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1 Abstract

Strong winter wind storms can lead to billions in forestry losses, disrupt train services and amount 

to millions of Euro spend on vegetation management alongside the German railway system. 

Therefore, understanding the link between tree fall and wind is crucial.

Existing tree fall studies often emphasize tree and soil factors more than meteorology. Using a 

dataset from Deutsche Bahn (2017-2021) and meteorological data from ERA5 reanalysis and 

RADOLAN radar, we employed stepwise model selection to build a logistic regression model 

predicting the risk of a tree falling on a railway line in a 31 km grid cell.

While daily maximum gust speed is the strongest risk factor, we also found that daily duration of 

strong wind speeds, precipitation, soil water volume, air density and the precipitation sum of the 

previous year increase tree fall risk. A high daily gust factor decreases the risk. Using interaction 

terms between maximum gust speed and duration of strong wind speeds as well as gust factor 

improves the model performance. Therefore, our findings suggest that high and prolonged wind 

speeds, especially in combination with wet conditions (high precipitation and high soil moisture) 

and a high air density, increase tree fall risk. Incorporating meteorological parameters linked to 

local climatological conditions (through anomalies or in relation to local percentiles) improved the 

model accuracy. This indicates the importance of taking tree adaptation to the environment into 

account.

Key words: tree fall, storm damage, railway traffic, logistic regression, gust speed, wind 

2 Introduction

High wind speeds are a major factor leading to tree fall and are therefore a threat both to the railway 

service and forestry. Strong winter wind storms can cost billions of euros in loss for forestry

(Gliksman et al., 2023). These loses have been increasing for the last decades (Gregow, Laaksonen 

and Alper, 2017). Additionally, there is an interconnection between storm damage and other 

ecological risks like droughts and bark beetle infestation in summer or unfreezing of soils in winter 

which put further stress on forest ecosystems and are likely to change in a warming climate 
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(Gregow, 2013; Temperli, Bugmann and Elkin, 2013; Seidl, Rammer and Blennow, 2014; 

Stadelmann et al., 2014).

In 2018, the German railway service provider Deutsche Bahn upgraded it’s vegetation related 

budget, spending more money and occupying more personnel for storm safety regarding railway 

vegetation. Currently about 125 Million Euro each year are spent on vegetation management (DB, 

2023) to prevent railway traffic disruption. And yet the cost of tree fall remains of the order of 

millions of Euro per year (Messenzahl, 2019). Sixty eight percent of the railway tracks are lined by 

trees and forests, causing the need for continuing vegetation management. Since 2018 the Deutsche 

Bahn is employing more than 1000 workers monitoring and maintaining the railway vegetation 

(DB, 2023). Despite such measurements there were on average 3062 tree fall events per year in the 

years from 2017 to 2021, causing disruptions and delay in the railway service as well as damage to 

the infrastructure. In recent years the interest in the topic has increased and a number of studies on 

tree fall hazards appeared, showing that this not only a problem for the German railway network 

(Bíl et al., 2017; Koks et al., 2019; Kučera and Dobesova, 2021; Szymczak et al., 2022).

Therefore, it is vital to study the connection of tree fall and wind. Such research can add value to 

the management of vegetation alongside transportation routes as well as climate resilient forests. 

Additionally, it can aid in identifying and removing trees at risk to mitigate potential damage.

There are many studies which investigate the impact of wind speed on tree fall, including tree 

motion measurements and tree pulling experiments (Peltola et al., 2000; Kamimura et al., 2012; 

Schindler and Kolbe, 2020; Jackson et al., 2021), mechanistic modelling (Gardiner et al., 2008; 

Hale et al., 2015; Kamimura et al., 2016; Costa et al., 2023) as well as statistical and machine 

learning approaches (Schindler et al., 2009; Schmidt et al., 2010; Hanewinkel et al., 2014; Hale et 

al., 2015; Jung et al., 2016; Kamimura et al., 2016; Kamo, Konoshima and Yoshimoto, 2016; Hart 

et al., 2019; Zeppenfeld et al., 2023). Among the statistical approaches, logistic regression models 

are very common and are also used in our study.

Numerous existing studies on storm damage focus on a single storm event or a small spatial region. 

Consequently, there is a need for long-term and large-scale investigations in this field. 

Additionally, previous studies mainly analyse the impact of tree, stand and soil related factors on 

wind-induced damages. Those which consider meteorological predictors often focus on the 

relationship between tree damage and mean or maximum wind speeds (Schindler et al., 2009; Jung 

et al., 2016; Morimoto et al., 2019). Yet, there are some other wind related predictors which are 
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considered in previous works. To account for the turbulent aspect of wind some studies employ the 

gust factor. There are different understandings of the term gust factor in the fields of meteorology 

and forestry. In forestry the gust factor is often referred to as the ratio of maximum to mean bending 

moment experienced by a tree (Gardiner et al., 1997) . In the following we define the gust factor as 

the ratio of the maximum short-term averaged wind speed over a duration t to a long-term averaged 

wind speed over a duration T (Ancelin, Courbaud and Fourcaud, 2004; Gromke and Ruck, 2018). 

Wind load is the wind force per area applied to a tree and the product of a trees specific drag 

coefficient, air density, a trees exposed frontal area and wind speed (see Eq. 12). Wind load and air 

density are considered in a few studies on tree fall and storm damage (Schelhaas et al., 2007; Ciftci 

et al., 2014; Gromke and Ruck, 2018; Sterken, 2021) as well as the wind direction (Akay and Taş, 

2019). Finally, the role of wind event duration is also discussed in some literature (Gardiner et al., 

2013; Mitchell, 2013) but seems to be understudied.

Next to wind, snow, frozen soils and precipitation have been identified as impactful meteorological 

factors (Peltola et al., 2000; Gardiner et al., 2010; Pasztor et al., 2015; Kamo et al., 2016). For 

example, heavy rain or snow during a storm event may add considerable weight to the crowns and 

increase tree fall risk(Gardiner et al., 2010). A decrease of frozen soils in the past as well as in 

future climate scenarios has been found for example for Finland, where it was connected to higher 

risks of uprooting (Gregow, 2013). 

Soil moisture is also sometimes considered (Kamo et al., 2016; Csilléry et al., 2017), as excessive 

water in the soil is expected to weaken root anchorage (Kamimura et al., 2012). On the other hand, 

the legacy effects of drought may cause lasting changes in tree physiology and weaken the tree 

(Kannenberg, Schwalm and Anderegg, 2020; Zweifel et al., 2020; Haberstroh and Werner, 2022). 

Therefore, droughts are expected to increase damage caused by wind (Gardiner et al., 2013). Yet, 

Csilléry et al. (2017) found both positive and negative effects on tree damage. They suggest that in 

some stands drought weakens the trees and makes them more vulnerable to wind loading while in 

others dry soils make them less vulnerable towards overturning. 

The goal of our study is, to identify meteorological parameters and parameter combinations that 

have an impact on tree fall risk alongside railway lines in Germany over the long term and over a 

large-scale area. We aim to deepen the understanding of tree fall risk and wind and to explore how 

far wind related parameters like daily maximum gust speed, the gust factor, air density, wind load, 

the duration of strong wind speeds or the wind direction have an impact on tree fall. We also 

5

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

https://doi.org/10.5194/egusphere-2024-120
Preprint. Discussion started: 23 February 2024
c© Author(s) 2024. CC BY 4.0 License.



examine impacts of other predictors related to meteorology that have been included in previous 

studies like soil moisture, precipitation, snow or soil frost. Additionally, we study legacy effects of 

dry and wet spells by including soil water volume and precipitation in antecedent time periods.

We will introduce both the tree fall data as well as the meteorological data used in this study 

(Chapter 3). We will describe the background theory and the selection process for the logistic 

regression model (Chapter 4) and we will finally present (Chapter 5) and discuss (Chapter 6) our 

results and conclude with our most important findings (Chapter 7).
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3 Data

3.1 Tree fall data

7

Figure 3: Daily number of tree fall events 
alongside German railway lines. Summer and 
winter are colour coded. Most extreme peaks of 
event numbers are caused by winter wind storms, 
for example Friderike (18.01.2018), Sabine 
(20.02.2020) and Hendrik (21.10.2021).

Figure 1: All tree fall events 
(orange dots) alongside 
railway lines (black lines) in 
Germany in the extended 
winter season (October - 
March) 2017-2021

Figure 2: Yearly percentage of tree fall events 
alongside German railway lines for each month 
2017-2021
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Tree fall events along the German railway network were derived from a data set created by the 

Deutsch Bahn (Figure 1). The data consists of disturbance events reported by rail drivers and local 

inspectors. These reports were later merged into one data set by the Netz AG of the Deutsche Bahn. 

It contains 15311 tree fall events between 2017 and 2021. For each tree fall event, the date and time 

of the report, the coordinate of the event and further railway related information like the route 

section number is included.

The majority of tree fall events occur in December, January and February (Figure 2) but there are 

also high event numbers in June, July and August. The most extreme peaks occur during the winter 

season and are connected to winter wind storm events (Figure 3).

3.2 Meteorological data

We used hourly ERA5 data (Hersbach et al., 2020; C3S, 2022) for all meteorological parameters, 

except precipitation. ERA5 is a reanalysis data set from 1940 to the present with a spatial resolution 

of ~31km. It was accessed using the ClimXtreme Central Evaluation System framework (Kadow et 

al., 2021). We performed our analysis only for the extended winter season (October to March) to 

focus on winter wind storms, which cause the most extreme peaks in tree fall events. We used 

hourly data to calculate daily means, sums or maxima for each predictor (see Table 1) as well as 

local percentiles (2nd, 10th, 90th and 98th) in each grid cell over the years 2000 to 2019 for some 

predictors. The CDO module (Climate Data Operators, Schulzweida (2023)) was used for each of 

these operations.

For precipitation data we used RADOLAN data provided by the German weather service (Bartels et 

al., 2004) with a spatial resolution of 1km. RADOLAN combines radar reflectivity, measured by the 

16 C-band Doppler radars of the German weather radar network, and ground-based precipitation 

gauge measurements. 

4 Methods

In this section, we describe data pre-processing as well as the theoretical background and the model 

selection process for the logistic regression model. The aim of this model is to calculate the 
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probability of at least one tree falling on a given day in a 31km grid cell, depending on 

meteorological parameters. It is used to analyse the impact of a set of predictor variables. 

4.1 Data Pre-Processing

A shape file of the German railway lines (DB, 2019) was used to mask the ERA5-grid and select all 

grid cells in Germany that are crossed by at least one railway line. We calculated the rail density 

(total length of all railway lines in km) for each grid cell in order to quantify exposition.

Daily mean air density ρ was calculated as:

Equation 1

were p is the daily mean surface air pressure (hPa), T is the daily mean near-surface air temperature 

(K) (both derived from ERA5 hourly data) and R is the universal gas constant, 8.314 (J K⋅ −1 mol⋅ −1).

Daily precipitation sums were calculated from the hourly data. We then remapped the precipitation 

radar data to the ERA5-grid using bilinear interpolation by applying the remapbil-function of CDO 

and thus ascribing daily precipitation sums to each grid cell. We calculated percentile exceedance of 

the 2nd, 10th, 90th and 98th percentile for gust speed maxima, soil water volume and precipitation via 

the relation of the daily value and the local percentile.

Finally, we collected all these data for the month of October to March 2017 to 2021 in a data set 

containing grid cell IDs, a variety of daily meteorological predictors (see Table 1), rail density and 

the daily occurrence of at least one tree fall event in the grid cell given as True or False. This data 

set contains only grid cells crossed by at least one railway line.

4.2 Logistic Regression

Logistic regression was used to relate the probability of an event to a linear combination of 

predictor variables which is converted with the logit link function into the scale of a probability:

9

ρ=p /R⋅T
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Here, θ is the probability of an event, x1-k are the predictor variables, b1-k are the estimated 

coefficients and a is the intercept term. Equation 2 can be rearranged in the following way to 

calculate the event probability (MacKenzie et al., 2018):

Interactions allow for expressing the dependence of two or more variables on each other in a model. 

The effect (aka the estimated coefficient) for one predictor might change depending on the value of 

another predictor. Compared to a model without interaction (see Eq. 2) two predictors that are 

assumed to haven an influence on each other are multiplied and a coefficient is estimated for this 

new term resulting in:

Equation 4

where b3 is the estimated coefficient for the interaction of the predictors x1 and x2. 

For quantifying the model’s forecast quality we use the Brier Skill Score (BSS) which is based on 

the Brier Score (BS) (Wilks, 2011):

where N is the number of observations, f is the forecast probability and o is the outcome (either 1 or 

0). The BSS is then calculated as:

Equation 6

where BS is the modelled Bier Score and BSref is the score of a reference model, in this case a model 

that simply assumes the mean tree fall probability in each grid cell. The BSS ranges from -∞ to 1 

10

BS=
1
N
∑
i=1

N

(f i−oi) ²

Equation 5

Θ=
exp (a+b1⋅x1+b2⋅x2+...+bk⋅xk )

1+exp(a+b1⋅x1+b2⋅x2+...+bk⋅xk)

Equation 3

logit (Θ)=ln( Θ
1−Θ

)=a+b1⋅x1+b2⋅x2+...+bk⋅xk

Equation 2

BSS=1 – BS / BSref

Θ=
exp(a+b1⋅x1+b2⋅x2+b3⋅x1⋅x2 ...+bk⋅xk )

1+exp(a+b1⋅x1+b2⋅x2+b3⋅x1⋅x2+...+bk⋅xk )
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where a positive value indicates that the model is better than the reference model. For calculating 

the BSS we use 10-fold cross validation. Here, the data set is randomly divided in ten equal 

sequences. The model is trained on nine sequences while the BS score is calculated for the tenth 

sequence and used for validation. This is repeated ten times, each time using a different sequence 

for the validation.

We selected a set of meteorological parameters based on the literature cited in the introduction and 

grouped them into eleven predictor classes, e.g. “wind”, “snow” and “precipitation” (see Table 1 for 

full list of predictors and classes). To test for legacy effects we also include precipitation sum and 

soil water volume from antecedent time periods of 3 months, 9 months and one year. The goal is not 

to build the “perfect” model but to examine which predictor classes influence tree fall, which are 

not influential and which predictors are most clearly improving the skill of the model against the 

basic reference model.

Since the length of railway lines in a grid cell is highly influential on the tree fall probability, this 

variable is included as well.

We were interested in the impact of each predictor class and also the predictor modifications (for 

examp anomalies or relations to local percentiles) which improve the model skill the most. At the 

same time we wanted to avoid multi-collinearity. Therefore, model selection followed two criteria:

1. There must be exactly one predictor from each predictor class in the model.

2. Only the predictor of each class improving the model’s BSS the most is added to the model.

We then moved gradually from class to class. We added and removed each of the predictors in the 

class in a stepwise approach, keeping only the class predictor with the best BSS performance. 

We assume gust speeds to be the key predictor but interactions with other predictors that influence a 

trees vulnerability are likely. Therefore, we added interaction terms between daily maximum gust 

speed and each other model predictor in the model, if the interaction term improved the model’s 

BSS. 

After adding all predictors to the model we tested for multicollinearity. Multicollinearity exists 

when two ore more predictors in a regression model are moderately or highly correlated with one 

another. We used the Variance Inflation Factor (VIF) to test for multicollinearity:
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where R2
j is the R2-value obtained by regressing the jth predictor on the remaining predictors. All 

predictors with a VIF<5 were considered to have no critical multicollinearity (Sheather S., 2009).

We calculated the standardized effect size for each predictor to estimate their effects on tree fall 

probability compared to each other. For this, we standardized the absolute value of the predictors 

estimated coefficient by calculating the standardized coefficient or beta coefficient:

where bj is the estimated coefficient for the jth predictor, sxj is the standard deviation of the 

independent predictor xj and sy is the standard deviation of the dependent variable y.

Finally, we tested the significance of each independent variable in the model. We kept only those 

independent variables that are significant (with p < 0.05 based on a two-tailed z-test) and then 

continued analysis with this reduced model. 

5 Results 

In this section we describe the selected model and the impact of the model predictors on tree fall 

risk.

According to the selection criteria described in section 4 the resulting model (using the McCullagh 

and Nelder (1989) model notation) is

tree fall ~ rd + vmax_anom + dur90 + gf + sin(2*pi/360 * winddir) + cos(2*pi/360 * winddir) + 
sd + Tslfrost + pr90 + swvlanom + pr_365 + swvl_365 + ρ + vmax_anom: dur90 + vmax_anom:gf 
Equation 9

12

β=b j

sxj

sy

Equation 8 

VIF j=
1

1−R j
2

Equation 7
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Explanations for the different predictor abbreviations are given in Table Fehler: Verweis nicht 

gefunden. Sine and cosine terms are used for winddir to ensure that the tree fall probability as a 

function of winddir has the same values at 0° and 360°. This models BSS is 0.069, compared to a 

BSS of 0.0637 for

tree fall ~ rd + vmax 

Equation 10

showing an improvement of model skill when using additional meteorological predictors compared 

to just rail density rd and daily maximum gust speed vmax.

In Table Fehler: Verweis nicht gefunden the predictors, their definitions and corresponding model 

coefficients and metrics are listed. All coefficients except those for snow depth (sd), soil frost (Tslfrost-

) and the mean soil water volume during the previous year (swvl_365) are significantly different 

from zero. We find highest effect sizes (with absolute standardized coefficients greater than one) for 

gust speed anomaly (vmax_anom ), the interaction of gust speed anomaly and duration of strong wind 

speeds (dur90), the interaction of gust speed anomaly and the gust factor (gf), rail density (rd) and 

the duration of strong wind speeds. Interactions between gust speed anomaly and other predictors 

(except duration of strong wind speeds and gust factor) do not improve the model’s BSS.

For daily precipitation, daily soil water volume and daily maximum gust speed we compare 

unmodified predictors and predictors related to local conditions (by using anomalies or percentiles) 

and find that the latter improve the BSS more with pr90, swvlanom and vmax_anom being the best 

predictors.

To test for multicollinearity, we use the VIF and find all values to be below five and therefore not 

critically correlated with each other. Interaction terms are excluded from this as they are naturally 

highly correlated with the interaction partners.

In a second step we adapt the model and identify all non-significant predictors: sd, Tslfrost and the 

swvl_365. To reduce model complexity we remove these predictors. This results in the following 

model:
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tree fall ~ rd + vmax_anom + dur90 + gf + sin(2*pi/360 * winddir) + cos(2*pi/360 * winddir) + 
pr90 + swvlanom + pr_365 + ρ + vmax_anom: dur90 + vmax_anom:gf 
Equation 11

We find that the rail density, anomaly of daily maximum gust speeds vmax_anom , duration of strong 

wind speeds based on the local 90th gust speed percentile dur90, gust factor gf, wind direction 

winddir, precipitation related to the local 90th percentile pr90, soil water volume anomaly swvlanom, 

and precipitation sum in the previous year per_365, air density ρ as well as the two interactions of 

the gust speed anomaly with either gust factor or duration of strong wind speeds were significant, 

improved the model’s BSS and therefore meet the model selection criteria. The BSS of this model 

remains 0.069. This model is used to plot the functional relationships between tree fall probability 

and the meteorological predictors (Figure 4). Based on these plots and the standardized coefficients 

(Table Fehler: Verweis nicht gefunden) we find a relatively strong increasing impact on tree fall risk 

for vmax_anom, dur90 and rd. We find a relatively weak but still significant increasing impact for 

swvlanom, pr90, ρ and pr_365. We find a relatively strong decreasing effect for gf and a relatively 

weak impact for winddir with easterly to south-easterly winds having a decreasing and westerly to 

north-westerly winds having an increasing impact respectively.

Based on these findings, we propose that high and prolonged wind speeds, especially in 

combination with wet conditions (high precipitation and high soil moisture) and a high air density, 

increase tree fall risk.

Short Definition Coefficient Standardized 
Coefficient

 Std. 
Error

p VIF

vmax_anom Daily anomaly of vmax (difference 
to local monthly mean gust at 10 
m height speeds) [m/s]

0.1906 5.3527 0.0083 < 0.05 3.907

vmax_anom:dur90 Interaction 0.0058 3.6927 0.0003 < 0.05 -

vmax_anom:gf Interaction -0.0246 -2.2063 0.0027 < 0.05 -

rd Rail density - total length of all 
railway lines in a 31km grid cell 
[km]

0.0102 2.1946 0.0003 < 0.05 1.037

dur90 Daily number of hours where 
gust speed exceeds the local 90th 
gust speed percentile [h]

-0.0491 -1.7746 0.0039 < 0.05 3.202
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Short Definition Coefficient Standardized 
Coefficient

 Std. 
Error

p VIF

swvlanom Daily anomaly of the daily mean 
of soil water volume (swvl) at a 
depth of 28 – 100cm (difference 
to local monthly mean soil water 
volume) [m3 m-3]

4.9985 0.7136 0.4001 < 0.05 1.144

pr90 Relation of pr to local 90th 
precipitation percentile (pr/ p90) 
[mm]

0.0019 0.6493 0.0002 < 0.05 1.247

gf Gust factor - vmax /vmean (the ratio 
of the maximum daily gust speed 
and the daily mean of the hourly 
maximum gust speeds at 10m 
heigth) [-]

0.1559  0.5193 0.0300 < 0.05 2.037

 cos(2 * pi/360 * 
winddir) 

Mean daily wind direction [°] 0.1843 0.3779 0.0273 < 0.05 1.099

ρ Air density, see Eq. 1 [kg/m3] 1.8108 0.2704 0.5274 < 0.05 2.109

 sin(2 * pi/360 * 
winddir) 

Mean daily wind direction [°] -0.0916 -0.2178 0.0261 < 0.05 1.293

pr_365 Sum of daily precipitation sum 
for previous 365 days [mm]

0.0002 0.1974 0.0001 < 0.05 1.476

sd Snow from the snow-covered 
area of an ERA5 grid box - depth 
the water would have if the snow 
melted and was spread evenly 
over the whole grid box [m]

0.4455 0.0422 0.6199 > 0.05 1.199

 swvl_365 Sum of the daily mean of soil 
water volume at a depth of 28 – 
100cm of the previous 365 days

-0.0966 -0.0235 0.2432 > 0.05 1.223

Tslfrost Frozen soil: True or False (based 
on Tsl< 0K)

-9.0727  -0.0069 70.6317 > 0.05 1.000

Table 1 Model predictors and their corresponding model coefficients and metrics. Bold numbers 

indicate values below the required threshold for significance and multi correlation (with p < 0.05 

based on a two-tailed z-test and VIF < 5). See Table 2 for further details.
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16

Figure 4: Changes in tree fall probability in an ERA5 grid cell with 100 km 
railway length (urban conditions) depending on different parameters. In each 
figure one model parameter is varied while the others are fixed to a certain 
value: vmax_anom = 18 m/s; dur90 = 5h; gf = 2.2, ; pr90 = 20mm; winddir = 41°; 
swvlanom = 0 m³ m-³; pr_365 = 663 mm; ρ = 1.2 kg/m³. Grey areas signify the 
confidence interval with a level of 95%.
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6 Discussion

6.1 Predictor Selection

In previous studies on tree fall hazards that consider a statistical modelling approach, a large variety 

of potential influencing factors can be found. Most of them focus on tree, stand and soil properties 

like tree age, height, tree species, forest type, soil type or slope (Mayer et al., 2005; Schindler et al., 

2009; Kamo et al., 2016; Kabir, Guikema and Kane, 2018; Díaz-Yáñez, Mola-Yudego and 

González-Olabarria, 2019; Hart et al., 2019; Gardiner, 2021; Wohlgemuth, Hanewinkel and Seidl, 

2022). Meteorological predictors like precipitation or soil moisture are considered less often 

(Schmidt et al., 2010; Hall et al., 2020). Wind is mostly considered as mean hourly or maximum 

wind speed (Hale et al., 2015; Morimoto et al., 2019; Hall et al., 2020). These limiation regarding 

meteorological predictors are often also true for studies that consider tree fall on railway lines (Bíl 

et al., 2017; Kučera and Dobesova, 2021; Gardiner et al., 2023). Additionally many of these studies 

are both limited in their temporal and spatial range, often restricted to one region or one forest and 

only one or a few storm events (Hale et al., 2015; Kamimura et al., 2016; Kabir et al., 2018; Hart et 

al., 2019; Zeppenfeld et al., 2023). In our study we focused on different types of meteorological 

predictors, including those that describe wind charecteristics, but also predictors describing 

precipitation and soil conditions at different time scales. We showed that meteorological predictors 

other than mean or maximum wind speed have a significant effect on tree fall risk improve model 

skill (with a BSS of 0.0637 for a model including only gust speed maximum and 0.069 for the full 

meteorological model). Furthermore, with a dataset ranging from 2017 to 2021 and covering the 

whole of Germany, our study investigates long-term and large-scale storm damage modelling, 

which is still rare.

The model selection process resulted in a model with ten independent variables and two 

interactions, raising the possibility of over complexity. To account for this we calculated the Akaike 

Information Criterion (AIC), which is a relative measure showing how well different models fit the 

data. It penalizes too high numbers of independent variables. The model with the lowest AIC value 

is considered the best. We calculated the AIC for the resulting model as well as reduced versions of 

the model in which we left out 1) the interactions, 2) all predictors with an absolute standardized 

coefficient < 1 and 3) all predictors with an absolute standardized coefficient < 0.5. We find that our 
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selected model has the lowest AIC (56985.43) compared to options 1) to 3), (57339.14, 57512.49 

and 57062.27 respectively).

In accordance with our results, many studies find wind speed to be associated with tree and forest 

damage (Hale et al., 2015; Morimoto et al., 2019; Hall et al., 2020). We showed that other wind 

properties like duration of strong wind speeds, gust factor, wind direction and air density are 

influential, too. Duration of strong winds is important because trees do not fail instantly but fail 

with repeated swaying that fractures the root/soil system and this process can take many hours

(Kamimura et al., 2022). Gust factor and air density are also known to be critical components in 

calculations of tree wind damage risk (see Equations 4.4, 4.12 and 4.15 in (Quine, Gardiner and 

Moore, 2021)). This paper for the first time shows clearly that storm duration, gust factor and air 

density are important factors in calculating the risk of tree fall and they should be included in future 

studies and modelling efforts.

We found both soil water volume anomaly as well as daily precipitation sum to have an increasing 

impact on tree fall probability, which is in agreement with previous studies (Kamimura et al., 2016; 

Hall et al., 2020). This could be due to the fact that heavy precipitation can contribute to the 

accumulation of weight on tree crowns, consequently increasing wind-induced stress (Gardiner et 

al., 2010). Additionally, water logged soils can have a negative affect on root anchorage (Kamimura 

et al., 2012) . 

While Akay and Taş (2019) found wind direction to be one of the predictors with the highest impact 

on storm damage risk, it has a relatively small effect in our model. The impact of wind direction 

might change with a trees exposure, for example depending on the topography, the tree’s 

acclimation to the average local wind direction (Mitchell, 2013) or the location of the tree to an 

expose edge (Quine et al., 2021). We did not account for these factors. Future modelling might 

benefit by adding local tree wind exposure.

We also included predictors describing antecedent soil moisture and precipitation conditions, 

namely mean soil water volume accumulation and precipitation sum of the previous twelve months. 

Antecedent soil water volume is not significant in our model but the precipitation sum of the 

previous year is, showing a weak increasing impact on tree fall risk. Previous research on the 

impact of drought on tree damage are inconclusive. Csilléry et al. (2017) found both positive but 

mainly negative effect on tree damage. They suggest that in some stands drought weakens the trees 

18

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

https://doi.org/10.5194/egusphere-2024-120
Preprint. Discussion started: 23 February 2024
c© Author(s) 2024. CC BY 4.0 License.



and makes them more vulnerable to wind loading while in others dry soils make them less 

vulnerable towards overturning. We suggest that further research considers antecedent weather 

situations in more detail. For example, by including indices like the Standardized Precipitation-

Evapotranspiration Index (SPEI), which has been used in recent research on forest disturbance 

(Klein et al., 2019; Gazol and Camarero, 2022). It is also likely that trees react very differently to 

dry and wet conditions depending on their species, height or the soil type. Whenever such 

information is available it should be included in the analysis.

Several studies have found snow and frozen soil to be influential (Peltola et al., 2000; Hanewinkel 

et al., 2008; Kamimura et al., 2012; Kamo et al., 2016). Snow loading can apply stress on canopy 

and branches and this stress can be increased by additional wind (Kamo et al., 2016). Frozen soil 

has been shown to prevent uprooting (Gardiner et al., 2010; Pasztor et al., 2015). Yet, in our study 

snow and soil frost did not prove to be significant. This is likely connected to the rare occurrence of 

such conditions in Germany between 2017 and 2021. On average, over all model grid cells snow 

depth exceeded 0.05 m water equivalent only on 1.3% of all winter days and soil frost occurred 

only 0.03 %. Our snow data is derived from ERA5 and is therefore modelled data. In their 

evaluation of snow cover properties in ERA5 Kouki, Luojus and Riihelä (2023) found that ERA5 

generally over estimates snow water equivalent in the Northern Hemisphere. Thus, snow coverage 

might even be lower than shown in our data. Using measured instead of modelled snow data could 

potentially improve the modelling results. 

For wind speed, precipitation and soil water volume we compared unaltered predictors with 

anomalies and percentile exceedances. For all three parameter types, we found that predictors based 

on percentile exceedances (pr90) or anomalies (swvlanom, vmax_anom) improve the model’s BSS the most 

and thus, reflect the trees’ ability to acclimate. Trees adapt to the local climate (Mitchell, 2013; 

Gardiner, Berry and Moulia, 2016)and what might be windy or dry conditions for a tree in one 

region might be average in another. When modelling tree damage over larger spatial regions, we 

therefore suggest relating meteorological predictors to local climatological conditions, for example 

by using anomalies or percentiles. 

We found that air density has a positive impact on tree fall risk. As our model includes both 

maximum gust speed and air density we considered wind load as a model predictor. Wind load is 

proportional to air density and the square of wind speed:
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Equation 12

where C is a non-dimensional drag coefficient, ρ is the air density (kg/m3), A is the frontal area and 

v is the wind speed (m/s) (Ciftci et al., 2014; Gardiner et al., 2016; Quine et al., 2021). Therefore, 

wind load is highly correlated with wind speed. In our data, vmax_anom and wind load have a high 

Pearson correlation coefficient of 0.95. Due to this, they should not be used together in a single 

model since high correlation between parameters makes model interpretation difficult. As both the 

drag coefficient as well as the trees frontal area are unknown, we reduced the equation to:

Equation 13

We tested a model that used wind load instead of air density and vmax_anom. We removed air density 

from the predictors of Equation 11 and exchanged vmax_anom with wind load. We found a lower BSS 

for this model of 0.0678 compared to 0.069. Yet, wind load is highly significant and has a strong 

effect size with a standardized coefficient of 4.07. Additionally, the wind load model has a 

marginally lower AIC (56980.45) than the original model (56985.43). Due to the lower BSS wl did 

not meet the selection criteria in our modelling process. Yet, it is certainly influential on tree fall and 

might add value to other impact models. We suggest considering it in future studies.

6.2 The effect of interaction terms

Interactions can show the combined effect predictors may have on model outcome and how the 

effect of one predictor is changing depending on the value of the other. We tested if interaction 

terms with gust speed anomaly add to the model skill and found positive results for the interaction 

with duration of strong wind speeds as well as gust factor. Both predictor interactions improve the 

BSS and are highly significant (see Table Fehler: Verweis nicht gefunden). 

In Figure 5 the effect of duration of strong wind speeds and gust factor for the model with and 

without interaction terms is compared. When the interactions are removed, the decreasing impact of 

gust factor on tree fall probability is much smaller while duration of strong wind speeds seems to be 

not at all connected to tree fall probability. The effect size of these predictors also decreases 

strongly. In a model without interactions, the standardized coefficient of the gust factor is -0.3181 
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and of duration of strong wind speeds 0.0275 (compare Table Fehler: Verweis nicht gefunden). 

Only when we add the interaction the impact of these predictors gets visible, thus showing their 

combined effect. Furthermore, the model without interactions has a BSS of only 0.0678 compared 

to 0.069 for the model that includes interactions (Eq. 11).

Teh combined effect of the predictors is illustrated in Figure 6. We compare the model outcome 

depending on the duration of strong wind speeds for two values of vmax_anom , 10 m/s and 18 m/s. 

Both represent values that exceed the 98th percentile of daily gust speeds in most grid cells, but one 

represents a low exceedance while the other is very high. The duration of strong wind speeds has a 

much stronger increasing impact on tree fall probability in the second scenario. 

A high maximum daily gust speed could be the result of just one strong gust but also the result of a 

stormy day with lasting high wind speeds. Adding additional wind properties like the gust factor or 

duration of strong wind speeds can help differentiate between these scenarios. Figure 7 illustrates 

this. Here, we compare modelled tree fall probabilities for a day with a high gust factor and low 

duration of strong wind speeds (a gusty day) and a day with a low gust factor and long duration of 

strong wind speeds (a day of sustained high wind speeds). The relationship between vmax_anom and 

tree fall probability is much weaker on the gusty day, showing how strongly the interaction with 

additional wind properties can change tree fall risk.
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Figure 5: Comparison of the effects of duration of strong wind speeds (dur90, left) and 
the gust factor (gf, right) on tree fall risk for the model with and without interaction 
terms. Parameters are fixed to the same values as in Figure 4 with vmax_anom = 18 m/s. 
Grey areas signify the confidence interval with a level of 95%.

Figure 7: Comparison of interaction effect. 
Gusty day: dur90 = 2 and gf = 5 AND dur90=12 
and gf=2. All other parameters are fixed to the 
same values as in Figure 4.Grey areas signify the  
confidence interval with a level of 95%.

Figure 6: Interaction effect of vmax_anom and 
storm duration for two different values of 
vmax_anom (10 m/s and 18 m/s). All other 
parameters are fixed to the same values as in 
Figure 4. Grey areas signify the confidence 
interval with a level of 95%.
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6.3 Limitations

Many studies have pointed out the influence of tree, stand and soil factors (Mayer et al., 2005; 

Kamo et al., 2016; Kabir et al., 2018; Díaz-Yáñez et al., 2019; Hart et al., 2019; Gardiner, 2021; 

Wohlgemuth et al., 2022) on wind damage vulnerability. As the aim of our study was to focus on 

the role of meteorology, we did not add tree, soil or stand information. Thus, model results could 

vary strongly if such information were to be incorporated. However, our results show clear evidence 

for the importance of specific meteorological predictors in tree fall and storm damage modelling. 

Finding the specific relationships for meteorological predictors and different tree species, forest 

types and soil types should be the next step in understanding the impact of different meteorological 

conditions on wind damage. 

In the data set about 25% of tree fall events occur at maximum daily gust speed below 11 m/s. On 

the one hand, these tree fall events might be caused by processes unrelated to meteorology. On the 

other hand, these events might be related to meteorological events not resolved by the ERA5 

reanalysis. Due to the relatively coarse resolution of ERA5, convection is not explicitly resolved by 

the underlying atmospheric model. Therefore, the wind speeds caused by heavy thunderstorms are 

likely to be underestimated. The coarse resolution of ERA5 is generally suboptimal when trying to 

connect small scale events such as a single tree fall with meteorological data. Yet, at the time of our 

research ERA5 was the only reanalysis data set covering the years 2017 to 2021. Data with higher 

spatial resolutions that include convective effects might help in understanding the effects of 

thunderstorms and other small-scale phenomena in future research. There is already some concern 

that such phenomena are becoming more problematic in Europe (Suvanto et al., 2016; Sulik and 

Kejna, 2020).

The adding and removal of model predictors during the stepwise model selection process caused 

only very small changes in the model’s BSS, which was very low to begin with. This is quite likely 

connected to all of the limitations listed above. Models which are able to add tree, soil or stand data 

or have access to meteorological data of a higher spatial resolution will likely produce better model 

skill and be able to examine the relationships of tree fall and meteorology in more detail. 

Nonetheless, our approach provides clear evidence of which meteorological predictors have a 

significant impact and indicates the magnitude of their effect.

23

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

https://doi.org/10.5194/egusphere-2024-120
Preprint. Discussion started: 23 February 2024
c© Author(s) 2024. CC BY 4.0 License.



7 Conclusion 

Our aim was to investigate the relationship between tree fall onto railway lines and wind as well as 

other meteorological conditions. For this, we used a stepwise approach to build a logistic regression 

model predicting the tree fall risk. 

We showed that high and prolonged wind speeds, especially in combination with wet conditions 

(high precipitation and high soil moisture) and a high air density, increase tree fall risk. We find a 

relatively strong increasing impact on tree fall risk for daily maximum gust speeds anomaly and 

duration of strong wind speeds. We find a relatively weak but still significant increasing impact for 

the daily soil water volume anomaly, the daily precipitation exceedance of the 90th percentile, daily 

air density and the precipitation sum of the previous year. We find a relatively strong decreasing 

effect for the gust factor and a relatively weak impact for wind direction with easterly to south-

easterly winds having a decreasing and westerly to north-westerly winds having an increasing 

impact. Snow and soil frost predictors which have been found important in past research have no 

significant impact in our model.

To account for potential acclimation of trees to local climate we compared unmodified predictors 

and predictors related to local conditions (by using anomalies or percentiles) for daily precipitation, 

daily soil water volume and daily maximum gust speed. We find that the latter predictors, which 

reflect acclimation, improve the model’s skill the most.

Finally we showed that the inclusion of interaction terms improved the model’s skill score, changed 

modelled risk probabilities and helped to illustrate the combined effect meteorological predictors 

may have on tree fall probability.

Many previous studies on tree fall and forest storm damage are restricted to a single event or small 

research region. Additionally, past research has primarily focused on tree, soil and stand parameters. 

When studies have taken meteorology into account they often implemented only mean or maximum 

gust speeds. We were able to conduct a long-term and large-scale study on tree fall risk and were 

able to show that other wind related parameters such as gust factor, duration of strong wind speeds 

or air density as well as other predictors related to meteorology, including precipitation and soil 

moisture, have a significant impact on tree fall risk. The frequency, intensity and co-occurrence of 

these factors might change in the changing climate which in return will change risks for trees, 

forests and transport infrastructure. Our results also highlight the importance of using anomalies or 
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relations to local percentiles for meteorological predictors in large scale studies to account for the 

acclimation of trees to their local climatic conditions. 
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8 Appendix

Predictor class Short name Definition Unit

Wind vmax Maximum daily gust speed of the maximum 3 second 
wind at 10 m height

m/s

vmean Daily mean of the hourly maximum gust speeds m/s

vmax2d Maximum daily gust speed of current and previous day m/s

vmax_90 Relation of vmax to local 90th gust speed percentile (vmax/ 
p90)

[-]

vmax_98 Relation of max. daily gust speed to local 98th gust speed 
percentile (vmax/ p98) 

[-]

vmax_anom Daily anomaly of vmax (difference to local monthly mean 
gust speeds) 

m/s

wl Wind load: Wind force per area applied to a tree, see Eq. 
13

N/m²

Air density ρ Air density, see Eq. 1 kg/m3

Duration of strong 
wind speeds

dur90 Daily number of hours where gust speed exceeds the local 
90th gust speed percentile 

h

dur98 Daily number of hours where gust speed exceeds the local 
98th gust speed percentile 

h

dur90_2d Number of hours where gust speed exceeds the local 90th 
gust speed percentile during current and previous day

h

dur98_2d Number of hours where gust speed exceeds the local 98th 
gust speed percentile during current and previous day 

h

Wind direction winddir Mean daily wind direction °

Gust factor gf Gust factor - vmax /vmean (the ratio of the maximum daily 
gust speed and the daily mean of the hourly maximum gust 
speeds at 10m heigth) 

[-]

precipitation pr Daily precipitation sum derived from hourly RADOLAN 
radar data

mm

pr_log log(1+pr) mm

pr90 Relation of pr to local 90th precipitation percentile (pr/ 
p90) 

[-]

pr98 Relation of pr to local 98th precipitation percentile (pr/ 
p98) 

[-]

pr90_T Exceedance local 90th precipitation percentile: True or 
False 

[T,F]

pr98_T Exceedance local 98th precipitation percentile: True or 
False 

[T,F]

Snow sf Daily sum of snow that falls to the Earth’s surface m of water 
equivalent
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sd Snow from the snow-covered area of an ERA5 grid box - 
depth the water would have if the snow melted and was 
spread evenly over the whole grid box

m of water 
equivalent

sf_T Snow is present: True or False (based on sf) [T,F]

sd_T Snow is present: True or False (based on snd) [T,F]

Soil temperature Tsl Daily mean of soil temperature at a depth of 28 – 100cm K

Tsl98 Relation of Tsl to local 98th Tsl percentile (Tsl/ Tsl98) [-]

Tsl90 Relation of Tsl to local 90th Tsl percentile (Tsl/ Tsl90) [-]

Tsl10 Relation of Tsl to local 10th Tsl percentile (Tsl/ Tsl10) [-]

Tsl02 Relation of Tsl to local 2nd Tsl percentile (Tsl/ Tsl02) [-]

Tsl98_T Exceedance local 90th Tsl percentile: True or False [T,F]

Tsl90_T Exceedance local 98th Tsl percentile: True or False [T,F]

Tsl10_T Exceedance local 10th Tsl percentile: True or False [T,F]

Tsl02_T Exceedance local 2nd Tsl percentile: True or False [T,F]

Tsl_anom Daily anomaly of Tsl (difference to local monthly mean soil 
temperature)

K

Tslfrost Frozen soil: True or False (based on Tsl< 0K) [T,F]

Soil moisture swvl Daily mean of soil water volume at a depth of 28 – 100cm m3 m-3

swvl98 Relation of swvl to local 98th swvl percentile (swvl/ 
swvl98)

[-]

swvl90 Relation of swvl to local 90th swvl percentile (swvl/ swvl90) [-]

swvl10 Relation of swvl to local 10th swvl percentile (swvl/ swvl10) [-]

swvl02 Relation of swvl to local 2nd swvl percentile (swvl/ swvl02) [-]

swvl98_T Exceedance local 90th swvl percentile: True or False [T,F]

swvl90_T Exceedance local 98th swvl percentile: True or False [T,F]

swvl10_T Exceedance local 10th swvl percentile: True or False [T,F]

swvl02_T Exceedance local 2nd swvl percentile: True or False [T,F]

swvlanom Daily anomaly of swvl (difference to local monthly mean 
soil water volume) 

m3 m-3

Antecedent soil 
moisture

swvl_30 Sum of swvl for previous 30 days m3 m-3

swvl_90 Sum of swvl for previous 90 days m3 m-3

swvl_365 Sum of swvl for previous 365 days m3 m-3

Antecedent 
precipitation 

pr_30 Sum of pr for previous 30 days mm

pr_90 Sum of pr for previous 90 days mm

pr_365 Sum of pr for previous 365 days mm

Table 2: List of meteorological predictors tested in the logistic regression model (ECMWF, 2023).
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