
Transient Attracting Profiles in the Great Pacific Garbage Patch
Luca Kunz1, Alexa Griesel1, Carsten Eden1, Rodrigo Duran2,3, and Bruno Sainte-Rose4

1Institute of Oceanography, Universität Hamburg, Hamburg, Germany
2National Energy Technology Laboratory, U.S. Department of Energy, Albany OR, USA
3Theiss Research, La Jolla CA, USA
4The Ocean Cleanup, Rotterdam, The Netherlands

Correspondence: Luca Kunz (luca.kunz@uni-hamburg.de)

Abstract. A major challenge for cleanup operations in the Great Pacific Garbage Patch is the daily prediction of plastic con-

centrations that allows to identify hotspots of marine debris. Lagrangian simulations of large particle ensembles are the method

in use and effectively reproduce observed particle distributions at synoptic scales O(1000km). However, they lose accuracy

at operational scales O(1− 10km) and operators regularly experience differences between predicted and encountered debris

accumulations within the garbage patch. Instead of asking Where do objects go as they follow the current? as in Lagrangian5

methods, we here take a different approach and question Which locations attract material?. The recently developed concept of

Transient Attracting Profiles (TRAPs) provides answers to this since it allows to detect the most attractive regions of the flow.

TRAPs are the attractive form of hyperbolic Objective Eulerian Coherent Structures and can be computed from the instanta-

neous strain field on the ocean surface. They describe flow features that attract drifting objects and could facilitate offshore

cleanups which are currently taking place in the Great Pacific Garbage Patch. However, the concept remains unapplied since10

little is known about the persistence and attractive properties of these features in the Pacific. Therefore, we compute a 20-years

dataset of daily TRAP detections from satellite-derived mesoscale velocities within the North Pacific subtropical gyre. We are

the first to track these instantaneous flow features as they propagate through space and time. This allows us to study the life

cycle of TRAPs which can range from days to seasons and on average lasts for Λ≈ (6± 12) days. We show how long-living

TRAPs with lifetimes of Λ > 30 days intensify and weaken over their life cycle and demonstrate that the evolution stage of15

TRAPs affects the motion of nearby surface drifters. Our findings indicate that operators in the Great Pacific Garbage Patch

should search for long-living TRAPs that are at an advanced stage of their life cycle. These TRAPs are most likely to induce

large-scale confluence of drifting objects and their streamlining into hyperbolic pathways. Such a streamlined bypass takes

on average φ≈ (5.3± 3.8) days and could be exploited to filter the flow around TRAPs. But we also find TRAPs that retain

material over multiple weeks where we suspect material clustering at the submesoscale, prospective research could investigate20

this with soon available high-resolution observations of the flow. Eventually, our research may also benefit other challenges

that are related to the search at sea, such as optimal drifter deployment, the identification of foraging hotspots or humanitarian

search and rescue.
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Short summary25

TRansient Attracting Profiles (TRAPs) indicate the most attractive regions of the flow and have the potential to facilitate

offshore cleanup operations in the Great Pacific Garbage Patch. We study the characteristics of TRAPs and the prospects for

predicting debris transport from a mesoscale permitting dataset. Our findings provide an advanced understanding of TRAPs in

this particular region and demonstrate the importance of TRAP lifetime estimations to an operational application. Our algorithm

to track TRAPs complements the recently published TRAPs concept and prepares its use with high-resolution observations30

from the SWOT mission. Our findings may also benefit research in other fields like e.g. optimal drifter deployment, sargassum

removal, the identification of foraging hotspots or search and rescue.
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1 Introduction

The horizontal long-term flow at the ocean surface is understood as the main forcing that transports floating material over large

distances (van Sebille et al., 2020) and can be well-described by the combination of geostrophic and Ekman currents (Röhrs35

et al., 2021). Floating marine debris follows the large-scale convergence within each of the five subtropical gyres and forms

basin-scale accumulation zones (van Sebille et al., 2020) which exhibit elevated levels of plastic concentration. In this context,

the North Pacific subtropical gyre is to date the area of highest scientific and public concern. First initiatives to clean up ocean

plastic pollution at global scale are taking place in this particular gyre (Slat, 2022) and a variety of experiments has been dedi-

cated to estimating the limits of this accumulation zone which is colloquially termed the Great Pacific Garbage Patch (Onink40

et al., 2019; Lebreton et al., 2018; Law et al., 2014). Figure 1 highlights this large-scale convergence zone and the horizontal

long-term flow at the surface of the northeast Pacific ocean.

Figure 1. Mean circulation and EKE in the eastern North Pacific. Quivers indicate the direction and magnitude of 20-years average near-

surface geostrophic + Ekman current velocities for the period 2000-2019 (CMEMS, 2022a). Arrow size scales with increasing velocity

magnitude, the red box defines our study domain and highlights the area of large-scale convergence due to Ekman transport. In this region,

the Great Pacific Garbage Patch is expected to be located (Law et al., 2014; Lebreton et al., 2018; Onink et al., 2019). The ocean surface is

coloured by the magnitude of eddy kinetic energy (EKE) w.r.t. to the same period, derived from geostrophic currents only (CMEMS, 2022b).

A constant challenge for cleanup operations in this region is to predict day to day variabilities of plastic concentrations

and with this identify hotspots of marine debris. The common method is to release large ensembles of virtual particles at the45

ocean surface and to derive their trajectories and distribution as they follow the time-evolving surface flow (van Sebille et al.,

2018; van Sebille et al., 2020; Duran et al., 2021). Measurements from altimetry or estimations from numerical ocean models

typically provide the velocity fields that drive these Lagrangian particle simulations which eventually allow to derive particle
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concentrations at the ocean surface. At synoptic scales O(1000km), Lagrangian simulations succeed in predicting the limits

of the Great Pacific Garbage Patch (Onink et al., 2019; Lebreton et al., 2018; Law et al., 2014). However, within the garbage50

patch and at operational scales O(1− 10km), The Ocean Cleanup reports that Lagrangian simulations often fail in accurately

predicting the particle distributions they observe at sea. This deficiency can be a consequence of the combination of Lagrangian

methods with submesoscale velocity estimations from numerical models. At operational scales and within this region, numer-

ical models currently represent the only source for now- and forecast estimations of the surface flow, but these simulations can

only approximate the true dynamics at sea. On the other hand, Lagrangian simulations can produce significant trajectory errors55

if the underlying velocity data or the trajectory modeling itself are missing important physics and errors accumulate quickly

during the integration process (Duran et al., 2021).

Instead of asking Where do objects go as they follow the current? as in Lagrangian methods, we here take a fundamentally

different approach and question Which locations attract material?. The recently published concept of Transient Attracting60

Profiles (TRAPs, Serra et al. (2020)) provides answers to this since it allows to detect the most attractive regions of the flow.

TRAPs are the attractive form of hyperbolic Objective Eulerian Coherent Structures (OECSs, Serra and Haller (2016)) and can

be computed from the symmetric part of the velocity gradient. They indicate regions of maximal compression and stretching

on the ocean surface which are expected to translate into the attraction and hyperbolic transport of nearby floating objects.

65

Serra et al. (2020) and Duran et al. (2021) provide experiments that show the capability of TRAPs to attract drifting objects.

They demonstrate how TRAPs uncover stretching of tracer patterns that is hidden to conventional diagnostics like streamlines

or divergence. Their experiments also indicate that TRAPs are insensitive to the shape, submergence level, release time and

release position of drifting objects. These parameters are generally uncertain in applications but must be considered in La-

grangian simulations. Moreover, Serra and Haller (2016), Serra et al. (2020) and Duran et al. (2021) argue that TRAPs are70

more robust to moderate errors in the underlying velocity field while trajectory-based methods are sensitively dependent to

inevitable errors, see Table B1 for more benefits.

So it stands to reason that TRAPs could facilitate offshore cleanups which are currently taking place in the Great Pacific

Garbage Patch. However, the concept remains unapplied since the persistence and attractive properties of TRAPs have not75

been characterised in this particular region. Therefore, we create a 20-years dataset of daily TRAP detections and study these

features within the North Pacific subtropical gyre.

We compute TRAPs from near-surface geostrophic + Ekman current velocities since geostrophic velocity from altimetry is

the only large-scale observation that resolves flow features at the mesoscale (Abernathey and Haller, 2018). Many studies have80

established that altimetry-derived velocity products are accurate for Lagrangian transport applications, see e.g. Sect. 3.1.3 of

Duran et al. (2021) and references therein. Moreover, the contributions we make can be applied to higher-resolution observa-
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tions that soon will be available from the SWOT mission (International Altimetry Team, 2021).

Since altimetry can be seen as a filter for the ocean circulation that seperates out all small-scale, short-term features of the85

flow, our study is naturally embedded in the low-frequency circulation. This motivates us to locate TRAPs within the mesoscale

eddy field by comparing our dataset to corresponding records of mesoscale eddy detections. We investigate how these coherent

structures relate in order to advance our understanding of strain between eddies and how it can be utilised to predict debris

transport.

90

TRAPs that persist over several days will then highlight permanent features of the flow where we might find large-scale

confluence of material. The detection of persistent TRAPs can therefore help to point cleanup operations in the right direction

which motivates us to design a tracking algorithm that follows TRAPs through space and time. We are the first to track these

Eulerian flow features, to determine their lifetimes and to describe their propagation through the domain. We further combine

these findings with observations of surface drifters to investigate the TRAP properties that are relevant for an offshore cleanup95

in the Great Pacific Garbage Patch. But the findings we make also have the potential to facilitate maritime search operations in

other contexts and regions.

The paper is organised as follows. In Section 2 we review the theoretical aspects of Transient Attracting Profiles, outline the

design of the experiment and go through the methods we use to give a comprehensive analysis of mesoscale TRAPs. Section100

3 presents the results of our analysis in four parts - the spatial distribution of TRAPs, their life cycle and propagation, vorticity

patterns around TRAPs and the impact of TRAPs on nearby drifters. In Section 4 we discuss our findings and the directions

they offer for future research.
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2 Methodology105

2.1 Transient Attracting Profiles

Serra et al. (2020) derive TRAPs from the instantaneous strain field of the ocean surface using snapshots of the two-dimensional

surface velocity field u(x, t). The symmetric part of the velocity gradient represents the time-dependent strain tensor S(x, t) =
1
2 (∇u(x, t) + [∇u(x, t)]⊤) with eigenvalues si and eigenvectors ei. We apply the notation for the diagonal form of S(x, t)

from Serra and Haller (2016):110

Sei = siei, |ei|= 1, i = 1,2; s1 ≤ s2, e2 = Re1, R :=


0 −1

1 0


 (1)

The deformation of any fluid’s surface element A is determined by the strain rates si which specify the rates of stretching

(si > 0) or compression (si < 0) of A along the principle axes indicated by the eigenvectors ei, see (Olbers et al., 2012) for

details. Due to s1 ≤ s2, e1-lines describe lines of minimal and e2-lines lines of maximal stretching for a non-uniform deforma-

tion. The compression and stretching of surface elements translates into the attraction and repulsion of material and negative115

local minima of s1(x, t) therefore describe the most attractive regions of the flow, maximising attraction normal to e2. For

incompressible conditions, s1 =−s2 further holds and local minima of s1 simultaneously indicate local maxima of s2, so that

the strongest attraction and strongest repulsion then occur at the same position and in orthogonal directions.

TRAPs represent e2-lines starting at negative local minima of the s1 strain field and extend until s1 along the e2-line ceases120

to be monotonically increasing. Consequently, TRAPs contain one minimum value of s1, i.e. the point of strongest attraction

perpendicular towards the TRAP. The position of this minimum value is called the TRAP core which represents an objective

saddle-type stagnation point of the unsteady flow (Serra and Haller, 2016). The TRAP itself, as it is at every point tangent to

the unit eigenvector e2 describes the direction of maximum stretching and will in the following also be referred to as TRAP

curve.125

Figure 2 shows an example of a Transient Attracting Profile. The TRAP is displayed as a red curve with the TRAP core as

red dot in the middle. The image displays this structure upon a colourmap of the underlying s1 strain field as well as velocity

quivers derived from the same snapshot of surface geostrophic + Ekman current velocity. The TRAP core is positioned in the

point of highest attraction, i.e. a negative local minimum of the s1 field, and the velocity vectors indicate the flow around the130

TRAP, i.e. water motion normal towards the TRAP and subsequent transport to both ends of the structure. The figure also

displays the positions of this TRAP after 10 and 20 days.
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Figure 2. Example Transient Attracting Profile. The red structure represents one TRAP from our 20-years record of daily TRAPs, computed

from snapshots of surface geostrophic + Ekman current velocity (CMEMS, 2022a). The red dot in the middle indicates the TRAP core, the

red line the TRAP curve. Quivers illustrate the flow around the structure and the colourmap indicates the s1 strain field derived from the

same velocity snapshot. The geometries in salmon colour indicate with increasing transparency the position of the same TRAP after 10 and

20 days.

2.2 TRAPs computation

Serra et al. (2020) have published a programme to compute TRAPs from two-dimensional snapshots of a Eulerian velocity135

field u(x, t) (Serra, 2020), see Table B2 for details of the algorithm and Kunz (2024a) , Kunz (2024b) for our post-processing

of the output. We set TRAPs to a maximal arclength of 1° to represent a reasonable length scale for the regions between

mesoscale eddies that is at the same time representative for cleanup operations. We call the points that discretise the TRAP

curve curve points and the programme gives the positions of all curve points and corresponding TRAP cores in the domain.

It further outputs the normal attraction rate s1 at every TRAP core, which we name core attraction. We set the boundaries140

of our study domain to [22.5° N, 42.5° N] in latitudes and [-160° E, -125° E] in longitudes and compute TRAPs within this

domain. We choose these limits, highlighted by the red box in Fig. 1, in order to enclose the North Pacific accumulation zone

between Hawaii and California as defined by Onink et al. (2019). These boundaries also warrant no intersection with any

land mass. We compute TRAPs from daily snapshots of near-surface geostrophic + Ekman currents and therefore extract the

velocity fields uo and vo from the product Global Total Surface and 15m Current (COPERNICUS-GLOBCURRENT) from145

Altimetric Geostrophic Current and Modeled Ekman Current Reprocessing that is provided by the E.U. Copernicus Marine

Service (CMEMS, 2022a). The velocity fields are available at three-hourly instantaneous time steps, from which we select data

at UTC midnight to sample snapshots with a daily frequency. Velocity fields are provided on a latitude-longitude grid of 0.25°

resolution.

150
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2.3 Tracking Algorithm

Our tracking algorithm runs on the full TRAPs record and finds spatially proximate detections at consecutive timestamps

which can be identified as one single feature of the flow. The only free parameter ϵ defines the size of the search area around

a current TRAP to look for a detection in the next snapshot and is set to ϵ = 0.25◦, see Kunz (2024a) for more details. The

algorithm assigns a unique label to each TRAP trajectory and its associated instances and it derives metrics like e.g. the lifetime155

Λ of TRAPs and their age τ at a particular snapshot. We can then derive the zonal and meridional translation speeds cx and

cy for every instance of a TRAP trajectory. Therefore we choose all TRAPs that persist for at least three days and average

the forward and backward shifted velocity at a current timestamp. The forward/backward shifted velocity is the distance to its

succeeding/preceding position divided by the time lapsed between both instances, respectively. This way we deliberately create

no velocities at the start and end of a trajectory and do not gain propagation speeds for trajectories of two days lifetime. In160

turn, we obtain translation speeds of individual TRAP instances which we consider more accurate than taking the full distance

travelled by a TRAP and dividing it by the respective lifetime.

2.4 Mesoscale eddy data

We compare TRAPs against eddy detections from The altimetric Mesoscalle Eddy Trajectory Atlas (META3.2 DT) which is

produced by SSALTO/DUACS and distributed by AVISO+ with support from CNES, in collaboration with IMEDEA (AVISO+165

et al., 2022). This dataset provides Eulerian detections of eddies derived from sea surface height (SSH) contours, is at frequency

with our TRAPs record and includes estimations of the eddy contour speed U . The eddy contour speed U is the average

geostrophic speed of the contour of maximum circum-average geostrophic speed for the detected eddy. We filter the dataset

for eddy detections within the study domain and period and retrieve 28,645 cyclonic and 24,193 anticyclonic eddy trajectories

from 689,460 cyclonic and 686,720 anticyclonic eddy detections. Since we simply cut off eddy trajectories beyond the domain170

boundaries, 4.2% of all eddy trajectories will show discontinuities since they leave and return into the domain. We do not

correct for this cut off since the impact on our aggregate statistics should be negligible. We estimate eddy lifetime by taking

the difference between the first and the last occurrence within our domain, added by one day. As a consequence, the estimated

eddy lifetime can also include times spent outside the domain, given that the eddy returns back into it again. We further derive

eddy propagation speeds as we do for TRAPs.175

2.5 Vorticity curve

We use the relative vorticity field to characterise the flow around TRAPs. Many TRAPs seem to be surrounded by four vortices

of alternating polarity. In this case, two vortices on each side of a TRAP curve exhibit perpendicular flow towards the TRAP

core and tangential flow away from it, with respect to the TRAP curve. We call this vorticity pattern a quadrupole and classify

variations of it. To detect vorticity patterns without a coordinate transformation, we draw a circle in the horizontal plane around180

every TRAP core with a radius equal to the distance between the core and the furthest curve point. Starting from the position

of the furthest curve point, we parameterize the circle with angles increasing counter-clockwise, and bilinearly interpolate the
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vorticity field to the points on this circle. The vorticity curve ζ(α) then describes the vorticity along this circle with respect to

the angle of parameterisation, i.e. the phase α.

185

By visualising the vorticity curve, we are able to directly see polarity changes in the surrounding vorticity field and their

spatial orientation towards the TRAP. Figure 3a illustrates an example of such a vorticity measurement around a TRAP. For

a quadrupole in the northern hemisphere, the polarity pattern along the vorticity curve then results in cyclonic (⊕, positive

vorticity), anticyclonic (⊖, negative vorticity), cyclonic, anticyclonic and the vorticity curve reveals four zero crossings.

190

Since the ensemble mean of all vorticity curves ζ(α) indicates a quadrupole pattern, we filter the ensemble for specific com-

binations of four vortices of either cyclonic or anticyclonic rotation. We do not explicitly resolve patterns with less than four

vortices because we can identify them from this classification if needed. In total, there are 24 possible vortex combinations,

10 of which exert distinct dynamics, i.e. are unique under rotations of 180° around a TRAP core. To isolate each pattern, we

further remove a constant average background vorticity from every vorticity curve and then filter the ensemble for these 10195

vortex combinations. To detect the vortex configuration within a given vorticity curve, we divide the curve into four phase

intervals of αI = [0,π/2), αII = [π/2,π), αIII = [π,3π/2), αIV = [3π/2,2π) and compute the average vorticity within each

interval, see Fig. S2 for more details on all 10 vorticity patterns.

Figure 3. Vorticity circle and drifter transport around a TRAP. (a) For each TRAP, the vorticity field ζ is interpolated to points on a circle

around the core (dotted line). The circle parameterisation starts at the position of the furthest curverpoint w.r.t. the core (triangle) and with

a phase of α = 0◦. α increases counter-clockwise and we sample the vorticity along the curve as vorticity curve ζ(α). (b) Filled and empty

big red circle markers indicate the current position of one drogued and one undrogued drifter around the same TRAP instance, respectively.

Red tails with small markers indicate their positions throughout the preceeding seven days. Quivers illustrate the surrounding flow and the

colourmap indicates the relative vorticity field ζ.
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2.6 Impact on drifters200

Since TRAPs highlight the most attractive regions and their cores represent objective saddle points of the unsteady surface

flow, we expect them to attract and disperse drifting objects in a hyperbolic pattern. We study their transient impact on drifting

objects and therefore look at surface drifter trajectories around TRAPs.

To compare drifters and TRAPs at simultaneous timestamps, we consult 24-hourly drifter positions at UTC midnight from205

the Global Drifter Program (Lumpkin and Centurioni, 2019). For our study domain and period, this dataset provides 842, i.e.

328 drogued and 514 undrogued, drifter trajectories distributed over 221,979, i.e. 67,885 drogued and 154,094 undrogued, po-

sitions. We call these daily drifter positions drifter days. Figure 3b illustrates an example for hyperbolic drifter motion that we

find in this dataset - drifters are first attracted perpendicular towards the TRAP and then transported along one of its branches

towards the end. This is how TRAPs are expected to organise nearby floating objects. See Fig. S1 in the Supplementary Mate-210

rial for an overview on all drifter positions.

We want to see how drifters behave in the surroundings of a TRAP and therefore detect pairs of drifters and nearby TRAPs.

In Kunz (2024a) we provide a comprehensive description of our pair algorithm that works from a drifter’s perspective and

searches for the closest TRAP within a distance of 75 kilometres. For every instance of a drifter-TRAP pair, the algorithm215

records the drifter’s distance to the closest TRAP. It also saves attributes like e.g. the TRAP age τ at first encounter, the TRAP

lifetime Λ and its attraction rate s1. Moreover, we will know the daily vorticity pattern in which a drifter-TRAP pair is embed-

ded, and we measure the pair’s duration, i.e. the retention time φ of a drifter around its closest TRAP. A lot of pairings will

only last for a day due to ephemeral TRAPs with Λ = 1 day, due to drifters passing by in the periphery of a TRAP or due to

the drifter finding another TRAP that is closer. We exclude these one-day pairs from our analysis since we cannot infer any220

motion statistics from them. But the scope of our remaining measurements will still allow us to carry out a statistical analysis

about drifter motion around TRAPs.
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3 Results

3.1 Spatial distribution of TRAPs225

We first look at important circulation features of the study area. Figure 1 shows the distribution of eddy kinetic energy (EKE)

over the domain with respect to the period 2000-2019. The lowest values of EKE occur in the northwest corner of the domain.

This subregion is part of an eddy desert in the northeast Pacific where mesoscale eddies are low in amplitude and short in

lifetime, if present at all (Chelton et al., 2011). There are two distinct regions of high EKE in the northeast and the southwest

of the domain, indicating frequent turbulence and mesoscale eddy activity. These two regions neighbour the California Up-230

welling System (CALUS) and the North Hawaiian Ridge Current (NHRC), respectively, which are known for the production

of energetic mesoscale eddies (Pegliasco et al., 2015; Lindo-Atichati et al., 2020).

Within our domain and period, we detect 4,076,065 TRAP instances from which we identify 720,391 TRAP trajectories.

TRAPs occur everywhere in the domain but with distinct patterns in quantity, persistence and attraction strength. In panel (a)235

of Fig. 4 we separate the domain into bins of 0.25°×0.25° and show the 20-year bin averages of instantaneous TRAP core

attraction rates s1. A comparison with Fig. 1 reveals that TRAPs are particularly strong in regions of high EKE close to the

CALUS and the NHRC. In the central-north, the middle and southeast of the domain, moderate to low EKE prevails and

TRAPs are on average moderately to weakly attracting. The eddy desert in the northwest corner remains with a clear prefer-

ence for weak TRAPs. We derive a mean attraction rate and standard deviation of s1 ≈ (−0.23± 0.11) s−1 over all TRAP240

instances. The most attractive TRAP that we find is located within the eastern hotspot of Fig. 4a and exhibits an attraction

rate of s1 =−1.73 s−1. We correlate the average attraction rates s1 from Fig. 4a with the EKE field given in Fig. 1 and find

a pearson correlation coefficient of r =−0.93 with a p-value of p < 0.001. This indicates a strong and significant negative

correlation between both variables. It suggests that weak/strong TRAPs, i.e. with a less/more negative attraction rate s1, are

located in regions of low/high EKE.245

In panel (b) we visualise our tracking results and show the trajectories of TRAPs with lifetimes Λ > 30 days. We call this

subset long-living TRAPs. From time lapse animations of the TRAPs field we suspect that the trajectories here indicate west-

ward propagation with a tendency towards the equator, see Videos SV1, SV2 and SV3 in (Kunz, 2024c). Pegliasco et al. (2015)

find similar propagation characteristics for anticyclonic mesoscale eddies that originate in the California Upwelling System250

east of our domain. A comparison to panel (a) suggests that attraction strength may vary along the trajectories of long-living

TRAPs which however will exclude very weak attraction rates. Long-living TRAPs are indeed stronger than TRAPs with

lifetimes Λ≤ 30 days. We find mean attraction rates of s1,Λ>30 ≈ (−0.28± 0.11) s−1 and s1,Λ≤30 ≈ (−0.20± 0.09) s−1 for

TRAP instances associated with these groups, respectively.

255

In panel (c) we separate the domain into bins of 1°×1° and count the number of TRAP trajectories that pass through each

histogram bin. We find more TRAPs passing through the northwest than through the southeast half of the domain. TRAP
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trajectories are especially abundant around the eddy desert, i.e. in the northwest and central-north of the study region. We

complete the picture by deriving the average lifetime Λ of all trajectories that pass through a histogram bin in panel (d). We

find a clear preference for ephemeral TRAPs in the northwest corner and for persistent TRAPs within the southeast half of the260

domain. We summarise that TRAP trajectories are very abundant but only remain for a few days around the eddy desert while

they become less abundant but more persistent towards the equator and the eastern boundary.

Figure 4. Distribution of TRAP characteristics over the domain and in the period 2000-2019. (a) TRAP core attraction strength s1 averaged

over 20 years and all instances within bins of 0.25°×0.25° size. Red colours indicate high attraction. (b) Trajectories of long-living TRAPs

with lifetimes Λ > 30 days. Trajectories are coloured by the associated TRAP lifetime Λ, using the respective colour scale on the right. The

most persistent TRAP is indicated by a thick line. (c) Number of identified TRAP trajectories that pass through histogram bins of 1°×1°

size. (d) Average lifetime Λ of TRAP trajectories passing through each bin.

3.2 Life cycle and propagation

We find that TRAPs typically persist for a view days. However, the life cycle of some profiles can also span several seasons. Fig-265

ure 5a presents the distribution of TRAP lifetimes Λ over all TRAP trajectories. We find a mean lifetime of Λ≈ (6± 12) days.

The most persistent TRAP counts a lifetime of Λ = 294 days and is indicated by the thick red-brown trajectory in Fig. 4b. Only

4% of all TRAP trajectories exhibit lifetimes of Λ > 30 days, but they include around 41% of all instantaneous detections.
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In Fig. 5a we also present the lifetime distribution for mesoscale eddy detections in our domain. We consult the eddy census270

product by AVISO+ et al. (2022) to provide a first overview of three comparable features between TRAPs and mesoscale eddies.

AVISO+ et al. (2022) identify 28,645 cyclonic and 24,193 anticyclonic mesoscale eddy trajectories within our study domain

and period. On average, these cyclonic eddies persist for Λ⊕ ≈ (24± 40) days and anticyclonic ones for Λ⊖ ≈ (29± 56) days.

The distributions in panel (a) resemble one another, but there are considerably more TRAP than eddy trajectories in our domain

and their lifetimes are shifted towards smaller values. Over their lifetime, approx. 25% of all TRAPs find no eddy detection,275

54% find one and 21% find multiple eddy detections within a radius of 0.5° arclength. We find that this cumulative number of

encounterd eddy detections depends on TRAP lifetime with a correlation coefficient of r = 0.65 and a p-value of p < 0.001.

Long-living TRAPs encounter on average four eddy detections over their life cycle while some of them can be related to up to

18 different eddy detections. From this we understand that the detections from AVISO+ et al. (2022) are not really suitable to

explain individual TRAP detections.280

We expect high rotation speeds of mesoscale eddies to create high strain between them which should reflect in a relation

between s1 and the eddy contour speed U . We investigate this relation by recasting panel (a) from Fig. 4 but for the mean

eddy contour speeds U . We find a correlation coefficient between both histograms of r =−0.94 with a p-value of p < 0.001.

It confirms that on average, TRAP attraction strength scales with eddy contour speed. Panel (b) of Fig. 5 then views on the285

evolution of s1 and U over the lifetime of long-living TRAPs and eddies. We adopt this approach from Pegliasco et al. (2015)

who study the evolution of eddy radii and amplitudes. On average, both TRAP attraction and eddy contour speed intensify in

the first half and decrease in the second half of a respective life cycle. We conclude that the life cycles of TRAPs and eddies

relate.

290

Panel (c) presents the latitudinal dependence of the zonal translation speed cx for TRAPs and eddies. We find that for both,

cx is primarily negative and thus westward. The mean values cx vary with latitude and decrease towards the equator which

indicates that both phenomena propagate faster towards the west at lower latitudes. This westward propagation ranges between

0 to 4 cm s−1 on average. The close agreement between the latitudinal means of cx provides evidence that on average, TRAPs

move along with mesoscale eddies. We find similar coincidence for the latitudinal and longitudinal distribution of both zonal295

and meridional propagation speeds cx and cy , see Fig. A1. However, we find that mesoscale eddies exhibit more extreme

propagation speeds, suggesting that eddies might only create persistent strain within a specific dynamic range or a specific

combination of eddies.
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Figure 5. Comparisons between TRAPs and mesoscale eddies. (a) Disribution of lifetime Λ over all TRAP trajectories, cyclonic and anticy-

clonic eddy trajectories in the domain. The distributions of eddy lifetimes are cut off at 300 days for clarity. (b) Evolution of attraction rate

s1 over TRAP lifetime and contour speed U over eddy lifetime for phenomena with lifetimes Λ > 30 days. (c) Latitudinal dependence of

zonal propagation speed cx for 2,951,028 TRAP, 604,296 cyclonic and 608,650 anticyclonic eddy instances. Lines in (b) and (c) indicate bin

means, shaded bands their errors w.r.t. a confidence level of 95%. Mesoscale eddies as detected by AVISO+ et al. (2022).

Our results indicate that TRAPs are certainly located within the mesoscale eddy field, but we wonder where exactly. While

TRAPs exert maximum normal attraction and induce significant deformation, i.e. strain-dominated regions, coherent eddies300

are characterised by water parcels rotating about a common axis and closed transport barriers. Hence coherent eddies represent

vorticity-dominated regions which should exclude TRAPs. As a consequence TRAPs should emerge at the eddy periphery.

However, we find that the eddy detections from AVISO+ et al. (2022) are not able to explain all TRAP occurrences. We often

find TRAPs at eddy boundaries, but we also frequenlty observe TRAPs in regions with no eddy detections or even inside eddy

contours, see Fig. A2 or Video SV3 for details. The latter occurs for 15% of all TRAP detections and suggests the presence of305

multiple eddies within one eddy detection. Even though the eddy dataset allows us to reveal average relations between TRAPs

and mesoscale eddies, it is not suited to describe the actual dynamics around individual TRAPs. Instead, we use the relative

vorticity field to characterise the flow around TRAPs.

3.3 Vorticity patterns around TRAPs

A considerable number of TRAPs seems to be surrounded by four vortices of alternating polarity which exhibit perpendicular310

flow towards the TRAP core and tangential flow away from it w.r.t. the TRAP curve. We call this pattern a quadrupole. Here we

unravel this quadrupole and variations of it to demonstrate the driving mechanisms behind the formation of mesoscale TRAPs.

We compute the vorticity curves ζ(α) around all available TRAPs and normalise each by its maximum absolute value to obtain

ζ̂(α). First, we take this large ensemble of curves and show its mean and standard deviation in Fig. 6. This reveals the mean

pattern in the vorticity field around a TRAP.315
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Figure 6. Ensemble of 3,568,850 vorticity curves ζ̂(α) around TRAPs. Every curve ζ(α) is normalised by its maximum absolute value.

ζ̂ > 0 indicates cyclonic, ζ̂ < 0 anticyclonic rotation in the surrounding flow field of a TRAP. The blue line indicates the ensemble mean,

the shaded band its standard deviation. Black lines represent an arbitrary 0.1% subset from this ensemble. The panels on the right sketch

two TRAPs, one surrounded by a quadrupole as it can be interpreted from the ensemble mean, the other surrounded by vortices of unknown

polarity: What vorticity patterns will appear around individual samples?

The ensemble of all vorticity curves clearly resembles a sine wave. The similarity between the ensemble mean and a har-

monic function as well as its smoothness is remarkable. Even though individual curves might not follow this shape, the entirety

of the approx. 3.5 million curves generates a robust signal. Since a vorticity curve with four zero crossings and a polarity pattern

of cyclonic, anticyclonic, cyclonic, anticyclonic sequence indicates a quadrupole, the above signal gives reason to believe that

the mean pattern in the vorticity field around a TRAP is a quadrupole. Figure 3 illustrates such a typical quadrupole situation.320

We then remove the background vorticity from each vorticity curve and filter the ensemble of all vorticity curves ζ(α) for the

10 distinct vortex combinations. The quadrupole pattern in Fig. 6 serves as our reference pattern and we define the other nine

patterns in terms of variation from it. Therefore, we introduce the quadrupole order q. It describes the number of vortices in a

given pattern that need to change polarity in order to obtain the reference quadrupole pattern. We group the vorticity patterns325

of all the above 3,568,850 TRAP instances by q and illustrate the most frequent groups in Fig. 7, see Fig. S2 for more details

on all 10 vorticity patterns and their attributed quadrupole order.
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Figure 7. Quadrupole orders and their frequency. The quadrupole order q describes the number of vortices in a given pattern that need to

change polarity in order to obtain the reference quadrupole pattern. After removing the background vorticity from every vorticity curve ζ̂(α),

99.97% of the ensemble can be explained by the five patterns illustrated here. Figure S2 provides an overview on all vorticity patterns.

We shorthand name TRAP instances within a specific quadrupole surrounding q-th order quadrupoles. Zero, first and second

order quadrupoles constitute 99.97% of the signal in Fig. 6. We identify approx. 57% of all TRAPs as zero order quadrupoles,

34% as first order quadrupoles and 8% as second order quadrupoles. As we expect, the most prevalent group is the refer-330

ence quadrupole indicated by the ensemble mean. However, a significant share of TRAPs is also surrounded by first order

quadrupoles. A quick look into the ensemble means in Fig. S2 reveals that first order quadrupoles can also include dipoles with

one dominating polarity and some second order quadrupoles might represent symmetric dipoles. Higher order quadrupoles

also exist and involve the lowest attraction rates, but we neglect them since they rarely occur.

335

We now want to know how quadrupole patterns evolve over the TRAP lifetime Λ and how they relate to the attraction rate

s1. Panel (a) in Fig. 8 illustrates the shares of quadrupole orders zero, one and two at different evolution stages of long-living

TRAPs. We observe a gradual change in the vorticity field around long-living TRAPs towards the reference quadrupole state

during the first half of a life cycle, and away from the reference quadrupole state during the second half. Zero order quadrupoles

are the most important vortex group throughout the entire lifetime and they are especially abundant during the mature phase of340

TRAPs, i.e. between 20% and 80% of lifetime. However, the first order quadrupole is also a likely state at the formation and

decay phase of this cycle.

A comparison between Figs. 8a and 5b suggests that the evolutions of quadrupole order q and TRAP attraction rate s1 go

along with each other, i.e. TRAPs intensify towards their mid-life while their vorticity surroundings approach a lower order345

quadrupole state. From this we expect that zero, first and second order quadrupoles create different kinds of strain. Panel (b) in
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Fig. 8 displays the distributions of the instantaneous attraction rates s1 w.r.t. these quadrupole orders. The weakest TRAPs, i.e.

with the largest strain rates s1, are only surrounded by first order quadrupoles. Zero and second order quadrupole environments

appear for slightly higher attractions, i.e. smaller values of s1. All three distributions peak within the same niche but with

decreasing attraction rate, the probability density for second and first order quadrupoles decline faster than for the reference350

quadrupole. It shows that the probability to find strongly attracting TRAPs is higher among quadrupoles of order zero. The

average attraction rates s1 confirm this tendency, the p-values for the respective differences in mean values result in p < 0.001.

However, the strongest TRAPs are attributed to both the zero and first order quadrupole environments and in panel (b) we are

looking at slight differences at the very extremes. Therefore we conclude that there is a trend towards the reference quadrupole

environment for increasingly attractive TRAPs. Nevertheless, first order quadrupoles are likewise able to induce high strain.355

We now investigate which of these groups organises tracer patterns particularly well.

Figure 8. Distribution of quadrupole orders over TRAP lifetime and attraction. (a) Shares of zero, first and second order quadrupoles over

the lifetime of 26,675 long-living TRAPs with Λ > 30 days. (b) Distribution of TRAP attraction rates s1 for zero, first and second order

quadrupoles.

3.4 Impact on drifters

We identify 33.878 drifter-TRAP pairs with retention times of φ > 1 day. These pairs cover 73% of all drifter days and exhibit

a mean retention time of φ≈ (4.8± 3.7) days which reflects the transient impact of TRAPs, i.e. drifters are accumulated and

dispersed again within a few days. However, we also find a few drifters that spend multiple weeks around a TRAP. The highest360

retention time we measure counts φ = 46 days. Pairs with retention times φ > 7 days represent only 9% of all pairs but cover

28% of all drifter days. In general, we observe similar behaviours of drogued and undrogued drifters around TRAPs, but we

emphasise a subtle difference in retention times to explain why we find 2.6 times more undrogued than drogued drifter-TRAP

pairs while there are only 1.6 times more undrogued than drogued drifters in our domain. Figure 9 presents the distribution

of retention times φ over these drifter-TRAP pairs w.r.t. a pair’s drogue state. The probability density function illustrates,365

irrespective of sample size, which drogue type is more likely to enter into long retention. With increasing retention time φ,

the probability density for undrogued drifters declines faster than for drogued ones. In general, drogued drifters show a higher

susceptibility to stay around TRAPs for 8 days and longer. A longer retention of drogued drifters eventually makes them less

available for transient pairings.
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Figure 9. Retention times of drifters around TRAPs. Probability density function of retention times φ with respect to a drifter’s drogue

type. Drogued drifters remain on average φ≈ (5.3± 4.3) days, undrogued ones φ≈ (4.6± 3.4) days around a TRAP. The p-value for the

difference in means results in p < 0.001. Pairs with retention times of 1 day are excluded.

We study the average drifter motion around TRAPs and find that transport patterns depend on the evolution stage of the370

respective TRAP. Thus we divide all drifter-TRAP pairs into four groups. The first group includes pairs for which the respective

TRAP forms and decays during the drifter visit. Technically, this means that a pair includes the first and last detection of a

TRAP. The second group consists of pairs which occur during the formation of a TRAP but end before its decay. The third

group entails pairs which begin after the formation of a TRAP but end with its decay. And the fourth group defines pairs that

exist throughout the lifetime of a TRAP but exclude its formation and decay. Table 1 summarises the average retention times,375

attraction rates and TRAP lifetimes related to these groups. We find the longest average retention time for pairs that occur

throughout the life cycle of a TRAP without formation or decay. These pairs show to involve TRAPs of significantly stronger

attraction and higher persistency compared to pairs that occur during TRAP formation and/or decay.

Table 1. Characteristics of drifter-TRAP pairs at specific TRAP evolution stages. φ indicates the average retention times over all respective

pairs, Λ the average lifetime over all associated TRAPs and s1 the average attraction rate over all associated TRAP instances. TRAP formation

is given if a pair includes the first detection of a TRAP, TRAP decay if a pair includes the last detection.

TRAP formation TRAP decay φ [days] Λ [days] s1 [s−1] # pairs share in drifter days

Group I yes yes (3.5± 2.6) (3.5± 2.6) (−0.17± 0.07) 5456 8.5%

Group II yes no (4.8± 3.8) (19.6± 20.8) (−0.21± 0.08) 5521 11.8%

Group III no yes (4.7± 3.7) (19.6± 20.3) (−0.21± 0.08) 5609 11.8%

Group IV no no (5.3± 3.8) (47.9± 35.4) (−0.27± 0.11) 17292 40.9%

In Fig. 10 we illustrate the average drifter motion around TRAPs with respect to this grouping. We rotate drifter tracks

around TRAPs towards the zonal axis and allocate their respective drifter positions to hexagonal bins. For every bin, we av-380

erage the elapsed retention time φ and the eastward and northward velocity components over all binned drifter positions. Bin

colours indicate the average elapsed retention time φ per bin, quivers the average velocity components.
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Panel (a) highlights the average drifter motion around TRAPs that form and decay. The situation appears rather chaotic

with no specific motion pattern to detect. Velocity quivers hardly show any preferred direction of transport and green colours385

dominate the picture. The colour map indicates that the retention times of the underlying drifter-TRAP pairs begin and end

anywhere throughout the search circle. Panel (b) gives insight into drifter motion during the formation of TRAPs which overlast

the retention time. We find that drifters are majorly transported away from the TRAP and in parallel to the TRAP curve. Panel

(c) describes the opposite situation in which decaying TRAPs rather attract than disperse drifters. This attraction is generally

directed towards the TRAP core. Panels (a) to (c) reveal that drifters around TRAPs that either form and/or decay do not tend to390

follow a hyperbolic pattern. But TRAPs that are at a final stage of their life cycle can at least indicate the confluence of material.

In contrast, the velocity quivers in panel (d) where TRAP formation and decay are excluded describe hyperbolic transport

as expected, i.e. drifters flow perpendicularly towards the TRAP core and tangentially away from it, with respect to the TRAP

curve. We also observe distinct regions of light blue and red bin colours which indicate that many drifters enter the zone per-395

pendicular towards the TRAP and leave it at one end of the structure. A comparison with Figs. 5b, 8a and Table 1 clarifies that

hyperbolic transport primarily occurs throughout the mature phase of a long-living TRAP because at this stage, the surrounding

flow is particularly organised into a quadrupole pattern that generates high strain.

Figure 10. Drifter motion around TRAPs. For every drifter-TRAP pair, we determine the angle between the longer branch of the first TRAP

instance and the zonal axis with 0° pointing eastward and angles increasing counterclockwise. We use this angle to rotate all drifter positions

towards the zonal axis. We allocate all rotated drifter positions to hexagonal bins and for every bin, we average the elapsed retention time φ

as well as the eastward and northward velocity components over all binned drifter instances. The colour mapping indicates bin averages of

φ , quivers the average velocity components. A transparent TRAP in the middle indicates a generic profile, a black circle the limits of the

drifter search zone around it. (a) TRAP forms and decays, (b) TRAP only forms, (c) TRAP only decays and (d) TRAP neither forms nor

decays during the drifter visit.
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4 Summary, discussion and conclusion

We studied the characteristics of TRAPs and the prospects for predicting debris transport from this mesoscale permitting400

dataset. Our findings provide an advanced understanding of TRAPs in the Great Pacific Garbage Patch and demonstrate the

importance of TRAP lifetime estimations to an operational application. We find that the life cycle of TRAPs can range from

days to seasons with an average lifetime of Λ≈ (6± 12) days. However, 41% of all TRAP detections relate to profiles with

lifetimes of Λ > 30 days. Such long-living TRAPs exhibit a distinct evolution of attraction strength, they intensify during the

first and weaken during the second half of their life cycle. At the same time, the vorticity field around TRAPs gradually changes405

towards and away from a particularly ordered state, i.e. a group of four vortices with alternating polarity. Therefore, the life

cycle of TRAPs can explain why we observe hyperbolic drifter transport primarily throughout the mature phase of long-living

TRAPs. At this stage, the surrounding flow is particularly organised and generates high strain. We find that hyperbolic transport

around TRAPs takes on average φ≈ (5.3± 3.8) days but also detect drifters that spend multiple weeks around a TRAP. The

highest retention time we measure counts φ = 46 days.410

We identify the evolution stage of TRAPs as the most significant predictor for drifter motion. But the coherence of surround-

ing vortices might further explain our observations of hyperbolic transport and long retentions. We propose to investigate this

with higher-resolution measurements of the flow which can resolve the small-scale vortices that we see around many TRAPs

in SV3. The mesoscale eddy detections by AVISO+ et al. (2022) neither capture such vortices at the limit between the meso-415

and submesoscale which reflects in the high number of TRAPs without close-by eddy detections. Moreover, we find 15% of

all TRAPs inside these eddy detections although coherent eddies should exclude strain-dominated regions. It is known that

eddy detection algorithms based on closed contours of sea surface height often yield false-positive identifications (Beron-Vera

et al., 2013; Andrade-Canto and Beron-Vera, 2022). Liu and Abernathey (2023) present an alternative algorithm which detects

eddies from Lagrangian-averaged vorticity deviations (LAVD, Haller et al. (2016)). They claim the absence of false positive420

detections, however, we still find TRAPs that intersect these eddy detections, possibly due to the discrepancy between the

time-scale over which Lagrangian averaging takes place and the instantaneous nature of TRAPs, see Fig. A2 for details. We

expect true coherence and no inclusion of TRAPs when we use a detection framework that descends from the deformation

tensor S(x, t). Serra and Haller (2016) introduce elliptic OECSs which can be derived from singularities of S(x, t) and build

a complement to the strain-dominated regions uncovered by TRAPs, with the additional benefit of both computations being425

instantaneous. A computational implementation of elliptic OECSs would be subject to future research.

There is an ongoing debate on whether mesoscale eddies accumulate and transport floating material. van Sebille et al. (2020)

discuss confirming examples such as Brach et al. (2018), Budyansky et al. (2015) and Dong et al. (2014) while Abernathey

and Haller (2018) and Wang et al. (2015) show that transport by coherent eddies is negligible. This controversy rises from the430

use of different concepts to identify eddy boundaries. Abernathey and Haller (2018) find that material transport is caused by

stirring and filamentation at the periphery of strictly coherent eddies, rather than by the coherent motion within eddy cores.
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They emphasise the lack of objective methods to identify such peripheral regions. But TRAPs describe the limit between eddy

peripheries and should be able to contribute to this investigation. We find that on large time scales, there is no preference of

drifter positions around TRAPs or within eddy boundaries defined by AVISO+ et al. (2022). The share of drifter days spent435

around TRAPs or within eddies approx. equals the proportion of surface area that is covered by these structures. However,

there are temporary preferences on short time scales which motivate a follow-up analysis, see the time series in Fig. S3 for

details.

There are obvious limits to the application of this mesoscale permitting dataset. The effective resolution in space and time440

can be expected to be greater than the 0.25° latitude-longitude grid and the daily frequency. We observe effects of this in

animations where TRAPs reappear after a one-day gap. At such a gap, our tracking algorithm defines a new trajectory and

therefore TRAP lifetimes might be underestimated. In a similar way, detection gaps affect the identification of drifter-TRAP

pairs, leading to an underestimation of retention times. Nevertheless, we find a remarkable consistency between Duran et al.

(2021) and our study. They find persistent mesoscale TRAPs that predict the spread of surface oil at least eight days in advance445

and confirm our finding of retention times of φ = (5.3± 3.8) days for hyperbolic drifter motion. The agreement between their

study and ours, as well as the overall similar behaviour we observe for drogued and undrogued drifters, further underlines the

concept’s robustness against differences in tracer properties.

Even though our study cannot resolve important submesoscale processes like e.g. filamentation, Langmuir cells or subme-450

soscale vortices, it demonstrates the capability of TRAPs to predict material transport from first order mesoscale observations.

Our algorithms offer a great chance to reapply the TRAPs concept to future high-resolution observations that will be provided

by the current SWOT mission (International Altimetry Team, 2021). An interesting approach would be to study the flow around

drifter-TRAP pairs with long retention times. These long retention times might be due to drifter trapping within submesoscale

vortices and filaments that result from instabilities at mesoscale fronts (van Sebille et al., 2020; Zhang et al., 2019). Mesoscale455

TRAPs indicate these mesoscale fronts and might provide a window to enhanced material clustering at the submesoscale. We

propose to recast our TRAPs record (Kunz, 2024b) for periods with available SWOT measurements to investigate whether

TRAPs can indicate material accumulation at operational scalesO(1− 10km) but from large-scale observations of sea surface

height O(10− 100km), even if the geostrophic assumption is needed to obtain a sea-surface velocity from SWOT measure-

ments. Such exploration can be complemented with additional observations in coastal regions from high-frequency radar which460

gives the full and not only the geostrophic sea-surface velocity.

Our results can already support offshore cleanup operations since they reveal which TRAPs are most likely to indicate

large-scale confluence of drifting objects. Operators should search for long-living TRAPs that are at an advanced stage of

their life cycle. These TRAPs streamline floating objects into hyperbolic pathways. Such a streamlined bypass involves a short465

but strong attraction which could be exploited to filter the flow around a TRAP. But we also find TRAPs that retain material

over multiple weeks. These long-term retentions can start at any stage of a TRAP’s life cycle and drifters remain closer to the
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TRAP core than for streamlined bypasses. An investigation of the conditions causing this behaviour could further improve the

prospects of a cleanup operation, especially since long retentions of φ > 7 days are rare but cover up to 28% of all drifter days.

And this research is not limited to the subject of marine debris. Our findings may also benefit other challenges like e.g. optimal470

drifter deployment, sargassum removal, the identification of foraging hotspots or search and rescue.
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Appendix A: Figures

Figure A1. Comparison of propagation speeds between TRAPs and mesoscale eddies. Latitudinal dependence of the (a) zonal propagation

speed cx and (b) meridional propagation speed cy . Longitudinal dependence of the (c) zonal propagation speed cx and (d) meridional

propagation speed cy . Lines indicate bin means, shaded bands the respective standard deviations from 2,951,028 TRAP, 604,296 cyclonic

and 608,650 anticyclonic eddy instances. Mesoscale eddies as detected by AVISO+ et al. (2022).
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Figure A2. Snapshot of mesoscale TRAPs and mesoscale eddy detections within the study domain. Black lines represent TRAPs. Cyan/pink

lines depict the speed contours of cyclonic/anticyclonic mesoscale eddies as detected by AVISO+ et al. (2022). Blue/red patches depict

Lagrangian particles trapped by cyclonic/anticyclonic coherent eddy boundaries as detected by Liu and Abernathey (2022) for the same

snapshot. The colour scale on the right indicates the relative vorticity ζ of Lagrangian particles.
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Appendix B: Tables

Table B1. Benefits of TRAPs. Adopted from Serra and Haller (2016), Serra et al. (2020) and Duran et al. (2021).

use velocity snapshots

TRAPs can be directly inferred from snapshots of the surface velocity field

and thus are light in computation. They allow for input data with time gaps

and predictions can be made from a nowcast of the velocity field.

avoid pitfalls of trajectory integra-

tion

TRAPs do not require costly trajectory integrations, tracer release times,

locations or the length of the observation period. Velocity errors do not ac-

cumulate which should make TRAPs less sensitive to uncertainties in the

underlying velocity field. They also provide full domain coverage while La-

grangian methods become computationally demanding with increasing res-

olution of the initial particle field where particles may eventually leave a

finite-size domain.

indicate direction of transport

What makes TRAPs special is that they indicate the directions of transport

while other structures like e.g. s1 minima, divergence minima or ridges of

the Finite-Time Lyapunov Exponent (FTLE) field don’t. FTLE ridges do not

necessarily indicate the direction of largest stretching (Haller, 2015).

easy to interpret
TRAPs describe localised, one-dimensional curves of attraction in contrast

to large open sets of e.g. horizontal divergence or particle density.

robust
TRAPs are robust to different inertia and windage effects and thus are in-

sensitive to varying shape or submergence level of drifting objects.

uncover hidden flow structures
TRAPs can be perpendicular to streamlines and exist in divergence-free

flows.

observer-independent

The objective nature of TRAPs leads to the same conclusions on different

platforms. Classic Eulerian quantities like streamlines, velocity magnitude,

velocity gradient, energy, relative vorticity are not objective and will lead to

different results in different frames of reference.

scale-invariant

TRAPs can be computed for velocity fields of any temporal and spatial reso-

lution. The concept can be applied to the scales of the confluence phenomena

of interest.
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Table B2. Algorithm to compute Transient Attracting Profiles in a two-dimensional flow. Adopted from Serra and Haller (2016) and Serra

et al. (2020).

Input: A two-dimensional Eulerian velocity field u(x, t)

Compute

1. the rate-of-strain tensor S(x, t) = 1
2
(∇u(x, t)+ [∇u(x, t)]⊤)

at the current time t on a rectangular grid over the (x1,x2) coordinates.

2. the eigenvalue fields s1(x, t)≤ s2(x, t) and the associated unit eigenvector fields ei(x, t) of S(x, t) for i = 1,2.

3. the set S1m(t) of negative local minima of s1(x, t).

4. TRAPs (e2-lines) as solutions of the ODE
dx

ds
= sign⟨e2(x(s)),e2(x(s−∆))⟩e2(x(s))

x(0) ∈ S1m(t).

where s is the independent variable of the TRAP curve parameterisation x(s), ∆ denotes the integration step in the arclength

parameter s and x(0) indicates the position of a TRAP core. The sign term in step 4 guarantees the local smoothness of the

direction field e2. Stop integration when s1(x(s)) ceases to be montone increasing or when s1(x(s)) > 0.3 · s1(x(0)).TRAP

curves are shortened such that the attraction rate along the curve is everywhere at least 30% of the attraction at the respective

core in order to ensure that TRAPs indicate a distinguished attraction relative to nearby structures (Serra et al., 2020).

Output: Transient Attracting Profiles at time t and their normal attraction rate field s1(x, t).
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Code and data availability. We provide source code at Kunz (2024a) to post-process TRAP computations, to track TRAPs through the

domain and to identify drifter-TRAP pairs. We further provide a 20-years dataset of TRAP detections with lifetime estimations and vorticity475

pattern detections and our dataset of drifter-TRAP pair detections at Kunz (2024b).

Video supplement. We provide animations of the TRAPs tracking algorithm in SV1, of the evolution of TRAPs, drifter positions and the

relative vorticity field in SV2 and of the evolution of TRAPs, mesoscale eddy detections and the relative vorticity field in SV3. SV1, SV2

and SV3 are available at Kunz (2024c) and Fig. S4 summarises the details.
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