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Abstract.

Mixed-phase clouds (MPC) are a key component of the Earth’s climate system. Observations show that ice water content

(IWC) is not distributed homogeneously in MPC. Instead, high IWC tends to occur in clusters. However, it is not sufficiently5

understood which ice crystal formation and growth processes play a dominant role in IWC clustering in clouds. One important

ice growth process is riming, which occurs when liquid water droplets freeze onto ice crystals upon contact. Here, airborne

measurements of MPC in mid- and high-latitudes are used to study spatial variability of ice clusters in clouds and investigate

how this variability is linked to riming. We use data from the IMPACTS (mid-latitudes) and the HALO-(AC)3 (high-latitudes)

aircraft campaigns, where spatially and temporally collocated cloud radar and in situ measurements were collected. We derive10

riming and IWC by combining cloud radar and in situ measurements. Ice cluster scales and IWC variability in clouds are quan-

tified using pair correlation functions. By comparing IWC calculations accounting for riming to IWC calculations neglecting

riming, we single out the influence of riming.

During all analyzed flight segments, riming is responsible for 66 % and 63 % of total IWC during IMPACTS and HALO-

(AC)3, respectively. In mid-latitude MPC, riming does not significantly change IWC cluster scales, but increases the probability15

of clusters occurrence. This enhancement occurs at similar scales as liquid water content variability. In cold air outbreak MPC

observed during HALO-(AC)3, riming impacts IWC clustering at two distinctive scales. First, riming enhances the probability

of in-cloud IWC clusters at spatial scales below 2 km, which corresponds to the wavelength of the roll cloud updraft and

circulation features. Second, riming leads to additional in-cloud IWC clustering at spatial scales of 3-5 km. We find that

the presence of mesoscale updraft features leads to enhanced occurrences of riming and therefore additional IWC clustering.20

An increased liquid water path might increase the effect, but is not a necessary criterion. These results help to improve our

understanding of how riming is linked to IWC variability in clouds and can be used to evaluate and constrain models of MPC.
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1 Introduction

In mid- and high-latitudes, most precipitation stems from ice containing clouds (Mülmenstädt et al., 2015), which are a crucial

component of the Earth’s weather and climate systems. In mixed-phase clouds (MPC), ice particles and supercooled liquid25

droplets coexist down to temperatures of about −38 °C in a thermodynamically unstable state. Mass and the ratio of ice and

liquid particles play a critical role not only in precipitation processes, but also cloud lifetime, radiative budget (Sun and Shine,

1994; Shupe and Intrieri, 2004; Turner, 2005), and climate feedbacks (Choi et al., 2014; Bjordal et al., 2020).

Numerical forecast and climate models often fail to realistically predict or reproduce MPC properties, lifetime and precipi-

tation amounts (Morrison et al., 2012, 2020; Ong et al., 2024; Connelly and Colle, 2019). The misrepresentation of MPC and30

ice clouds has been suggested as large contributor to the uncertainty in CMIP6 climate model predictions (e.g., Bock et al.,

2021). This is in part linked to a poor understanding of ice formation and growth processes in MPC (Korolev et al., 2017).

Their representations are therefore likely incomplete, even in sophisticated cloud microphysics schemes (e.g., Cao et al., 2023),

such as the predicted particle properties (P3) scheme proposed by Morrison and Milbrandt (2015). Gaps in our understanding

of dominating ice processes hamper progression in representing MPC in models (Morrison et al., 2012).35

One important ice growth process is riming, which describes the process of supercooled droplets freezing onto ice particles

after contact. Riming efficiently converts liquid to ice and typically leads to increased particle mass, density, and fall speed

(Heymsfield, 1982; Erfani and Mitchell, 2017; Seifert et al., 2019). Although riming can theoretically significantly increase ice

water content (IWC) in MPC, it is unclear how much it contributes to ice mass in reality and further to snowfall amounts on

the ground with different studies reaching different conclusions (Harimaya and Sato, 1989; Moisseev et al., 2017; Kneifel and40

Moisseev, 2020; Fitch and Garrett, 2022; Waitz et al., 2022).

Cloud properties are not only determined by the mass and the ratio of liquid and ice particles, but also by their spatial

distribution. Observations show that ice particles and liquid droplets in MPC are often mixed heterogeneously leading to the

formation of hydrometeor clusters (Korolev et al., 2003; Field et al., 2004; Korolev and Milbrandt, 2022). The ability to quantify

spatial scales of IWC clustering would allow for model evaluations beyond comparing distributions of IWC. Additionally,45

which microphysical processes lead to IWC clustering at which spatial scales is poorly understood. While quantifying spatial

scales of cloud particle clusters has been the focus of previous studies, most focused on liquid-phase clouds and analyzed liquid

droplet clustering on small scales below 1 m (Kostinski and Shaw, 2001; Shaw et al., 2002; Baker and Lawson, 2010), where

turbulence plays a major role in clustering (Wood et al., 2005; Saw et al., 2012a, b). Studies looking at MPC suggest that ice

clustering is present at different spatial scales than liquid clusters (Korolev and Milbrandt, 2022; Deng et al., 2024). Deng et al.50

(2024) propose that ice clusters—defined as regions with enhanced ice particle number or IWC—on larger scales of a few km

dominate the inhomogeneity of the ice distribution within clouds. However, their analysis is based on in situ data of a single

case over China and it is unclear, if their findings are representative for different types of MPC.

Accurate in situ measurements of IWC remain challenging (Heymsfield et al., 2010; Baumgardner et al., 2017; Tridon et al.,

2019), even though in situ cloud probes can provide reliable particle size distribution (PSD) data (Korolev et al., 2013; Moser55

et al., 2023). Lacking IWC measurements, Deng et al. (2024) calculated IWC from PSD observations assuming that ice particle
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mass as a function of ice particle size follows a power law relation . Because deriving size-resolved ice particle densities from

in situ PSD alone is not possible yet (to our knowledge), Deng et al. (2024) used constant mass-size parameter from Heymsfield

et al. (2010). Therefore, their analyses captures IWC variability due to ice number concentration and size, but not ice particle

density, which is commonly linked to riming (Erfani and Mitchell, 2017; Seifert et al., 2019).60

Combining collocated cloud radar and in situ PSD data allows to estimate IWC by not only showing great potential to gain

better insight on microphysical processes (Nguyen et al., 2022; Mróz et al., 2021), but also to infer ice particle density changes

due to riming (Maherndl et al., 2024). This way, IWC variability driven by riming-induced changes in ice particle density can

be studied. In recent years, the synergistic employment of both remote sensing and in situ instrumentation during airborne

campaigns has become more common (Houze et al., 2017; McMurdie et al., 2022; Nguyen et al., 2022; Kirschler et al., 2023;65

Sorooshian et al., 2023; Wendisch et al., 2024; Maherndl et al., 2024).

Here, we us collocated cloud radar and in situ cloud probe observations in MPC collected during the IMPACTS (McMurdie

et al., 2022) and the HALO-(AC)3 (Wendisch et al., 2024) aircraft campaigns. The focus of IMPACTS was to study precipi-

tation variability in wintertime snowstorms. The main objective of the HALO-(AC)3 campaign was studying Arctic air mass

transformations. During both campaigns, two aircraft flew in an approximately vertically stacked coordinated pattern to collect70

spatially and temporally collocated radar and in situ data.

We aim to:

1. Quantify spatial scales of ice clusters in MPC observed during the IMPACTS (mid-latitude winter storms) and HALO-

(AC)3 (Arctic MCAO clouds) aircraft campaigns.

2. Characterize spatial scales at which riming enhances in-cloud ice clustering and link to drivers of riming.75

3. Compare ice cluster scales and the impact of riming for mid- and high-latitude MPC.

Because we aim to compare IWC variability in MPC at different latitudes, we are using data from both aircraft campaigns.

IMPACTS data was collected during four flights over the US East Coast and the Midwest. For HALO-(AC)3, We use data

from three flights over the Fram Strait west of Svalbard. We compare the contribution of riming to IWC to other ice formation

processes absolutely and with respect to the spatial scales of ice clustering using the pair correlation function. The paper80

is organized as follows: Section 2 introduces the airborne data sets we use to study riming and IWC variability. Section 3

illustrates the methods we use to quantify riming, derive IWC, and analyze scales of IWC variability in clouds. The main

results are presented in Sect. 4. In Sect. 5 we summarize and discuss our findings.

2 Data

2.1 Airborne campaigns: IMPACTS and HALO-(AC)385

The Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS, McMurdie et al.,

2022) campaign was a NASA-sponsored field campaign to study wintertime snowstorms with a focus on precipitation variabil-
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Table 1. Overview of analyzed flight days including campaign, measurement area, and synoptic situation.

Campaign Flight day Measurement area Synoptic situation / mission target

IMPACTS 25 January 2020 East Coast, New York Warm occluded front

IMPACTS 1 February 2020 East Coast, Atlantic Warm developing frontal system

IMPACTS 5 February 2020 Midwest Shallow frontal zone

IMPACTS 7 February 2020 East Coast, Albany Rapidly deepening cyclone

HALO-(AC)3 28 March 2022 Fram Strait MCAO

HALO-(AC)3 1 April 2022 Fram Strait MCAO

HALO-(AC)3 4 April 2022 Fram Strait MCAO

ity in East Coast cyclones. Here, we use data collected during the winter 2020, where a variety of storms from the Midwest to

the East Coast were sampled.

The DFG-funded field campaign HALO-(AC)3 (Wendisch et al., 2024) took place in March and April 2022 and aims at90

investigating warm air intrusions and cold air outbreaks in the Arctic. In this study, we analyze data collected during MCAO

conditions over the Fram Strait west of Svalbard.

Both aircraft campaigns have in common that collocated in situ and remote sensing measurements were conducted with

two aircraft. During IMPACTS, the ER-2 aircraft flew above clouds carrying a variety of passive and active remote sensing

instruments including multiple frequency Doppler radars. Simultaneously, the NASA P-3 aircraft collected measurements of95

microphysical cloud properties in situ while flying within clouds. During HALO-(AC)3, the AWI aircraft Polar 5 and Polar 6

conducted measurements in a similar manner. Polar 5, equipped with a W-band radar among other remote sensing instruments

flew above Polar 6, which carried out in situ measurements in clouds.

However, both campaigns cover different observation areas and sampled at different frequency rates, i.e., different spatial

resolutions. With a typical flight speed of 200 (150) m/s the ER-2 (P-3) covers a larger spatial scale at a coarser resolution100

than Polar 5 and Polar 6, which flew at 60-80 m/s. While the ER-2 and Polar 5 flew at constant altitudes of 20 km and 3 km,

respectively, P-3 and Polar 6 sampled at different altitudes up to 8.5 and 3 km, respectively. In this study, we investigate data

collected during the flight days listed in Tab. 1. We selected these days because of the good collocation (which we define as

maximum spatial offsets of 5 km and temporal offsets of 5 min; see Sect. 2.4) between the respective remote sensing and in

situ aircraft as well as the data availability. Figure 1 shows all coordinated flight paths.105

2.2 Instruments

Equivalent radar reflectivity factor Ze was measured by multiple radars during IMPACTS: X-band (9.6 GHz, EXRAD, Heyms-

field et al., 1996, 2022), Ku and Ka-band (13.6 and 35.6 GHz, HIWRAP, Li et al., 2016, 2022), and W-band (94 GHz, CRS,

McLinden et al., 2021, 2022). EXRAD consists of a nadir-pointing and a conically scanning beam, however, we only use the

nadir-pointing beam in this study. EXRAD, HIWRAP, and CRS sampled at 4 Hz, 2 Hz, and 4 Hz at vertical resolutions of 19110
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Figure 1. Flight tracks of (a) all analyzed coordinated flight segments, zoomed in on (b) HALO-(AC)3, and (c) IMPACTS measurement area.

In (b) the sea ice concentration (SIC) derived from the Advanced Microwave Scanning Radiometer 2 (AMSR2) onboard the GCOM-W1

satellite on 1 April 2022 is shaded in blue.

m, 26 m, and 26 m, respectively. During HALO-(AC)3, a W-band radar (94 GHz, MiRAC-A, Mech et al., 2019; Mech et al.,

2024a) was deployed. MiRAC-A was mounted with a 25°backwards inclination, sampled at 1 Hz and Ze data is available with

5 m vertical resolution. For scattering calculations done within this study, the 25°inclination is negligible (not shown). For both

campaigns, Ze data is quality controlled and corrected for instrument orientation and aircraft motion (for MiRAC-A, see Mech

et al., 2019). Uncertainties of Ze stemming from radar calibration are estimated to be below 1 dB and 0.5 dB for IMPACTS115

and HALO-(AC)3 data, respectively (Finlon et al., 2022; Mech et al., 2019). MiRAC-A Ze is corrected for attenuation due to

liquid water content (LWC) as described in Maherndl et al. (2024); CRS Ze as described in Finlon et al. (2022). Attenuation

due to water vapor and atmospheric gases is below 0.5 dB for all radars and therefore neglected.

During HALO-(AC)3, brightness temperature TB measurements at 89 GHz were collected and are used to derive the LWP.

Differences in TB for clear-sky and cloudy situations are used to retrieve LWP over ocean via a regression approach (Ruiz-120

Donoso et al., 2020; Maherndl et al., 2024). Lidar measurement of backscattered intensities at 532 nm (parallel and perpen-

dicular polarized) and 355 nm (not polarized; Stachlewska et al., 2010) are used to derive cloud top height (CTH) during

HALO-(AC)3 (Mech et al., 2022a; Schirmacher et al., 2023; Maherndl et al., 2024; Mech et al., 2024b).

Cloud particle observations obtained with a variety of cloud probes cover a size range from 2 µm to about 2 cm for IMPACTS

and 2.8 µm to 6.4 mm for HALO-(AC)3. For IMPACTS, we use data from a Fast-Cloud Droplet Probe (Fast-CDP, 2-50 µm,125
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Lawson et al., 2017), a Two-Dimensional Stereo (2D-S, Lawson et al., 2006) probe (10-2000 µm, pixel resolution of 10 µm),

one horizontally, and one vertically oriented High Volume Precipitation Spectrometer, version 3, (HVPS-3, Lawson et al.,

1998) probe (0.3-19.2 mm, pixel resolution of 150 µm). For HALO-(AC)3, we use data from a Cloud Droplet Probe (CDP,

2.8-50 µm, Lance et al., 2010), a Cloud Imaging Probe (CIP, 15-960 µm, pixel resolution of 15 µm, Baumgardner et al., 2001),

and a Precipitation Imaging Probe (PIP, 103-6400 µm, pixel resolution of 103 µm, Baumgardner et al., 2001). Here, we use130

merged particle size distribution (PSD) data from the respective campaign (Bansemer et al., 2022; Moser et al., 2023), which

are derived from the instruments listed above. As in Moser et al. (2023) and Maherndl et al. (2024), we assume all particles

larger 50 µm in MPC to be ice crystals. As in Maherndl et al. (2024), we only include data up to -1 °C to avoid melting effects.

In addition, we manually looked through in situ images of all analyzed flight segments and removed two IMPACTS segments,

where we could identify supercooled droplets larger 50 µm. LWC was measured in situ with a King probe (King et al., 1978)135

and a Nevzorov probe (Korolev et al., 1998; Lucke et al., 2022; Lucke et al., 2024) during IMPACTS and HALO-(AC)3,

respectively. Due to poor data availability1 and high uncertainties of IWC measurements, IWC is calculated from the PSD as

described in more detail in Sect. 3.2. For more detail on IMPACTS and HALO-(AC)3 instrumentation and data processing,

we refer the reader to McMurdie et al. (2022) and Moser et al. (2023), Mech et al. (2022a), as well as Maherndl et al. (2024),

respectively.140

2.3 Synoptic situation

In this section, we give a brief overview of the "typical" synoptic situations encountered during the different field campaigns

to provide context on the types of MPC that we analyze. We use one example flight segment for each campaign, which we

describe in detail in Sect. 4.1.1 and 4.1.2.

During IMPACTS, observations of a variety of mid-latitude wintertime storms in different development stages were con-145

ducted. The focus was on observing banded precipitation structures. Observations range from a relatively weak and warm

developing Atlantic low systems without major banding structures (1 February 2020) to rapidly deepening cyclones with sig-

nificant snowfall and snowbands (5 February 2020). The majority of measurements stem from the U.S. Midwest, and close

to the East Coast (both over ocean and land) ranging up to southern parts of Canada (Fig. 1). The coordinated ER-2 and P-3

flights on 5 February sampled an elevated warm front over shallow, pre-existing cold air as a low pressure center developed150

over Louisiana and Mississippi. The developing circulation around the low produced a low-level northeasterly flow across the

Midwest. Due to the overrunning warm moist air from the south, precipitation in the form of rain (to the south) and snow (to

the north) formed. During the period of observations, snowband structures were observed.

Measurements during HALO-(AC)3 were conducted west of Svalbard over both open ocean and sea ice. However, clouds

were very thin to non-existent over sea ice during all three flights used here. Northerly to northeasterly flow brought cold air155

masses from the sea ice of the higher Arctic to the comparatively warm open ocean. This led to the formation of roll cloud

streets. During 1 April 2022 the MCAO was especially strong meaning the difference of the potential at sea surface and the

1IMPACTS (2020): Water Isotope System for Precipitation and Entrainment Research (WISPER, Toohey et al., 2022) data product is available but

unreliable under riming / icing conditions; HALO-(AC)3: Nevzorov probe data product only for April flights
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potential temperature at 850 hPa was large (about 8 K), while during 28 March and 4 April 2022 weaker MCAO conditions

were observed due to air masses being convected from North America over Siberia (28 March) or the central Arctic (4 April)

to Svalbard (Walbröl et al., 2024).160

2.4 Collocation

To combine in situ and remote sensing observations of the two aircraft, we use the same collocation criterion as in Maherndl

et al. (2024), which is also extended to the IMPACTS data. To summarize, the nearest radar data point to the in situ measure-

ments is selected following Chase et al. (2018) and Nguyen et al. (2022). Each 1 Hz, 2 Hz, or 4 Hz radar aircraft (Polar 5 and

ER-2) data point is matched with the spatially closest in situ aircraft (Polar 6 and P-3) data point within a 5 min time window.165

We consider data with maximum spatial offsets of 5 km as "collocated". The closest radar range gate to the flight altitude of

the in situ aircraft is chosen. Averaging over certain height ranges did not lead to significant improvements.

Rolling averages were applied to Ze and in situ data to obtain more robust statistics for the latter. To cover approximately

the same spatial scales, averaging windows of 10 s and 30 s are chosen for IMPACTS and HALO-(AC)3, respectively. With

typical flight speeds of 180-200 m/s and 60-80 m/s during IMPACTS and HALO-(AC)3, respectively, this corresponds to170

spatial scales of 1.8-2.0 km and 1.8-2.4 km. We assume the in situ measurement is representative of the entire matched radar

volume. Possible implications of this assumption on the riming retrieval are discussed in Maherndl et al. (2024).

3 Methods

3.1 Retrieving ice particle riming

We use the normalized rime mass M (Seifert et al., 2019) to describe riming. M is defined as the particle’s rime mass mrime di-175

vided by the mass of a size-equivalent spherical graupel particle mg , where we assume a rime density of ρrime = 700 kg m−3:

M =
mrime

mg
(1)

where

mg =
π

6
ρrimeD

3
max. (2)180

The maximum dimension Dmax is defined as the diameter of the smallest circle encompassing the cloud particle in m and is

used to parameterize particle sizes.

We retrieve M using the two methods introduced in Maherndl et al. (2024), which are termed the combined method and

the in situ method. The methods in Maherndl et al. (2024) were developed for HALO-(AC)3, but we apply them to IMPACTS

data with slight adjustments due to different instrumentation. In the following, we give a brief explanation of both methods and185

describe the adjustments for IMPACTS data. For more detail, we refer the reader to Maherndl et al. (2024).
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The combined method derives M along the flight track of the in situ airplane from collocated PSD and radar reflectivity

Ze measurements. It therefore relies on collocated in situ and remote sensing flights. An Optimal Estimation (Rodgers, 2000)

algorithm is used to retrieve M by matching simulated radar reflectivities Ze obtained from observed in situ PSD with the

spatially and temporally closest measured Ze. As forward operator we use the Passive and Active Microwave radiative TRAns-190

fer tool (PAMTRA, Mech et al., 2020) which includes empirical relationships Maherndl et al. (2023a) for estimating particle

scattering properties as a function of M . For IMPACTS, the combined method is applied (separately) to X-, Ku-, Ka- and

W-band Ze (see Sect. 4.1.3). As in Maherndl et al. (2024), we use the riming dependent mass-size parameter relation for den-

drites from Maherndl et al. (2023a) that were estimated for different degrees of riming, i.e., M values. Dendrites were chosen,

because 86.2 % of data during the analyzed IMPACTS segments are within temperature ranges of -20 °C to -10 °C and -5195

°C to 0 °C, where plate-like growth of ice crystals is preferred (only 13.8 % of the data lie between -10 °C and -5 °C, where

column-like growth dominates). We assume dendrite shapes for the whole dataset, because of two reasons. First, Maherndl

et al. (2024) found assuming plates or dendrites gives the same results within uncertainty estimates, and second, we want to

keep the analysis of IMPACTS and HALO-(AC)3 data as consistent as possible.

The in situ method uses in situ measurements of ice particle area A, perimeter P , and Dmax to derive M for individual ice200

particles from which an average M for the particle population is derived. The in situ method is applied to 2D-S and HVPS-3

data for IMPACTS as was done using CIP and PIP data for HALO-(AC)3 in Maherndl et al. (2024). P and A measurements

in pixel are used to calculate complexity χ= P
2
√
πA

. Simulated rimed aggregates from Maherndl et al. (2023b) are used to

derive empirical functions relating χ and Dmax to M , where χ and Dmax are derived using the same processing steps as

for the respective cloud probes. Because these processing steps were slightly different for 2D-S and HVPS-3 operated during205

IMPACTS2 than for CIP and PIP during HALO-(AC)3, new fit functions (based on 18352 simulated dendrites; with R2 = 0.92)

had to be derived for IMPACTS:

log10 (M) =
1.11−χ+0.00141 ·Dmax

0.00432 ·Dmax +0.218
. (3)

Only a subset of ice particles can be used to derive M with the in situ method, because particles cannot touch edges to

derive P and need to be large enough to derive meaningful χ. We therefore assume the combined method—which uses the full210

PSD—gives more reliable results when the aircraft are reasonably collocated. In situ method results are therefore only shown

in Sect. 4.1.1 and 4.1.2 as references and the combined method is used in all further analysis steps.

3.2 Deriving ice water content (IWC)

IWC is calculated by summing the product of ice particle mass m(Dmax) and N(Dmax) for the probes’ lower to upper size

ranges Dlower to Dupper215

IWC =

Dupper∑
Dlower

m(Dmax)N(Dmax)∆Dmax, (4)

2The number of perimeter pixel P is computed by the sum of all pixel that are eroded when applying a "+" shaped erosion kernel without performing

dilation/erosion sequences as was done during HALO-(AC)3.
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where ∆Dmax is the size bin width. m(Dmax) is approximated by a power law relation with prefactor am and exponent bm

m(Dmax) = amDbm
max. (5)

am scales the density of ice particles (independent of particle size) and bm modulates the size dependency of particle mass,

which is related to particle shape and growth processes. am and bm depend strongly on riming (e.g., Mitchell, 1996) and220

reported literature values range from 0.0058 to 466 for am and 1.8 to 3.0 for bm in SI units (e.g., discussed by Mason et al.,

2018). As shown by Maherndl et al. (2023a), am and bm strongly depend on the amount of riming, which increases particle

densities. Maherndl et al. (2023a) provide am and bm values for discrete M , which are interpolate to obtain parameters for a

continuous M in this study. We derive am and bm for each time step as a function of the retrieved M . IWC is then calculated

with Eq. 4 for each time step based on the measured PSD and the derived am and bm parameters. We refer to this quantity as225

IWCr (IWC accounting for riming).

To estimate the contribution of the riming process to IWC, we also calculate IWC using fixed mass-size parameters am and

bm for unrimed particles (also taken from Maherndl et al., 2023a), thereby neglecting density changes (e.g., due to riming). We

refer to this quantity as IWCu. IWCu can be seen as the "theoretical" IWC, if the ice particles were unrimed so that the riming

contribution can be estimated from the difference between IWC and IWCu. However, this implies that riming does not impact230

the size of the unrimed ice particle, which is not necessarily the case in nature. Riming typically not only leads to an increase in

ice particle density, but also ice particle size (Seifert et al., 2019). Therefore, we likely underestimate the contribution of riming

to particle mass when comparing IWCu with IWC. Since we are interested in the contribution of riming to IWC variability,

this approach likely results in a conservative estimate of the contribution of riming to IWC variability.

3.3 Characterizing scales of IWC variability in clouds235

Similar to Deng et al. (2024), we use the pair correlation function (PCF) to quantify the spatial inhomogeneity of ice water in

the observed clouds. In discrete systems, the PCF describes the degree of deviation from the homogeneous Poisson process.

In clouds, the PCF can be used to quantify the degree of clustering or variability of a certain parameter such as the number

concentration of liquid droplets, the number concentration of ice particles, LWC, or IWC (e.g., Shaw et al., 2002; Saw et al.,

2012a; Deng et al., 2024). The PCF applied to a one-dimensional parameter p is given by:240

η(r) =
p(0)p(r)

(p)2
− 1, (6)

where p(0) is the parameter at a given point, p(r) the parameter at the lag r from that point, and p the average of p (Kostinski

and Jameson, 2000; Shaw et al., 2002). Thus, η(r) is a measure for the probability to find clusters of p as a function of lag r

compared to p. Positive values indicate the occurrence of clusters and the higher η(r) the higher the probability to find clusters

at that scale. If p follows a homogeneous Poisson distribution, which PCF assumes to be statistically homogeneous, η(r) = 0.245

Negative values indicate that at the given scale, it is less likely to find clusters than on average over the whole segment.

In this study, only straight flight segments with a minimum of 200 s of continuous in-cloud measurements are used to cal-

culate η(r). The respective radar sensitivity limits are used to define "in-cloud". We allow measurement gaps with a maximum
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length of 5 s, which are linearly interpolated. Table 2 gives an overview of all segments we analyze including duration and data

amount. Because IWC is derived using running averages of 10 s and 30 s for IMPACTS and HALO-(AC)3 data, respectively,250

we investigated the impact of the window size of the moving average on η(r). We found that while increasing the window size

from 1 s to 10 (30) s for IMPACTS (HALO-(AC)3) decreases absolute values of η(r), at which lags r η(r) is positive does

not change (not shown). This is because applying a moving average smooths peaks in the 1 Hz signal, but does not necessarily

change their periodicity as long as the window size is reasonably small.

Additionally, we use power spectra in order to gain insight on scales of variability of CTH and LWP during HALO-(AC)3.255

To do so, each data segment is mean-centered and linearly detrended. To minimize edge effects, a Hann window is applied to

each segment. Frequency is converted to wavelength using the aircraft speed vair. With a minimum time range of 200 s per

segment, we capture spatial scales of 12 km for HALO-(AC)3 meaning that we do not capture synoptic-scale motions. We

interpret results up to 0.1 Hz meaning spatial scales of 600 m.

Figure 2 visualizes the PCF and power spectra for synthetic data. In the case of a homogeneous Poisson process (Fig. 2a),260

η(r) = 0 (Fig. 2d) and the power spectral density shows no significant peaks (Fig. 2g). For a periodic sine function with added

Poisson noise (Fig. 2b), η(r) is positive for small lags and oscillates around 0 for larger lags with peaks occurring at multiples

of the wavelength λ of the sine function (Fig. 2e). The power spectrum shows a peak at λ (Fig. 2h). If the modulus function is

applied to the sine (Fig. 2c), η(r) (Fig. 2f) is smaller than in Fig. 2e due to the lower signal to noise ratio and the oscillation

occurs at λ/2. The power spectrum also shows a peak at λ/2 (Fig. 2i).265

4 Results and discussion

To characterize the influence of riming on the spatial variability of ice clusters in clouds, we first need to know the amount

of riming as well as its impact on IWC and second, we need to know spatial IWC cluster scales with and without riming.

Therefore, this section is structured as follows. First, we quantify the amount of riming observed during the two analyzed

campaigns (Sect. 4.1). Then, we show that the retrieved amounts of riming have a significant impact on IWC (Sect. 4.2).270

Finally, we quantify in-cloud IWC variability (Sect. 4.3) and discuss the impact of riming on spatial scales and probability of

IWC clusters in clouds.

4.1 Riming occurrence

MPC properties, synoptic situations (Sect. 2.3), and measurement locations (Fig. 1) vary between IMPACTS and HALO-

(AC)3. Clouds during collocated IMPACTS segments have much larger vertical extents than during HALO-(AC)3. The median275

CTH during IMPACTS segments is 7.3 km (25-75 % quantile range: 6.3-7.8 km). Here, we define CTH as the height of the

highest radar range gate with continuous Ze above the in situ aircraft altitude. Clouds observed during collocated HALO-(AC)3

segments were predominately shallow roll clouds that formed during MCAOs. The maximum CTH during all segments was

2.2 km (25-75 % percentile range: 0.69-1.1 km). Cloud properties during 1 and 4 April are described in detail in Schirmacher,

et al. (2024).280
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Table 2. Overview of analyzed segments including campaign, flight day, start and end times in UTC, and number of 1 s data points.

Campaign Flight day Segment start Segment end Number of data points

IMPACTS 25 January 2020 20:30:37 20:40:04 568

IMPACTS 25 January 2020 21:08:31 21:17:16 526

IMPACTS 25 January 2020 21:41:01 21:53:38 758

IMPACTS 1 February 2020 13:08:48 13:16:47 480

IMPACTS 1 February 2020 14:35:24 14:39:32 249

IMPACTS 5 February 2020 21:05:28 21:10:57 330

IMPACTS 5 February 2020 21:15:47 21:19:27 221

IMPACTS 5 February 2020 21:20:56 21:28:27 452

IMPACTS 5 February 2020 21:49:52 22:04:07 856

IMPACTS 5 February 2020 23:07:26 23:12:40 315

IMPACTS 7 February 2020 15:12:42 15:20:23 462

IMPACTS 7 February 2020 15:35:00 15:48:47 828

IMPACTS 7 February 2020 15:57:02 16:08:11 670

HALO-(AC)3 28 March 2022 14:10:44 14:18:43 480

HALO-(AC)3 28 March 2022 14:20:20 14:25:16 287

HALO-(AC)3 28 March 2022 14:35:07 14:39:33 267

HALO-(AC)3 28 March 2022 14:41:26 14:45:16 331

HALO-(AC)3 1 April 2022 11:08:38 11:18:59 622

HALO-(AC)3 1 April 2022 11:20:38 11:33:02 745

HALO-(AC)3 1 April 2022 12:07:18 12:14:14 417

HALO-(AC)3 1 April 2022 12:15:54 12:20:56 303

HALO-(AC)3 1 April 2022 12:24:57 12:33:38 522

HALO-(AC)3 1 April 2022 12:34:03 12:39:09 307

HALO-(AC)3 4 April 2022 11:48:05 12:00:12 728

HALO-(AC)3 4 April 2022 13:11:48 13:18:24 397

HALO-(AC)3 4 April 2022 13:19:14 13:30:22 669

In the following, we give a brief overview on differences in MPCs encountered during the two campaigns using two "typical"

example cases. We show a flight segment from 5 February 2020 for IMPACTS (Sect. 4.1.1), and from 1 April 2022 for HALO-

(AC)3 (Sect. 4.1.2). We present M , retrieved with combined and in situ method, and discuss uncertainties. Then, we extend to

data from all collocated segments (Sect. 4.1.3).
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Figure 2. Schematic diagram introducing the pair correlation function (PCF) and power spectral density for (a) a homogeneous Poisson

distributed signal, (b) a sine curve with wavelength λ and added Poisson noise, and (c) the same sine curve but mirrored upwards along

x= 1 to show the impact of λ and signal-to-noise ratio. The respective PCF η as a function of lag is shown in (d)-(f); the power spectra

density as a function of wavelength in (g)-(i). The solid and dashed lines indicate λ and λ/2 of the sine curve in (b).

4.1.1 Case study 1: Mid-latitude winter storm on 5 February 2020285

Figure 3 shows a 64 km segment from 5 February, where ER-2 and P-3 were sampling a developing low pressure system over

Illinois from 23:07:26 to 23:12:40 UTC. According to the level-2 MODIS cloud product (NASA worldview), the cloud top

temperature (CTT) was −33± 5 °C. W-band Ze shows the deep cloud with convective cell structures near cloud top from

which sheared fall streaks stretch down (Fig. 3a). P-3 measured number of ice particles larger than 50 µm Ni in the range 910

m3 to 2800 m3 (Fig. 3b). Here we show D32 (Fig. 3b), which is the proxy for the mean mass-weighted diameter (e.g., Maahn290

et al., 2015). D32 is defined as the ratio of the third to the second measured PSD moments (e.g., Mitchell, 1996). During the

first 20 km of the segment, ice particles had D32 of about 3 mm and were lightly rimed with M of about 0.02 (Fig. 3.c).
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Afterwards, D32 increases up to 8 mm, indicating aggregates and M drops below the riming threshold of 0.01. From −88.9°E

onward, D32 decreases and M increases. Combined method M results using the different frequencies show good agreement

between X-, Ku-, and Ka-band. W-band results are likely biased high due to the high D32 as will be discussed in Sect. 4.1.3.295

IWC is calculated with Eq. 4 using (1) the measured PSD and mass-size parameters am and bm for unrimed particles (blue

line) and (2) am and bm based on look up tables (Maherndl et al., 2023a) for each time step depending on retrieved M for each

frequency (black lines). The derived IWC from Ku-band M varies between 0.015 gm−3 and 0.31 gm−3(panel 4). If riming is

neglected, i.e., mass size parameter for unrimed particles are used in the IWC calculation, IWC is on average a factor of 3.7

lower.300

The increase in M starting at -88.7°E could be linked to the decrease in CTH (as seen by the radar). Some particles are

possibly rimed in liquid layers near cloud top and fall down to the measurement location. On their way down, they might

undergo additional growth processes (condensational growth or aggregation) leading to a decrease of M , since M is normalized

to particle size. However, King probe measurements show that liquid water also occurs at the P-3 position. Therefore additional

riming can take place at the P-3 location and possibly in cloud layers above. 2-DS images (Fig. 3) show a change from large,305

lightly rimed aggregates to small, more heavily rimed particles.

4.1.2 Case study 2: Arctic roll clouds on 1 April 2022

Figure 4 shows a 35 km segment from 1 April, where Polar 5 and Polar 6 were sampling perpendicular to the roll cloud

structures formed during a MCAO over the Fram Strait from 11:20:38 UTC to 11:33:02 UTC (see Maherndl et al., 2024, for

a detailed discussion of the case as well as particle images). The MODIS CTT was −18± 5 °C. W-band Ze shows the vertical310

structure of the individual cloud rolls (Fig. 4a). While Polar 6 was flying close to cloud top, Ni was high with a maximum

of 27300 m−3, while D32 was low with a minimum of 0.077 mm (Fig. 4b). Once Polar 6 was descending, Ni dropped to a

minimum of 4600 m3, while D32 increased up to 1.4 mm (panel 2). M oscillates between 0.01 and 0.1, with peaks occurring in

streaks of high Ze (Fig. 4c). The resulting IWC is between 0.022 gm−3 and 0.084 gm−3. This is a factor 2.8 higher compared

to using a mass-size parameterization for unrimed particles (Fig. 4d).315

Both methods used to derive M agree well for this segment in terms of M distributions and location and extent of maxima

(R2 = 0.52). Statistical agreement between both methods was achieved during all HALO-(AC)3 segments used in this study.

However, spatio-temporal agreement could not be achieved for inhomogeneous cloud observations (e.g., when Polar 6 was

flying in and out of cloud close to CTH) as discussed in Maherndl et al. (2024).

4.1.3 Campaign overview320

In the previous section, two case studies were used to show differences between clouds observed during the two campaigns,

especially in terms of vertical extent, structure, and riming. In spite of these differences, normalized rime mass M distribu-

tions derived for IMPACTS and HALO-(AC)3 are similar (Fig. 5a, b). Median M for all collocated IMPACTS segments are

0.024, 0.022, 0.025, and 0.034 when derived with X, Ku, Ka, and W-band Ze, respectively. During collocated HALO-(AC)3

segments, median M is 0.024. For IMPACTS, the disagreement of the W-band results to the other frequency bands is due325
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Figure 3. Collocated flight segment from 5 February 2020 at 23:07:26 to 23:12.40 UTC during IMPACTS. (a) W-band radar reflectivity Ze,

and P-3 flight altitude; (b) ice number concentration Ni and mass-weighted diameter D32 derived from the 10 s running averaged particle

size distribution (PSD); (c) normalized rime mass M from combined (black) and in situ method (magenta) including uncertainty estimates

(combined: optimal estimation (OE) standard deviation, in situ: 10 s running standard deviation), where the combined method was applied to

X-, Ku-, Ka-, and W-band Ze (Ku-band results, which are used in the further analysis, are shown as solid lines); (d) ice water content (IWC)

derived from the 10 s running averaged PSD and combined method M (black) and assuming M = 0 (blue). Combined method results for

different radar frequencies are drawn as dashed lines. 2-DS images at (A) -88.78°E and (B) -88.69°E are shown in blue next to panels (c) and

(d).

to the occurrences of large ice particle sizes. Due to saturation effects for Ze values associated with large particles at 94

GHz, the riming-dependent parameterization (Maherndl et al., 2023a) used here has a positive Ze bias for size parameters

x= 2παeDmax/λ > 4 where x > 4. Here αe is the ice particle’s effective aspect ratio, and λ the radar wavelength. The pos-

itive Ze bias for x > 4 results in a positive bias of M . For IMPACTS, 25% of data have D32 > 3.2 mm which corresponds

to x= 4 at 94 GHz assuming a typical value of αe = 0.6. Therefore W-band results for IMPACTS are not as trustworthy as330

the other wavelengths and are not used in the following analysis. Different to IMPACTS, the M bias is negligible for HALO-
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Figure 4. As in Fig. 3 but for the collocated flight segment from 1 April 2022 11:20:38-11:33:02 UTC during HALO-(AC)3. Only W-band

radar reflectivities are available.

(AC)3 due to the smaller particle sizes and D32 < 3.2 holds for 90% of the data. In Appendix A, an overview of microphysical

parameters during each analyzed segment is given.

4.2 Sensitivity study

To motivate our further analysis and to evaluate whether the retrieved amounts of riming significantly impact IWC, we conduct335

a sensitivity study.

We assume that N(Dmax) follows a modified gamma distribution and use the normalized form introduced by Delanoë et al.

(2005, 2014) and extended by Maahn et al. (2015) for the maximum dimension Dmax

N(Dmax) =N∗
0

(bm +µ+1)bm+µ+1Γ(bm +1)

Γ(bm +µ+1)(bm +1)bm+1)

(
Dmax

Dm

)µ

e−(bm+µ+1)Dmax/Dm , (7)

where N∗
0 is the overall scaling parameter, µ the shape parameter, and Dm is the "mass-weighted" scaling parameter for the340

particle size. We vary N∗
0 and Dm—which can be calculated from PSD moments (see Maahn et al., 2015)—based on 10

to 90% quantile values derived from all measured PSDs during IMPACTS. Exclusively IMPACTS data was chosen, because
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Figure 5. Box plots and superimposed violin plots showing normalized rime mass M results obtained from a closure of collocated radar

reflectivity Ze and in situ particle size distribution ("combined method" from Maherndl et al. (2024)) for radar reflectivities available during

(a) IMPACTS and (b) HALO-(AC)3. W-band results during IMPACTS are dashed due to biases (see text). M < 0.01 are plotted at 0.01 to

be visible on the logarithmic scale.

larger particles and higher number concentrations were measured during IMPACTS than during HALO-(AC)3. µ is varied from

0 to 64 based on extreme values reported in the literature (Tridon et al., 2022). M is varied from 0.005 to 1, which correspond

to the 10 % quantile of M retrieval results from both campaigns and the maximum "physical" M based on its definition.345

We find that although median M are below 0.03 for both campaigns, even small amounts of riming—or rather changes

in ice particle density—can result in large changes of IWC. Figure 6 shows IWC calculations assuming gamma PSDs with

varying N∗
0 (left column) and M (right column) as a function of Dm. Similar to Maahn and Löhnert (2017), we find the shape

parameter µ does not impact IWC or Ze significantly and therefore only µ= 0 is shown. Dm, which can be seen as a proxy

for particle size, has the largest impact on IWC. By changing Dm from 1 to 8 mm, IWC changes by three orders of magnitude.350

IWC increases by about one order of magnitude, when N∗
0 —the proxy for total number concentration of particles—is increased

by one order of magnitude. Depending on Dm, varying M can result in IWC changes up to two order of magnitudes. When

only considering M values encountered during the analyzed campaigns, the change in IWC reaches one order of magnitude.

To show the impact of riming on radar reflectivity Ze, which can be seen as a proxy for IWC, we conduct a sensitivity study

for Ku and Ka-band Ze. In doing so, we aim to highlight the importance of accounting for riming in radar retrievals. Ze is355

forward simulated using the same PSDs with PAMTRA assuming a temperature of −10 °C. Particle scattering is parameterized

with the riming-dependent parameterization (Maherndl et al., 2023a). X-band is not shown due to being nearly identical to Ku-

band; W-band is not shown due to the riming-dependent parameterization bias for large Dm at W-band (see Sect. 4.1.3).

Varying M within observed ranges results in Ze changes of up to 20 dB depending on Dm for both Ku- and Ka-band, albeit

with slightly larger spread at Ka-band. Similar to Fig. 6, varying Dm results in the largest Ze changes. Observed ranges of M360

result in larger Ze changes than observed ranges of N∗
0 . Therefore in our data set, Ze depends more heavily on riming than on

number concentration.

We therefore conclude that for the range of M observed during HALO-(AC)3 and IMPACTS, the effect of riming on IWC

should not be neglected to avoid biases up to one order of magnitude for IWC.
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Figure 6. Ice water content (IWC) (top), Ku-band Ze (middle), and Ka-band Ze (bottom) calculated from gamma particle size distributions

as functions of Dm parameter. Results for varying N∗
0 parameter are shown as solid and dashed lines in (a), (c), (e); for varying normalized

rime mass M are color-coded in (b), (d), (f). Shaded areas in (b), (d), (f), (h) indicate M ranges observed during IMPACTS (90 % range:

0.005 < M < 0.15).

4.3 Quantifying in-cloud IWC variability with and without riming365

Because even small amounts of riming significantly impact IWC, we evaluate differences in IWC variability when accounting

for riming vs. when neglecting riming in the following. As described in Sect. 3.2, IWC is calculated with Eq. 4 based on

the measured PSD and (1.) using mass-size parameters am and bm for unrimed particles (IWCu) and (2.) varying am and

bm for each time step as a function of the retrieved M (IWCr). During all analyzed IMPACTS flight segments, rime mass

(IWCr−IWCu) makes up 68.6 / 65.7 / 68.8 % of IWCr based on X- / Ku- / Ka-band results. During HALO-(AC)3, rime mass370

makes up 62.7 %.

17



Figure 7 shows the average PCF η over all analyzed IMPACTS and HALO-(AC)3 segments for Ni (Fig. 7 first column),

IWCr, and IWCu (Fig. 7 second column). To visualize the difference between IWCr and IWCu, Fig. 7, 3rd column shows the

ηIWCr − ηIWCu . By this, we can isolate the contribution of the riming process to IWC. Positive values of ηIWCr − ηIWCu

indicate riming increases the variability of IWC clusters at the given lag while negative values are related to riming smoothing375

out IWC variability. Because we are interested at which spatial scales riming influences IWC variability, we only discuss the

differences larger than zero.

Both in terms of Ni and IWC, IMPACTS segments have higher η on average than HALO-(AC)3 segments meaning Ni and

IWC have more variability on the investigated spatial scales (Fig. 7a, b). Note that both quantities are calculated from running

PSD averages of 10 s and 30 s for IMPACTS and HALO-(AC)3, respectively, to cover similar spatial scales (about 1.8 km)380

given the different flight speeds. The smaller count of data points averaged for IMPACTS might lead to higher variability.

However, computing η for 30 s running averages results in similar curves with close to the same lags where η = 0, and slightly

lower η, yet still higher than for HALO-(AC)3 (not shown).

During IMPACTS, variability occurred at larger spatial scales than during HALO-(AC)3 as indicated by positive η at larger

lags (Fig. 7a, b). Differences between η for Ni and IWC indicate ice growth processes play a large role for IWC variability in385

addition to ice formation processes. For both campaigns, η > 0 for IWC is shifted to larger spatial scales than for Ni indicating

ice growth processes lead to increased variability at large spatial scales. For IMPACTS, accounting for riming shifts scales of

IWC variability to slightly smaller lags and increases η significantly at small lags, meaning riming increases IWC variability at

lags < 5 km (Fig. 7c). For HALO-(AC)3, riming leads to IWC variability at lags below 1 km as well as between 3-5 km. (Fig.

7c) However, differences between ηIWCr
and ηIWCu

are smaller than for IMPACTS.390

4.3.1 Dependency on particle size

To identify which size range of particles contributes most to Ni and IWC variability, we split the PSD into small (50<Dmax <

300 µm), medium (300<Dmax < 900 µm), and large (Dmax > 900 µm) particle sizes to calculate Ni and IWC (Fig. 7d-i).

For IMPACTS, the probability of small particle Ni (IWC) clusters is higher than for medium and large particles below 3.5 km

(10 km). During HALO-(AC)3, η is similar regardless of size. However, positive ηIWC—indicating the occurrence of IWC395

clusters— are shifted to slightly larger lags for large particles (9 km as opposed to 5-6 km for small and medium sizes).

The measurement location in-cloud could influence the dependency of Ni and IWC variability on particle size due to size

sorting, i.e., more small particles near CTH and larger particles at lower height. During the analyzed HALO-(AC)3 segments,

clouds were shallow and Polar 6 measurements took place on average 440 m below the CTH (as measured by W-band radar).

During IMPACTS, much deeper cloud systems were observed and P-3 sampled on average in larger vertical distances from400

cloud top (3.3 km) than during HALO-(AC)3. W-band radar reflectivity Ze—which can be seen as a proxy for IWC—shows

higher variability close to CTH for both IMPACTS and HALO-(AC)3 clouds (Fig. 8). Similar to Fig. 7, we use PCF to

characterize the variability of Ze in linear units. For each IMPACTS (HALO-(AC)3) flight segment, η is calculated for Ze

cross sections in 100 m (50 m) steps from the average CTH downward. In general, Ze variability is larger close to cloud top

at lags below 5 km and 2 km for IMPACTS and HALO-(AC)3, respectively. The higher variability is likely linked to cloud405
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Figure 7. Average pair correlation function (PCF) η as a function of lag calculated for (a) ice number concentration Ni and (b) ice water

content (IWC) during IMPACTS (black) and HALO-(AC)3 (green) segments. IWC is calculated with (solid line) and without (dashed line)

accounting for riming and differences are plotted in (c). Shaded areas show standard deviations. In (d)-(i), the particle size distributions are

split into small (50<Dmax < 300 µm), medium (300<Dmax < 900 µm), and large (Dmax > 900 µm) particle sizes. (d)-(f) and (g)-(i)

are as in (a)-(c) but showing size dependency of η during IMPACTS and HALO-(AC)3, respectively. Note the different y-axis scales.

top generating cells, which can be seen e.g., in case study 1 (Fig. 3a). Generating cells contain more liquid and ice and have

stronger updrafts than adjacent cloud regions. HALO-(AC)3 clouds show less variability and are homogeneous on smaller

spatial scales (η = 0 is at smaller lags) than clouds during IMPACTS. Size sorting might play a larger role for IMPACTS due to

the larger cloud depths as opposed to the shallow MCAO clouds during HALO-(AC)3. However, Ni and IWC distributions as
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Figure 8. Average pair correlation function (PCF) η as a function of lag calculated for horizontal cross section of W-band Ze (in linear units)

during (a) IMPACTS and (b) HALO-(AC)3 flight segments. Cross sections are taken in 100 m and 50 m steps from the average cloud top

height (CTH) of each segment downward for IMPACTS and HALO-(AC)3 data, respectively. Note the different colorbar scales.

functions of distance to CTH indicate the opposite (Appendix B). Nonetheless, Ni and IWC derived for small particles only410

show much more variability depending on the distance to CTH for IMPACTS (Appendix B).

The higher variability of small particle counts during IMPACTS is therefore likely due to higher numbers of ice nucleating

particles (INP) available at mid-latitudes (Petters and Wright, 2015). During the analyzed HALO-(AC)3 flight days, INP

concentrations collected with filters on board of Polar 6 were very low, oftentimes below the detection threshold (Wendisch

et al., 2024). No INP measurements were conducted during IMPACTS, therefore a direct comparison cannot be made. Another415

explanation could possibly be more secondary ice production (SIP) occurring during IMPACTS than during HALO-(AC)3.

Differences between η computed for IWCr and IWCu using the different size bins (Fig. 7f) show that riming enhances

the probability of IWC clusters for lags smaller 9 km for small particles during IMPACTS. For medium and large particles,

riming enhances IWC cluster probability at lags smaller 3 km. The enhancement is larger the smaller the lag for medium

and large particles, whereas for small particles the largest enhancement is at a lag of about 2 km. An enhancement for small420

particles possibly hints at SIP connected to riming such as rime splintering. During HALO-(AC)3 (Fig. 7i), riming enhances

the probability of IWC clusters for lags smaller 4 km for small and medium particles and the enhancement is generally larger

the smaller the lag. For large particles only lags of about 3-5 km lead to an enhancement of IWC variability.
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Figure 9. Average pair correlation function (PCF) η as a function of distance and lag calculated using all (a-c) IMPACTS and (e-g) HALO-

(AC)3 flight segments for (a)&(e) Ni, (b)&(f) ice water content (IWC) accounting for riming IWCr , and (c)&(g) IWC assuming no riming

IWCu. The Difference between (b) and (c) are shown in (d); difference between (f) and (g) in (h). Differences in (d) and (h) are only shown,

where ηIWCr > 0. Areas, where differences are significant according to a Student’s t-test (95 % significance threshold) are hatched. η = 0

is drawn as shaded lines for the ice number concentration Ni (dash-dotted black), IWCr (solid black), IWCu (dashed black), and liquid

water content (LWC, solid blue), where LWC measurements from King probe (Nevzorov probe) measurements obtained during IMPACTS

(HALO-(AC)3) are used.

4.3.2 Dependency on riming

To understand which spatial scales dominate the riming driven IWC variability, we conduct a Monte-Carlo random test for425

specific sampling distances following Deng et al. (2024). This approach allows us to first, handle the flight segments of different

lengths in a statistically robust way, and second, analyze the dependence on flight segment distance. For each flight segment,

we randomly select a sub-segment with a distance of d km, where we vary d in 1 km steps from 1 to 15 km. Then, we

calculate η for this segment. This is repeated 100 times and the average η over all (sub)segments of the respective campaign is

calculated. To perform the averaging, we bin η into 200 m and 60 m bins for IMPACTS and HALO-(AC)3, respectively, which430

corresponds to the respective distances covered in 1 s for the respective typical flight speeds. The results are shown in Fig. 9,

where the average η for Ni, IWCr, and IWCu are plotted as functions of distance d and lag. Curves (shaded) where η = 0 are

included to show the maximum spatial scales at which ice clusters likely occur, given a sampling distance d.
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During IMPACTS, the maximum Ni cluster spatial scale in clouds increases from 0.6 km to 3.1 km at distances d of 2 km

to 15 km (Fig. 9a). King probe-measured LWC cluster scales behave similarly to Ni (not shown) and maximum cluster scales435

increase from 0.6 km to 3.0 km. This suggests simultaneous liquid and ice formation in regions with high supersaturation

with respect to ice. Maximum IWC cluster scales (independent of accounting for riming or not) increase from 0.6 km to 3.6

km (Fig. 9b,c). At distances smaller 6 km, Ni and IWC have about the same cluster scales; at distances larger 10 km, IWC

clusters occur at larger spatial scales. Differences between positive values of IWCr and IWCu (Fig. 9d) reveal that riming

enhances the probability of ice clusters for distances larger 6 km for lags from about 1 km to 10 km (at distances of 12 km).440

To show the statistical significance of this enhancement, a one-sided Student’s t-test with a significance threshold of 95 % is

used. Areas where differences are significant are hatched (Fig. 9d). The enhancement occurs at similar spatial scales as LWC

clusters, indicating riming is driven by LWC variability.

During HALO-(AC)3, the maximum Ni cluster spatial scale in clouds increases from 0.5 km to 3.7 km at distances of 2

km to 15 km (Fig. 9e). Similar to IMPACTS data, Nevzorov probe measured LWC clusters behave similarly, increasing from445

0.5 km to 3.3 km, however having slightly smaller spatial scales. Maximum IWC cluster scales assuming no riming increase

from 0.6 km to 3.8 km and therefore occur at about the same spatial scales as Ni clusters (Fig. 9g). When accounting for

riming, maximum IWC cluster scales show a distinct behavior for distances larger 10 km: η increases at 3-5 km indicating that

riming enhances variability on these scales (Fig. 9f), which cannot be explained by the LWC variability. Statistically significant

differences between positive IWCr and IWCu (Fig. 9h), further highlight this feature.450

To explain the different spatial scales where riming enhances IWC variability, we look at lidar derived CTH. In previous

sections, we derived CTH from radar measurements to make IMPACTS and HALO-(AC)3 comparable. During HALO-(AC)3

a more sophisticated CTH product based on lidar—which is more sensitive to liquid layers at cloud top than the radar—is

available and used the following. The lidar detects small liquid droplets at cloud top, which follow vertical motions, therefore

leading to higher CTH in updraft regions (Abel et al., 2017). When computing the average power spectrum of CTH observed455

during the studied flight days, distinct peaks at wavelengths of 750 m and 1.2 km occur for all days, which corresponds to the

typical roll cloud and circulation wavelengths as derived by Schirmacher, et al. (2024) (Fig. 10a, d, g). At these wavelengths,

peaks in LWP also occur for all days (Fig. 10b, e, h) further indicating enhanced formation and growth of liquid droplets in

the updraft regions of the convectional cell cloud structures. On 28 March, a distinctive peak in the CTH spectrum at 3-5 km

indicates additional mesoscale updraft features (Fig. 10a). However, the LWP spectrum only shows a weak peak towards 5 km460

(Fig. 10b). On 1 April, both CTH and LWP power spectra have peaks at 3-5 km (Fig. 10d,e). On 4 April, no peak distinctive

peaks at wavelengths of 3-5 km are visible (Fig. 10g,h). Given that the least (most) amount of riming (Fig. 10c,f,i) occurred on

4 (1) April, we conclude that in the studied MCAO clouds mesoscale updraft features likely enhance riming at spatial scales

of 3-5 km. The enhancement could occur either due to prolonged lifetimes of ice crystals in clouds (28 March) or increased

amounts of liquid water or both (01 April) and leads to an increase in IWC amount and variability.465
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Figure 10. Power spectra of (a), (d), and (g) cloud top height (CTH) as derived from lidar and (b), (e), and (h) liquid water path (LWP) during

collocated HALO-(AC)3 flight days. The wavelength has been calculated based on the aircraft flight speed. The blue and purple lines show

the typical roll cloud and circulation wavelengths as derived by Schirmacher, et al. (2024). The orange shaded area shows the 3-5 km range,

where riming causes additional IWC clustering. (c), (f), and (i) show the corresponding normalized rime mass M distributions.

4.4 A conceptual model of how riming impacts IWC clusters in MCAO roll clouds

The results discussed above help to better understand scales of in-cloud IWC clustering in different types of MPC and link to

some microphysical processes involved. Although there are substantial unknowns, the following summarizes our findings from

the perspective of collocated remote sensing and in situ measurements.

In the analyzed segments of winter storm clouds measured during IMPACTS, IWC clusters occur at spatial scales smaller470

than about 3 km for segment distances of 15 km. Accounting for riming enhances ice cluster probabilities (Fig. 9d). However,

riming does not lead to significantly enhanced occurrences of IWC clusters at other scales. LWC clusters for segment distances
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Figure 11. A conceptual diagram summarizing ice cluster spatial scales driven by riming as observed in MCAO roll clouds during HALO-

(AC)3. For further explanations see text.

of 15 km occur at the same spatial scales of about 3 km as clusters of Ni. Therefore, liquid droplets and ice particles are

likely formed together in regions with supersaturation with respect to liquid and ice. Because LWC clusters and the IWC

cluster enhancement through riming occur at similar spatial scales, we hypothesize that LWC variability (at least in part) drives475

riming. By increasing IWC, riming leads to enhanced probabilities of IWC clusters for IMPACTS.

For HALO-(AC)3, Fig. 11 shows a sketch of the maximum spatial scales, where we found ice clusters to occur for MPCs

observed during MCAOs. In these MCAO roll clouds, ice clusters occur at spatial scales of the roll cloud wavelengths. In the

updraft regions of the convectional cells, which occurred on average every 750 m and 1.2 km, liquid droplets and ice particles

are formed. LWP and CTH are increased due to the vertical motions and liquid condensation. Ice particles grow through480

depositional growth and riming, which leads to enhanced probabilities of ice clusters at these scales. When ice particles’

masses have increased sufficiently, they precipitate or might sublimate below cloud. Aggregation might occur as ice particles

collide. In the presence of additional mesoscale updraft features, IWC clusters also occur at spatial scales of 3-5 km (Fig.

9h). Due to the stronger vertical motion, ice particles are suspended longer, have more time to rime and can reach higher

masses before precipitating. Increased LWP might enhance the amount of riming, but is not a necessary criterion based on the485

analyzed cases. This hypothesis is supported by the fact that the observed LWP is not sufficient to explain the retrieved rime

masses assuming particles continuously collecting liquid water by falling through the liquid layer as we show in Appendix C.

The enhanced occurrence of riming drives the additional increase of IWC cluster probability at spatial scales of 3-5 km.
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5 Conclusions

In this study, airborne measurements of mixed-phase clouds (MPC) in mid- and high-latitudes are used to study spatial variabil-490

ity of ice clusters within clouds. We further investigate how this variability is linked to riming, which we quantify by closure

of collocated cloud radar reflectivity and in situ particle size distribution (PSD) measurements. Pair correlation function (PCF)

is used to quantify ice cluster scales and ice water content (IWC) variability when first, accounting for riming (IWCr), and

second, neglecting riming (IWCu). The main findings are as follows:

1. Although synoptic situations and the resulting clouds systems were vastly different during the two analyzed aircraft495

campaigns, the retrieved amounts of riming were similar with median normalized rime masses M of 0.023 and 0.024

during IMPACTS (mid-latitude winter storms) and HALO-(AC)3 (Arctic MCAO roll clouds) segments, respectively (Fig.

5). Clouds were deep (shallow) during IMPACTS (HALO-(AC)3) segments and in situ measurements were conducted

on average in vertical distances of 3.3 km (440 m) from cloud top.

2. The observed spread of M can increase IWC up to two orders of magnitude, depending on the size of the particle500

population (Fig. 6). In sum, rime mass makes up about 66 % and 63 % of total IWC during the analyzed IMPACTS and

HALO-(AC)3 flight segments, respectively. Therefore, riming has a similar impact on IWC as the observed spread of

number concentration and should not be neglected when estimating IWC.

3. PCF revealed that Ni cluster occur with increased probability on spatial scales smaller 10.5 km and 6.5 km within clouds

during IMPACTS and HALO-(AC)3, respectively. IWC clusters dominate for spatial scales of 10 km and 7 km. During505

IMPACTS, small particles dominate Ni and IWC variability on small spatial scales, whereas there is no dependence on

particle size during HALO-(AC)3 (Fig. 7). This could be linked to ice formation processes and the higher availability of

INP at mid-latitudes. However, this hypothesis could not be confirmed with the available data.

4. During IMPACTS, maximum Ni, IWC and LWC cluster spatial scales inside clouds are 0.6 km for distances of 2 km

and increase to about 3 km for distances of 15 km. During HALO-(AC)3, maximum Ni, IWC and LWC cluster spatial510

scales are similar with about 0.5 km for distances of 2 km and about 4 km for 15 km. However, during HALO-(AC)3

IWC cluster probability is increased on scales of 3-5 km when segment distances are larger 10 km (Fig. 9).

5. During IMPACTS, accounting for riming does not significantly change IWC cluster scales in clouds, but increases the

probability of clusters for segment distances larger than 6 km (Fig. 9d). This enhancement occurs at similar scales as

LWC variability. More riming likely occurs in regions with enhanced concentration of liquid water and increases IWC.515

Since clusters of IWC neglecting riming have similar spatial scales as Ni, LWC, and IWC accounting for riming, ice

clustering is likely linked to ice formation processes in regions of high supersaturation with respect to liquid and ice .

6. In contrast, riming impacts IWC clustering in clouds at two distinctive scales during HALO-(AC)3 (Fig. 9h). First,

riming enhances the probability of IWC clusters at spatial scales below 2 km, which corresponds to the wavelength of

the roll cloud updraft features. Ni, IWCr, IWCu, and LWC all have similar spatial variability indicating simultaneous520
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ice and liquid formation and growth in this regions. The enhanced concentrations of liquid again enhance riming, which

increases IWC. Second, riming leads to IWC clustering at spatial scales of 3-5 km, which cannot be explained by the

typical roll cloud and roll circulation wavelengths. Power spectra of CTH show peaks at these spatial scales on the

flight days with enhanced riming (Fig. 10). This indicates that the presence of mesoscale updraft features—which cause

higher lifting of small particles near cloud top and therefore increased CTH—leads to enhanced occurrence of riming525

and therefore additional IWC clustering. Increased LWP might increase the effect, but is not a necessary criterion based

on the analyzed days. Theoretical analysis shows that updrafts are likely required to explain the observed riming values

(Fig. C1).

These results help to improve our understanding of how riming is linked to in-cloud IWC variability and can be used to

evaluate and constrain MPC models. While we have shown that riming enhances in-cloud IWC variability and causes additional530

IWC clustering at large spatial scales of 3-5 km in Arctic MCAO clouds, further research is needed to link these findings to

surface precipitation. Future studies should investigate the link between riming-driven IWC variability and snowfall variability.

In addition, profiles of vertical wind speed and turbulence are needed to better understand their importance for riming.

Data availability. Processed in situ (https://doi.org/10.1594/PANGAEA.963247, Moser et al., 2023), Nevzorov probe (https://doi.org/10.

1594/PANGAEA.963628, Lucke et al., 2024) and MiRAC-A data (https://doi.org/10.1594/PANGAEA.964977, Mech et al., 2024a) as well535

as AMALi CTH (https://doi.org/10.1594/PANGAEA.96498, Mech et al., 2024b) from the HALO-(AC)3 campaign are available on PAN-

GAEA. The IMPACTS data (https://doi.org/10.5067/IMPACTS/DATA101, McMurdie et al., 2019) and the individual datasets cited within

this paper can be found at the NASA Global Hydrology Resource Center’s DAAC. The data set of simulated rimed aggregates generated for

Maherndl et al. (2023a) is available at https://doi.org/10.5281/zenodo.7757034 (Maherndl et al., 2023b). HALO-(AC)3 datasets used in this

study can be accessed via the ac3airborne intake catalog (https://doi.org/10.5281/zenodo.7305585, Mech et al., 2022b). Processing routines540

to read IMPACTS data are available via the impacts_tools repository (https://github.com/joefinlon/impacts_tools).

Appendix A: Microphysical overview of analyzed segments

Figure A1 (A2) presents an overview of microphysical parameters (Ni, D32, M , IWC, LWC) observed during each analyzed

IMPACTS (HALO-(AC)3) segment. Case study 1 (case study 2) is the fifth segment on 5 February (second segment on 1

April).545
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Figure A1. Boxplots of (a) ice number concentration Ni, (b) mass-weighted diameter D32, (c) normalized rime mass M , (d) ice water

content (IWC), and (e) liquid water content (LWC) derived during each IMPACTS segment. In (c) both combined (Ku-band) and in situ

method results are shown in black and magenta, respectively. In (d) IWC is calculated accounting for riming (using combined method M ;

black) and neglecting riming (M = 0, blue).
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Figure A2. As in Fig. A1 but for HALO-(AC)3 segments

Appendix B: Vertical distribution of Ni and IWC

To investigate whether size sorting is the reason of the particle size dependency of Ni and IWC variability (Sect. 4.3.1), we

show vertical distributions of Ni and IWC for the different size ranges in Fig. B1 and Fig. B2, respectively. Data during

collocated segments is binned by their distance to CTH (as derived by radar measurements) in 100 m bins. Only bins with

minimum 100 data points are shown. This leaves no data for 1.5 km below cloud top during IMPACTS. While HALO-(AC)3550

data shows size sorting close to cloud top for both Ni and IWC, this is not the case for IMPACTS. However, size sorting

could have happened in the vertical region where we lack data. Nonetheless, Ni and IWC for small particles show much larger

variability during IMPACTS than during HALO-(AC)3 regardless of distance to cloud top.
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Figure B1. Distribution of ice number concentration Ni as a function of distance to cloud top height (CTH, derived by radar) for (a)

IMPACTS and (b) HALO-(AC)3. Lines and markers show median values; 25-75 % quantiles are shaded. Contributions of small (50-300

µm), medium (300-900 µm), and large (>900 µm) particles are shown in blue, purple, and orange.

Figure B2. As in Fig. B1 but for ice water concent (IWC; calculated accounting for riming).
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Appendix C: LWP riming calculations

This section shows the need for updrafts to explain the retrieved amounts of riming given the observed LWPs. We use simple555

calculations based on Fitch and Garrett (2022). Assuming a particle collects rime by falling through a liquid layer, the mass of

rime accumulated can be approximated by

mrime =Ap Ec LWP, (C1)

where Ap is the cross-sectional area of the particle, Ec the combined collection and collision efficiency, and LWP the liquid

water path of the liquid layer. By inserting the definition of M , approximating Ap by a power law function of Dmax with560

prefactor aA and exponent bA following Maherndl et al. (2023a), and solving for LWP, we derive

LWP=
M mg

Ap
=

π ρg M

6 aA(M)
D3−bA(M)

max . (C2)

Here, Ec is assumed to be 1 as a worst case estimate, although in the Arctic lower values are more realistic (Fitch and Garrett,

2022). Eq. C2 only holds for ice particles that have finished the riming process. It is therefore only applied to HALO-(AC)3

data, where LWC= 0 was measured, thereby we exclude 28 March data, where LWC measurements are not available. Because565

ice particles occur in PSDs, we apply Eq. C2 to D32 as a proxy for the characteristic size and the respective M we retrieved for

each time step. Compared to LWP observations during 1 and 4 April, the calculated LWP is much higher (Fig. C1). Therefore,

it is evident, that the particles must have been exposed to the liquid layer multiple times, e.g., by cycling through up- and

downdraft regions.

Figure C1. Normalized histograms of observed and calculated liquid water path (LWP) including medians (dashed lines). Observed LWP

are from all 1 and 4 April data points. Calculated LWP were only derived for time steps where LWC= 0, such that it can be assumed that no

further riming will take place.
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