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Abstract. Although rainfall-triggered landslides are initiated by subsurface hydro-mechanical processes related to the 10 

loading, weakening, and eventual failure of slope materials, most landslide early warning systems (LEWS) have relied solely 

on rainfall event information. In previous decades, several studies demonstrated the value of integrating proxies for 

subsurface hydrologic information to improve rainfall-based forecasting of shallow landslides. More recently, broader access 

to commercial sensors and telemetry for real-time data transmission has invigorated new research into hydrometeorological 

thresholds for LEWS. Given the increasing number of studies across the globe using hydrologic monitoring, mathematical 15 

modeling, or both in combination, it is now possible to make some insights into the advantages versus limitations of this 

approach. The extensive progress demonstrates the value of in situ hydrologic information for reducing both failed and false 

alarms, through the ability to characterize infiltration during, as well as the drainage and drying processes between major 

storm events. There are also some areas for caution surrounding the long-term sustainability of subsurface monitoring in 

landslide-prone terrain, as well as unresolved questions in hillslope hydrologic modeling, which relies heavily on the 20 

assumptions of diffuse flow and vertical infiltration but often ignores preferential flow and lateral drainage. Here, we share a 

collective perspective based on our previous collaborative work across Europe, North America, Africa, and Asia to discuss 

these challenges and provide some guidelines for integrating knowledge of hydrology and climate into the next generation of 

LEWS. We propose that the greatest opportunity for improvement is through a measure-and-model approach to develop an 

understanding of landslide hydro-climatology that accounts for local controls on subsurface storage dynamics. Additionally, 25 

new efforts focused on the subsurface hydrology are complementary to existing rainfall-based methods, so leveraging these 

with near-term precipitation forecasts is also a priority for increasing lead times. 

1 Subsurface hydrologic information improves landslide forecasting 

Hydrology plays an important role in shallow landslide initiation (Campbell, 1975; Lu and Godt, 2013; Bogaard and Greco, 

2016); this has been demonstrated through many decades of monitoring hydrologic response and slope stability on individual 30 

hillslopes and zero-order basins around the world (e.g., Sidle and Swanston, 1982; Sidle and Tsuboyama, 1992; Torres et al., 

1998; Godt et al., 2009; De Vita et al., 2013; Liang, 2020; Marino et al., 2020; Ashland, 2021). These observations are 

supported by well-established theory in soil physics and geomechanics, whereby the addition of water to porous media 

changes their strength and weight, contributing to a force imbalance and triggering slope failure (e.g., Terzaghi, 1943). 

Theoretical advances have supported the development of mathematical models to numerically simulate – with varying 35 

degrees of complexity – the conditions leading up to these critical conditions (e.g., Montgomery and Dietrich, 1994; Terlien, 

1997; Van Beek, 2002; Brien and Reid, 2008; Baum et al., 2010; Lehmann and Or, 2012). Despite this conceptual 

understanding and advanced model development, most local and regional landslide early warning systems (LEWS) rely on 

rainfall inputs alone, typically with the well-worn intensity-duration (ID) threshold approach (Caine, 1980; Guzzetti et al., 

2008; Brunetti et al., 2018; Segoni et al., 2018) and the related event-duration (ED) threshold (Innes, 1983; Guzzetti et al., 40 

2020). These are built upon the assumption that if it rains hard enough for long enough in a landslide-prone area, the storm 
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event will trigger slope failures. When event-based rainfall thresholds are used alone, the hydrologic conditions preceding 

the triggering and the associated antecedent wetness have no bearing on predicted slope stability. The negligible role of 

previous rainfall, evapotranspiration, and hillslope drainage may or may not be true based on local variations (e.g., Thomas 

et al., 2020). Furthermore, these underlying assumptions must be questioned in the context of a changing climate and non- 45 

static (a)biotic terrain conditions (Ehret et al, 2014), where multiple competing factors related to infiltration, drainage, and 

evapotranspiration interact to influence predisposing factors and triggering conditions (Gariano and Guzzetti, 2016; Jakob, 

2022).  

 

Although broadly applicable, with many centuries of rainfall data underpinning its implementation, the generalized ID 50 

approaches rely on several conceptual flaws (refer to Bogaard and Greco, 2018) and lack specificity. As the benchmark 

standard, these approaches have succumbed to inertia with few novel methodological advances since their early inception 

(e.g., Caine, 1980). Still, a handful of studies over many decades and across a variety of settings have shown that using 

rainfall data to develop well-informed proxies for seasonality or hillslope antecedent wetness can improve landslide 

prediction with ID thresholds (e.g., Campbell, 1975; Wilson and Wiezorek, 1995; Crozier, 1999; Glade, 2000; Godt et al., 55 

2006; Napolitano et al., 2016). Calculation of these proxies often reflect the basics of infiltration and soil-water storage, but 

consistently fall short of capturing the complex wetting and drainage dynamics observed in the variably saturated near 

surface. Similarly, satellite and remote sensing products capture the seasonal shifts in landscape wetness that are broadly 

relevant for landslide potential (Felsberg et al., 2021; Zhao et al., 2021; Distefano et al., 2023), but their coarse resolution 

and considerable latency fail to capture the rapid subsurface dynamics on hillslopes that are critical to forecasting landslide 60 

potential (Thomas et al., 2019). Electrical resistivity tomography has revealed nuances related to subsurface moisture 

patterns in landslide settings (e.g., Perrone et al., 2014; Uhlemann et al. 2017), but these hydrogeophysical methods remain 

cumbersome to implement and their sampling rates are currently too slow to capture the rapid unsaturated zone responses 

that trigger shallow landslides (Nimmo et al., 2021). Recent progress with automated empirical modeling shows some 

promise in recreating hillslope hydrologic response (Orland et al., 2020) and highlight the importance of rainfall over 65 

specific terrain attributes in predicting spatiotemporal populations of landslides (Mondini et al., 2023). However, in an 

uncertain future with increasing landscape disturbances, climate change, and non-stationary responses in hydrologic systems, 

the next generation of LEWS can be advanced through incorporating our mechanistic understanding the hydroclimatology of 

triggering conditions.  

 70 

Recently, the emergence of the “Internet of Things” has provided further motivation for integrating hydrologic information 

to improving LEWS predictive performance because subsurface monitoring data can be accessed in real-time to understand 

evolving hillslope wetness conditions (Mirus et al., 2018a; Abraham et al., 2020; Piciullo et al., 2022). This approach has the 

potential to outperform rainfall-based estimates of antecedent wetness and imminent triggering conditions because in situ 

data can capture the true hillslope hydrologic response associated with landslide initiation. A handful of studies that integrate 75 

different types of subsurface measurements directly into landslide initiation thresholds show some promising results (Mirus 

et al., 2018b; Zhao et al., 2019; Marino et al., 2020; Wicki et al., 2020; Abraham et al. 2021; Pecoraro and Calvello, 2021); 

their success reflects the understanding of the relevant hydrologic processes for their region of interest. Despite the many 

advances and limitations of current approaches to LEWS (refer to reviews by Guzzetti et al., 2012, 2020; Stähli et al., 2015; 

Piciullo et al., 2018), new research on real-time hydrometeorological thresholds is still an emerging field (Greco et al., 80 

2023). No guidelines have been established for developing a reliable LEWS that is informed, at least in part, by real-time 

hydrological information. Considering the first action in the Kyoto Landslide Commitment 2020 involves improving the 

precision and reliability of landslide warning (Sassa et al., 2023), we propose that integrating insights from in situ hydrologic 

measurements into LEWS is essential. 
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 85 

1.1 Continuous field monitoring for comprehension of triggering processes 

The complex interaction between hydrological and mechanical processes results in many possible ways of adding water to 

transition from stable to unstable conditions, leading to very different types of triggering conditions for seemingly similar 

settings (e.g., Fusco et al., 2022). These depend largely on how geology, climate, geomorphology, vegetation, and landscape 

disturbances have influenced the geometry and hydromechanical properties of soils, vegetation distribution, and the 90 

geometry of hillslope source areas where landslides initiate (Sidle et al., 2017). Every hillslope is unique, so we cannot 

characterize the true subsurface heterogeneity and corresponding controls on landslide triggering across a landscape, but 

hydrological information provides a foundation of comprehension to inform landslide forecasting across contrasting 

locations. For example, in areas with strong seasonality the antecedent soil-moisture conditions may be critical for refining 

landslide initiation thresholds (e.g., Godt et al., 2006; Mirus et al., 2018a,b; Thomas et al., 2018a; Wicki et al., 2020, Marino 95 

et al., 2021). In contrast, some regions typically remain quite wet, and prior conditions seem to add very limited value in 

constraining landslide potential (Thomas et al., 2020; Patton et al., 2023). During the most recent decades, soil moisture has 

become increasingly easy to monitor in situ, but other measured variables such as groundwater levels have also been used 

quite effectively (Wei et al., 2019; Wei et al., 2020; Illien et al. 2021; Marino et al. 2021; Uwihirwe et al., 2022; Roman 

Quintero et al., 2023). As a state variable, analysis of volumetric water content profiles can reveal whether the soil is 100 

accommodating infiltration through changes in storage or if it has exceeded field capacity and is allowing more rapid vertical 

fluxes to the saturated zone below. In contrast, shallow groundwater fluctuations (when they can be measured) reflect not 

just water added from vertical infiltration, but also the three-dimensional (3D) subsurface flow field from upslope 

accumulation to downslope drainage. Of course, other hydrologic state variables may be used as proxies for antecedent 

conditions such as snowmelt (Mostbauer et al., 2018; Hinds et al., 2019; Wayllace et al., 2019) and catchment storage 105 

(Ciavolella et al., 2016; Marino et al., 2022).   

 

It is difficult to know a priori which conditions and variables are important for an area of interest, but even a few years of 

hydrologic monitoring can improve understanding of the variably saturated hillslope responses in stormflow generation (e.g., 

Beven, 2012; Blume and van Mereveld, 2015) and landslide initiation or reactivation (e.g., Godt et al., 2009; Mirus et al., 110 

2017). Accounting for regionally specific controls on infiltration and hillslope drainage dynamics could help improve 

hydrometeorological thresholds by reducing failed alarms, such as those produced by relatively modest storms on already 

very wet soils, as well as lowering the number of false alarms, such as those related to heavy precipitation on dry soils. 

Therefore, to develop the next generation of LEWS, expanding hillslope hydrologic monitoring from a handful of existing 

networks to a wider variety of landslide prone terrain worldwide would be highly beneficial. The potential value of long-115 

term hydrologic measurements can be inferred from recent advances in characterizing landslide triggering based on 

identifying rainfall anomalies or recurrence intervals (e.g., Kirschbaum and Stanley, 2018; Marc et al., 2022). A greatly 

expanded and openly accessible network of hydrologic observations would further supplement such approaches using 

relative hillslope wetness to support new inferences about triggering potential.  

 120 

However, established guidelines for landslide hydrological monitoring are lacking, and providing general advice on how to 

select appropriate sites and instrumentation equipment is exceptionally difficult. This challenge is compounded by 

subsurface heterogeneity that cannot be known a priori and logistical considerations that often influence instrument 

placement (e.g., site access and safety consideration on steep slopes). These nuances are not emphasized in publications or 

presentations, so in practice the many seemingly subjective elements in such studies reflect the crucial role of expert 125 

judgement. Thus, a first step for hydrologic monitoring is developing a strong conceptual model of local conditions at the 
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site of interest, based on available observations including geologic maps, soil classifications, landscape morphology, climate, 

and even records of rainfall and streamflow from the region. We also stress that measurement of the specific hydrologic state 

variables (i.e., soil moisture, versus groundwater levels, versus soil suction) or the precise values is not critical. Instead, 

measurements that capture the relative change in hillslope wetness conditions often provide the most informative variables 130 

(e.g., Wicki et al., 2020). In particular, the most useful measurements reflect the widest variability during and between 

landslide events, which reveals the most about hillslope storage dynamics.  

 

The influence of spatial variability – as well as the difficulty in deciding what to measure and where – can be demonstrated 

anecdotally using data from the USGS landslide monitoring site in Sitka, Alaska (Smith et al., 2023). This includes 135 

volumetric soil water content and positive pore-water pressures measured in two shallow soil pits that are less than 10 meters 

apart from each other on a steep hillslope. The period shown (Figure 1) encompasses responses to several major storm events 

that triggered landsliding across the region, one of which ultimately culminated in a fatal landslide in Haines, Alaska (refer 

to Darrow et al., 2022), roughly 200 kilometers to the northeast of the monitoring site in Sitka. In Soil Pit 1, the matric 

potential and soil-moisture sensors show some variations in near-surface conditions and flashy piezometer response only 140 

during peak rainfall. Less than 10 meters downslope, the near surface in Soil Pit 2 is persistently wet with continuous 

shallow groundwater fluctuations throughout the period. Thus, for informing LEWS development, the largely absent pore 

pressure measurements in Soil Pit 1 might seem of limited value compared to the soil moisture record for assessing 

antecedent conditions. In contrast, Soil Pit 2 clearly shows the gradual elevation in groundwater levels for successive 

landslide producing storms, but consistently high soil moisture values with no valuable information. Thus, the value of soil 145 

moisture in the unsaturated zone versus pore-water pressures in the shallow saturated zone would depend entirely upon the 

location of the soil pit within the landscape, which is difficult to assess from the landscape position alone. However, 

together, instrumentation in these two soil pits reveals a potential mechanistic explanation for the shallow landslides and 

debris flows around Sitka: well drained hillslopes remain consistently wet and support disconnected zones of perched 

saturation, so landslides tend to occur once these perched saturated zones connect across broader areas of steep hillslopes 150 

and their drainage capacity is overwhelmed by consistently high rainfall input. 

 

 

 

Figure 1: Climatic conditions and hydrologic variables in two soil pits (SP1 and SP2) on a steep hillslope above Sitka, in southeast 155 
Alaska, observed during a sequence of large storm events in October - December 2020; approximate timing of landsliding across 
the region is shown by the red-transparent bars. Note: near-real-time plots of data are available for situational awareness at 
https://usgs.gov/programs/landslide-hazards/science/sitka-ak.  
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2 Understanding the current limits to hydrometeorological thresholds  

The major benefits for improving comprehension can be tempered by acknowledging several under-appreciated issues with 160 

using in situ monitoring for landslide forecasting. First, the return period of relatively infrequent (but highly destructive) 

landslide events is often longer than the typical life expectancy of subsurface hydrologic monitoring equipment. Broad 

estimates of the rainfall recurrence needed to trigger widespread landsliding events across the globe range from a variable 

95th percentile (Kirschbaum and Stanley, 2018) to 10-year anomalies (Marc et al., 2022), but on these timescales, 

instrumentation often require substantial maintenance that is resource intensive or may exceed their manufacturer-reported 165 

life-expectancies, experience the onset of electronic drift, or succumb to destruction from wildlife or vandalism. Indeed, 

there are substantial elements of chance that allowed previous researchers to capture the hydrologic response conditions 

during a natural landslide initiation event (Montgomery et al., 2002; Godt et al., 2009; Mirus et al., 2017). Whereas 

instruments to measure groundwater tables, streamflow, and precipitation can potentially be replaced as needed, volumetric 

water content sensors must be placed in relatively undisturbed soil (Caldwell et al., 2022), which means that when sensors 170 

fail, they cannot be readily exchanged in the same place without disturbances to the porous media itself. Installation of pore-

pressure sensors vary, with some favoring direct contact with the porous media (e.g., Smith et al., 2023) and others using 

standpipe piezometers (e.g., Thomas et al., 2018b) that potentially allow sensors to be exchanged more easily. Although 

interoperability across measurement types presents a potential challenge to the long-term sustainability of a global near-real-

time hydrologic monitoring network to inform LEWS, useful hydrometeorological thresholds can be developed by 175 

intelligently leveraging existing hydrologic monitoring networks. In particular, observed records can be extended with a 

measure-and-model approach, whereby shorter periods of data along with measured hydraulic and mechanical properties can 

inform robust models of the hydrologic conditions related to slope failure (e.g., Ebel et al., 2008; Thomas et al., 2018a; 

Wicki et al., 2021; Uwihirwe et al., 2022). Even if hillslope hydrologic modeling has its own problem areas (refer to 

discussion below) it is likely the most sustainable way to synthesize hydrologic information across space and time. 180 

 

Second, we accept that in situ subsurface instrumentation favors monitoring precise variations in time rather than capturing 

broader spatial patterns, and therefore shares similar limitations to any other point measurements, such as rain gages. As with 

all measurement networks, some expert judgement is needed to design and select a site for subsurface instrumentation, 

which influences the data collected and corresponding conclusions that can be inferred. Numerous studies related to 185 

subsurface stormflow response used distributed measurements to identify very localized processes that govern hillslope-

hydrologic responses such as the role of irregular subsurface topography on “fill-and-spill” processes (Tromp-van Meerveld 

and McDonnell, 2011), heterogeneous soil profiles and weathering (Zimmer and Gannon, 2018), and preferential flow 

(Beven and Germann, 1982). However, the same is the case for rainfall measurements, which must rely on radar and satellite 

estimates of rainfall variability to determine spatial patterns at relatively coarse scale.  190 

2.1 Extrapolating across spatial and temporal scales 

It may be even more difficult to extrapolate subsurface hydrologic response dynamics derived from one soil profile across a 

heterogeneous landscape than atmospheric processes such as rainfall intensities, so some clear advances in remote sensing 

methods may ultimately be informative for landslide modeling. At the scale of tens to hundreds of meters, cosmic ray 

neutron sensors have the capacity to estimate changes in relative hillslope wetness between storms (e.g., Franke et al., 2022), 195 

yet these methods remain largely untested for landslide studies in steep, densely vegetated terrain. At the scale of tens to 

hundreds of kilometers, distributed estimates of soil moisture from remote sensing provides global coverage but falls short of 

capturing the temporal variations observed in situ that are critical for precise landslide forecasting (e.g., Thomas et al., 2019). 

Despite the unknowable heterogeneity in the subsurface, one of the greatest opportunities for hydrometeorological threshold 
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improvement is to use accurate temporal dynamics from in situ observations to inform improved landslide modeling across 200 

the larger spatial footprints at hillslope, watershed, and regional scales. A mechanistic understanding of landslide triggering 

conditions associated with different hydrologic responses would also help constrain the spatial extent over which different 

hydrometeorological thresholds apply. 

2.2 Alternative hydrometeorological threshold formulations 

Selection of statistical criteria for hydrometeorological threshold optimization can influence the balance between failed and 205 

false alarms for a given threshold formulation (e.g., Conrad et al., 2021), but a thorough discussion of uncertainty and 

performance criteria (e.g., Piciullo et al., 2020) is outside of the scope of this perspective. Instead, we address some 

informative contrasts between the formats of hydrometeorological thresholds derived using contrasting methods and data 

inputs (Figure 2). The deterministic threshold (Fig. 2, purple) is based on millions of simulated events from a one-

dimensional (1D) infiltration model calibrated using a few positive pore-water pressure measurements and evaluated with 210 

landsliding events from the San Francisco Bay Area, California (Thomas et al., 2018a). This threshold lacks a functional 

format, but one could theoretically be developed for its convex form, with rapidly decreasing stability at higher antecedent 

wetness and unconditionally unstable conditions above roughly 0.6 saturation. The format of a bilinear threshold (Fig. 2, 

blue) was identified empirically and optimized using receiver operating characteristics with numerous landslide events and 

years of hydrologic monitoring in the Pacific Northwest of Washington and Oregon (Mirus et al., 2018a,b). It is certainly 215 

over-simplified, but the convenient functional format has led to its implementation in other settings such as data sparse 

Rwanda (Uwihirwe et al. 2022) and testing of satellite-based thresholds in data-rich parts of California (Thomas et al, 2019).  

 

 

Figure 2: Different formats of hydrometeorological thresholds for landslide initiation developed based on empirical interpretation 220 
(blue) shown with bi-linear thresholds optimized using several years of monitoring data and landslide inventories (Mirus et al., 
2018b), versus theoretical understanding (purple) based on a deterministic method using infiltration modeling and millions of 
synthetic storm events (Thomas et al., 2018a). The deterministic threshold shows unconditionally unstable conditions for excessive 
rainfall or high saturation levels. In contrast, empirical thresholds indicate that excessive rainfall on dry soils will not trigger 
failures, whereas even at highest observed saturations moderate rainfall is still needed to trigger failures. Heuristically, a general 225 
threshold that accommodates both theoretical understanding and empirical observations seems more reasonable. 

 

The insight that the deterministic versus empirical approaches support entirely different functional formats of 

hydrometeorological thresholds raises the question of whether one or the other is more correct, and why they vary so 

distinctly. The deterministic thresholds reflect our limited ability to quantify the complex storage dynamics during landslide 230 

events, and not necessarily all the processes relevant to infiltration and drainage, which results in considerably broad 
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conditions that are unconditionally unstable. On the other hand, the empirical threshold format was selected based only on 

the conditions we have observed thus far and does not necessarily represent all the relevant possibilities. In a recent paper, 

Palazzolo et al. (2023) propose a hydrometeorological threshold using antecedent soil moisture versus rainfall intensity that 

exhibits a similar format to our deterministic threshold at low antecedent wetness combined with a constant rainfall intensity 235 

cutoff for higher saturations just like the empirical bilinear threshold. Earlier studies had tested linear models that are similar 

to the simple formulation used in rainfall-only thresholds, which also led to improvements (Mirus et al., 2018a; Marino et al., 

2020).  

 

Overall, these sparse examples of contrasting formats represent just some of the results emerging from recent research into 240 

hydrometeorological thresholds, but they raise two important issues. First, that there are observed storage and drainage 

processes that our hydrological models do not capture (i.e., known conceptual limitations), and second that there are 

conditions we have not yet observed and are difficult to predict (i.e., unknown range of responses). For example, when the 

vast majority of both triggering and non-triggering events exhibit correlation between antecedent wetness and rainfall 

accumulation (e.g., Scheevel et al. 2017; Palazzolo et al., 2023), it is particularly difficult to project responses to 245 

unprecedented rainfall on very dry antecedent soils. Heuristically, we would expect a more generalized threshold that 

considers the uncertainty in triggering conditions and reflects our conceptual understanding that either more rain or wetter 

antecedent conditions should each increase the likelihood of landsliding (Fig. 2, red). However, it may be that further studies 

reveal no universally superior format for hydrometeorological thresholds, and that local practices and priorities will 

determine what is used operationally, depending on data availability, system expectations, and risk tolerances. 250 

2.3 Limits of process understanding 

Three-dimensional, fully coupled surface-subsurface hydrologic models have emerged as a relatively new method for 

quantifying the hydrogeomorphic processes that contribute to landslide initiation (Loague et al., 2006; Mirus et al., 2007; 

Ebel et al., 2008). Now, extensive databases on soil geometry and textural classifications (e.g., SSURGO, 2024), novel 

pedotransfer functions (e.g., Lehmann et al., 2021), high-resolution continental-scale DEMS (e.g., 3DEP: USGS, 2019), and 255 

comprehensive precipitation databases (e.g., IMERG: Huffman et al., 2015) could, in theory, facilitate using physics-based 

approaches, both conceptual and deterministic, to develop hydrometeorological thresholds for settings all over the globe 

(e.g., Thomas et al., 2018a; Fusco et al., 2019; Lehmann et al., 2019). However, theoretical gaps in hillslope hydrologic 

modeling remain a major obstacle. Well-calibrated infiltration models designed to capture observed landslide initiation 

processes still struggle to simulate the continuous soil moisture dynamics between events (Thomas et al., 2018c; Wicki et al., 260 

2021; Piciullo et al., 2022) or the influence of complex soil structures (Mirus, 2015; Fatichi et al., 2020).  

 

Regardless of their high computational expense and data demands for parameterization, the reality is we still do not fully 

comprehend the physics of variably saturated subsurface flow through complex landscapes. The equation used to simulate 

diffusive flow through variably saturated soils has been around for quite some time (Richards, 1931), but infiltration models 265 

based on the Richards’ equation cannot produce results that are consistent with observations of non-sequential wetting fronts 

(e.g., Graham and Lin, 2011) or preferential flow in the unsaturated zone (Nimmo, 2012, 2020; Beven and Germann, 1982, 

2013). These localized hydrological processes combined with subsurface heterogeneity may explain why some hillslopes fail 

and why other adjacent slopes remain stable, and hence may explain some degree of the variability and uncertainty in 

landslide triggering conditions. Such questions remain largely academic as this degree of detail is not necessary (or even 270 

achievable) to provide useful and actionable information for landslide loss reduction. Instead, we can focus on more practical 

modeling and comprehension of hydroclimatology with representative state variables to reduce failed and false alarms.    
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Ultimately, landslides occur at some point after the initiation zones fill up with infiltration at a rate faster than they can drain. 

Although the infiltration component of landslide triggering largely involves largely vertical 1D percolation of precipitation 275 

through unsaturated soils, stormflow responses involve 3D processes including lateral flow diversion and drainage that can 

either enhance or reduce landslide potential. These processes are controlled not just within the soils where shallow landslides 

initiate, but by complex flow paths in the underlying saprolite, weathered bedrock, and even fracture flow through intact 

bedrock. Although robust physically based models still struggle to fully capture those two competing processes due to both a 

lack of data and a lack of process understanding, further expansion of simpler conceptual models that are informed entirely 280 

by monitoring data such as a leaky bucket (e.g., Wilson and Wiezorek, 1995), wetness indices (e.g., Godt et al., 2006), 

source-responsive methods (e.g., Mirus and Nimmo, 2013) or empirical approaches (e.g., Orland et al. 2020) may be 

beneficial. These would have the greatest impact if they can leverage long-term monitoring data to capture the critical 

conditions when vertical infiltration exceeds drainage during major storm events, as well as the effect of the landscape-scale 

storage dynamics during and between such events. Further iterations of measurement-model comparisons would be helpful 285 

to determine how we can better represent these two competing infiltration and drainage processes in a way that is 

representative enough to improve landslide forecasting. 

2.4 Limits of observational datasets 

The wide availability of precipitation records, going back centuries in many cases, paired with the limited frequency of 

landslide events, might lead many to believe that there are no surprises and that rainfall thresholds are the most robust and 290 

achievable route to inform LEWS. However, the challenges with balancing failed and false alarms in virtually all landslide 

forecasts indicate that there are processes we have not understood and conditions we have not yet observed. For example, the 

hydrometeorological threshold models discussed in Figure 2 were developed without any observations of very large storms 

on very dry soils, and yet that is potentially the combination of conditions that may influence shallow landsliding in a 

changing climate (Gariano and Guzzetti, 2016).  295 

 

Indeed, the literature includes many different assertions about what to expect in a warming world for different flavors of 

landslides (Cannon and DeGraff, 2009; Bennett et al., 2016; Coe et al., 2016, 2018; Parker et al., 2016; Mirus et al., 2017; 

Handwerger et al., 2019; Kirschbaum et al., 2020). The degree to which drier soils from elevated evapotranspiration may 

balance out the effects of increased frequency and intensity of extreme meteorological events remains unclear. Thus, an 300 

important challenge is to develop mechanistic understanding that would be applicable in a changing climate to inform LEWS 

(e.g., Ehret et al., 2014). This includes understanding of how the combination of hydraulic properties such as water-retention 

curves, porosity, and saturated hydraulic conductivity influence hillslope storage and drainage dynamics under different 

topographic settings (e.g., Mirus and Loague, 2013), or how soil grainsize and mineralogy affect mechanical properties such 

as suction stress, cohesion, and internal friction angle (e.g., Lehmann et al., 2021). As more studies use a combination of 305 

measurements and modeling to evaluate the local and regional controls on hillslope hydrologic conditions, it seems likely 

that we will identify specific threshold formulations needed for different types of hydroclimatic and environmental settings. 

In the same way that the rainfall intensity-duration approach does not apply universally well across the globe (Caine, 1980; 

Guzzetti et al., 2008; Baum and Godt, 2010), we could ultimately learn more about the variability and applicability of 

hydrometeorological thresholds. 310 
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3 Towards improved landslide forecasting models  

Despite these notable challenges, we maintain that integrating knowledge of hillslope hydrologic processes into landslide 

forecasting tools is a very promising path forward. Considering that both monitoring systems and models are always 

imperfect, and that they provide an incomplete picture of the reality, a major challenge is to find a way, with limited 

understanding and even more limited data availability, to reduce LEWS errors. In some cases, hydrology may not add 315 

valuable information over rainfall alone, but in many other settings, we expect that further research can identify hydrologic 

variables linked to landscape-scale processes that reflect the geologic, geomorphic, and climatic controls on predisposing 

conditions. Capturing those factors would help improve advance warning for potential landslide conditions prior to short-

term forecasts of the precipitation that could ultimately trigger failures locally. With realistic expectations, careful 

considerations of the issues we outlined above can serve as a framework for a systematic and reliable way to integrate 320 

hydrometeorological thresholds into improved local-scale LEWS.  

 

In contrast to accurate hyper-localized LEWS that are currently within reach (e.g., Patton et al. 2023), the transition towards 

uniform, regional-scale systems with meaningful spatial coverage would require further testing and new methods for 

interpolating between, and extrapolating beyond, sparse existing observations. In this context, the following efforts provide 325 

promising paths towards improving landslide forecasting models worldwide:  

 

1. Determine regional controls on landslide hydroclimatology. This involves assessing the potential infiltration conditions 

that can influence landslide triggering, including snowmelt (Hinds et al., 2019), prolonged storms (Coe et al., 2015), steady 

and frequent rainfall (Chleborad et al., 2008) or simply high-intensity bursts of precipitation (Caine, 1980). This also 330 

includes quantitatively characterizing landslide seasonality (e.g., Luna and Korup, 2022) and how those seasons may change 

in the future for different types of slope failure (Jakob, 2022).   

 

2. Develop objective methods to identify the state variables and time scales of interest (e.g., Conrad et al., 2021). In 

particular, how can we most effectively separate the continuous transition from antecedent versus triggering conditions to 335 

improve LEWS performance? Because major obstacles to forecasting subsurface hydrologic conditions remain, it is 

important to identify which hydrologic factors can be leveraged effectively with the time scales supported by quantitative 

precipitation forecasts (e.g., Patton et al., 2023).  

 

3. Explore what currently available hydrogeologic information can reveal about subsurface responses. This includes further 340 

investigation of important differences between flat versus steep terrain (e.g., Wicki et al., 2020, 2023) and satellite versus in 

situ hydrologic information (e.g., Thomas et al., 2019) to better leverage existing worldwide monitoring networks. It may be 

particularly important to explore hydrologic information at a spatial scale that accords with the landslide release extent 

(rather than relying on single sensors or remotely sensed estimates). This may involve further exploration of emerging 

technologies (e.g., Franke et al., 2022) or the use of multiple sensors to characterize variably saturated conditions along both 345 

vertical and longitudinal hillslope profiles (e.g., Mirus et al., 2017). It is certainly more promising to look at relative changes 

in hydrologic metrics than to seek absolute threshold values. 

 

4. Establish a global repository of rainfall-triggered landslide inventories with associated hydrologic information. Open 

access to these data will facilitate research and synthesis with different conceptual modeling approaches across different 350 

hydroclimatic and environmental conditions. Then, through a coordinated measure-and-model approach, researchers can test 

generalized methods to extrapolate controls on infiltration and drainage dynamics across a range of realistic landslide 

triggering conditions.  
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Beyond these potential research opportunities, we close with a few practical considerations. There is extensive debate about 355 

what “early” means in the context of actionable information for an operational LEWS, which is a discussion reserved for 

another venue. Instead, it is important to consider that any LEWS that relies only on currently observed conditions, whether 

precipitation, hydrology, or even detection of incipient slope movement, is largely limited to “now-casting” rather than 

forecasting. Hydrologic state variables reflect the subsurface response to recent water inputs, and for this reason these 

observations should be most accurately indicative of failure (Figure 1). Precipitation precedes infiltration and represents the 360 

forcing conditions immediately prior to the hydrologic response when landslides are imminent. To effectively leverage these 

two sources of information and maximize the “Early” in LEWS, hydrometeorological thresholds ideally would rely on some 

modeling, whether simple or complex, that starts with recent hydrologic conditions and predicts the effects of forecasted 

precipitation on slope stability, and potentially assimilates monitoring data to update such forecasts in near-real-time.  

 365 

At this point we can definitively state that integrating hydrologic information has led to improvements in landslide 

forecasting over existing LEWS model formats, but are the additional investments in data and research needed for these 

universally justified for operational systems? Ultimately, it is unclear how well we can expect any LEWS to perform barring 

other scientific advances. For example, we are not aware of any operational or research-oriented landslide forecasting 

approach that successfully accounts for the spatially variable rainfall, triggering conditions, or the inherent uncertainties in 370 

short-range quantitative precipitation forecasts. Although LEWS may remain an imperfect tool due to the inherently 

stochastic and episodic nature of landslide initiation, advancing our understanding of hillslope hydrology across different 

climatological and geologic settings is well within reach and could soon lead to improved landslide forecasting models 

globally. 
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Early warning of increased landslide potential provides situational awareness to reduce landslide-related losses from major 

storm events. For decades, landslide forecasts relied on rainfall data alone, but recent research points to the value of 

hydrologic information for improving predictions. In this article, we provide our perspectives on the value and limitations of 

integrating subsurface hillslope hydrologic monitoring data and mathematical modeling for more accurate landslide 690 

forecasts.  
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