distributed in mountainous areas and canyons in China (Jiang et al., 2022; Guo et al., 2016).35

Therefore, monitoring and early warning of geological disasters in high mountain canyon areas have become particularly

important (An et al., 2022). The significance lies in the ability to identify potential hazard points of landslides, debris flows

and other geological disasters in advance, and to take appropriate measures to reduce the probability of disasters and

minimize the loss of life and property.

In geological disaster monitoring and debris flow research, surface deformation directly reflects the current stability and40

movement status of slopes (Wang et al., 2020; Tao et al., 2021). Therefore, by monitoring surface deformation, critical

information can be provided for identifying potential risks of geological disasters such as landslides and debris flows.

Traditional monitoring methods, such as the global positioning system (GPS) (Kim et al., 2003) and precise leveling

measurements (Vanicek et al., 1980), suffer from drawbacks such as low accuracy, high workload and limitations imposed

by terrain conditions. Meanwhile, traditional methods are unable to effectively monitor large-scale surface deformation45

(Yang et al., 2020; He et al., 2022b). Compared to traditional methods of surface deformation monitoring, interferometric

synthetic aperture radar (InSAR) technology possesses all-weather and all-day characteristics. It enables the direct spatial

acquisition of extensive and high-precision terrain elevation and deformation information (Osmanoğlu et al., 2016; Zhang et

al., 2022; Zhang et al., 2022). Currently, numerous scholars have made significant progress in monitoring natural disasters

such as earthquakes, landslides and debris flows using InSAR technology (Nikolaeva et al., 2014; Huang et al., 2019; Suresh50

and Yarrakula, 2020; Yang et al., 2023). On the contrary, in terms of surface deformation prediction, the majority of studies

are based on constructing prediction models using time-series deformation data, with only a few adopting a model-building

approach from the perspective of deformation influencing factors. Ye et al. (2022) analyzed the spatiotemporal

characteristics of ground deformation along the Zhengzhou subway line using PS-InSAR technology. They then utilized

inverse distance interpolation and equalization processing and applied a long short-term memory (LSTM) model to predict55

and analyze typical deformation points. Their findings validated that compared to grey models, the LSTM model exhibits

higher fitting and prediction accuracy. Yang et al. (2022) utilized InSAR technology to monitor the deformation information

of the Meili Snow Mountain Glacier from 2020 to 2021. They established a prediction model based on genetic

algorithm-back propagation (GA-BP) neural networks and found that the optimized prediction model significantly improved

accuracy. Teng et al. (2022) utilized SBAS-InSAR surface deformation monitoring data from the Hefei City to construct60

training samples. They established an Elman model and experimental results showed that the predicted deformation values of
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the Elman model were in basic agreement with the monitoring values. Radman et al. (2021) utilized SBAS-InSAR

technology to obtain surface deformation information around Lake Urmia. They combined environmental factors such as

rainfall, groundwater and lake area, and used three models, namely multilayer perceptron (MLP), convolutional neural

network (CNN) and LSTM, to predict land deformation. The effectiveness and robustness of the ensemble model were65

validated through mean absolute error and root mean square error. Wang et al. (2019) utilized SBAS-InSAR technology to

acquire surface deformation characteristics in the Erhai Lake region from 2015 to 2018. They selected building area, water

level, rainfall and temperature as inputs to the back propagation (BP) neural network for predicting surface deformation.

While the aforementioned methods can effectively predict surface deformation information, they all have certain drawbacks

and limitations. Some scholars (Teng et al., 2022; Yang et al., 2022; Ye et al., 2022) have proposed prediction models that70

overly rely on deformation data, considering fewer other factors that may trigger disasters. They solely utilize deformation

data as input and output layers for prediction, which has certain limitations. Conversely, other scholars (Wang et al., 2019;

Radman et al., 2021), while constructing prediction models from the perspective of influencing factors, are unable to predict

multi-period deformation trends at specific points in the study area. Therefore, when predicting surface deformation, it is

necessary to consider multiple factors that influence deformation.75

In high mountain canyon areas, surface deformation exhibits nonlinear characteristics, leading to the complexity of natural

disasters such as landslides and debris flows. Merely utilizing time-series deformation data as input for prediction models

often yields unsatisfactory results in studying surface deformation in disaster-prone areas. Therefore, it is essential to

consider major causative factors influencing deformation, such as slope, soil type and vegetation coverage. Additionally,

surface deformation prediction typically involves a set of data correlated with time series. Hence, selecting appropriate80

prediction models can effectively enhance prediction accuracy. The Elman neural network is a typical type of local

regression network. It adds a feedback layer acting as a delay operator to the basis of the BP neural network, enabling it to

memorize information and thereby adapt to time-varying characteristics. This improvement enhances the network's global

stability, providing significant advantages when handling time-series foundational data such as surface deformation (Ding et

al., 2013; Jia et al., 2019). However, determining the weights, thresholds and learning rates of the Elman neural network is85

often challenging, requiring optimization. The cuckoo search (CS) algorithm (Mareli and Twala, 2018) and grey wolf

optimizer (GWO) algorithm (Gupta and Deep, 2019) are chosen to search for the optimal weights, thresholds and learning

rates of the Elman neural network, aiming to enhance the model's prediction accuracy for surface deformation variables.

In summary, this study utilizes time-series InSAR technology and an improved Elman neural network algorithm to monitor

and predict surface deformation in high mountain canyon areas. It proposes a predictive model constructed from multiple90

time-series and factors. Specifically, the study processes the research area using InSAR technology to obtain subsidence

areas and annual deformation rate maps. These are combined with relevant influencing factors as input layers, while the
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annual deformation rate serves as the output layer, establishing the relationship between influencing factors and deformation

rate prediction models.

2 Research Methodology95

The main technical process of this study includes: (1) Acquisition of surface deformation information in the study area. (2)

Selection of evaluation factors. (3) Construction of CS-Elman and GWO-Elman models. The overall technical process is

illustrated in Figure 1.

100

Figure 1: Overall technical flowchart.

2.1 Acquisition of surface deformation information in the study area

This study firstly employs SBAS-InSAR technology to extract surface deformation information in the study area, and then

utilizes PS-InSAR technology to extract deformation variables for validation. By comparing and correlating the deformation105

results obtained from the two techniques, detailed information regarding surface deformation in the study area is obtained.

The SBAS-InSAR technology is a method proposed by Berardino et al. (2002) in 2002 for surface deformation monitoring.

Firstly, coherent target points with stable scattering characteristics are extracted from a long time series of multiple SAR

images. Secondly, a multi-master image strategy is employed to combine as many small datasets as possible based on small

spatio-temporal baseline thresholds. Thirdly, in the deformation solving process, the singular value decomposition method110

(Akritas and Malaschonok, 2004) is used to process the time series data of the study area. Finally, surface deformation
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information of the study area is extracted from the time series data processed by singular value decomposition (Lanari et al.,

2004).

The PS-InSAR technology, proposed by Ferretti et al. (2001) in 2001, is a technique designed for analyzing persistent

scatterers (PS). Its basic principle involves selecting the SAR image with the best spatio-temporal coherence as the reference115

image among N scenes, while the others are auxiliary images, forming N-1 differential interferograms. Then, points with

high phase quality over the time series are selected and a function model is established. The model is analyzed and solved to

obtain surface deformation values.

The SBAS-InSAR technology provides large-scale continuous spatial deformation results, while the PS-InSAR technology

provides deformation information for individual pixel points. Utilizing surface deformation information obtained from120

different time-series InSAR technologies can complement each other, resulting in more accurate and comprehensive

monitoring results.

2.2 Selection of evaluation factors

Surface deformation is influenced by multiple factors, which exhibit diversity and complexity. Moreover, certain factors may

exhibit correlations, and high correlations can lead to model complexity and reduced operational speed. Therefore,125

conducting correlation analysis among various factors is crucial. By analyzing the correlations among factors, it is possible

to exclude highly correlated factors, which is significant for model establishment and surface deformation monitoring

(Ulusay et al., 1994).

Based on the geological environmental background of the study area, this study selected factors closely related to the

formation of debris flows, including digital elevation model (DEM) data, slope, aspect, curvature, soil type, topographic130

wetness index (TWI), stream power index (SPI), surface roughness, terrain relief, fractional vegetation cover (FVC), rainfall,

lithology and vegetation type, as factors for surface deformation in the study area. First, the ArcGIS software was used to

extract the raster data of each factor in the study area. Next, the SPSSAU software was employed to conduct grey relational

analysis on the 13 factors with the deformation values monitored by InSAR technology separately, obtaining the grey

relational degree ranking, and selecting factors with high correlation to the deformation values. Finally, the bivariate135

correlation analysis tool was used to analyze the correlation matrix of the above factors, eliminating highly correlated factors

and obtaining the optimal evaluation factors. The correlation coefficient R was used to measure the degree of correlation

between each factor, selecting more suitable factors to construct CS-Elman and GWO-Elman models with the deformation

values. The range of R is [-1, 1]. When R > 0, the factors are positively correlated, when R < 0, the factors are negatively

correlated, and when R = 0, it indicates no linear correlation. The closer |R| is to 1, the higher the correlation is. The specific140

range of R and its correlation are shown in Table 1.
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Table 1: Range of R values and correlation table.

Correlation coefficient Range of values Correlation

R

(0,1] Positive correlation

0 No linear correlation

[-1,0) Negative correlation

|R|

(0,0.5] Low correlation

(0.5,0.8] Significant correlation

(0.8,1] High correlation

2.3 Construction of improved Elman network model145

2.3.1 Elman neural network

The Elman neural network, a type of recurrent neural network (RNN), incorporates a feedback layer into its structure,

consisting of an input layer, a hidden layer, a feedback layer and an output layer (Elman, 1990). With the presence of the

feedback layer, the Elman network can retain previous information relative to conventional neural networks, making it more

suitable for processing sequential data. It can better capture the temporal characteristics and dependencies in the data. The150

structure of the Elman neural network is illustrated in Figure 2.

Figure 2: Elman neural network structure.

155

In this representation, [u1,u2,...,ud] represents the input vector; [x1,x2,...,xm] represents the hidden layer node vector;

[xc1,xc2,...,xcm] represents the feedback layer node vector; and [y1,y2,...,yn] represents the output vector. w1, w2 and w3 denote

the connection weights from the input layer to the hidden layer, from the feedback layer to the hidden layer, and from the

hidden layer to the output layer, respectively.

The mathematical model of the Elman neural network is as follows in equations (1) to (3):160

3 2( ) [ ( ) ]y k g w x k b  (1)
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2 1 1( ) [ ( ) ( 1) ]cx k f w x k w u k b    (2)

( ) ( 1)cx k x k  (3)

In the equations, y(k) represents the network output; x(k) represents the hidden layer output; u(k) represents the external input;

b1 and b2 are the thresholds for each layer; g and f represent the transfer functions of the output neurons and hidden layer165

neurons, respectively.

2.3.2 Cuckoo search algorithm

The cuckoo search (CS) algorithm, proposed by Yang et al. (2009) in 2009, is a population-based optimization algorithm. It

features simplicity in design, requiring fewer parameters, and is insensitive to parameter changes, exhibiting good stability. It

is less likely to get stuck in local optima and is applicable to both continuous and discrete optimization. The characteristics of170

nest-parasite behavior observed in cuckoos inspire the algorithm's approach: cuckoos lay their eggs in other birds' nests,

relying on host birds to incubate them; if a host discovers the foreign egg, it will abandon the nest. The algorithm's steps can

be summarized as follows: (1) Each cuckoo lays one egg at a time during breeding and randomly selects a nest to lay the egg.

(2) In each nest, only the highest-quality eggs are retained to breed the next generation. (3) The number of parasitic nests is

fixed, and if a host bird discovers a foreign egg, the nest is abandoned.175

The Levy flight of cuckoos is a biological description used in the updating process of the cuckoo search algorithm to avoid

falling into local optima. The flight formula of cuckoos is represented in equation (4):

1 ( )t t
i ix x Levy     (4)

In the equation, ��
� represents the position of the ith nest at generation t, where i=1,2,...,n. � denotes the step size, which is

a positive number typically set to 1. ⨁ denotes pointwise multiplication. ( )Levy  is the random search path, generating180

step sizes that follow a Levy distribution, as shown in equation (5):

( ) ~ ,1 3Levy u t     (5)

The characteristic of Levy flight is that the step size is random. Larger step sizes can ensure a certain probability of escaping

from local optima, thus obtaining the global optimum solution.

2.3.3 Grey wolf optimizer algorithm185

The grey wolf optimizer (GWO) algorithm is a population-based metaheuristic algorithm proposed by Mirjalili et al. (2014)

in 2014, inspired by the social hierarchy of grey wolf populations. In the social hierarchy of grey wolves, there are four

different types of wolves, including �, �, � and � wolves, with their social status decreasing from left to right. The four

ranks of wolf packs represent the four solutions searched during the GWO optimization process, representing the optimal

solution, good solution, suboptimal solution and candidate solution, respectively.190
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The GWO algorithm mainly consists of three steps: encircling, hunting and attacking. The behavior of grey wolves can be

defined in mathematical models, as shown in equations (6) and (7):

( ) ( )pD C X t X t   (6)

( 1) ( )pX t X t A D    (7)

In the equations, D represents the distance between the grey wolf and the prey; A and C are coefficient vectors, which can be195

calculated respectively by equations (8) and (9); t denotes the iteration number; Xp(t) and X(t) represent the position vectors

of the prey and the grey wolf after t iterations, respectively; X(t+1) denotes the position vector of the grey wolf after t+1

iterations.

12A a r a   (8)

22C r  (9)200

In the equations, r1 and r2 are random vectors within the range [0,1]; a is the convergence factor, which linearly decreases

from 2 to 0 as the number of iterations increases, calculated as shown in equation (10):

max

2
2

t
a

T
  (10)

In the equation, Tmax represents the maximum number of iterations.

2.3.4 CS/GWO-Elman neural network205

Elman neural network demonstrates outstanding performance in handling time-series data and tasks related to time. But it

also suffers from issues such as vanishing gradients, slow training speeds and susceptibility to local minima. To address these

challenges, this paper utilizes CS and GWO algorithms to optimize the initial weights and thresholds of Elman network.

These optimized parameters are then applied to the Elman neural network, ultimately producing values that meet the

required accuracy. The workflow is illustrated in Figure 3.210

The specific steps of the CS-Elman neural network are as follows:

Step 1: Divide the data into training and testing sets, and normalize the data.

Step 2: Construct the Elman neural network, select relevant data as input and output, and initialize the weights and

thresholds of the neural network.

Step 3: Given the number of nests n, randomly generate n nests �0 = (�1
0, �2

0, ⋯��
0)T within a given range, where the215

relevant variables represent the weights and thresholds of the neural network. During the training process, optimize these

parameters to find the optimal nest positions ��
0.

Step 4: Utilize the Levy flight method to update the nest positions, generating new nests �0 = (�1
� , �2

� , ⋯��
� )T. Calculate the

fitness of the new nests and compare them with the previous generation. If the fitness of the new nests is better, update their
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positions; otherwise, retain the positions of the previous generation.220

Step 5: Generate a new solution �� and compare it with the candidate solution ��. If ��>��, do not update the nest positions;

if ��>�� , update the nest positions. When updating the nest positions, also compare them with the positions of the previous

generation. Retain the new nest positions if they are better; otherwise, do not change the nest positions.

Step 6: Return the parameters of nest positions that meet the iteration limit or error condition to the Elman neural network as

the optimal weights and thresholds.225

The specific steps of the GWO-Elman neural network are as follows:

Steps 1 and 2 are the same as those in the CS-Elman neural network.

Step 3: Set the parameters of the GWO algorithm, including the number of grey wolves in the population, the upper and

lower bounds of the grey wolf dimensions, the dimensions of individual grey wolf position information and the maximum

number of iterations.230

Step 4: Select the fitness function, calculate the fitness, and select the optimal wolf (�), the superior wolf (�) and the inferior

wolf (�).

Step 5: Update the positions of the remaining wolves (�), and update the parameters A, C and a.

Step 6: Map the position of the optimal wolf (�) that meets the iteration count or error condition to the weight matrix and

return it to the Elman neural network as the optimal weights and thresholds.235

Figure 3: CS-Elman and GWO-Elman neural network flowchart.

https://doi.org/10.5194/egusphere-2024-1220
Preprint. Discussion started: 23 May 2024
c© Author(s) 2024. CC BY 4.0 License.



10

3 Study area and data sources240

3.1 Study area

The Wenchuan County in the Minjiang River Basin was greatly affected by the "5.12" earthquake, leading to a substantial

increase in debris sources in the valley and an unusually intense activity of debris flows. Prior to the earthquake, there were

no records of debris flow disasters in the valley, but in recent years, there have been several large-scale debris flows. The

occurrence of debris flows in this area is closely related to rainfall and belongs to rainfall-induced landslide debris flows.245

This type of debris flow is initiated by heavy rainfall-induced slope movement, leading to the formation of debris flows.

This study selects the high mountain canyons on both sides of the Minjiang River and the Zagunao River as the study area.

The river valley depression forms a "V"-shaped canyon with the Minjiang River as the boundary, representing a typical high

mountain canyon. The location of the study area is shown in Figure 4. The terrain in this area is steep, with a maximum

elevation difference of 4185 meters. Its unique terrain and geological structure result in frequent heavy rainfall, loose soil,250

and severe soil erosion. Consequently, geological disasters occur frequently in this area. Debris flow disasters have occurred

in multiple valleys due to short-term heavy rainfall on July 10, 2013, August 20, 2019 and June 26, 2023, respectively (Ding

and Huang, 2019; He et al., 2022a; Zhang et al., 2023).

255

Figure 4: Location of study area. Source of optical background image: © Google Earth.

3.2 Data sources

The data mainly used in this study are 30 scenes of Sentinel-1A descending data from January 24, 2022 to December 21,

2023 downloaded from the alaska satellite facility (ASF). The data are acquired in interferometric wide (IW) mode,260

providing single look complex (SLC) images with a swath width of 250 km. The polarization mode is vertical-vertical (VV),

with an incidence angle (angle between the transmission direction and the vertical direction) of 40.98°. The revisit period is

12 days, and the spatial resolution is 5 m × 20 m (range × azimuth), which is used to obtain the time-series deformation
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information of the study area.

The auxiliary data include precise orbit determination (POD) data used to correct orbit information and improve the accuracy265

of image orbits, digital elevation model (DEM) data used to eliminate the influence of terrain phase in interferometric phase

(Liao et al., 2013), google satellite images as auxiliary reference images, DEM, slope, aspect, curvature, soil type, TWI, SPI,

surface roughness, terrain relief, FVC, rainfall, lithology and vegetation type used as evaluation factors for constructing

predictive models. The data sources are shown in Table 2, the basic information of various data types is illustrated in Figure

5, and the classification of each factor is presented in Table 3.270

Table 2: Data source parameter table.

Name of data Temporality of data Scale of data Source of data

Sentinel-1A
Descending orbit from January

24, 2022 to December 21, 2023
5 m×20 m Alaska satellite facility (ASF)

POD
Sentinel-1A image generation 21

days later
None European space agency

DEM In 2018 30 m
Japan aerospace exploration agency

(JAXA)

Google satellite images January 2022 to December 2023 1.07 m Bigemap map downloader

Lithology and vegetation In 2008 90 m
International soil reference and

information centre

Slope, aspect, curvature, TWI, SPI,

surface roughness and terrain relief
In 2018 30 m Processed using ArcGIS to obtain DEM

Soil type In 2009 90 m National cryosphere desert data center

FVC In 2019 30 m

Using ArcGIS to process Landsat 8-9

OLT/TIRS C2 L2 data downloaded

from the Geospatial Data Cloud

Rainfall January 2022 to December 2023 30 m
National earth system science data

center

275
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Figure 5: Layers of various factors. (a) DEM. (b) Slope. (c) Aspect. (d) Curvature. (e) Soil type. (f) TWI. (g) SPI. (h) Surface

roughness. (i) Terrain relief. (j) FVC. (k) Rainfall. (l) Lithology. (m) Vegetation. Source of optical background image: © Google280
Earth.

Table 3: Classification status of various factors.

Evaluation

factors

Number of

classifications
Situation of classifications

DEM/m 5 (1)<2000 (2)2000~3000 (3)3000~4000 (4)4000~5000 (5)>5000

Slope/(°) 6
(1)Gentle slope to plain(<5°) (2)Slope(5°～15°) (3)Steep slope(15°～25°) (4)Sharp

slope(25°～35°) (5)Steep and sharp slope(35°～55°) (6)Vertical slope(>55°)

Aspect/(°) 8
(1)N(0°~22.5°/337.5°~360°) (2)NE(22.5°~67.5°) (3)E(67.5°~112.5°) (4)SE(112.5°~157.5°)

(5)S(157.5°~202.5°) (6)SW(202.5°~247.5°) (7)W(247.5°~292.5°) (8)NW(292.5°~337.5°)

Curvature 5 (1)0~10 (2)10~28 (3)28~46 (4)46~64 (5)64~82

Soil type 9 (1)LVh (2)PDd (3)CMc (4)GRh (5)RGd (6)RGe (7)LPi (8)LPm (9)CMd

TWI 5 (1)<8 (2)8~11 (3)11~14 (4)14~17 (5)>17

SPI 5 (1)<-6 (2)-6~-3 (3)-3~0 (4)0~3 (5)>3

Surface

roughness
6 (1)1.0~2.5 (2)2.5~4.0 (3)4.0~5.5 (4)5.5~7.0 (5)7.0~8.5 (6)>8.5

Terrain

relief/m
4

(1)Micro undulating terrain(<30) (2)Gentle undulating terrain(30~150) (3)Moderate

undulating terrain(150~300) (4)Mountainous terrain(>300)

FVC 5 (1)0~0.2 (2)0.2~0.4 (3)0.4~0.6 (4)0.6~0.8 (5)0.8~1.0

Rainfall(mm/a) 5 (1)<800 (2)800~1200 (3)1200~1600 (4)1600~2000 (5)>2000

Lithology 9 (1)IA1 (2)MA2 (3)UE1 (4)SC2 (5)SO1 (6)SC4 (7)MB1 (8)MA3/MB1 (9)UR1

Vegetation 5 (1)Alpine vegetation (2)Grass clump (3)Deciduous forest (4)Coniferous forest (5)Meadow
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4 Experimental results and analysis285

4.1 Surface deformation monitoring experiment

The study utilizes the SBAS-InSAR and PS-InSAR techniques available in the Sarscape 5.6.2 module of ENVI 5.6.2

software to process Sentinel-1A images and extract deformation information in the study area. Taking into account factors

such as temporal stability, land cover characteristics and data quality, the two time-series InSAR techniques select April 1,

2023 and December 26, 2022 as the master images, respectively. The annual average deformation rates in the radar line of290

sight (LOS) direction for the study area from January 24, 2022 to December 21, 2023 are shown in Figures 6 and 7,

respectively. Positive values indicate uplift of the Earth's surface, meaning deformation towards the satellite's direction,

while negative values indicate subsidence, meaning deformation away from the satellite's direction.

295

Figure 6: Annual average deformation rate map based on SBAS-InSAR.

Figure 7: Annual average deformation rate map based on PS-InSAR.
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300

In Figure 6, the SBAS-InSAR monitoring shows uplift in the upstream areas of various debris flow gullies, such as regions A,

B, C and D, with the maximum uplift rate reaching 61.972 mm/a, located at the top of the main gully of Banzi Gully,

indicated by point P in the figure. Additionally, different degrees of uplift are observed in the Zagunao River and Minjiang

River channels. In the downstream areas of each debris flow gully, subsidence phenomena are observed, as seen in regions E,

F, G and H, with the maximum subsidence rate reaching -95.574 mm/a, located at the confluence of the Minjiang and305

Zagunao rivers, indicated by point Q in the figure. In Figure 7, the PS-InSAR technology monitors the overall deformation

rate in the study area, ranging from -78.962 mm/a to 55.023 mm/a. The monitoring effect is less satisfactory compared to

SBAS-InSAR technology in areas with low coherence, resulting in fewer retrieved deformation information and greater

influence from the geographical environment of the study area. However, PS-InSAR detects deformation patterns similar to

those observed with SBAS-InSAR, such as uplift in regions A and D, as well as in the Zagunao River and Minjiang River310

channels, and subsidence in region H. According to field investigations, a debris flow disaster occurred on June 26, 2023 due

to short-duration heavy rainfall, resulting in significant sediment deposition and uplift observed in the river channels.

For the typical deformation points P and Q, combined with rainfall data, a comparison of deformation trends is shown in

Figure 8. Both time-series InSAR techniques monitor deformation points with roughly consistent trends exhibit nonlinear

deformation patterns that correlate with rainfall and display seasonal variations. At point P, uplift increases with increasing315

rainfall, showing a distinct acceleration process. At point Q, the deformation trend is relatively flat during the rainy season,

and as the rainy season recedes, the subsidence rate begins to accelerate. Moreover, the influence of rainfall on ground

deformation is temporary, and after rainfall stops, the surface deformation will gradually return to the normal consolidation

process.

320

Figure 8: Comparison of deformation trends of typical deformation points monitored by two types of time-series InSAR

techniques.

Although there are numerical and spatial differences in the final deformation rate results obtained from the two time-series325

Point P Point Q
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InSAR techniques, their deformation trends are generally consistent. To validate the reliability of the data, a cross-validation

method was employed to verify the data before analysis. Several points with the same name were selected in the study area,

and the annual average deformation values monitored by SBAS-InSAR and PS-InSAR techniques were taken as the x and y

axes, respectively, for linear regression analysis. The results are shown in Figure 9. The correlation coefficient R2=0.85

between the LOS deformation rates of the same-named points monitored by the two data sets indicates a high correlation330

between the data monitored by the two InSAR techniques, demonstrating the feasibility of joint analysis using both

techniques.

Figure 9: Cross validation results of LOS deformation rate using time series InSAR technology.335

In addition, the study area has high vegetation coverage, causing scattering, occlusion and interference of radar signals along

the propagation path, leading to severe decorrelation and affecting the accuracy of deformation monitoring. Therefore, the

FVC is introduced to analyze the vegetation coverage in the study area. For areas with an FVC greater than 0.6, the

deformation points are not selected to eliminate the influence of high vegetation coverage on deformation monitoring in the340

study area.

4.2 Surface deformation prediction experiment

4.2.1 The impact of CS/GWO algorithm on the performance of Elman network

In this study, ArcGIS software is used to extract the layer data of 13 evaluation factors in the research area. In order to assess

whether these 13 evaluation factors are suitable as predictors for surface deformation in high mountain gorges, grey345

relational analysis is conducted using SPSSAU software to analyze the grey relational values between each of the 13 factors

and the annual average deformation values monitored by the InSAR technology. The grey relational values are presented in

Table 4.
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Table 4: The grey relational coefficient between each factor and the deformation value.350

Evaluation factor Grey relational values Evaluation factor Grey relational values

DEM 0.809 Surface roughness 0.804

Slope 0.803 Terrain relief 0.789

Aspect 0.803 FVC 0.806

Curvature 0.804 Rainfall 0.807

Soil type 0.779 Lithology 0.794

TWI 0.786 Vegetation 0.825

SPI 0.799

The grey relational values indicate a high degree of correlation between the selected 13 evaluation factors and the

deformation values. However, the final factors have not yet been selected. In order to obtain the optimal evaluation factors to

prevent problems such as overfitting and instability caused by strong correlations between factors, a correlation matrix

analysis is conducted on each factor (Dziuban and Shirkey, 1974). The results are shown in Table 5.355

Table 5: Correlation coefficients among various factors.

Factor DEM Slope Aspect Curvature
Soil

type
TWI SPI

Surface

roughness

Terrain

relief
FVC Rainfall Lithology Vegetation

DEM 1

Slope -0.08 1

Aspect -0.01 0.07 1

Curvature 0.14 -0.20 -0.01 1

Soil type 0.59 -0.12 0.06 0.13 1

TWI -0.01 -0.47 -0.06 0.11 0.05 1

SPI 0.05 0.30 -0.03 0.01 0.01 -0.03 1

Surface

roughness
-0.12 0.82 0.08 -0.16 -0.10 -0.42 0.25 1

Terrain

relief
-0.11 0.85 0.07 -0.18 -0.11 -0.43 0.29 0.97 1

FVC -0.22 0.01 -0.55 -0.22 -0.22 -0.04 -0.16 0.04 0.04 1

Rainfall -0.30 0.07 -0.05 -0.15 -0.38 -0.01 -0.12 0.06 0.06 0.31 1

Lithology -0.12 -0.15 0.07 0.02 0.22 0.04 0.09 -0.11 -0.09 -0.13 -0.22 1

Vegetation -0.20 0.04 0.05 0.02 -0.13 -0.05 -0.09 0.04 0.04 0.16 0.24 -0.15 1

From Table 5, it can be observed that the correlation coefficients |R| between DEM and soil type, slope and surface

roughness, terrain relief, and aspect and FVC are greater than 0.5, indicating strong correlations. Therefore, highly correlated360

influencing factors are removed. Consequently, DEM, slope, curvature, TWI, SPI, FVC, rainfall, lithology and vegetation

type are selected as evaluation factors for the CS/GWO-Elman model.

The 9 selected evaluation factors are used to construct the CS/GWO-Elman model along with the annual average
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deformation rate values extracted by the InSAR technique in the study area. A total of 1000 points are randomly selected as

samples for the CS/GWO-Elman neural network, and predictions are made for 30 of these sample points. To ensure365

comparability between the Elman networks optimized by CS and GWO, a CS/GWO-Elman network model is constructed

using Matlab software, and various parameters are standardized. The functions of each network layer are shown in Table 6,

while the network training parameters are presented in Table 7.

Table 6: CS/GWO-Elman neural network functions in each layer.370

The functions of each layer in the network Function settings

Training function trainlm

The activation function of the hidden layer tanh

The activation function of the output layer purelin

Table 7: CS/GWO-Elman network training parameters.

Parameter names Setting values Parameter names Setting values

Training epochs 1000 Maximum evolutionary generations 50

Learning rate 0.01 initial population size for CS 10

Minimum training target error 10-5 probability of discovering a cuckoo egg by CS 0.25

Display frequency 25 number of searching wolves in GWO 20

Momentum factor 0.01 range of searching for wolves in GWO 30

The randomly selected samples are input into the Elman, CS-Elman and GWO-Elman models, and their predicted results are

compared with the annual average deformation rate results monitored by InSAR, as shown in Figure 10. It can be clearly375

seen that the predicted curves of the three network models are generally consistent with the InSAR monitoring curve. By

calculating the absolute error between the predicted values of each model and the monitored values of InSAR, as shown in

Figure 11, the absolute error ranges of Elman, CS-Elman and GWO-Elman models with InSAR monitoring of the annual

average deformation rate are 0.205 to 7.733 mm/a, 0.016 to 4.576 mm/a and 0.193 to 6.292 mm/a, respectively. The absolute

error range of the CS-improved Elman network is smaller. It is also evident that the absolute error curve of the CS-Elman380

prediction is closer to the horizontal axis and has a smaller amplitude, indicating better prediction results.
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Figure 10: Comparison of the predicted values from the three models with the monitored values from InSAR.

385
Figure 11: Comparison of absolute errors among three models.

To validate the predictive performance under different optimization algorithms, the mean squared error (Hodson et al., 2021)

and the optimal number of iterations for each group are calculated, as shown in Figure 12. The optimal convergence

iterations for Elman, CS-Elman and GWO-Elman networks are 19, 3 and 5 times, respectively, with mean squared errors of390

0.033, 0.020 and 0.030 mm/a, respectively. The Elman network improved by CS converges faster with a smaller mean

squared error, validating that the CS algorithm can overcome the slow convergence and low learning rate of Elman neural

networks.

395
Figure 12: Mean square error and optimal iteration numbers of the three models. (a) is Elman model, (b) is CS-Elman model, (c) is

GWO-Elman model.
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To validate the reliability of prediction accuracy under different optimization algorithms, the mean absolute error (MAE)

(Chai and Draxler, 2014) and mean absolute percentage error (MAPE) (De et al., 2016) are used as evaluation metrics. The400

smaller the values of these evaluation metrics, the smaller the prediction error of the model, indicating a better fit to the data.

MAE represents the average of the absolute errors between the InSAR monitoring values and the corresponding model

predicted values, calculated using the formula as equation (11). Here, � denotes the number of samples, �� represents the

InSAR monitoring values, and �� � represents the predicted values of the corresponding network.

1

1 ˆ| |
n

i i
i

MAE y y
n 

  (11)405

MAPE represents the mean absolute percentage difference between the InSAR monitoring values and the corresponding

model predicted values, calculated using the formula as equation (12):

1

ˆ1 | | 100%
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
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The comparison of evaluation indicators for each group of data is shown in Table 8. Through comparison, it is found that

both CS and GWO algorithms can effectively improve the prediction performance and accuracy of the Elman network.410

Moreover, the CS-Elman model has smaller MAE and MAPE, indicating higher prediction accuracy. Thus, it is

demonstrated that utilizing the CS algorithm to improve the Elman neural network leads to better prediction performance and

accuracy for surface deformation in high mountain gorges.

Table 8: Comparison of evaluation metrics for the three models.415

Evaluation indicators Elman CS-Elman GWO-Elman

MAE/(mm/a) 3.650 1.620 2.155

MAPE/% 44.663 21.500 29.689

4.2.2 Model comparison analysis experiment

To further verify the superiority of the CS-Elman model in predicting surface deformation in high mountain gorges, we

select the SVM, LSTM and GA-BP (Yang et al., 2022) models and compared them with the CS-Elman model in a

comparative experiment. In the comparative experiment, we use the same 9 factors including DEM and the time-series of420

annual average deformation rates extracted by InSAR technology as data. We randomly select 507 sample data points, with

500 used for training and the remaining 7 for prediction. The prediction results of each model after training are shown in

Figure 13, the absolute errors between the predicted values and the InSAR monitoring values are shown in Figure 14, and the

performance comparison is shown in Table 9.
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425

Figure 13: Comparison between the predicted values of each model and the monitored values from InSAR.

Figure 14: Absolute error between predicted values of each model and the monitored values from InSAR.430

Table 9: Comparison of performance metrics for each model.

Model

Evaluation indicators

MAE/(mm/a) MAPE/%
Convergence optimal

iteration times

Mean squared

error/(mm/a)

SVM 3.231 37.241% 23 0.031

LSTM 1.631 17.458% 10 0.033

GA-BP 1.189 9.521% 7 0.029

CS-Elman 0.818 9.353% 3 0.024

In Figure 13, the predicted curves of each model align closely with the InSAR monitoring curve. As shown in Figure 14 and

Table 9, the prediction errors of each model are within 7 mm/a. Compared to other models, the CS-Elman model exhibits the435

smallest range of prediction absolute error, ranging from 0.071 to 1.843 mm/a. Additionally, the CS-Elman model has a

lower MAE of 0.818 mm/a and MAPE of 9.353%, both smaller than those of other models, indicating higher prediction

accuracy. Moreover, the CS-Elman model demonstrates faster convergence speed and smaller mean squared error, validating

its superiority and effectiveness in predicting surface deformation in high mountain gorge areas.
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4.2.3. Deformation prediction analysis440

Through the above experimental analysis, it has been verified that the Elman neural network optimized by the CS algorithm

has superior predictive performance. Therefore, a time-series deformation prediction is conducted on the typical deformation

points P and Q. Since the same deformation point is independent of DEM, slope, curvature, FVC, lithology and vegetation

type, time-series data such as TWI, SPI and rainfall are selected. A CS-Elman model is constructed using the time-series

deformation variables monitored by InSAR technology. A total of 26 periods of data from January 24, 2022 to September 16,445

2023 are selected as training samples, and the CS-Elman model is used to predict the deformation values for the subsequent

4 periods. The predicted deformation values compared with the InSAR monitoring values are shown in Table 10.

Table 10: Comparison between predicted values and monitored values.

Periods 20231010 20231103 20231127 20231221

Point P

InSAR monitoring values/mm 107.391 110.315 117.408 120.557

CS-Elman predicted values/mm 111.354 112.032 118.183 117.184

Absolute error/mm 3.963 1.717 0.775 3.373

Point Q

InSAR monitoring values/mm -186.347 -192.725 -194.912 -195.748

CS-Elman predicted values/mm -187.706 -190.148 -194.229 -200.528

Absolute error/mm 1.359 2.577 0.683 4.780

450

According to Table 10, the average absolute errors between the predicted values and monitored values for points P and Q are

2.457 mm and 2.350 mm, respectively. According to the Technical Specification for Ground Subsidence Measurement

(DZ/T0154-2020) released by the ministry of natural resources of China, the accuracy of InSAR deformation is ±10 mm,

and the prediction accuracy meets the requirements of the measurement specifications. Thus, it is confirmed that the

combination of time-series InSAR technology and the CS-Elman algorithm can effectively monitor and predict the455

deformation values of points in high mountain gorges.

5 Conclusion

This study proposes an improved prediction method for surface deformation in high mountain gorges using the multi-factor

and multi-temporal approach based on surface deformation values monitored by time-series InSAR technology and factors

such as DEM. It effectively addresses the issues of excessive dependence on deformation data and singularity in existing460

prediction models. Experimental comparisons reveal the following findings:

(1) The correlation coefficient R2 between the LOS deformation velocities of the same points monitored by SBAS-InSAR

and PS-InSAR technologies is 0.85, indicating a high level of correlation and demonstrating the feasibility of jointly

analyzing surface deformation using these two techniques.
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(2) Predictions for 30 sample sets indicate that both CS-Elman and GWO-Elman models exhibit improved performance465

compared to Elman alone, demonstrating that both CS and GWO algorithms effectively enhance the predictive performance

and accuracy of the Elman model. Specifically, the CS-Elman model shows smaller absolute errors, fewer optimal

convergence iterations, and lower mean square errors compared to the GWO-Elman network. The MAE for CS-Elman and

GWO-Elman models are 1.620 mm/a and 2.155 mm/a, respectively, while the MAPE are 21.500% and 29.689%,

respectively. The smaller MAE and MAPE of the CS-Elman model indicate higher prediction accuracy. This validates that470

utilizing the CS algorithm to improve the Elman model results in better predictive performance and effectiveness for surface

deformation in high mountainous areas.

(3) By comparing the optimal CS-Elman model with SVM, LSTM and GA-BP, we verify the advantages and effectiveness

of the model in predicting surface deformation in high mountainous areas. Utilizing time-series data such as TWI, SPI and

rainfall, combined with the time-series deformation variables monitored by InSAR technology, the deformation trend475

predictions for typical deformation points P and Q show that the average absolute errors for the 4-period predictions

compared to the monitored values are 2.457 mm and 2.350 mm, respectively. This validates that using time-series InSAR

technology and the CS-Elman model can effectively monitor and predict the deformation values of a specific point.

The methodology presented in this paper, while comprehensive in considering influencing factors and time-series data, also

has some limitations. For instance, the lack of concurrent leveling data prevents accurate validation of the results obtained.480

Moreover, the study only provides a preliminary investigation into surface deformation in the Minjiang River Basin, with

limited research on typical deformation areas. Subsequent studies will further explore whether the CS-Elman model is

applicable to deformation prediction in other regions. Additionally, the accuracy of time-series InSAR monitoring is

significantly influenced by the resolution of the DEM. Therefore, future efforts will focus on utilizing higher-resolution

DEM to enhance the accuracy of subsidence monitoring.485

Code and Data availability

The code and data that support the findings of this study are available from the corresponding author upon reasonable

request.

Sentinel-1A data is acquired from the Alaska Satellite Facility (ASF) and the link is https://search.asf.alaska.edu/.

POD data is acquired from the European Space Agency (ESA) and the link is https://step.esa.int/.490

DEM data is acquired from the Japan Aerospace Exploration Agency (JAXA) and the link is

https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm.

Rainfall data is acquired from the National Earth System Science Data Center (NESSDC) and the link is

http://www.geodata.cn/data/.

https://doi.org/10.5194/egusphere-2024-1220
Preprint. Discussion started: 23 May 2024
c© Author(s) 2024. CC BY 4.0 License.



23

Lithology and vegetation data are acquired from the International Soil Reference and Information Centre (ISRIC) and the495

link is https://www.isric.org.

Soil data is acquired from the National Cryosphere Desert Data Center and the link is https://www.ncdc.ac.cn/.

Landsat8-9 OLT/TIRS C2 L2 data is acquired from the Geospatial Data Cloud and the link is https://www.gscloud.cn/.

Author contributions

Kuayue Chen: conceptualization, methodology, visualization, writing and editing. Wenfei Xi: methodology and review.500

Baoyun Wang: conceptualization, methodology and review.

Competing interests

The contact author has declared that none of the authors has any competing interests.

Financial support

This work was supported by National Natural Science Foundation of China: [Grant Number 61966040].505

References

Akritas, A. G., and Malaschonok, G. I.: Applications of singular-value decomposition (SVD), Math. Comput. Simulat., 67,

15-31, https://doi.org/10.1016/j.matcom.2004.05.005, 2004.

An, B. S., Wang, W. C., Yang, W., Wu, G. J., Guo, Y. H., Zhu, H. F., Gao, Y., Bai, L., Zhang, F., Zeng, C., Wang, L., Zhou, J.,

Li, X., Li, J., Zhao, Z. J., Chen, Y. Y., Liu, J. S., Li, J. L., Wang, Z. Y., Chen, W. F., and Yao, T. D.: Process, mechanisms, and510

early warning of glacier collapse-induced river blocking disasters in the Yarlung Tsangpo Grand Canyon, southeastern

Tibetan Plateau, Sci. Total Environ., 816, 151652, https://doi.org/10.1016/j.scitotenv.2021.151652, 2022.

Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E.: A new algorithm for surface deformation monitoring based on small

baseline differential SAR interferograms, IEEE T. Geosci. Remote, 40, 2375-2383,

https://doi.org/10.1109/TGRS.2002.803792, 2002.515

Chai, T., and Draxler, R. R.: Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding

RMSE in the literature, Geosci. Model Dev., 7, 1247-1250, https://doi.org/10.5194/gmd-7-1247-2014, 2014.

De Myttenaere, A., Golden, B., Le Grand, B., and Rossi, F.: Mean absolute percentage error for regression models,

Neurocomputing, 192, 38-48, https://doi.org/10.1016/j.neucom.2015.12.114, 2016.

Derbyshire, E.: Geological hazards in loess terrain, with particular reference to the loess regions of China, Earth-Sci. Rev.,520

54, 231-260, https://doi.org/10.1016/S0012-8252(01)00050-2, 2001.

https://doi.org/10.5194/egusphere-2024-1220
Preprint. Discussion started: 23 May 2024
c© Author(s) 2024. CC BY 4.0 License.



24

Ding, M. T., and Huang, T.: Vulnerability assessment of population in mountain settlements exposed to debris flow: a case

study on Qipan gully, Wenchuan County, China, Nat. Hazards, 99, 553-569, https://doi.org/10.1007/s11069-019-03759-1,

2019.

Ding, S. F., Zhang, Y. N., Chen, J. R., and Jia, W. K.: Research on using genetic algorithms to optimize Elman neural525

networks, Neural Comput. Appl., 23, 293-297, https://doi.org/10.1007/s00521-012-0896-3, 2013.

Dziuban, C. D., and Shirkey, E. C.: When is a correlation matrix appropriate for factor analysis? Some decision

rules, Psychol. Bull., 81, 358, https://doi.org/10.1037/h0036316, 1974.

Elman, J. L.: Finding structure in time, Cognitive Sci., 14, 179-211, https://doi.org/10.1207/s15516709cog1402_1, 1990.

Ferretti, A., Prati, C., and Rocca, F.: Permanent scatterers in SAR interferometry, IEEE T. Geosci. Remote, 39, 8-20,530

https://doi.org/10.1109/36.898661, 2001.

Guo, X. J., Cui, P., Li, Y., Zou, Q., and Kong, Y. D.: The formation and development of debris flows in large watersheds after

the 2008 Wenchuan Earthquake, Landslides, 13, 25-37, https://doi.org/10.1007/s10346-014-0541-6, 2016.

Gupta, S., and Deep, K.: A novel random walk grey wolf optimizer, Swarm Evol. Comput., 44, 101-112,

https://doi.org/10.1016/j.swevo.2018.01.001, 2019.535

He, J., Zhang, L. M., Fan, R. L., Zhou, S. Y., Luo, H. Y., and Peng, D. L.: Evaluating effectiveness of mitigation measures for

large debris flows in Wenchuan, China, Landslides, 19, 913-928, https://doi.org/10.1007/s10346-021-01809-z, 2022a.

He, M. C., Sui, Q. R., Li, M. N., Wang, Z. J., and Tao, Z. G.: Compensation excavation method control for large deformation

disaster of mountain soft rock tunnel, Int. J. Min. Sci. Techno., 32, 951-963, https://doi.org/10.1016/j.ijmst.2022.08.004,

2022b.540

Hodson, T. O., Over, T. M., and Foks, S. S.: Mean squared error, deconstructed, J. Adv. Model. Earth Sy., 13,

e2021MS002681, https://doi.org/10.1029/2021MS002681, 2021.

Huang Lin, C., Liu, D. W., and Liu, G.: Landslide detection in La Paz City (Bolivia) based on time series analysis of InSAR

data, Int. J. Remote Sens., 40, 6775-6795, https://doi.org/10.1080/01431161.2019.1594434, 2019.

Jia, W. K., Zhao, D. A., Zheng, Y. J., and Hou, S. J.: A novel optimized GA–Elman neural network algorithm, Neural545

Comput. Appl., 31, 449-459, https://doi.org/10.1007/s00521-017-3076-7, 2019.

Jiang, N., Li, H. B., Li, C. J., Xiao, H. X., and Zhou, J. W.: A fusion method using terrestrial laser scanning and unmanned

aerial vehicle photogrammetry for landslide deformation monitoring under complex terrain conditions, IEEE T. Geosci.

Remote, 60, 1-14, https://doi.org/10.1109/TGRS.2022.3181258, 2022.

Kim, D., Langley, R. B., Bond, J., and Chrzanowski, A.: Local deformation monitoring using GPS in an open pit mine:550

initial study, GPS Solut., 7, 176-185, https://doi.org/10.1007/s10291-003-0075-1, 2003.

Lanari, R., Mora, O., Manunta, M., Mallorquí, J. J., Berardino, P., and Sansosti, E.: A small-baseline approach for

investigating deformations on full-resolution differential SAR interferograms, IEEE T. Geosci. Remote, 42, 1377-1386,

https://doi.org/10.5194/egusphere-2024-1220
Preprint. Discussion started: 23 May 2024
c© Author(s) 2024. CC BY 4.0 License.



25

https://doi.org/10.1109/TGRS.2004.828196, 2004.

Liao, M. S., Jiang, H. J., Wang, Y., Wang, T., and Zhang, L.: Improved topographic mapping through high-resolution SAR555

interferometry with atmospheric effect removal, ISPRS J. Photogramm., 80, 72-79,

https://doi.org/10.1016/j.isprsjprs.2013.03.008, 2013.

Liu, C. X., & Wang, B. Y.: Gully-type debris flow susceptibility assessment based on a multi-channel multi-scale residual

network fusing multi-source data: a case study of Nujiang Prefecture, All Earth, 36, 1-18,

https://doi.org/10.1080/27669645.2023.2292311, 2024.560

Mareli, M., and Twala, B.: An adaptive Cuckoo search algorithm for optimisation, Applied computing and informatics, 14,

107-115, https://doi.org/10.1016/j.aci.2017.09.001, 2018.

Mirjalili, S., Mirjalili, S. M., and Lewis, A.: Grey wolf optimizer, Adv. Eng. Softw., 69, 46-61,

https://doi.org/10.1016/j.advengsoft.2013.12.007, 2014.

Nikolaeva, E., Walter, T. R., Shirzaei, M., and Zschau, J.: Landslide observation and volume estimation in central Georgia565

based on L-band InSAR, Nat. Hazards Earth Syst. Sci., 14, 675-688, https://doi.org/10.5194/nhess-14-675-2014, 2014.

Osmanoğlu, B., Sunar, F., Wdowinski, S., and Cabral-Cano, E.: Time series analysis of InSAR data: Methods and

trends, ISPRS J. Photogramm., 115, 90-102, https://doi.org/10.1016/j.isprsjprs.2015.10.003, 2016.

Radman, A., Akhoondzadeh, M., and Hosseiny, B.: Integrating InSAR and deep-learning for modeling and predicting

subsidence over the adjacent area of Lake Urmia, Iran, GISci. Remote Sens., 58, 1413-1433,570

https://doi.org/10.1080/15481603.2021.1991689, 2021.

Suresh, D., and Yarrakula, K.: InSAR based deformation mapping of earthquake using Sentinel 1A imagery, Geocarto

Int., 35, 559-568, https://doi.org/10.1080/10106049.2018.1544289, 2020.

Tao, Z. G., Zhu, C., He, M. C., and Karakus, M.: A physical modeling-based study on the control mechanisms of Negative

Poisson's ratio anchor cable on the stratified toppling deformation of anti-inclined slopes, Int. J. Rock Mech. Min., 138,575

104632, https://doi.org/10.1016/j.ijrmms.2021.104632, 2021.

Teng, C. Q., Wang, L., and Jiang, C.: Urban surface deformation monitoring and prediction by integrating SBAS-InSAR and

Elman neural network, Surv. Rev., 56, 18-31, https://doi.org/10.1080/00396265.2022.2157119, 2024.

Ulusay, R., Türeli, K., and Ider, M. H.: Prediction of engineering properties of a selected litharenite sandstone from its

petrographic characteristics using correlation and multivariate statistical techniques, Eng. Geol., 38, 135-157,580

https://doi.org/10.1016/0013-7952(94)90029-9, 1994.

Vanicek, P., Castle, R. O., and Balazs, E. I.: Geodetic leveling and its applications, Rev. Geophys., 18, 505-524,

https://doi.org/10.1029/RG018i002p00505, 1980.

Wang, Y. Y., Guo, Y. H., Hu, S. Q., Li, Y., Wang, J. Z., Liu, X. S., and Wang, L.: Ground deformation analysis using InSAR

and backpropagation prediction with influencing factors in Erhai Region, China, Sustainability-basel, 11, 2853,585

https://doi.org/10.5194/egusphere-2024-1220
Preprint. Discussion started: 23 May 2024
c© Author(s) 2024. CC BY 4.0 License.



26

https://doi.org/10.3390/su11102853, 2019.

Wang, Z. D., Wen, X. H., Tang, W., Liu, H., and Wang, D. F.: Early detection of geological hazards in Longmenshan-Dadu

river area using various InSAR techniques, Geomatics and Information Science of Wuhan University, 45, 451-459,

https://doi.org/10.13203/j.whugis20190064, 2020.

Xu, F. S., and Wang, B. Y.: Debris flow susceptibility mapping in mountainous area based on multi-source data fusion and590

CNN model–taking Nujiang Prefecture, China as an example, Int. J. Digit. Earth, 15, 1966-1988,

https://doi.org/10.1080/17538947.2022.2142304, 2022.

Yang, X. S., and Deb, S.: Cuckoo search via Lévy flights, In 2009 World congress on nature & biologically inspired

computing (NaBIC), 210-214, Ieee, https://doi.org/10.1109/NABIC.2009.5393690, 2009.

Yang, Z. F., Li, Z. W., Zhu, J. J., Wang, Y. D., and Wu, L. X.: Use of SAR/InSAR in mining deformation monitoring,595

parameter inversion, and forward predictions: A review, IEEE Geosc. Rem. Sen. M., 8, 71-90,

https://doi.org/10.1109/MGRS.2019.2954824, 2020.

Yang, Z. L., Lu, H., Zhang, Z. J., Liu, C., Nie, R. H., Zhang, W. C., Fan, G., Chen, C., Ma, L., Dai, X. A., Zhang, M., and

Zhang, D. H.: Visualization analysis of rainfall-induced landslides hazards based on remote sensing and geographic

information system-an overview, Int. J. Digit. Earth, 16, 2374-2402, https://doi.org/10.1080/17538947.2023.2229797, 2023.600

Yang, Z. R., Xi, W. F., Yang, Z. Q., Shi, Z. T., and Qian, T. H.: Monitoring and prediction of glacier deformation in the meili

snow mountain based on InSAR technology and GA-BP neural network algorithm, Sensors-basel, 22, 8350,

https://doi.org/10.3390/s22218350, 2022.

Ye, Y. C., Yan, C. D., Luo, X. X., Zhang, R. F., and Yuan, G. J.: Analysis of ground subsidence along Zhengzhou metro based

on time series InSAR, National Remote Sensing Bulletin, 26, 1342-1353, https://doi.org/10.11834/jrs.20211246, 2022.605

Zhang, G., Wang, S. Y., Chen, Z. W., Zheng, Y. Z., Zhao, R. S., Wang, T. Y., Zhu, Y., Yuan, X. Z., Wu, W., and Chen, W. T.:

Development of China’s spaceborne SAR satellite, processing strategy, and application: take Gaofen-3 series as an

example, Geo-spat. Inf. Sci., 27, 221-236, https://doi.org/10.1080/10095020.2022.2124129, 2024.

Zhang, Z. J., Lin, H., Wang, M. M., Liu, X. G., Chen, Q. H., Wang, C., and Zhang, H.: A review of satellite synthetic

aperture radar interferometry applications in permafrost regions: Current status, challenges, and trends, IEEE Geosc. Rem.610

Sen. M., 10, 93-114, https://doi.org/10.1109/MGRS.2022.3170350, 2022.

Zhang, X. Z., Tie, Y. B., and Ning Z. J.: Characteristics and activity analysis of the catastrophic “6· 26” debris flow in the

Banzi Catchment, Wenchuan County of Sichuan Province, Hydrogeology & Engineering Geology, 50, 134-145,

https://doi.cnki.net/10.16030/j.cnki.issn.1000-3665.202307003, 2023.

https://doi.org/10.5194/egusphere-2024-1220
Preprint. Discussion started: 23 May 2024
c© Author(s) 2024. CC BY 4.0 License.


