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Abstract.Mountain canyon areas often have complex terrain and unstable geological conditions, making them prone to

disasters such as landslides and debris flows. Surface deformation is an early sign of these disasters, and accurate10

prediction of deformation can help detect potential hazards in advance, reducing the likelihood of disaster occurrence.

To address the issues of over-reliance on deformation data and model singularity in existing surface deformation prediction

methods in high mountain canyon areas, this study proposes the improvement of Elman neural network using cuckoo search

algorithm and grey wolf optimization algorithm (CS-Elman and GWO-Elman) from the perspective of multi-temporal and

multi-factor analysis. Firstly, surface deformation in the study area is monitored using SBAS-InSAR and PS-InSAR15

techniques. Then, the optimal evaluation factors are determined from 13 evaluation factors including digital elevation model

(DEM) and slope using grey correlation analysis and correlation matrix analysis in SPSSAU software. These optimal factors,

combined with surface deformation monitoring values obtained from InSAR technology, are used to construct CS-Elman

and GWO-Elman prediction models from a multi-factor and multi-temporal perspective. Finally, the optimal prediction

model is determined through comparative experiments and its prediction performance is validated. Results indicate: (1)20

SBAS-InSAR and PS-InSAR techniques have a strong correlation (R2 = 0.85) in monitored deformation rates, confirming

their potential for joint analysis. (2) The CS-Elman model outperforms the GWO-Elman model, achieving a lower error

range, faster convergence (3 iterations), and better metrics (MSE: 0.020 mm/a, MAE: 1.620 mm/a, MAPE: 21.500%). (3)

Compared to SVM, LSTM, and PSO-BP models, the CS-Elman model has the smallest error range (0.071–1.843 mm/a) and

better accuracy (MAE 0.818 mm/a, MAPE 9.353%). (4) The CS-Elman model excels in short-term predictions but is less25

effective for long-term forecasting. It predicts a maximum surface uplift of 120.913 mm, offering insights for disaster

prevention.
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1 Introduction

China is prone to geological disasters, which have caused significant losses to lives and property security of its people

(Derbyshire 2001; Xu and Wang 2022; Liu and Wang 2024). Landslides, debris flows, and collapses, common in

mountainous and canyon areas, are highly hazardous due to their suddenness and hidden nature (Jiang et al. 2022; Guo et al.

2016). Therefore, Monitoring and early warning in these regions are essential for identifying risks and taking measures to35

reduce disaster likelihood and minimize losses (An et al. 2022).

Surface deformation directly reflects the stability and movement of slopes, providing crucial information for identifying

geological risks such as landslides and debris flows (Wang et al. 2020; Tao et al. 2021). Traditional methods like the global

positioning system (GPS) (Kim et al. 2003) and leveling measurements (Vanicek et al. 1980) have limitations in accuracy,

workload, and terrain adaptability, and are ineffective for large-scale monitoring (Yang et al. 2020; He et al. 2022). In40

contrast, interferometric synthetic aperture radar (InSAR) technology possesses all-weather and all-day characteristics. It

enables the direct spatial acquisition of extensive and high-precision terrain elevation and deformation information

(Osmanoğlu et al. 2016; Zhang et al. 2022; Zhang et al. 2022). Currently, Many researchers have used InSAR for monitoring

natural disasters (Nikolaeva et al. 2014; Huang, Liu, and Liu 2019; Suresh and Yarrakula 2020; Yang et al. 2023). On the

contrary, in terms of surface deformation prediction, the majority of studies are based on constructing prediction models45

using time-series deformation data, with only a few adopting a model-building approach from the perspective of deformation

influencing factors. Ye et al. (2022) analyzed the spatiotemporal characteristics of ground deformation along the Zhengzhou

subway line using PS-InSAR technology. They then utilized inverse distance interpolation and equalization processing and

applied a long short-term memory (LSTM) model to predict and analyze typical deformation points. Their findings validated

that compared to grey models, the LSTM model exhibits higher fitting and prediction accuracy. Among them, the grey50

model is a forecasting method used for small samples and uncertain systems, mainly applied to solve prediction problems

with incomplete information and sparse data. Yang et al. (2022) utilized InSAR technology to monitor the deformation

information of the Meili Snow Mountain Glacier from 2020 to 2021. They established a prediction model based on genetic

algorithm-back propagation (GA-BP) neural networks and found that the optimized prediction model significantly improved

accuracy. Teng et al. (2022) utilized SBAS-InSAR surface deformation monitoring data from the Hefei City to construct55

training samples. They established an Elman model and experimental results showed that the predicted deformation values of

the Elman model were in basic agreement with the monitoring values. Radman et al. (2021) combined InSAR with

environmental factors to predict land deformation using ensemble models. Wang et al. (2019) utilized SBAS-InSAR

technology to acquire surface deformation characteristics in the Erhai Lake region from 2015 to 2018. They selected

building area, water level, rainfall and temperature as inputs to the back propagation (BP) neural network for predicting60

surface deformation. Although the aforementioned methods can effectively combine InSAR technology and neural network



models to monitor and predict surface deformation information, they all have certain drawbacks and limitations. Some

scholars (Teng, Wang, and Jiang 2022; Yang et al. 2022; Ye et al. 2022) propose prediction models that overly rely on

deformation data, considering fewer other factors that may trigger disasters. They only utilize deformation data as the input

and output layers for prediction, which presents certain shortcomings. If a model is based solely on deformation data, its lack65

of multi-factor analysis capability will limit its prediction accuracy and comprehensiveness. Deformation data typically

reflect slow changes, making it difficult to predict sudden disasters such as debris flows and landslides. Additionally, other

scholars (Wang et al. 2019; Radman, Akhoondzadeh, and Hosseiny 2021) construct prediction models from the perspective

of influencing factors, but the prediction accuracy of these models is relatively low, primarily due to insufficient

optimization of the weights and thresholds of the network model. To enhance model performance, it is necessary to70

introduce optimization algorithms, such as Cuckoo Search (CS) and Grey Wolf Optimization (GWO), to better optimize

network parameters.

In high mountain canyon areas, surface deformation exhibits nonlinear characteristics, leading to the complexity of natural

disasters such as landslides and debris flows. Merely utilizing time-series deformation data as input for prediction models

often yields unsatisfactory results in studying surface deformation in disaster-prone areas. Therefore, it is essential to75

consider major causative factors influencing deformation, such as slope, soil type and vegetation coverage. Additionally,

surface deformation prediction typically involves a set of data correlated with time series. Hence, selecting appropriate

prediction models can effectively enhance prediction accuracy. The Elman neural network is a typical type of local

regression network. It adds a feedback layer acting as a delay operator to the basis of the BP neural network, enabling it to

memorize information and thereby adapt to time-varying characteristics. This improvement enhances the network's global80

stability, providing significant advantages when handling time-series foundational data such as surface deformation (Ding et

al. 2013; Jia et al. 2019). However, determining the weights, thresholds and learning rates of the Elman neural network is

often challenging, requiring optimization. The cuckoo search (CS) algorithm (Mareli and Twala 2018) and grey wolf

optimizer (GWO) algorithm (Gupta and Deep 2019) are chosen to search for the optimal weights, thresholds and learning

rates of the Elman neural network, aiming to enhance the model's prediction accuracy for surface deformation variables.85

In summary, this study utilizes time-series InSAR technology and an improved Elman neural network algorithm to monitor

and predict surface deformation in high mountain canyon areas. It proposes a predictive model constructed from multiple

time-series and factors. Specifically, the study processes the research area using InSAR technology to obtain subsidence

areas and annual deformation rate maps. These are combined with relevant influencing factors as input layers, while the

annual deformation rate serves as the output layer, establishing the relationship between influencing factors and deformation90

rate prediction models.



2 Research Methodology

This study first uses SBAS-InSAR and PS-InSAR techniques to obtain surface deformation information in the study area.

Then, the optimal evaluation factors are selected based on correlation analysis. Next, the optimal evaluation factors are used

as inputs for the CS-Elman and GWO-Elman models, with the annual average deformation rate as the output. The output95

results are compared with the annual average deformation rate obtained from InSAR technology to verify the model's

accuracy. Finally, the optimal model is applied for future time series deformation prediction. The overall technical process is

shown in Figure 1.

Figure 1: Overall technical flowchart.100

2.1 Acquisition of surface deformation information in the study area

Due to the lack of precise measurement data such as leveling measurements and GPS, many scholars have already verified

the reliability of Sentinel-1A data quality (Ye et al. 2022; Li, Dai, and Zheng 2024). The study utilizes the SBAS-InSAR and

PS-InSAR techniques available in the Sarscape 5.6.2 module of ENVI 5.6.2 software to process Sentinel-1A images and105

extract deformation information in the study area. This study firstly employs SBAS-InSAR technology (Berardino et al.

2002) to extract surface deformation information in the study area, and then utilizes PS-InSAR technology (Ferretti et al.

2001) to extract deformation variables for validation. By comparing and correlating the deformation results obtained from

the two techniques, detailed information regarding surface deformation in the study area is obtained.

The SBAS-InSAR technology provides large-scale continuous spatial deformation results, while the PS-InSAR technology110

provides deformation information for individual pixel points. Utilizing surface deformation information obtained from



different time-series InSAR technologies can complement each other, resulting in more accurate and comprehensive

monitoring results.

2.2 Selection of evaluation factors

Surface deformation is influenced by multiple factors, which exhibit diversity and complexity. Moreover, certain factors may115

exhibit correlations, and high correlations can lead to model complexity and reduced operational speed. Therefore,

conducting correlation analysis among various factors is crucial. By analyzing the correlations among factors, it is possible

to exclude highly correlated factors, which is significant for model establishment and surface deformation monitoring

(Ulusay, Türeli, and Ider 1994).

Based on the geological environmental background of the study area, this study selects factors closely related to the120

formation of debris flows, including digital elevation model (DEM) data, slope, aspect, curvature, soil type, topographic

wetness index (TWI) (Sörensen, Zinko, and Seibert 2006), stream power index (SPI) (Parker and Davey 2023), surface

roughness, terrain relief, fractional vegetation cover (FVC), rainfall, lithology and vegetation type, as factors for surface

deformation in the study area. In which, TWI is an index that reflects the influence of terrain on water accumulation and

distribution, primarily used to describe the potential moisture conditions of an area. SPI is based on the combination of slope125

and flow, and is mainly used to analyze the erosion and scouring strength of water flow on the surface. First, the ArcGIS

software is used to extract the raster data of each factor in the study area. Next, the SPSSAU software is employed to

conduct grey relational analysis on the 13 factors with the deformation values monitored by InSAR technology separately,

obtaining the grey relational degree ranking, and selecting factors with high correlation to the deformation values. Grey

relational analysis is a method within grey system theory that aims to reveal the relationships between different factors or130

variables by analyzing their similarity. The basic concept is that if two sequences have more similar trends in variation, their

degree of correlation is higher. Finally, the bivariate correlation analysis tool is used to analyze the correlation matrix of the

above factors, eliminating highly correlated factors and obtaining the optimal evaluation factors. Bivariate correlation

analysis is a statistical method used to measure the strength and direction of the relationship between two variables. By

calculating the correlation coefficient, the linear relationship between the two variables can be quantified. The results can135

help determine whether there is a positive correlation (both variables increase or decrease together), a negative correlation

(one variable increases while the other decreases), or no correlation (no obvious relationship between the two variables). The

correlation coefficient R is used to measure the degree of correlation between each factor, selecting more suitable factors to

construct CS-Elman and GWO-Elman models with the deformation values. The value range and correlation of R are shown

in Table 1.140

Table 1: Range of R values and correlation table.



Correlation coefficient Range of values Correlation

R

(0,1] Positive correlation

0 No linear correlation

[-1,0) Negative correlation

|R|

(0,0.5] Low correlation

(0.5,0.8] Significant correlation

(0.8,1] High correlation

2.3 Construction of improved Elman network model

2.3.1 Elman neural network145

The Elman neural network, a type of recurrent neural network (RNN), incorporates a feedback layer into its structure,

consisting of an input layer, a hidden layer, a feedback layer and an output layer (Elman 1990). With the presence of the

feedback layer, the Elman network can retain previous information relative to conventional neural networks, making it more

suitable for processing sequential data. It can better capture the temporal characteristics and dependencies in the data. This

makes it particularly effective in handling tasks with time-series characteristics, such as surface deformation. The structure of150

the Elman neural network is illustrated in Figure 2.

Figure 2: Elman neural network structure.

155

In this representation, [u1,u2,...,ud] represents the input vector; [x1,x2,...,xm] represents the hidden layer node vector;

[xc1,xc2,...,xcm] represents the feedback layer node vector; and [y1,y2,...,yn] represents the output vector. w1, w2 and w3 denote

the connection weights from the input layer to the hidden layer, from the feedback layer to the hidden layer, and from the

hidden layer to the output layer, respectively.

The mathematical model of the Elman neural network is as follows in equations (1) to (3):160

( ) [ ( ) ]k g k 3 2y w x b (1)



( ) [ ( ) ( 1) ]k f k k   2 1 1cx w x w u b (2)

( ) ( 1)k k cx x (3)

In the equations, k represents any given moment; y(k) represents the network output; x(k) represents the hidden layer output;

u(k) represents the external input; b1 and b2 are the thresholds for each layer; g and f represent the transfer functions of the165

output neurons and hidden layer neurons, respectively.

2.3.2 Cuckoo search algorithm

The cuckoo search (CS) algorithm, proposed by Yang et al. (2009) in 2009, is a population-based optimization algorithm. It

features simplicity in design, requiring fewer parameters, and is insensitive to parameter changes, exhibiting good stability. It

is less likely to get stuck in local optima and is applicable to both continuous and discrete optimization. The characteristics of170

nest-parasite behavior observed in cuckoos inspire the algorithm's approach: cuckoos lay their eggs in other birds' nests,

relying on host birds to incubate them; if a host discovers the foreign egg, it will abandon the nest. The algorithm's steps can

be summarized as follows: (1) Each cuckoo lays one egg at a time during breeding and randomly selects a nest to lay the egg.

(2) In each nest, only the highest-quality eggs are retained to breed the next generation. (3) The number of parasitic nests is

fixed, and if a host bird discovers a foreign egg, the nest is abandoned.175

The Levy flight of cuckoos is a biological description used in the updating process of the cuckoo search algorithm to avoid

falling into local optima. The flight formula of cuckoos is represented in equation (4):

1 ( )t t
i ix x Levy     (4)

In the equation, ��� represents the position of the ith nest at generation t, where i=1,2,...,n. � denotes the step size, which is

a positive number typically set to 1. ⨁ denotes pointwise multiplication. ( )Levy  is the random search path, generating180

step sizes that follow a Levy distribution, as shown in equation (5):

( ) ~ ,1 3Levy u t     (5)

The characteristic of Levy flight is that the step size is random. Larger step sizes can ensure a certain probability of escaping

from local optima, thus obtaining the global optimum solution.

2.3.3 Grey wolf optimizer algorithm185

The grey wolf optimizer (GWO) algorithm is a population-based metaheuristic algorithm proposed by Mirjalili et al. (2014)

in 2014, inspired by the social hierarchy of grey wolf populations. In the social hierarchy of grey wolves, there are four

different types of wolves, including �, �, � and � wolves, with their social status decreasing from left to right. The four

ranks of wolf packs represent the four solutions searched during the GWO optimization process, representing the optimal

solution, good solution, suboptimal solution and candidate solution, respectively.190



The GWO algorithm mainly consists of three steps: encircling, hunting and attacking. The behavior of grey wolves can be

defined in mathematical models, as shown in equations (6) and (7):

( ) ( )pD C X t X t   (6)

( 1) ( )pX t X t A D    (7)

In the equations, D represents the distance between the grey wolf and the prey; A and C are coefficient vectors, which can be195

calculated respectively by equations (8) and (9); t denotes the iteration number; Xp(t) and X(t) represent the position vectors

of the prey and the grey wolf after t iterations, respectively; X(t+1) denotes the position vector of the grey wolf after t+1

iterations.

12A a r a   (8)

22C r  (9)200

In the equations, r1 and r2 are random vectors within the range [0,1]; a is the convergence factor, which linearly decreases

from 2 to 0 as the number of iterations increases, calculated as shown in equation (10):

max

2
2

t
a

T
  (10)

In the equation, Tmax represents the maximum number of iterations.

2.3.4 CS/GWO-Elman neural network205

Elman neural network demonstrates outstanding performance in handling time-series data and tasks related to time. But it

also suffers from issues such as vanishing gradients, slow training speeds and susceptibility to local minima. Specifically: (1)

The initial values of neural network weights have a significant impact on the training process. If the initial weights are not

properly chosen, the network may get stuck in a local optimum or experience slow convergence. The search for the best

weight combination in high-dimensional space is complex, and efficient optimization algorithms are needed to find the210

global optimum. (2) Thresholds in neural networks play a crucial role in adjusting the output. Like weights, the choice of

thresholds affects network performance and convergence speed. Thresholds also need to be optimized to ensure that the

network performs well on training data and can effectively generalize to new data. (3) Learning rate determines the step size

for updating network weights. If the learning rate is too large, the training process may oscillate or fail to converge.

Conversely, if the learning rate is too small, the training process will be slow. Dynamic adjustments to the learning rate may215

be required during different stages of training, making the choice of an appropriate learning rate and adjustment strategy

critical. Optimization algorithms, such as genetic algorithms (GA), particle swarm optimization (PSO), grey wolf

optimization (GWO), and cuckoo search (CS), can more effectively search for the optimal combination of weights,

thresholds, and learning rates, thus improving the overall performance of the network. The optimization process can also



help prevent overfitting and enhance the model's generalization ability, ensuring better performance on unseen data. To220

address these challenges, this paper utilizes CS and GWO algorithms to optimize the initial weights and thresholds of Elman

network. The CS algorithm uses a random search method to find the optimal solution. In neural network training, CS helps

optimize the network's weights and thresholds, thereby improving the model's prediction accuracy. GWO gradually

approaches the optimal solution by introducing the search mechanisms of elite wolves and random wolves. The GWO

algorithm is used to adjust the parameters of the Elman neural network, enabling it to find a better-performing solution in a225

shorter time. These optimized parameters are then applied to the Elman neural network, ultimately producing values that

meet the required accuracy. The workflow is illustrated in Figure 3.

The specific steps of the CS-Elman neural network are as follows:

Step 1: Divide the data into training and testing sets, and the data is normalized using the mapminmax function. Specifically,

the inputs of the training set [u1,u2,...,ud] are normalized to the range [0, 1] according to equation (11), while the outputs of230

the training set [y1,y2,...,yn] are normalized to the range [-1, 1] according to equation (12).

' min

max min
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u u
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y y
y

y y


  


(12)

In the equations, ��' (i=1,2,...,d) represents the normalized data, while ui is the original data, with umin and umax being the

minimum and maximum values in [u1,u2,...,ud], respectively. Similarly, ��' (j=1,2,...,n) represents the normalized data, while yj

is the original data, with ymin and ymax being the minimum and maximum values in [y1,y2,...,yn], respectively.

Step 2: Construct the Elman neural network, select relevant data as input and output, and initialize the weights and235

thresholds of the neural network.

Step 3: Given the number of nests n, randomly generate n nests �0 = (�10, �20, ⋯��0)T within a given range, where the

relevant variables represent the weights and thresholds of the neural network. During the training process, optimize these

parameters to find the optimal nest positions ��0.

Step 4: Utilize the Levy flight method to update the nest positions, generating new nests �0 = (�1� , �2� , ⋯��� )T. Calculate the240

fitness of the new nests and compare them with the previous generation. If the fitness of the new nests is better, update their

positions; otherwise, retain the positions of the previous generation.

Step 5: Generate a new solution �� and compare it with the candidate solution ��. If ��>��, do not update the nest positions;

if ��>�� , update the nest positions. When updating the nest positions, also compare them with the positions of the previous

generation. Retain the new nest positions if they are better; otherwise, do not change the nest positions.245

Step 6: Return the parameters of nest positions that meet the iteration limit or error condition to the Elman neural network as

the optimal weights and thresholds. Finally, the predicted results are reverse normalized using Equation (13) to obtain the



original data range of the test set outputs.

'
max min min( ) ,j jy y y y y    (13)

In the equation, y represents the final predicted results.

The specific steps of the GWO-Elman neural network are as follows:250

Steps 1 and 2 are the same as those in the CS-Elman neural network.

Step 3: Set the parameters of the GWO algorithm, including the number of grey wolves in the population, the upper and

lower bounds of the grey wolf dimensions, the dimensions of individual grey wolf position information and the maximum

number of iterations.

Step 4: Select the fitness function, calculate the fitness, and select the optimal wolf (�), the superior wolf (�) and the inferior255

wolf (�).

Step 5: Update the positions of the remaining wolves (�), and update the parameters A, C and a.

Step 6: Map the position of the optimal wolf (�) that meets the iteration count or error condition to the weight matrix and

return it to the Elman neural network as the optimal weights and thresholds.

260

Figure 3: CS-Elman and GWO-Elman neural network flowchart.



3 Study area and data sources

3.1 Study area265

The high mountain canyon area of the Minjiang River Basin is located in Wenchuan County, Sichuan Province, China. It is a

typical high-risk area for geological disasters, particularly frequent debris flows and landslides. This basin was affected by

the Ms 8.0 earthquake on May 12, 2008 (Dong et al. 2008), leading to a substantial increase in debris sources in the valley

and an unusually intense activity of debris flows. Prior to the earthquake, there were no records of debris flow disasters in

the valley, but in recent years, there have been several large-scale debris flows. The occurrence of debris flows in this area is270

closely related to rainfall and belongs to rainfall-induced landslide debris flows. This type of debris flow is initiated by heavy

rainfall-induced slope movement, leading to the formation of debris flows (Zhou et al. 2014).

This study selects the mountainous canyon areas along both sides of the Minjiang River and Zagunao River as the study area.

The river valley depression forms a "V"-shaped canyon with the Minjiang River as the boundary, representing a typical high

mountain canyon. The location of the study area is shown in Figure 4. The terrain in this area is steep, with a maximum275

elevation difference of 4185 meters. This extreme elevation variation makes the mountains prone to gravity-induced

landslides and debris flows. Due to the low vegetation cover and concentrated rainfall during the rainy season, severe soil

erosion occurs in the area. The soil in certain localities is loose, especially after being disturbed by seismic activity, making

the soil layers even more unstable and highly susceptible to landslides and the formation of debris flows during heavy

rainfall. Its unique terrain and geological structure result in frequent heavy rainfall, loose soil, and severe soil erosion.280

Consequently, geological disasters occur frequently in this area. Debris flow disasters have occurred in multiple valleys due

to short-term heavy rainfall on July 10, 2013, August 20, 2019 and June 26, 2023, respectively (Ding and Huang 2019; He et

al. 2022; Zhang et al. 2023). Through field investigations of geological disasters, historical data, and visual interpretation of

remote sensing images, a total of 25 debris flow occurrences were identified within the study area. Their specific distribution

is shown in Figure 4.285



Figure 4: Location of study area. Source of optical background image: © Google Earth (Image capture date: January 14, 2024).

3.2 Data sources290

The data mainly used in this study are 30 scenes of Sentinel-1A descending data from January 24, 2022 to December 21,

2023 downloaded from the alaska satellite facility (ASF) (Shankar et al. 2023). The data are acquired in interferometric wide

(IW) mode, providing single look complex (SLC) images with a swath width of 250 km. The polarization mode is

vertical-vertical (VV), with an incidence angle (angle between the transmission direction and the vertical direction) of 40.98°.

The revisit period is 12 days, and the spatial resolution is 5 m*20 m (range*azimuth), which is used to obtain the time-series295

deformation information of the study area.

The auxiliary data include precise orbit determination (POD) data used to correct orbit information and improve the accuracy

of image orbits, digital elevation model (DEM) data used to eliminate the influence of terrain phase in interferometric phase

(Liao et al. 2013), google satellite images as auxiliary reference images, DEM, slope, aspect, curvature, soil type, TWI, SPI,

surface roughness, terrain relief, FVC, rainfall, lithology and vegetation type used as evaluation factors for constructing300

predictive models. The data sources are shown in Table 2. In the text, "1.07 m" represents the pixel resolution of Google

Earth. The basic information of various data types is illustrated in Figure 5. The unit "mm/a" for rainfall represents

millimeters per year.

Table 2: Data source parameter table.305

Name of data Temporality of data
Spatial

resolution
Source of data

Sentinel-1A
Descending orbit from January

24, 2022 to December 21, 2023
5 m*20 m Alaska satellite facility (ASF)

POD
Sentinel-1A image generation 21

days later
None European space agency

DEM In 2018 30 m
Japan aerospace exploration agency

(JAXA)

Google satellite images January 14, 2024 1.07 m Bigemap map downloader

Lithology and vegetation In 2008 90 m
International soil reference and

information centre

Slope, aspect, curvature, TWI, SPI,

surface roughness and terrain relief
In 2018 30 m

Processed using ArcGIS to obtain

DEM

Soil type In 2009 90 m
National cryosphere desert data

center

FVC In 2019 30 m

Using ArcGIS to process Landsat 8-9

OLT/TIRS C2 L2 data downloaded

from the Geospatial Data Cloud

Rainfall January 2022 to December 2023 30 m National earth system science data



center

310

Figure 5: Layers of various factors. (a) DEM. (b) Slope. (c) Aspect. (d) Curvature. (e) Soil type. (f) TWI. (g) SPI. (h) Surface

roughness. (i) Terrain relief. (j) FVC. (k) Rainfall. (l) Vegetation. (m) Lithology. Source of optical background image: © Google

Earth (Image capture date: January 14, 2024).315



4 Experimental results and analysis

4.1 Surface deformation monitoring experiment

Selecting the primary image in InSAR technology is crucial, and the following three factors should be considered: (1)

Temporal stability: The primary image should be chosen at a suitable time point within the monitoring period, typically320

selecting an image from the middle of the period. This ensures that subsequent images have shorter temporal baselines

relative to the primary image, reducing atmospheric effects and temporal decorrelation issues. (2) Surface features: The

surface features in the image should be stable. Avoid selecting an image from dates when large-scale surface changes

occurred, such as after major natural disasters (e.g., earthquakes, floods, landslides), as they can negatively affect the

interferogram. (3) Data quality: The quality of the image is a key factor in selecting the primary image. Ensure that the325

chosen image has no significant noise, data loss, or other disturbances. Taking into account the aforementioned factors, the

two time-series InSAR techniques select April 1, 2023 and December 26, 2022 as the master images, respectively. The

annual average deformation rates in the radar line of sight (LOS) direction for the study area from January 24, 2022 to

December 21, 2023 are shown in Figures 6 and 7, respectively. Positive values indicate uplift of the Earth's surface, meaning

deformation towards the satellite's direction, while negative values indicate subsidence, meaning deformation away from the330

satellite's direction.

Figure 6: Annual average deformation rate map based on SBAS-InSAR.
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Figure 7: Annual average deformation rate map based on PS-InSAR.

In Figure 6, the SBAS-InSAR monitoring shows uplift in the upstream areas of various debris flow gullies, such as regions A,

B, C and D, with the maximum uplift rate reaching 61.972 mm/a, located at the top of the main gully of Banzi Gully,

indicated by point P in the figure. Additionally, different degrees of uplift are observed in the Zagunao River and Minjiang340

River channels. In the downstream areas of each debris flow gully, subsidence phenomena are observed, as seen in regions E,

F, G and H, with the maximum subsidence rate reaching -95.574 mm/a, located at the confluence of the Minjiang and

Zagunao rivers, indicated by point Q in the figure. In Figure 7, the PS-InSAR technology monitors the overall deformation

rate in the study area, ranging from -78.962 mm/a to 55.023 mm/a. The monitoring effect is less satisfactory compared to

SBAS-InSAR technology in areas with low coherence, resulting in fewer retrieved deformation information and greater345

influence from the geographical environment of the study area. However, PS-InSAR detects deformation patterns similar to

those observed with SBAS-InSAR, such as uplift in regions A and D, as well as in the Zagunao River and Minjiang River

channels, and subsidence in region H. According to field investigations, a debris flow disaster occurred on June 26, 2023 due

to short-duration heavy rainfall, resulting in significant sediment deposition and uplift observed in the river channels.

For the typical deformation points P and Q, combined with rainfall data, a comparison of deformation trends is shown in350

Figure 8. Both time-series InSAR techniques monitor deformation points with roughly consistent trends exhibit nonlinear

deformation patterns that correlate with rainfall and display seasonal variations. At point P, uplift increases with increasing

rainfall, showing a distinct acceleration process. At point Q, the deformation trend is relatively flat during the rainy season,

and as the rainy season recedes, the subsidence rate begins to accelerate. Moreover, the influence of rainfall on ground

deformation is temporary, and after rainfall stops, the surface deformation will gradually return to the normal consolidation355

process.



Figure 8: Comparison of deformation trends of typical deformation points monitored by two types of time-series InSAR

techniques.360

Although there are numerical and spatial differences in the final deformation rate results obtained from the two time-series

InSAR techniques, their deformation trends are generally consistent. To validate the reliability of the data, a cross-validation

method was employed to verify the data before analysis. 300 points with the same name were randomly selected in the study

area, and the annual average deformation values monitored by SBAS-InSAR and PS-InSAR techniques were taken as the x365

and y axes, respectively, for linear regression analysis. The results are shown in Figure 9. The correlation coefficient R2=0.85

between the LOS deformation rates of the same-named points monitored by the two data sets indicates a high correlation

between the data monitored by the two InSAR techniques, demonstrating the feasibility of joint analysis using both

techniques (Liu et al. 2023).

370

Figure 9: Cross validation results of LOS deformation rate using time series InSAR technology.

In addition, the study area has high vegetation coverage, causing scattering, occlusion and interference of radar signals along

the propagation path, leading to severe decorrelation and affecting the accuracy of deformation monitoring. Therefore, the375



FVC is introduced to analyze the vegetation coverage in the study area. For areas with an FVC greater than 0.6, the

deformation points are not selected to eliminate the influence of high vegetation coverage on deformation monitoring in the

study area.

4.2 Surface deformation prediction experiment

4.2.1 The impact of CS/GWO algorithm on the performance of Elman network380

In this study, ArcGIS software is used to extract the layer data of 13 evaluation factors in the research area. In order to assess

whether these 13 evaluation factors are suitable as predictors for surface deformation in high mountain gorges, grey

relational analysis is conducted using SPSSAU software to analyze the grey relational values between each of the 13 factors

and the annual average deformation values monitored by the InSAR technology. The grey relational values are presented in

Table 3.385

Table 3: The grey relational coefficient between each factor and the deformation value.

Evaluation factor Grey relational values Evaluation factor Grey relational values

DEM 0.809 Surface roughness 0.804

Slope 0.803 Terrain relief 0.789

Aspect 0.803 FVC 0.806

Curvature 0.804 Rainfall 0.807

Soil type 0.779 Lithology 0.794

TWI 0.786 Vegetation 0.825

SPI 0.799

The grey relational values indicate a high degree of correlation between the selected 13 evaluation factors and the

deformation values. However, the final factors have not yet been selected. In order to obtain the optimal evaluation factors to390

prevent problems such as overfitting and instability caused by strong correlations between factors, a correlation matrix

analysis is conducted on each factor (Dziuban and Shirkey 1974). The results are shown in Figure 10.



Figure 10: Correlation coefficients among various factors.395

From Figure 10, it can be observed that the correlation coefficients |R| between DEM and soil type, slope and surface

roughness, terrain relief, and aspect and FVC are greater than 0.5, indicating strong correlations. Therefore, highly correlated

influencing factors are removed. Consequently, DEM, slope, curvature, TWI, SPI, FVC, rainfall, lithology and vegetation

type are selected as evaluation factors for the CS/GWO-Elman model.400

To construct a CS/GWO-Elman model using the nine selected evaluation factors and the average annual deformation rate

values extracted by InSAR technology in the study area. Using the Create Random Points tool in ArcGIS, 1000 points are

randomly selected as samples for the CS/GWO-Elman neural network, and predictions for 30 sample points are made. To

ensure the comparability of the Elman networks optimized by CS and GWO, Matlab software is used to construct the

CS/GWO-Elman network models with unified parameters. The chosen training function is trainlm, and tanh and purelin405

serve as the activation functions for the hidden and output layers, respectively. Trainlm trains feedforward neural networks

using the Levenberg-Marquardt algorithm, known for fast convergence, robustness, and excellent performance in handling

small to medium-sized problems. Tanh is a hyperbolic tangent function commonly applied in hidden layer nodes to enable

the network to learn and approximate nonlinear functions, while purelin is a linear activation function typically employed in

the output layer for regression tasks. The network training parameters are detailed in Table 4.410

Table 4: CS/GWO-Elman network training parameters.

Parameter names Setting values Parameter names Setting values

Training epochs 1000 Maximum evolutionary generations 50

Learning rate 0.01 Initial population size for CS 10

Minimum training target error 10-5 Probability of discovering a cuckoo egg by CS 0.25

Display frequency 25 Number of searching wolves in GWO 20

Momentum factor 0.01 Range of searching for wolves in GWO 30

The randomly selected samples are input into the Elman, CS-Elman and GWO-Elman models, and their predicted results are

compared with the annual average deformation rate results monitored by InSAR, as shown in Figure 11. It can be clearly415

seen that the predicted curves of the three network models are generally consistent with the InSAR monitoring curve. By

calculating the absolute error between the predicted values of each model and the monitored values of InSAR, as shown in

Figure 12, the absolute error ranges of Elman, CS-Elman and GWO-Elman models with InSAR monitoring of the annual

average deformation rate are 0.205 to 7.733 mm/a, 0.016 to 4.576 mm/a and 0.193 to 6.292 mm/a, respectively. The absolute

error range of the CS-improved Elman network is smaller. It is also evident that the absolute error curve of the CS-Elman420

prediction is closer to the horizontal axis and has a smaller amplitude, indicating better prediction results. Therefore, for



unknown areas of surface deformation, the CS-Elman model predicts surface deformation more effectively by utilizing

evaluation factors such as DEM, potentially reducing the time and technical costs associated with InSAR technology.

425
Figure 11: Comparison of the predicted values from the three models with the monitored values from InSAR.

Figure 12: Comparison of absolute errors among three models.

430

To validate the predictive performance under different optimization algorithms, the mean squared error (Hodson, Over, and

Foks 2021) and the optimal number of iterations for each group are calculated, as shown in Figure 13. In this figure,

validation refers to the model's performance on the validation set during training. The validation set is used to evaluate the

model's generalization ability and to avoid overfitting. It shows how the error (such as mean squared error) on the validation

data changes as training progresses. Best indicates the model's optimal state during training, which is the moment when the435

lowest error on the validation set is achieved. It represents the model parameters that perform best on the validation set in the

current training. Goal refers to the target error for training, which is typically a threshold set by the user. When the model's

error drops to this target value, training can be terminated early, indicating that the desired outcome has been achieved. The

optimal convergence iterations for Elman, CS-Elman and GWO-Elman networks are 19, 3 and 5 times, respectively, with

mean squared errors of 0.033, 0.020 and 0.030 mm/a, respectively. The Elman network improved by CS converges faster440



with a smaller mean squared error, validating that the CS algorithm can overcome the slow convergence and low learning

rate of Elman neural networks.

Figure 13: Mean square error and optimal iteration numbers of the three models. (a) is Elman model, (b) is CS-Elman model, (c) is445
GWO-Elman model.

To validate the reliability of prediction accuracy under different optimization algorithms, the mean absolute error (MAE)

(Chai and Draxler 2014) and mean absolute percentage error (MAPE) (De et al. 2016) are used as evaluation metrics. The

smaller the values of these evaluation metrics, the smaller the prediction error of the model, indicating a better fit to the data.450

MAE represents the average of the absolute errors between the InSAR monitoring values and the corresponding model

predicted values, calculated using the formula as equation (14). Here, � denotes the number of samples, �� represents the

InSAR monitoring values, and �� � represents the predicted values of the corresponding network.
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MAPE represents the mean absolute percentage difference between the InSAR monitoring values and the corresponding455

model predicted values, calculated using the formula as equation (15):
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The comparison of evaluation indicators for each group of data is shown in Table 5. Through comparison, it is found that

both CS and GWO algorithms can effectively improve the prediction performance and accuracy of the Elman network.

Moreover, the CS-Elman model has smaller MAE and MAPE, indicating higher prediction accuracy. Thus, it is460

demonstrated that utilizing the CS algorithm to improve the Elman neural network leads to better prediction performance and

accuracy for surface deformation in high mountain gorges.

Table 5: Comparison of evaluation metrics for the three models.

Evaluation indicators Elman CS-Elman GWO-Elman

MAE/(mm/a) 3.650 1.620 2.155

MAPE/% 44.663 21.500 29.689



465

4.2.2 Model comparison analysis experiment

To further verify the superiority of the CS-Elman model in predicting surface deformation in high mountain gorges, we

select the SVM, LSTM and GA-BP (Yang et al. 2022) models and compared them with the CS-Elman model in a

comparative experiment. In the comparative experiment, we use the same 9 factors including DEM and the time-series of

annual average deformation rates extracted by InSAR technology as data. To reduce the randomness of the experimental470

results and ensure a more comprehensive and reliable evaluation of the model's performance, 507 sample data points are

randomly reselected. Among these, 500 are used as training samples, and the remaining 7 are used for prediction. The

prediction results of each model after training are shown in Figure 14, the absolute errors between the predicted values and

the InSAR monitoring values are shown in Figure 15, and the performance comparison is shown in Table 6.

475

Figure 14: Comparison between the predicted values of each model and the monitored values from InSAR.

Figure 15: Absolute error between predicted values of each model and the monitored values from InSAR.480

Table 6: Comparison of performance metrics for each model.



Model

Evaluation indicators

MAE/(mm/a) MAPE/%
Convergence optimal

iteration times

Mean squared

error/(mm/a)

SVM 3.231 37.241% 23 0.031

LSTM 1.631 17.458% 10 0.033

GA-BP 1.189 9.521% 7 0.029

CS-Elman 0.818 9.353% 3 0.024

In Figure 14, the predicted curves of each model align closely with the InSAR monitoring curve. As shown in Figure 15 and

Table 6, the prediction errors of each model are within 7 mm/a. Compared to other models, the CS-Elman model exhibits the485

smallest range of prediction absolute error, ranging from 0.071 to 1.843 mm/a. Additionally, the CS-Elman model has a

lower MAE of 0.818 mm/a and MAPE of 9.353%, both smaller than those of other models, indicating higher prediction

accuracy. Moreover, the CS-Elman model demonstrates faster convergence speed and smaller mean squared error, validating

its superiority and effectiveness in predicting surface deformation in high mountain gorge areas.

The CS-Elman model is superior to traditional models and is more suitable for surface deformation prediction for the490

following reasons: (1) Model architecture advantage: The CS-Elman model combines the Cuckoo Search (CS) algorithm

with the Elman neural network. The CS algorithm’s global search capability optimizes the Elman network’s parameters,

thereby improving the model’s convergence speed and prediction accuracy. (2) Nonlinear modeling capability: Unlike

traditional linear models, the CS-Elman model captures nonlinear relationships more effectively. Surface deformation is

often influenced by multiple complex factors, and the deep learning structure of the CS-Elman model enables it to handle495

these nonlinear features effectively. (3) Adaptability and flexibility: The CS-Elman model is highly adaptable and can adjust

its parameters based on different input features, such as DEM, rainfall, and seismic activity. This allows the model to

maintain high prediction performance under various geographical and climatic conditions. (4) Comprehensive factor

evaluation: The model can consider multiple evaluation factors simultaneously, providing more comprehensive prediction

results. In contrast to traditional models that rely on a single or limited number of variables, CS-Elman excels in multi-factor500

analysis. (5) Reliability of validation results: Experimental results show that the CS-Elman model outperforms traditional

models in terms of accuracy and stability. By comparing with InSAR monitoring results, it effectively reduces prediction

errors.

4.2.3. Deformation prediction analysis

Through the above experimental analysis, it has been verified that the Elman neural network optimized by the CS algorithm505

has superior predictive performance. Therefore, a time-series deformation prediction is conducted on the typical deformation

points P and Q. Since the same deformation point is independent of DEM, slope, curvature, FVC, lithology and vegetation

type, time-series data such as TWI, SPI and rainfall are selected. A CS-Elman model is constructed using the time-series



deformation variables monitored by InSAR technology. A total of 26 periods (with each period being 24 days) of data from

January 24, 2022 to September 16, 2023 are selected as training samples, and the CS-Elman model is used to predict the510

deformation values for the subsequent 4 periods. The predicted deformation values compared with the InSAR monitoring

values are shown in Table 7.

Table 7: Comparison between predicted values and monitored values.

Periods 20231010 20231103 20231127 20231221

Point P

InSAR monitoring values/mm 107.391 110.315 117.408 120.557

CS-Elman predicted values/mm 111.354 112.032 118.183 117.184

Absolute error/mm 3.963 1.717 0.775 3.373

Point Q

InSAR monitoring values/mm -186.347 -192.725 -194.912 -195.748

CS-Elman predicted values/mm -187.706 -190.148 -194.229 -200.528

Absolute error/mm 1.359 2.577 0.683 4.780

515

According to Table 7, the average absolute errors between the predicted values and monitored values for points P and Q are

2.457 mm and 2.350 mm, respectively. According to the Technical Specification for Ground Subsidence Measurement

(DZ/T0154-2020) released by the ministry of natural resources of China, the accuracy of InSAR deformation is ±10 mm, and

the prediction accuracy meets the requirements of the measurement specifications. Thus, it is confirmed that the combination

of time-series InSAR technology and the CS-Elman algorithm can effectively monitor and predict the deformation values of520

points in high mountain gorges.

To validate the performance of the CS-Elman model in predicting future deformation, let the InSAR deformation time series

be denoted as h={hj}, where j=1, 2, ..., n, and bj represents the InSAR deformation observation at time j. H and F represent

the input data and predicted data, respectively. Using j consecutive subsidence observations, the subsidence at a delay of

several time steps, with Delay=1, is predicted. The prediction process follows a recursive forecasting pattern, where the525

predicted result F from the previous time step is added to the input dataset H to form a new dataset, which is then used to

predict the new F.

Based on the final deformation data from December 21, 2023, the CS-Elman model was used to obtain surface deformation

predictions for the next year at points P and Q through a recursive forecasting approach, as shown in Figure 16. The

CS-Elman predictions show a fluctuating trend over time. For point P, approximately six months later, the predicted values530

level off, indicating that deformation remains stable. For point Q, about six months later, during the rainy season, the

predicted deformation trend sharply declines, which does not align with the deformation trend monitored by InSAR analysis.

The results indicate that the CS-Elman model has short-term predictive capabilities but is not suitable for long-term

prediction, as long-term forecasting may lead to model failure. Therefore, the proposed CS-Elman model is appropriate for

short-term surface deformation prediction, with a predictive timescale of around six months. The predicted deformation can535



be used to assist in decision-making and help prevent and mitigate geological hazards caused by surface deformation.

Figure 16: Predicted surface deformation results for point P and point Q for the next year (January 2024 to December 2024).

540

In this study, the CS-Elman model was used to obtain short-term surface deformation predictions for the next six months in

the study area, as shown in Figure 17. Over the next six months, the maximum cumulative surface uplift in the area will

reach 120.913 mm, indicating a reduction in the degree of deformation. Specifically, the upstream sections of the debris flow

channels show an uplift trend, while the mid and downstream sections exhibit varying degrees of subsidence, which could

lead to geological disasters with the onset of the rainy season. The short-term surface deformation predictions for the high545

mountain canyon area are of great significance for the prevention and control of geological disasters, such as debris flows.

Figure 17: Predicted surface deformation results for the study area over the next six months (January 2024 to June 2024).

550

5 Conclusion

This study proposes an improved prediction method for surface deformation in high mountain gorges using the multi-factor



and multi-temporal approach based on surface deformation values monitored by time-series InSAR technology and factors

such as DEM. It effectively addresses the issues of excessive dependence on deformation data and singularity in existing

prediction models. Experimental comparisons reveal the following findings:555

(1) The correlation coefficient R2 between the LOS deformation velocities of the same points monitored by SBAS-InSAR

and PS-InSAR technologies is 0.85, indicating a high level of correlation and demonstrating the feasibility of jointly

analyzing surface deformation using these two techniques.

(2) Predictions for 30 sample sets indicate that both CS-Elman and GWO-Elman models exhibit improved performance

compared to Elman alone, demonstrating that both CS and GWO algorithms effectively enhance the predictive performance560

and accuracy of the Elman model. Specifically, the CS-Elman model shows smaller absolute errors, fewer optimal

convergence iterations, and lower mean square errors compared to the GWO-Elman network. The MAE for CS-Elman and

GWO-Elman models are 1.620 mm/a and 2.155 mm/a, respectively, while the MAPE are 21.500% and 29.689%,

respectively. The smaller MAE and MAPE of the CS-Elman model indicate higher prediction accuracy. This validates that

utilizing the CS algorithm to improve the Elman model results in better predictive performance and effectiveness for surface565

deformation in high mountainous areas.

(3) By comparing the optimal CS-Elman model with SVM, LSTM and GA-BP, we verify the advantages and effectiveness

of the model in predicting surface deformation in high mountainous areas. Utilizing time-series data such as TWI, SPI and

rainfall, combined with the time-series deformation variables monitored by InSAR technology, the deformation trend

predictions for typical deformation points P and Q show that the average absolute errors for the 4-period predictions570

compared to the monitored values are 2.457 mm and 2.350 mm, respectively. This validates that using time-series InSAR

technology and the CS-Elman model can effectively monitor and predict the deformation values of a specific point.

(4) Based on the time series data of P point and Q point from 2022 to 2023, the CS-Elman neural network was used to

predict the deformation for 2024. The analysis revealed that the CS-Elman model tends to fail in long-term predictions,

particularly after six months. Therefore, the CS-Elman model is suitable for short-term predictions, with a short-term575

prediction scale of approximately six months. Using the CS-Elman model to forecast deformation in the study area over the

next six months, the results show a maximum uplift deformation of 120.913 mm, which could trigger geological disasters

due to heavy rainfall. Appropriate preventive measures should be taken.

The method in this paper validates that the CS-Elman model has a small error compared to InSAR monitoring technology

and is suitable for short-term monitoring. Therefore, in practical applications, local evaluation factors such as DEM can be580

used as inputs to the CS-Elman model, with the annual average deformation rate as the output. Based on the IUGS/WGL

(1995) geological hazard intensity classification criteria, with 2 mm/a and 16 mm/a as thresholds, regions where the

predicted deformation rate exceeds 16 mm/a should be identified. Protective measures should be taken to prevent geological

disasters in these areas.



The methodology presented in this paper, while comprehensive in considering influencing factors and time-series data, also585

has some limitations. For instance, the lack of concurrent leveling data prevents accurate validation of the results obtained.

Moreover, the study only provides a preliminary investigation into surface deformation in the Minjiang River Basin, with

limited research on typical deformation areas. Subsequent studies will further explore whether the CS-Elman model is

applicable to deformation prediction in other regions. Additionally, the accuracy of time-series InSAR monitoring is

significantly influenced by the resolution of the DEM. Therefore, future efforts will focus on utilizing higher-resolution590

DEM to enhance the accuracy of subsidence monitoring. Additionally, we will consider factors such as distance to rivers,

faults, and roads as evaluation factors in the future. We will also improve optimization algorithms like CS by incorporating

long short-term memory networks (LSTM), autoregressive integrated moving average models (ARIMA), and exponential

smoothing models to predict future deformation.

To address the issue of vegetation affecting the accuracy of deformation monitoring, the following measures will be taken in595

the future to mitigate vegetation interference: (1) Data preprocessing: Use image processing techniques, such as denoising

and image segmentation, to identify and remove areas affected by vegetation interference. (2) Choosing the right timing:

Collect data during different seasons of vegetation growth to select periods with minimal interference. (3) Multi-source data

fusion: Combine different data sources, such as optical remote sensing and LiDAR, to improve monitoring accuracy.
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