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Abstract. Although rainfall-triggered landslides are initiated by subsurface hydro-mechanical processes related to the 10 

loading, weakening, and eventual failure of slope materials, most landslide early warning systems (LEWS) have relied solely 

on rainfall event information. In previous decades, several studies demonstrated the value of integrating proxies for 

subsurface hydrologic information to improve rainfall-based forecasting of shallow landslides. More recently, broader access 

to commercial sensors and telemetry for real-time data transmission has invigorated new research into hydrometeorological 

thresholds for LEWS. Given the increasing number of studies across the globe using hydrologic monitoring, mathematical 15 

modeling, or both in combination, it is now possible to make some insights into the advantages versus limitations of this 

approach. The extensive progress demonstrates the value of in situ hydrologic information for reducing both failed and false 

alarms, through the ability to characterize infiltration during, as well as the drainage and drying processes between major 

storm events. There are also some areas for caution surrounding the long-term sustainability of subsurface monitoring in 

landslide-prone terrain, as well as unresolved questions in hillslope hydrologic modeling, which relies heavily on the 20 

assumptions of diffuse flow and vertical infiltration but often ignores preferential flow and lateral drainage. Here, we share a 

collective perspective based on our previous collaborative work across Europe, North America, Africa, and Asia to discuss 

these challenges and provide some guidelines for integrating knowledge of hydrology and climate into the next generation of 

LEWS. We propose that the greatest opportunity for improvement is through a measure-and-model approach to develop an 

understanding of landslide hydro-climatology that accounts for local controls on subsurface storage dynamics. Additionally, 25 

new efforts focused on the subsurface hydrology are complementary to existing rainfall-based methods, so leveraging these 

with near-term precipitation forecasts is a priority for increasing lead times. 

1 Subsurface hydrologic information improves landslide forecasting 

Hydrology plays an important role in shallow landslide initiation (Campbell, 1975; Lu and Godt, 2013; Bogaard and Greco, 

2016); this has been demonstrated through many decades of monitoring hydrologic response and slope stability on individual 30 

hillslopes and zero-order basins around the world (e.g., Sidle and Swanston, 1982; Sidle and Tsuboyama, 1992; Torres et al., 

1998; Godt et al., 2009; De Vita et al., 2013; Liang, 2020; Marino et al., 2020; Ashland, 2021). These observations are 

supported by well-established theory in soil physics and geomechanics, whereby the addition of water to porous media 

changes their strength and weight, contributing to a force imbalance and triggering slope failure (e.g., Terzaghi, 1943). 

Theoretical advances have supported the development of mathematical models to numerically simulate – with varying 35 

degrees of complexity – the conditions leading up to these critical conditions (e.g., Montgomery and Dietrich, 1994; Terlien, 

1997; Van Beek, 2002; Brien and Reid, 2008; Baum et al., 2010; Lehmann and Or, 2012). Despite this conceptual 

understanding and advanced model development, most local and regional landslide early warning systems (LEWS) rely on 

rainfall inputs alone, typically with the well-worn intensity-duration (ID) threshold approach (Caine, 1980; Guzzetti et al., 

2008; Brunetti et al., 2018; Segoni et al., 2018) and the related event-duration (ED) threshold (Innes, 1983; Guzzetti et al., 40 

2020). These are built upon the assumption that if it rains hard enough for long enough in a landslide-prone area, the storm 
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event will trigger slope failures. When event-based rainfall thresholds are used alone, the hydrologic conditions preceding 

the triggering and the associated antecedent wetness have no bearing on predicted slope stability. The negligible role of 

previous rainfall, evapotranspiration, and hillslope drainage may or may not be true based on local variations (e.g., Thomas 

et al., 2020). Furthermore, these underlying assumptions must be questioned in the context of a changing climate and non- 45 

static (a)biotic terrain conditions (Ehret et al, 2014), where multiple competing factors related to infiltration, drainage, and 

evapotranspiration interact to influence predisposing factors and triggering conditions (Gariano and Guzzetti, 2016; Jakob, 

2022).  

 

Although broadly applicable, with many centuries of rainfall data underpinning its implementation, the generalized ID 50 

approaches rely on several conceptual flaws (refer to Bogaard and Greco, 2018) and lack specificity. As the benchmark 

standard, these approaches have succumbed to inertia with few novel methodological advances since their early inception 

(e.g., Caine, 1980). Still, a handful of studies over many decades and across a variety of settings have shown that using 

rainfall data to develop well-informed proxies for seasonality or hillslope antecedent wetness can improve landslide 

prediction with ID thresholds (e.g., Campbell, 1975; Wilson and Wiezorek, 1995; Crozier, 1999; Glade, 2000; Godt et al., 55 

2006; Napolitano et al., 2016). Calculation of these proxies often reflect the basics of infiltration and soil-water storage, but 

consistently fall short of capturing the complex wetting and drainage dynamics observed in the variably saturated near 

surface. Similarly, satellite and remote sensing products capture the seasonal shifts in landscape wetness that are broadly 

relevant for landslide potential (Felsberg et al., 2021; Zhao et al., 2021; Stanley et al., 2021; Distefano et al., 2023), but their 

coarse resolution and considerable latency fail to capture the rapid subsurface dynamics on hillslopes that are critical to 60 

forecasting landslide potential (Thomas et al., 2019). Electrical resistivity tomography has revealed nuances related to 

subsurface moisture patterns in landslide settings (e.g., Perrone et al., 2014; Uhlemann et al. 2017), but these 

hydrogeophysical methods remain cumbersome to implement and their sampling rates are currently too slow to capture the 

rapid unsaturated zone responses that trigger shallow landslides (Nimmo et al., 2021). Recent progress with automated 

empirical modeling shows some promise in recreating hillslope hydrologic response (Orland et al., 2020) and highlight the 65 

importance of rainfall over specific terrain attributes in predicting spatiotemporal populations of landslides (Mondini et al., 

2023). However, in an uncertain future with increasing landscape disturbances, climate change, and non-stationary responses 

in hydrologic systems, the next generation of LEWS can be advanced through incorporating a mechanistic understanding of 

the hydroclimatology of triggering conditions.  

 70 

Recently, the emergence of the “Internet of Things” has provided further motivation for integrating hydrologic information 

to improving LEWS predictive performance because subsurface monitoring data can be accessed in real-time to understand 

evolving hillslope wetness conditions (Mirus et al., 2018; Abraham et al., 2020; Piciullo et al., 2022). This approach has the 

potential to outperform rainfall-based estimates of antecedent wetness and imminent triggering conditions because in situ 

data can capture the true hillslope hydrologic response associated with landslide initiation. A handful of studies that integrate 75 

different types of subsurface measurements directly into landslide initiation thresholds show some promising results (Mirus 

et al., 2018; Zhao et al., 2019; Marino et al., 2020; Wicki et al., 2020; Abraham et al. 2021; Pecoraro and Calvello, 2021); 

their success reflects the understanding of the relevant hydrologic processes for their region of interest. Despite the many 

advances and limitations of current approaches to LEWS (refer to reviews by Guzzetti et al., 2012, 2020; Stähli et al., 2015; 

Piciullo et al., 2018), new research on real-time hydrometeorological thresholds is still an emerging field (Greco et al., 80 

2023). No guidelines have been established for developing a reliable LEWS that is informed, at least in part, by real-time 

hydrological information. Considering the first action in the Kyoto Landslide Commitment 2020 involves improving the 

precision and reliability of landslide warning (Sassa et al., 2023), we propose that integrating insights from in situ hydrologic 

measurements into LEWS is essential. 
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1.1 Continuous field monitoring for comprehension of triggering processes 

The complex interaction between hydrological and mechanical processes results in many possible ways of adding water to 

transition from stable to unstable conditions, leading to very different types of triggering conditions for seemingly similar 

settings (e.g., Fusco et al., 2022). These depend largely on how geology, climate, geomorphology, vegetation, and landscape 

disturbances have influenced the geometry and hydromechanical properties of soils, vegetation distribution, and the 90 

geometry of hillslope source areas where landslides initiate (Sidle et al., 2017). Every hillslope is unique, so we cannot 

characterize the true subsurface heterogeneity and corresponding controls on landslide triggering across a landscape, but 

hydrological information provides a foundation of comprehension to inform landslide forecasting across contrasting 

locations. For example, in areas with strong seasonality the antecedent soil-moisture conditions may be critical for refining 

landslide initiation thresholds (e.g., Godt et al., 2006; Mirus et al., 2018; Wicki et al., 2020, Marino et al., 2021). In contrast, 95 

some regions typically remain quite wet, and prior conditions seem to add very limited value in constraining landslide 

potential (e.g., Thomas et al., 2020; Patton et al., 2023). During the most recent decades, soil moisture has become 

increasingly easy to monitor in situ, but other measured variables such as groundwater levels have also been used quite 

effectively (Wei et al., 2019; Wei et al., 2020; Illien et al. 2021; Marino et al. 2021; Uwihirwe et al., 2022; Roman Quintero 

et al., 2023). As a state variable, analysis of volumetric water content profiles can reveal whether the soil is accommodating 100 

infiltration through changes in storage or if it has exceeded field capacity and is allowing more rapid vertical fluxes to the 

saturated zone below. In contrast, shallow groundwater fluctuations (when they can be measured) reflect not just water 

added from vertical infiltration, but also the three-dimensional (3D) subsurface flow field from upslope accumulation to 

downslope drainage. Of course, other hydrologic state variables may be used as proxies for antecedent conditions such as 

snowmelt (Mostbauer et al., 2018; Wayllace et al., 2019) and catchment storage (Ciavolella et al., 2016; Marino et al., 2022).   105 

 

It is difficult to know a priori which conditions and variables are important for an area of interest, but even a few years of 

hydrologic monitoring can improve understanding of the variably saturated hillslope responses in stormflow generation (e.g., 

Beven, 2012; Blume and van Meerveld, 2015) and landslide initiation or reactivation (e.g., Godt et al., 2009; Mirus et al., 

2017). Accounting for regionally specific controls on infiltration and hillslope drainage dynamics could help improve 110 

hydrometeorological thresholds by reducing failed alarms, such as those produced by relatively modest storms on already 

very wet soils, as well as lowering the number of false alarms, such as those related to heavy precipitation on dry soils. 

Therefore, to develop the next generation of LEWS, expanding hillslope hydrologic monitoring from a handful of existing 

networks to a wider variety of landslide prone terrain worldwide would be highly beneficial. The potential value of long-

term hydrologic measurements can be inferred from recent advances in characterizing landslide triggering based on 115 

identifying rainfall anomalies or recurrence intervals (e.g., Kirschbaum and Stanley, 2018; Marc et al., 2022). A greatly 

expanded and openly accessible network of hydrologic observations would further supplement such approaches using 

relative hillslope wetness to support new inferences about triggering potential.  

 

However, established guidelines for landslide hydrological monitoring are lacking, and providing general advice on how to 120 

select appropriate sites and instrumentation equipment is exceptionally difficult. This challenge is compounded by 

subsurface heterogeneity that cannot be known a priori and logistical considerations that often influence instrument 

placement (e.g., site access and safety consideration on steep slopes). These nuances are not emphasized in publications or 

presentations, so in practice the many seemingly subjective elements in such studies reflect the crucial role of expert 

judgement. Theoretically, each individual hillslope has a critical pore-water pressure (or saturated thickness) that triggers 125 

failure, but that critical state is difficult to identify for any given hillslope and there are a multitude of hydrologic responses 
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to spatially variable rainfall across a heterogeneous landscape. Additionally, precise calibration of sensors to measure 

accurate volumetric water contents are important for some modeling calculations but may be of limited value for warnings 

compared to capturing the range of responses to multiple storms (e.g., Wicki et al., 2020). Thus, a first step for hydrologic 

monitoring is developing a strong conceptual model of local conditions at the site of interest, based on available observations 130 

including geologic maps, soil classifications, landscape morphology, climate, and even records of rainfall and streamflow 

from the region. We also stress that measurement of the specific hydrologic state variables (i.e., soil moisture, versus 

groundwater levels, versus soil suction) or the precise values is not critical. Instead, we conclude that identifying a suitable 

monitoring location and selecting measured variables that capture the relative change in hillslope wetness conditions across 

the landscape provides the most informative variables. In particular, site installations that  reflect the widest variability 135 

during and between landslide events reveal the most about hillslope storage dynamics.  

 

The influence of spatial variability – as well as the difficulty in deciding what to measure and where – can be demonstrated 

anecdotally using data from the USGS landslide monitoring site in Sitka, Alaska (Smith et al., 2023). This includes 

volumetric soil water content and positive pore-water pressures measured in two shallow soil pits that are less than 10 meters 140 

apart from each other on a steep hillslope. The period shown (Figure 1) encompasses responses to several major storm events 

that triggered landsliding across the region, one of which ultimately culminated in a fatal landslide in Haines, Alaska (refer 

to Darrow et al., 2022), roughly 200 kilometers to the northeast of the monitoring site in Sitka. In Soil Pit 1, the matric 

potential and soil-moisture sensors show some variations in near-surface conditions and flashy piezometer response only 

during peak rainfall. Less than 10 meters downslope, the near surface in Soil Pit 2 is persistently wet with continuous 145 

shallow groundwater fluctuations throughout the period. Thus, for informing LEWS development, the largely absent pore 

pressure measurements in Soil Pit 1 might seem of limited value compared to the soil moisture record for assessing 

antecedent conditions. In contrast, Soil Pit 2 clearly shows the gradual elevation in groundwater levels for successive 

landslide producing storms, but consistently high soil moisture values exhibit limited dynamics with no valuable information 

for LEWS. Thus, the value of soil moisture in the unsaturated zone versus pore-water pressures in the shallow saturated zone 150 

would depend entirely upon the location of the soil pit within the landscape, which is difficult to assess from the landscape 

position alone. However, together, instrumentation in these two soil pits reveals a potential mechanistic explanation for the 

shallow landslides and debris flows around Sitka: well drained hillslopes remain consistently wet and support disconnected 

zones of perched saturation, so landslides tend to occur once these perched saturated zones connect across broader areas of 

steep hillslopes and their drainage capacity is overwhelmed by consistently high rainfall input. 155 

 

 

 

 

 160 
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Figure 1: Time series of rainfall and pore-water pressure and volumetric water content in two soil pits (SP1 and SP2) recorded on 
a steep hillslope above Sitka, in southeast Alaska, observed during a sequence of large storm events in October - December 2020 
(dates in UTC); the days on which landslides occurred throughout the region are shown by the red-transparent bars. Note: data is 
available for download in Smith et al. (2023) and near-real-time plots of data are available for situational awareness at 165 
https://usgs.gov/programs/landslide-hazards/science/sitka-ak.  

 

From another perspective, the same hydrologic data can be plotted within a probabilistic framework to illustrate the 

importance of relative wetness of selected measurement records, rather than absolute values of all the different state 

variables. Here, we compare the landslide occurrence data relative to the cumulative frequency distributions of volumetric 170 

water content and pore-water pressure values from both soil pits, as well as the established rainfall threshold for Sitka, 

Alaska for a period from September 2019 through December 2023 (Figure 2). The rainfall threshold uses the daily maximum 

rainfall accumulation during any three-hour period and was established with extensive calibration and validation using many 

decades of continuous records and landslide occurrence data (Patton et al. 2023). In contrast the hydrologic data reflects just 

a few years of discontinuous monitoring records (Smith et al., 2023). Comparison of the three plots underscores the value of 175 

the shallow water table fluctuations relative to the rainfall threshold and soil moisture for this location. In particular, the 

mere presence of shallow groundwater in Soil Pit 1 apparently exhibits the strongest correlation with landslide occurrence 

(Figure 2), even for distal locations well beyond the area considered for calibration of the rainfall threshold (refer to Patton et 

al., 2023).  

 180 
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Figure 2. Known landslide events across southeast Alaska (AK) with cumulative probability distribution for different 
observations in Sitka, AK (a) shallow groundwater pressures measured every five minutes in piezometers in two 
different soil pits, (b) volumetric soil-water content measured every five minutes by four probes in these two soil pits, 185 
and (c) daily maximum accumulation of rainfall during any three-hour period. Note that all landslide events shown 
for local Alaska time; those listed from September 2019 - November 2020 occurred within 2 km of Sitka, AK, (Patton 
et al., 2023); the December 2020 event occurred 250 km to the northeast in Haines, AK and resulted in two fatalities 
(Darrow et al. 2022), and the November 2023 event impacted widespread areas over 150 km to the southeast on 
Prince of Whales (PoW) Island and in Wrangel where six people were killed (Nicolazzo et al., 2024).   190 

2 Understanding the current limits to hydrometeorological thresholds  

The major benefits of hydrologic data for improving comprehension and capturing landslide triggering conditions (Figures 1 

and 2) can be tempered by acknowledging several under-appreciated issues with using in situ monitoring for landslide 

forecasting. First, the return period of relatively infrequent (but highly destructive) landslide events is often longer than the 

typical life expectancy of subsurface hydrologic monitoring equipment. Broad estimates of the rainfall recurrence needed to 195 

trigger widespread landsliding events across the globe range from a variable 95th percentile (Kirschbaum and Stanley, 2018) 

to 10-year anomalies (Marc et al., 2022), but on these timescales, instrumentation often require substantial maintenance that 

is resource intensive or may exceed their manufacturer-reported life-expectancies, experience the onset of electronic drift, or 

succumb to destruction from wildlife or vandalism. Indeed, along with solid expert judgement in site selection, there are also 

substantial elements of chance that allowed previous researchers to capture the hydrologic conditions during a natural 200 

landslide initiation event (Montgomery et al., 2009; Godt et al., 2009; Mirus et al., 2017; Liang, 2020). Whereas instruments 

to measure groundwater tables, streamflow, and precipitation can potentially be replaced as needed, volumetric water content 

sensors must be placed in relatively undisturbed soil (Caldwell et al., 2022), which means that when sensors fail, they cannot 

be readily exchanged in the same place without disturbances to the porous media itself. Installation of pore-pressure sensors 

vary, with some favoring direct contact with the porous media (e.g., Smith et al., 2023) and others using standpipe 205 

piezometers (e.g., Montgomery et al., 2009) that potentially allow sensors to be exchanged more easily. Although 

interoperability across measurement types presents a potential challenge to the long-term sustainability of a global near-real-

time hydrologic monitoring network to inform LEWS, useful hydrometeorological thresholds can be developed by 

intelligently leveraging existing hydrologic monitoring networks. In particular, observed records can be extended with a 

measure-and-model approach, whereby shorter periods of data along with measured hydraulic and mechanical properties can 210 
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inform robust models of the hydrologic conditions related to slope failure (e.g., Ebel et al., 2008; Wicki et al., 2021; 

Uwihirwe et al., 2022). Even if hillslope hydrologic modeling has its own problem areas (refer to discussion below) it is 

likely the most sustainable way to synthesize hydrologic information across space and time. 

 

Second, we accept that in situ subsurface instrumentation favors monitoring precise variations in time rather than capturing 215 

broader spatial patterns, and therefore shares similar limitations to any other point measurements, such as rain gages. As with 

all measurement networks, some expert judgement is needed to design and select a site for subsurface instrumentation, 

which influences the data collected and corresponding conclusions that can be inferred. Numerous studies related to 

subsurface stormflow response used distributed measurements to identify very localized processes that govern hillslope-

hydrologic responses such as the role of irregular subsurface topography on “fill-and-spill” processes (Tromp-van Meerveld 220 

and McDonnell, 2011), heterogeneous soil profiles and weathering (Zimmer and Gannon, 2018), and preferential flow 

(Beven and Germann, 1982). However, the same is the case for rainfall measurements, which must rely on radar and satellite 

estimates of rainfall variability to determine spatial patterns at relatively coarse scale.  

2.1 Extrapolating across spatial and temporal scales 

It may be even more difficult to extrapolate subsurface hydrologic response dynamics derived from one soil profile across a 225 

heterogeneous landscape than atmospheric processes such as rainfall intensities, so some clear advances in remote sensing 

methods may ultimately be informative for landslide modeling. At the scale of tens to hundreds of meters, cosmic ray 

neutron sensors have the capacity to estimate changes in relative hillslope wetness between storms (e.g., Franke et al., 2022), 

yet these methods remain largely untested for landslide studies in steep, densely vegetated terrain. At the scale of tens to 

hundreds of kilometers, distributed estimates of soil moisture from remote sensing provides global coverage but falls short of 230 

capturing the temporal variations observed in situ that are critical for precise landslide forecasting (e.g., Thomas et al., 2019). 

Novel space-time approaches leverage extensive information on timing and locations of past landslide occurrences to 

simulate the evolution of landslide probabilities across a given landscape during storm events (e.g., Lombardo et al., 2020; 

Bordoni et al., 2021). Although these data-driven approaches are inherently biased by the available data, emerging 

approaches for integrating the rainfall triggering with the underlying landscape characteristics seem quite promising (Steger 235 

et al., 2024) and would likely benefit further from considering local hydrologic information. Ongoing efforts to 

incrementally improve probabilistic thresholds for global nowcasting have leveraged satellite rainfall and soil moisture 

products (i.e., Stanley et al., 2021), but lack a framework for considering the inherently local controls on subsurface 

infiltration and drainage processes. Despite the unknowable heterogeneity in the subsurface, one of the greatest opportunities 

for hydrometeorological threshold improvement is to use accurate temporal dynamics from in situ observations to inform 240 

improved landslide modeling across the larger spatial footprints at hillslope, watershed, and regional scales. A mechanistic 

understanding of landslide triggering conditions associated with different hydrologic responses would also help constrain the 

spatial extent over which different hydrometeorological thresholds apply. The most promising new approach for this 

leverages an intentionally over-simplified bucket model of infiltration and drainage along with spatially variable rainfall, 

which is able to simulate relative hillslope wetness across vast regions with remarkable accuracy (Perkins et al., 2024).   245 

2.2 Alternative hydrometeorological threshold formulations 

Selection of statistical optimization criteria can influence the balance between failed and false alarms for a given 

hydrometeorological threshold formulation (e.g., Conrad et al., 2021), but a thorough discussion of uncertainty and 

performance criteria (e.g., Piciullo et al., 2020) is outside of the scope of this perspective. Instead, we address some 

informative contrasts between the formats of hydrometeorological thresholds derived using contrasting methods and data 250 
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inputs (Figure 3). The deterministic threshold (Fig. 3, purple) is based on millions of simulated events from a one-

dimensional (1D) infiltration model calibrated using a few positive pore-water pressure measurements and evaluated with 

landsliding events from the San Francisco Bay Area, California (Thomas et al., 2018). This threshold lacks a functional 

format, but one could theoretically be developed for its convex form, with rapidly decreasing stability at higher antecedent 

wetness and unconditionally unstable conditions above roughly 0.6 saturation. The format of a bilinear threshold (Fig. 3, 255 

blue) was identified empirically and optimized using receiver operating characteristics with numerous landslide events and 

years of hydrologic monitoring in the Puget Sound Area, Washington (Mirus et al., 2018; Conrad et al., 2021). It is certainly 

over-simplified as well, but the convenient functional format has led to its implementation in other settings such as data 

sparse Rwanda (Uwihirwe et al. 2022) and testing of satellite-based thresholds in data-rich parts of California (Thomas et al, 

2019).  260 

 

 

Figure 3: Different formats of hydrometeorological thresholds for landslide initiation developed based on empirical interpretation 
(blue) shown with bi-linear thresholds optimized using several years of monitoring data and landslide inventories (Mirus et al., 
2018), versus theoretical understanding (purple) based on a deterministic method using infiltration modeling and millions of 265 
synthetic storm events (Thomas et al., 2018). The deterministic threshold shows unconditionally unstable conditions for excessive 
rainfall or high saturation levels. In contrast, empirical thresholds indicate that excessive rainfall on dry soils will not trigger 
failures, whereas even at highest observed saturations moderate rainfall is still needed to trigger failures. Heuristically, a general 
threshold that accommodates both theoretical understanding and empirical observations seems more reasonable. 

 270 

The insight that the deterministic versus empirical approaches support entirely different functional formats of 

hydrometeorological thresholds raises the question of whether one or the other is more correct, and why they vary so 

distinctly. The deterministic thresholds reflect our limited ability to quantify the complex storage dynamics during landslide 

events, and not necessarily all the processes relevant to infiltration and drainage, which results in considerably broad 

conditions that are unconditionally unstable. On the other hand, the empirical threshold format was selected based only on 275 

the conditions we have observed thus far and does not necessarily represent all the relevant possibilities. In a recent paper, 

Palazzolo et al. (2023) propose a hydrometeorological threshold using antecedent soil moisture versus rainfall intensity that 

exhibits a similar format to our deterministic threshold at low antecedent wetness combined with a constant rainfall intensity 

cutoff for higher saturations just like the empirical bilinear threshold. Earlier studies had tested linear models, which also led 

to improvements relative to rainfall-only thresholds (Mirus et al., 2018; Marino et al., 2020).  280 

 

Overall, these sparse examples of contrasting formats reflect subjective modeling choices and represent just some of the 

results emerging from recent research into hydrometeorological thresholds, but they raise two important issues. First, that 

there are observed storage and drainage processes that our hydrological models do not adequately capture (i.e., known 



9 
 

conceptual limitations), and second that there are conditions we have not yet observed and are difficult to predict (i.e., 285 

unknown range of responses). For example, when the vast majority of both triggering and non-triggering events exhibit 

correlation between antecedent wetness and rainfall accumulation (e.g., Palazzolo et al., 2023), it is particularly difficult to 

project responses to unprecedented rainfall on very dry antecedent soils or rapid snowmelt events during low-intensity 

rainfall. Heuristically, we would expect a more generalized threshold that considers the uncertainty in triggering conditions 

and reflects our conceptual understanding that either more precipitation or wetter antecedent conditions should each increase 290 

the likelihood of landsliding (Fig. 2, red). However, our hypothesis of this generalized hydrometeorological threshold 

remains untested. Further exploration in different regions with contrasting geologic and environmental settings should help 

refine best practices and guidelines. Conversely, additional studies might also reveal that there is no universally superior 

format for hydrometeorological thresholds, and instead local practices and priorities will determine what is used 

operationally, depending on data availability, system expectations, and risk tolerances. 295 

2.3 Limits of process understanding 

Three-dimensional, fully coupled surface-subsurface hydrologic models emerged as a relatively effective, but data-intensive 

method for quantifying the hydrogeomorphic processes that contribute to landslide initiation (Loague et al., 2006; Ebel et al., 

2008). Now, extensive databases on soil geometry and textural classifications (e.g., SSURGO, 2024), novel pedotransfer 

functions (e.g., Van Looy et al., 2017; Lehmann et al., 2021), high-resolution continental-scale DEMS (e.g., 3DEP: USGS, 300 

2019), and comprehensive precipitation databases (e.g., IMERG: Huffman et al., 2015) could, in theory, facilitate using 

physics-based approaches, both conceptual and deterministic, to develop hydrometeorological thresholds for settings all over 

the globe (e.g., Lehmann et al., 2019). However, theoretical gaps in hillslope hydrologic modeling remain a major obstacle. 

Well-calibrated infiltration models designed to capture observed landslide initiation processes still struggle to simulate the 

continuous soil moisture dynamics between events (Wicki et al., 2021; Piciullo et al., 2022) or the influence of complex soil 305 

structures (Mirus, 2015; Fatichi et al., 2020).  

 

Regardless of their high computational expense and data demands for parameterization, the reality is we still do not fully 

comprehend the physics of variably saturated subsurface flow through complex landscapes. The equation used to simulate 

diffusive flow through variably saturated soils has been around for quite some time (Richards, 1931), but infiltration models 310 

based on the Richards’ equation cannot produce results that are consistent with observations of non-sequential wetting fronts 

(e.g., Graham and Lin, 2011) or preferential flow in the unsaturated zone (Nimmo, 2012, 2016; Beven and Germann, 1982, 

2013). These localized hydrological processes combined with subsurface heterogeneity may explain why some hillslopes fail 

and why other adjacent slopes remain stable, and hence may explain some degree of the variability and uncertainty in 

landslide triggering conditions. Such questions remain largely academic as this degree of detail is not necessary (or even 315 

achievable) to provide useful and actionable information for landslide loss reduction. Instead, we can focus on more practical 

modeling and comprehension of hydroclimatology with representative state variables to reduce failed and false alarms.    

 

Ultimately, landslides occur at some point after the initiation zones fill up with infiltration at a rate faster than they can drain. 

Although the infiltration component of landslide triggering involves largely vertical 1D percolation of precipitation through 320 

unsaturated soils, stormflow responses involve 3D processes including lateral flow diversion and drainage that can either 

enhance or reduce landslide potential. These processes are controlled not just within the soils where shallow landslides 

initiate, but by complex flow paths in the underlying saprolite, weathered bedrock, and even fracture flow through intact 

bedrock. Although robust physically based models still struggle to fully capture those two competing processes due to both a 

lack of data and a lack of process understanding, further expansion of simpler conceptual models that are informed entirely 325 
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by monitoring data such as a leaky bucket (e.g., Wilson and Wiezorek, 1995), wetness indices (e.g., Godt et al., 2006; 

Perkins et al., 2024), source-responsive methods (e.g., Nimmo, 2016) or empirical approaches (e.g., Orland et al. 2020; 

Bordoni et al., 2021) may be beneficial. These would have the greatest impact if they can leverage long-term monitoring data 

to capture the critical conditions when vertical infiltration exceeds drainage during major storm events, as well as the effect 

of the landscape-scale storage dynamics during and between such events. Further iterations of measurement-model 330 

comparisons would be helpful to determine how we can better represent these two competing infiltration and drainage 

processes in a way that is representative enough to improve landslide forecasting. 

2.4 Limits of observational datasets 

The wide availability of precipitation records, going back centuries in many cases, paired with the limited frequency of 

landslide events, might lead many to believe that there are no surprises and that rainfall thresholds are the most robust and 335 

achievable route to inform LEWS. However, the challenges with balancing failed and false alarms in virtually all landslide 

forecasts indicate that there are processes we have not understood and conditions we have not yet observed. For example, the 

hydrometeorological threshold models discussed in Figure 3 were developed without any observations of very large storms 

on very dry soils, and yet that is potentially the combination of conditions that may influence shallow landsliding in a 

changing climate (Gariano and Guzzetti, 2016).  340 

 

Indeed, the literature includes many different assertions about what to expect in a warming world for different flavors of 

landslides (Cannon and DeGraff, 2009; Bennett et al., 2016; Coe et al., 2016, 2018; Parker et al., 2016; Handwerger et al., 

2019; Kirschbaum et al., 2020). The degree to which drier soils from elevated evapotranspiration may balance out the effects 

of increased frequency and intensity of extreme meteorological events remains unclear. Thus, an important challenge is to 345 

develop mechanistic understanding that would be applicable in a changing climate to inform LEWS (e.g., Ehret et al., 2014). 

This includes understanding of how the combination of hydraulic properties such as water-retention curves, porosity, 

saturated hydraulic conductivity, and bedrock fractures influence hillslope storage and drainage dynamics (e.g., Ebel et al., 

2008), or how soil grainsize and mineralogy affect mechanical properties such as suction stress, cohesion, and internal 

friction angle (e.g., Lehmann et al., 2021). Such understanding can be used to improve simplified bucket models (e.g., 350 

Perkins et al., 2024) to consider spatially variable hillslope hydrologic responses. As more studies use a combination of 

measurements and modeling to evaluate the local and regional controls on hillslope hydrologic conditions, it seems likely 

that we will identify specific threshold formulations needed for different types of hydroclimatic and environmental settings. 

In the same way that the rainfall intensity-duration approach does not apply universally well across the globe (Caine, 1980; 

Guzzetti et al., 2008; Baum and Godt, 2010), we could ultimately learn more about the variability and applicability of 355 

hydrometeorological thresholds. 

3 Towards improved landslide forecasting models  

Despite these notable challenges, we maintain that integrating knowledge of hillslope hydrologic processes into landslide 

forecasting tools is a very promising path forward. Considering that both monitoring systems and models are always 

imperfect, and that they provide an incomplete picture of the reality, a major challenge is to find a way, with limited 360 

understanding and even more limited data availability, to reduce LEWS errors. In some cases, hydrology may not add 

valuable information over rainfall alone, but in many other settings, we expect that further research can identify hydrologic 

variables linked to landscape-scale processes that reflect the geologic, geomorphic, and climatic controls on predisposing 

conditions. Capturing those factors would help improve advance warning for potential landslide conditions prior to short-

term forecasts of the precipitation that could ultimately trigger failures locally. With realistic expectations, careful 365 
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considerations of the issues we outlined above can serve as a framework for a systematic and reliable way to integrate 

hydrometeorological thresholds into improved local-scale LEWS.  

 

In contrast to accurate hyper-localized LEWS that have been within reach for some time (e.g., Campbell, 1975; Chleborad et 

al., 2008), the transition towards uniform, regional-scale systems with meaningful spatial coverage would require further 370 

testing and new methods for interpolating between, and extrapolating beyond, sparse existing observations. In this context, 

the following efforts provide promising paths towards improving landslide forecasting models worldwide:  

 

1. Determine regional controls on landslide hydroclimatology. This involves assessing the potential infiltration conditions 

that can influence landslide triggering, including snowmelt (Hinds et al., 2019), prolonged storms (Coe et al., 2015), steady 375 

and frequent rainfall (Chleborad et al., 2008) or simply high-intensity bursts of precipitation (Caine, 1980). This also 

includes quantitatively characterizing landslide seasonality (e.g., Luna and Korup, 2022) and how those seasons may change 

in the future for different types of slope failure (Jakob, 2022).   

 

2. Develop objective methods to identify the state variables and time scales of interest (e.g., Conrad et al., 2021). In 380 

particular, how can we most effectively separate the continuous transition from antecedent versus triggering conditions to 

improve LEWS performance? Because major obstacles to forecasting subsurface hydrologic conditions remain, it is 

important to identify which hydrologic factors can be leveraged effectively with the time scales supported by quantitative 

precipitation forecasts (e.g., Conrad et al., 2021; Patton et al., 2023).  

 385 

3. Explore what currently available hydrogeologic information can reveal about subsurface responses. This includes further 

investigation of important differences between flat versus steep terrain (e.g., Wicki et al., 2020, 2023) and satellite versus in 

situ hydrologic information (e.g., Thomas et al., 2019) to better leverage existing worldwide monitoring networks. It may be 

particularly important to explore hydrologic information at a spatial scale that accords with the landslide release extent 

(rather than relying on single sensors or remotely sensed estimates). This may involve further exploration of emerging 390 

technologies (e.g., Franke et al., 2022) or the use of multiple sensors to characterize variably saturated conditions along both 

vertical and longitudinal hillslope profiles (e.g., Mirus et al., 2017). It is certainly more promising to look at relative changes 

in hydrologic metrics than to seek absolute threshold values. 

 

4. Establish a global repository of rainfall-triggered landslide inventories with associated hydrologic information across 395 

different hydroclimatic and environmental conditions. Open access to these data will facilitate research and synthesis with 

different conceptual modeling approaches, from data-driven methods (e.g., Steger et al., 2024) to simple process-based 

forecasts (Perkins et al., 2024). Then, through a coordinated measure-and-model approach, researchers can test generalized 

methods to extrapolate controls on infiltration and drainage dynamics across a range of realistic landslide triggering 

conditions.  400 

 

Beyond these potential research opportunities, we close with a few practical considerations. There is extensive debate about 

what “early” means in the context of actionable information for an operational LEWS, which is a discussion reserved for 

another venue. Instead, it is important to consider that any LEWS that relies only on currently observed conditions, whether 

precipitation, hydrology, or even detection of incipient slope movement, is largely limited to “now-casting” rather than 405 

forecasting. Hydrologic state variables reflect the subsurface response to recent water inputs, and for this reason these 

observations should be most accurately indicative of failure (Figures 1 and 2). Precipitation precedes infiltration and 

represents the forcing conditions immediately prior to the hydrologic response when landslides are imminent. To effectively 
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leverage these two sources of information and maximize the “Early” in LEWS, hydrometeorological thresholds ideally 

would rely on some modeling, whether simple or complex, that starts with recent hydrologic conditions and predicts the 410 

effects of forecasted precipitation on slope stability, and potentially assimilates monitoring data to update such forecasts in 

near-real-time.  

 

At this point we can definitively state that integrating hydrologic information has led to improvements in landslide 

forecasting over existing LEWS model formats, but are the additional investments in data and research needed for these 415 

universally justified for operational systems? Ultimately, it is unclear how well we can expect any LEWS to perform barring 

other scientific advances. For example, we are not aware of any operational or research-oriented landslide forecasting 

approach that successfully accounts for the spatially variable rainfall, triggering conditions, or the inherent uncertainties in 

short-range quantitative precipitation forecasts. Although LEWS may remain an imperfect tool due to the inherently 

stochastic and episodic nature of landslide initiation, advancing our understanding of hillslope hydrology across different 420 

climatological and geologic settings is well within reach and could soon lead to improved landslide forecasting models 

globally. 
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