How does riming influence the observed spatial variability of ice water in mixed-phase clouds?

N. Maherndl, M. Moser, I. Schirmacher, A. Bansemer, J. Lucke, C. Voigt, and M. Maahn

August 15, 2024

Original Referee comments are in italic

manuscript text is indented, with added text underlined and removed text erossed out.

We would like to thank the reviewers for their helpful comments. We revised the manuscript and responded to all of the reviewers' comments.

In addition, we updated the IMPACTS W-band reflectivity Z_e data and the normalized rime mass M results obtained from the combined method for W-band, because a new version of the W-band dataset was published. Z_e was adjusted downward by about 0.9 dB leading to slightly lower M results. The positive bias due to saturation effects for Z_e values associated with large particles at W-band remains, but is less pronounced (Fig. 3c&d, Fig. 5).

Reviewer II

The authors using aircraft observations investigate the spatial variability of riming and its contribution to the clustering of ice within clouds. They employ observations from IMPACTS and HALOAC3 where collocated aircraft observations are unique for the analysis. Although I feel this work has some new contributions to the community, the current presentation and organization need major revisions. More detailed comments may be given after addressing these key issues. Sorrying for the delayed post, I tried to under-

stand this work by reading it for multiple times, but it is very frustrating in interpreting its core logics and idea.

We thank the reviewer for the comments, which helped to improve the manuscript.

Major comments

1. The research motivation is poorly structured. The introduction just lists all relevant topics, from spatial distribution of MPC, properties of MPC in mid-latitudes and Arctic, to the data you have, and then riming. I do not see a clear logic and strong motivation for this research. Frankly, it left me the impression that you did the analysis just because you have these data available.

Also, the introduction omits very key details on the unique datasets from IMPACTS and HALO-(AC)3. So far, we have so many aircraft observations, why just these two campaigns fit your study?

We have rewritten the introduction highlighting why we need the unique collocated radar and in situ data obtained during HALO-(AC)³ and IMPACTS to study riming and its impact on IWC variability. The paragraphs on MPC in mid-latitudes and the Arctic were redundant and therefore removed. Please see the revised manuscript and the file with marked changes for the new version of the introduction.

2. Causality issue. Although the analysis and results are no doubt interesting, I question the statements in many places such as riming enhances the probability of IWC clusters. What I can expect is some dynamical mechanisms such as the generating cells as discussed influence the IWC clustering, and such mechanisms influence riming and clustering. You may say that IWC clusters at certain scales are rimed, but I do not agree with the reasoning that the clustering of ice (macrophysics) is influenced by riming (microphysics).

Similar causal issues apply to many statements on the relationship between riming and IWC. In many places, the authors state that riming affects/influence IWC variability, however, these is no given evidence showing the IWC variability is due to riming. Riming is one of the characteristics of the ice clusters, not the factor leading to the variability.

We want to address this comment together with the next comment, because we fear misunderstandings arose due to poor structuring and lack of detailed information on methodology on our side. We apologize for that.

- 3. Some key methods lack details or are arbitrary.
- (1) Quantifying riming. After reading several times of the section 3.1, I have no idea

what is the combined method for quantifying riming. I am frustrated in understanding the logic.

(2) Quantifying IWC variability. This key statement at L350 lacks physics background. The logic of interpreting signs of is straightforward. However, it is arbitrary to interpret the sign of 1 – 2 in the same way, since a positive 1 – 2 can be the results of two negative

In response to (1): The "combined method" for quantifying riming was introduced in Maherndl et al. (2024), we therefore only cited this paper without going into detail. In hindsight, we agree that a more detailed explanation is needed to follow our methodology and logic. We therefore have rewritten the Methods section (Sect. 3), which is now split into Sect. 3.1 "Retrieving ice particle riming", 3.2 "Deriving ice water content (IWC)", and 3.3 "Characterizing scales of ice water variability in clouds". To better explain the combined method we rewrote Sect. 3.1 to:

Quantifying Retrieving ice particle riming

We quantify riming using the two methods introduced in Maherndl et al. (2024). First, the combined method derives use the normalized rime mass M from a closure of in situ PSDs and collocated radar reflectivity Z_e . Second, the in situ method uses in situ measurements of ice particle area A, perimeter P, and D_{max} to derive (Seifert et al., 2019) to describe riming. M for individual ice particles from which an average is defined as the particle's rime mass m_{rime} divided by the mass of a size-equivalent spherical graupel particle m_g , where we assume a rime density of $\rho_{rime} = 700 \text{ kg m}^{-3}$:

$$M = \frac{m_{\text{rime}}}{m_g} \tag{1}$$

where

$$m_g = \frac{\pi}{6} \rho_{\text{rime}} D_{\text{max}}^3. \tag{2}$$

The maximum dimension D_{max} is defined as the diameter of the smallest circle encompassing the cloud particle in \mathbf{m} and is used to parameterize particle sizes.

We retrieve M for the particle population is derivedusing the two methods introduced in Maherndl et al. (2024), which are termed the combined method and the in situ method. The methods in Maherndl et al. (2024) were developed for HALO-(AC)³, but we apply the same methods them to IMPACTS data with slight adjustments due to different instrumentation. For In the

following, we give a brief explanation of both methods and describe the adjustments for IMPACTS data. For more detail, we refer the reader to Maherndl et al. (2024).

The combined method derives M along the flight track of the in situ airplane from collocated PSD and radar reflectivity Z_e measurements. It therefore relies on collocated in situ and remote sensing flights. An Optimal Estimation (Rodgers, 2000) algorithm is used to retrieve M by matching simulated radar reflectivities Z_e obtained from observed in situ PSD with the spatially and temporally closest measured Z_e . As forward operator we use the Passive and Active Microwave radiative TRAnsfer tool (PAMTRA, Mech et al., 2020) which includes empirical relationships Maherndl et al. (2023b) for estimating particle scattering properties as a function of M. For IMPACTS, the combined method is applied (separately) to X-, Ku-, Ka- and W-band Z_e (see Sect. 4.1.3). As in Maherndl et al. (2024), we use the riming dependent mass-size parameter relation for dendrites from Maherndl et al. (2023b) that were estimated for different degrees of riming, i.e., M values. Dendrites were chosen, because 86.2 % of data during the analyzed IMPACTS segments are within temperature ranges of -20 °C to -10 °C and -5 °C to 0 °C, where platelike growth of ice crystals is preferred (only 13.8 % of the data lie between -10 °C and -5 °C, where column-like growth dominates). We assume dendrite shapes for the whole dataset, because of two reasons. First, Maherndl et al. (2024) found assuming plates or dendrites gives the same results within uncertainty estimates, and second, we want to keep the analysis of IMPACTS and HALO-(AC)³ data as consistent as possible.

The in situ method is—uses in situ measurements of ice particle area A, perimeter P, and D_{\max} to derive M for individual ice particles from which an average M for the particle population is derived. The in situ method is applied to 2D-S and HVPS-3 data for IMPACTS as was done using CIP and PIP data for HALO-(AC)³ in Maherndl et al. (2024). P and A measurements in pixel are used to calculate complexity $\chi = \frac{P}{2\sqrt{\pi A}}$. Synthetic rimed aggregates Simulated rimed aggregates from Maherndl et al. (2023a) are used to derive empirical functions relating χ and $\frac{D_{\max}}{D_{\max}}$ to M, where χ and $\frac{D_{\max}}{D_{\max}}$ are derived using the same processing steps as for the respective cloud probes. Because these processing steps were slightly different for 2D-S and HVPS-3 operated during IMPACTS¹ than for CIP and PIP during HALO-(AC)³, new fit functions (based on 18352 synthetic simulated dendrites; with $R^2 = 0.92$) had to be derived for IMPACTS:

$$\log_{10}(M) = \frac{1.11 - \chi + 0.00141 \cdot D_{\text{max}}}{0.00432 \cdot D_{\text{max}} + 0.218}.$$
 (3)

¹The number of perimeter pixel P is computed by the sum of all pixel that are eroded when applying a "+" shaped erosion kernel without performing dilation/erosion sequences as was done during $HALO-(AC)^3$.

Only a subset of ice particles can be used to derive M with the in situ method, because particles cannot touch edges to derive P and need to be large enough to derive meaningful χ . We therefore assume the combined method—which uses the full PSD—gives PSD—gives more reliable results when the aircraft are reasonably collocated. In situ method results are therefore only shown in Sect. 4.1.1 and 4.1.2 as references and the combined method is used in all further analysis steps.

Because there is a separate paper describing the method in detail, we refer to Maherndl et al. (2024), if the Reviewer is interested in more information.

We also added Sect. 3.2 "Deriving ice water content (IWC)" to explain how we derive IWC with and without accounting for riming:

Characterizing scales of cloud variability Deriving ice water content (IWC)

IWC is calculated by summing the product of ice particle mass $m(D_{\text{max}})$ and $N(D_{\text{max}})$ for the probes' lower to upper size ranges D_{lower} to D_{upper}

$$IWC = \sum_{D_{lower}}^{D_{upper}} m(D_{\text{max}}) N(D_{\text{max}}) \Delta D_{\text{max}}, \tag{4}$$

where ΔD_{max} is the size bin width. $m(D_{\text{max}})$ is approximated by a power law relation with prefactor a_m and exponent b_m

$$m(D_{\max}) = a_m D_{\max}^{b_m}.$$
 (5)

 a_m scales the density of ice particles (independent of particle size) and b_m modulates the size dependency of particle mass, which is related to particle shape and growth processes. a_m and b_m depend strongly on riming (e.g., Mitchell, 1996) and reported literature values range from 0.0058 to 466 for a_m and 1.8 to 3.0 for b_m in SI units (e.g., discussed by Mason et al., 2018). As shown by Maherndl et al. (2023b), a_m and b_m strongly depend on the amount of riming, which increases particle densities. Maherndl et al. (2023b) provide a_m and b_m values for discrete M, which are interpolate to obtain parameters for a continuous M in this study. We derive a_m and b_m for each time step as a function of the retrieved M. IWC is then calculated with Eq. 4 for each time step based on the measured PSD and the derived a_m and b_m parameters. We refer to this quantity as IWC, (IWC accounting for riming).

To estimate the contribution of the riming process to IWC, we also calculate IWC using fixed mass-size parameters a_m and b_m for unrimed particles (also taken from Maherndl et al., 2023b), thereby neglecting density changes (e.g., due to riming). We refer to this quantity as IWC_u. IWC_u can be seen as the "theoretical" IWC, if the ice particles were unrimed so that the riming contribution can be estimated from the difference between IWC and IWC_u. However, this implies that riming does not impact the size of the unrimed ice particle, which is not necessarily the case in nature. Riming typically not only leads to an increase in ice particle density, but also ice particle size (Seifert et al., 2019). Therefore, we likely underestimate the contribution of riming to particle mass when comparing IWC_u with IWC. Since we are interested in the contribution of riming to IWC variability, this approach likely results in a conservative estimate of the contribution of riming to IWC variability.

We rephrased the section headline "Characterizing scales of cloud variability" to "Characterizing scales of ice water variability in clouds". We are analyzing the variability of IWC in clouds (microphysics) not the variability of cloud cover (macrophysics). We apologize in case this was not made sufficiently clear. We included:

Similar to Deng et al. (2024), we use the pair correlation function (PCF) to quantify the spatial inhomogeneity of ice water in the observed clouds.

Now we would like to finally address the comment about causality, which is of course a valid issue to raise. Changes in IWC can be linked to three reasons, 1. an increase/decrease in ice particle number, 2. and increase/decrease in ice particle size, and 3. an increase/decrease in ice particle density, which can all occur at once. Here, we assume changes in ice particle density are linked to riming, because rimed particles typically have higher densities. We don't discuss what causes changes in ice particle number or size, except for a few speculations regarding differences in IMPACTS and HALO-(AC)³ data. Because we have in situ PSD observations for both campaigns, we can analyze changes in IWC due to changes in number and size, while neglecting changes in IWC due to changes in ice particle density by assuming constant mass-size parameter in the calculation of IWC (as was done in Deng et al. (2024)). Thanks to the unique collocated cloud radar and in situ measurements during IMPACTS and HALO-(AC)³, we are able to retrieve the normalized rime mass M for each time step using the combined method. Knowing M allows us to vary mass-size parameter for each time step. We can therefore calculate IWC accounting for density changes due to riming. If we then compare scales of variability between IWC neglecting (IWC_u) and IWC accounting for riming (IWC $_r$), we can single out the influence of riming on IWC variability. The only difference in the variability of IWC_r and IWC_u is variability due to riming-induced density changes. We therefore argue that stating riming influences IWC variability at scales where we see differences in IWC_r and IWC_u variability is reasonable. In the revised manuscript, these explanations are given in the new Sect. 3.2 (see answer above)

and the core logic is introduced in the introduction:

Accurate in situ measurements of IWC remain challenging (Heymsfield et al., 2010; Baumgardner et al., 2017; Tridon et al., 2019), even though in situ cloud probes can provide reliable particle size distribution (PSD) data (Korolev et al., 2013; Moser et al., 2023). Lacking IWC measurements, Deng et al. (2024) calculated IWC from PSD observations assuming that ice particle mass as a function of ice particle size follows a power law relation. Because deriving size-resolved ice particle densities from in situ PSD alone is not possible yet (to our knowledge), Deng et al. (2024) used constant mass-size parameter from Heymsfield et al. (2010). Therefore, their analyses captures IWC variability due to ice number concentration and size, but not ice particle density, which is commonly linked to riming (Erfani, Mitchell, 2017; Seifert et al., 2019)

•~

Combining collocated cloud radar and in situ PSD data allows to estimate IWC by not only showing great potential to gain better insight on microphysical processes (Nguyen et al., 2022; Mróz et al., 2021), but also to infer ice particle density changes due to riming (Maherndl et al., 2024). This way, IWC variability driven by riming-induced changes in ice particle density can be studied. In recent years, the synergistic employment of both remote sensing and in situ instrumentation during airborne campaigns has become more common (Houze et al., 2017; McMurdie et al., 2022; Nguyen et al., 2022; Kirschler et al., 2023; Sorooshian et al., 2023; Wendisch et al., 2024; Maherndl et al., 2024).

Regarding (2), we agree and apologize for not making this clearer in the original manuscript. We reworked Fig. 9, where we only plot differences, where η_{IWC} is positive. In addition, we highlight significant positive differences with hatching using a Student's t test with a 95% significance threshold. We also only show the respective $\eta = 0$ line in (a)-(c) and (e)-(g) to make the plot easier to read.

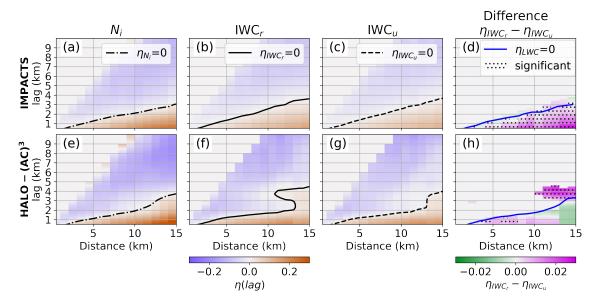


Figure R.1: Average pair correlation function (PCF) η as a function of distance and lag calculated using all (a-c) IMPACTS and (e-g) HALO-(AC)³ flight segments for (a)&(e) N_i , (b)&(f) ice water content (IWC) accounting for riming IWC_r, and (c)&(g) IWC assuming no riming IWC_u. The Difference between (b) and (c) are shown in (d); difference between (f) and (g) in (h). Differences in (d) and (h) are only shown, where $\eta_{IWC_r} > 0$. Areas, where differences are significant according to a Student's t-test (95% significance threshold) are hatched. $\eta = 0$ is drawn as shaded lines for the ice number concentration N_i (dotted dash-dotted black), IWC_r (solid black), IWC_u (dashed greyblack), and liquid water content (LWC, dash-dotted solid blue), where LWC measurements from King probe (Nevzorov) probe) measurements obtained during IMPACTS (HALO-(AC)³) are used.

In the text, we added:

Differences between positive values of IWC_r ,—and IWC_u (Fig. 9d) reveal that riming enhances the probability of ice clusters for distances larger 6 km for lags from about 1 km to 10 km (at distances of 12 km). To show the statistical significance of this enhancement, a one-sided Student's t-test with a significance threshold of 95% is used. Areas where differences are significant are hatched (Fig. R.1d).

4. Lacks of in-depth analysis of the observations from the two campaigns. The authors tried to use data from two campaigns for the analysis. However, I do no see clear physics explaining the observed differences between the two campaigns, nor general conclusions given.

The aim of our work was to identify spatial scales at which riming leads to high IWC, i.e., ice clustering. Using pair correlation functions, we show that accounting for riming increases to probability of ice clustering as opposed to not accounting for riming in both mid-latitude (IMPACTS) and Arctic (HALO-(AC)³) cloud cases that we studied. This clustering occurs at the same spatial scales whether accounting for riming or not and at the same spatial scales as liquid water content (LWC) clustering. We therefore argue, that riming is enhanced in cloud regions with high amounts of LWC leading to high IWC. Because high IWC and high LWC occur at the same spatial scales also when neglecting riming, we hypothesize that in these regions supersaturation is high with respect to both liquid and ice.

In the Arctic cold air outbreak clouds observed during HALO-(AC)³, we found an additional interesting feature not present in the mid-latitude cases. At spatial scales of 3-5 km, ice clustering occurs in IWC accounting for riming, which is not present when neglecting riming. We therefore argue, that at these 3-5 km scales, riming causes high IWC (ice clustering). However, this feature can not be explained by enhanced LWC. We investigated the physical explanation, why more riming occurs at these scales and found evidence that mesoscale updrafts are responsible. We hypothesize that in these stronger updrafts, ice particles are suspended longer in the air, before the fall out thereby having more time to rime even if there is not more liquid water present. In the conclusions, we summarize these findings highlighting the differences between both campaigns related to ice clustering.

A more detailed analysis of both campaigns is outside the scope of this work and already covered in other publications. McMurdie et al. (2022) and Wendisch et al. (2024) give overviews of the respective campaigns; the synoptic conditions during HALO-(AC)³ are analyzed in Walbröl et al. (2024).

Minor comments

L28&29 I understand that there are very few studies on the spatial distributions of ice and liquid mass, but I do not appreciate inappropriate citations. The listed ones have discussed the impacts of different cloud phases, they did not mention the spatial distribution.

The original sentence read "Their spatial distribution as well as ice and liquid mass..." therefore not only referring to the spatial distribution. We wanted to refer to the fact that how much liquid vs. how much ice composes the cloud and how it is distributed spatially impacts the listed properties as shown in the cited studies. However, we agree that the sentence was lengthy and easy to misread. We rephrased to:

Mass and the ratio of ice and liquid mass particles play a critical role not only in precipitation processes, but also cloud life time lifetime, radiative budget

(Sun, Shine, 1994; Shupe, Intrieri, 2004; Turner, 2005), and climate feedbacks (Choi et al., 2014; Bjordal et al., 2020).

Due to restructuring the introduction, we discuss the spatial distribution of ice particles and liquid droplets in a later paragraph.

L43 Literature should be given. Also, I do not agree the statement. Smaller-scale bands are mostly linked to dynamics and associated microphysics.

Due to restructuring the motivation, we removed this paragraph.

Section 3.3 Sensitivity study is poorly structured. It is difficult to capture the logic in the present format. It seems that this section was splitted into two parts. It is recommended to combine section 3.3 and section 4.2.

We apologize for the poor structure. We merged sections 3.3 and 4.2 into one. The section now reads:

Sensitivity study

To motivate our further analysis and to evaluate whether the retrieved amounts of riming significantly impact IWC, we conduct a sensitivity study.

We assume that $N(D_{\text{max}})$ follows a modified gamma distribution and use the normalized form introduced by Delanoë et al. (2005, 2014) and extended by Maahn et al. (2015) for the maximum dimension D_{max}

$$N(D_{\max}) = N_0^* \frac{(b_m + \mu + 1)^{b_m + \mu + 1} \Gamma(b_m + 1)}{\Gamma(b_m + \mu + 1)(b_m + 1)^{b_m + 1}} \left(\frac{D_{\max}}{D_m}\right)^{\mu} e^{-(b_m + \mu + 1)D_{\max}/D_m},$$

where N_0^* is the overall scaling parameter, μ the shape parameter, and D_m is the "mass-weighted" scaling parameter for the particle size. We vary N_0^* and D_m — which can be calculated from PSD moments (see Maahn et al., 2015) — based on 10 to 90% quantile values derived from all measured PSDs during IMPACTS. Exclusively IMPACTS data was chosen, because larger particles and higher number concentrations were measured during IMPACTS than during HALO-(AC)³. μ is varied from 0 to 64 based on extreme values reported in the literature (Tridon et al., 2022). M is varied from 0.005 to 1, which correspond to the 10 % quantile of M retrieval results from both

We find that although median M are below 0.03 for both campaigns, even small amounts of riming — or rather changes in ice particle density — can

campaigns and the maximum "physical" M based on its definition.

result in large changes of IWC. Figure R.2 shows IWC calculations assuming gamma PSDs with varying N_0^* (left column) and M (right column) as a function of D_m . Similar to Maahn, Löhnert (2017), we find the shape parameter μ does not impact IWC or Z_e significantly and therefore only $\mu=0$ is shown. D_m , which can be seen as a proxy for particle size, has the largest impact on IWC. By changing D_m from 1 to 8 mm, IWC changes by four three orders of magnitude. IWC increases by about one order of magnitude, when N_0^* — the proxy for total number concentration of particles — is increased by one order of magnitude. Depending on D_m , varying M can result in IWC changes up to two order of magnitudes. When only considering M values encountered during the analyzed campaigns, the change in IWC reaches one order of magnitude.

To show the impact of riming on radar reflectivity Z_e — which can be seen as a proxy for IWC —, we conduct a sensitivity study for Ku and Ka-band Z_e . In doing so, we aim to highlight the importance of accounting for riming in radar retrievals. Z_e is forward simulated using the same PSDs with the Passive and Active Microwave radiative TRAnsfer tool (PAMTRA, Mech et al., 2020)—PAMTRA assuming a temperature of -10 °C. Particle scattering is parameterized with the riming-dependent parameterization (Maherndl et al., 2023b). X-band is not shown due to being nearly identical to Ku-band; W-band is not shown due to the riming-dependent parameterization bias for large D_m at W-band (see Sect. 4.1.3). Varying M within observed ranges results in Z_e changes of up to 20 dB depending on D_m for both Ku- and Ka-band, albeit with slightly larger spread at Ka-band. Similar to Fig. R.2, varying D_m results in the largest Z_e changes. Observed ranges of M result in larger Z_e changes than observed ranges of N_0^* . Therefore in our data set, Z_e depends more heavily on riming than on number concentration.

We therefore conclude that even at low amounts of riming, as were for the range of M observed during HALO- $(AC)^3$ and IMPACTS, the effect of riming on IWC should not be neglected and can cause biases up to one order of magnitude.

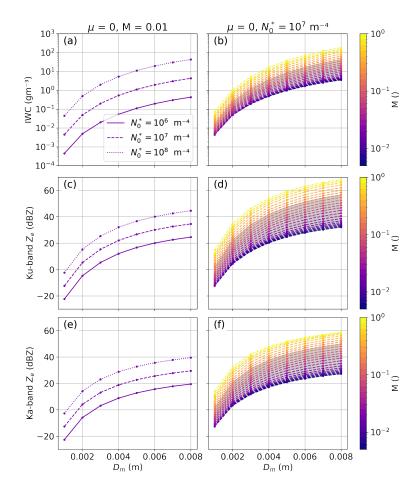


Figure R.2: Ice water content (IWC) (top), Ku-band Z_e (middle), and Ka-band Z_e (bottom) calculated from gamma particle size distributions as functions of D_m parameter. Results for varying N_0^* parameter are shown as solid and dashed lines in (a), (c), (e); for varying normalized rime mass M are color-coded in (b), (d), (f). Shaded areas in (b), (d), (f), (h) indicate M ranges observed during IMPACTS (90% range: 0.005 < M < 0.15).

L263 Awkward logic. MPC properties vary between IMPACTS and HALO-(AC)3 just because of different synoptic situations (Sect. 2.3) and measurement locations? This is very misleading.

Sorry, this was misleading. We rephrased to:

Due to the different MPC properties, synoptic situations (Sect. 2.3), and measurement locations (Fig. 1), MPC properties vary between IMPACTS and HALO-(AC)³.

Figure 5. Why the boxplot of W-band retrieval in IMPACTS is different from others? You did not explain it in the caption.

We are unsure, what you are referring to. The caption of Fig. 5 reads "W-band results during IMPACTS are dashed due to biases (see text)." The explanation is given in the text (see lines 325-333 in the revised manuscript), because a discussion of results is typically not included in figure captions.

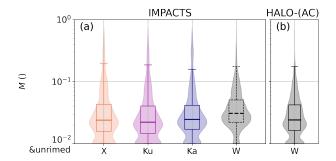


Figure R.3: Box plots and superimposed violin plots showing normalized rime mass M results obtained from a closure of collocated radar reflectivity Z_e and in situ particle size distribution ("combined method" from Maherndl et al. (2024)) for radar reflectivities available during (a) IMPACTS and (b) HALO-(AC)³. W-band results during IMPACTS are dashed due to biases (see text). M < 0.01 are plotted at 0.01 to be visible on the logarithmic scale.

L394 this conclusion lacks evidence.

We use η to study IWC variability as e.g., in Deng et al. (2024). η_{IWC} is a proxy for the probability of IWC clustering. The only difference between the variability of IWC_u and IWC_r is variability due to riming-induced density changes. We therefore argue that it is reasonable to say that differences between η computed for IWC_u and IWC_r are linked to riming.

Figure 11. Observations from two campaigns were analyzed, but you only show the conceptual diagram for HALOAC3. This is something of an anticlimax.

We show the conceptual diagram only for HALO-(AC)³, because we found that riming leads to IWC clustering at additional spatial scales as opposed to the mid-latitude clouds observed during IMPACTS. We found that riming does not change spatial scales of ice clustering for the IMPACTS cases. Both of these findings have not been reported in the literature before (to our knowledge). Figure 11 should act as a visual aid to understand the different spatial scales of ice clustering we identified for HALO-(AC)³ as well as the impact of riming on these scales. Because we did not find that riming changes spatial scales of ice clustering during IMPACTS, we don't think that an additional figure is necessary. To better highlight the findings for IMPACTS, we included:

In the analyzed segments of winter storm clouds measured during IMPACTS, IWC clusters occur at spatial scales smaller than about 3 km for segment distances of 15 km. Accounting for riming enhances ice cluster probabilities (Fig. R.1d). However, riming does not lead to significantly enhanced occurrences of IWC clusters at other scales. LWC clusters for segment distances of 15 km occur at the same spatial scales of about 3 km as clusters of N_i . Therefore, liquid droplets and ice particles are likely formed together in regions with supersaturation with respect to liquid and ice. Because LWC clusters and the IWC cluster enhancement through riming occur at similar spatial scales, we hypothesize that LWC variability (at least in part) drives riming. By increasing IWC, riming leads to enhanced probabilities of IWC clusters for IMPACTS.