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Abstract.

We introduce "NitroNet", a deep learning model for the prediction of tropospheric NO2 profiles from satellite column

measurements. NitroNet is a neural network, which was trained on synthetic NO2 profiles from the regional chemistry and

transport model WRF-Chem, operated on a European domain for the month of May 2019. This WRF-Chem simulation was

constrained by in-situ and satellite measurements, which were used to optimize important simulation parameters (e.g. the5

boundary layer scheme). The NitroNet model receives vertical NO2 column densities (VCDs) from the TROPOMI satellite

instrument and ancillary variables (meteorology, emissions, etc.) as input, from which it reproduces NO2 concentration profiles.

Training of the neural network is conducted on a filtered dataset, meaning that NO2 profiles with strong disagreement (> 20

%) to colocated TROPOMI column measurements are discarded.

We present a first evaluation of NitroNet on a variety of geographical and temporal domains (Europe, US west coast, India,10

and China) and different seasons. For this purpose, we validate the NO2 profiles predicted by NitroNet against satellite, in-situ,

and MAX-DOAS measurements. The training data were previously validated against the same datasets. During summertime,

NitroNet shows small biases and strong correlations to all three datasets (bias = +6.7 % and R= 0.95 for TROPOMI NO2

VCDs, bias =−10.5 % and R= 0.75 for AirBase surface concentrations, bias =−34.3 % to +99.6 % and R= 0.83 to

0.99 for MAX-DOAS measurements). In the comparison to TROPOMI satellite data, NitroNet even shows significantly lower15

errors and stronger correlation than a direct comparison with WRF-Chem numerical results. During wintertime considerable

low biases arise, because the summertime/late spring training data is not fully representative of all atmospheric wintertime

characteristics (e.g. longer NO2 lifetimes). Nonetheless, the wintertime performance of NitroNet is surprisingly good, and

comparable to that of classic regional chemistry and transport models. NitroNet can demonstrably be used outside the ge-

ographic and temporal domain of the training data with only slight performance reductions. What makes NitroNet unique20

compared to similar existing deep learning models is the inclusion of synthetic model data, which has important benefits: Due

to the lack of NO2 profile measurements, models trained on empirical datasets are limited to the prediction of surface concen-

trations learned from in-situ measurements. NitroNet, however, can predict full tropospheric NO2 profiles. Furthermore, in-situ

measurements of NO2 are known to suffer from biases, often larger than +20 %, due to cross sensitivities to photooxidants,

which other models trained on empirical data inevitably reproduce.25
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1 Introduction

Nitrogen oxides (NOx = NO + NO2) are an important marker of air pollution. The negative impact of NO2 on human health

has been widely recognized (see e.g. Faustini et al. (2014); Mills et al. (2015); Chowdhury et al. (2021)). In many European

countries, the recommended annual-average exposure limit of 10 µg m−3 (see World Health Organization (2021)) is exceeded

continuously. Active monitoring of tropospheric NO2 is a crucial step in identifying pollution hotspots, localizing emissions,30

and designing long-term solutions to the pollution problem. Different NO2 measuring methods exist. Many countries across the

world deploy in-situ measurements at the surface (see e.g. the AirBase network, European Environment Agency). The Tropo-

spheric Monitoring Instrument (TROPOMI, see Veefkind et al. (2012)) yields measurements of the tropospheric NO2 vertical

column density (VCD) with daily near global coverage and a ground pixel size of up to 3.5 km× 5.5 km. Lastly, ground-based

MAX-DOAS measurements ("multi-axis differential optical absorption spectroscopy", see Platt and Stutz (2008); Hönninger35

et al. (2004)) are used to obtain tropospheric NO2 profiles in a few selected places, by means of scanning the troposphere at

different elevation angles. Although further measuring platforms (e.g. sondes, aircraft) and methods (e.g. Light Detection and

Ranging instruments (LIDAR), or "cloud-slicing") exist, these are not routinely deployed (see e.g. Sluis et al. (2010); Bourgeois

et al. (2022); Lange et al. (2023); Riess et al. (2023); Volten et al. (2009); Berkhout et al. (2018); Su et al. (2021), Marais et al.

(2021)). Particularly aircraft measurements and cloud slicing are appreciated for resolving along the vertical axis, although at40

lower spatio-temporal resolutions (e.g. cloud slicing: seasonal means with 1° × 1° horizontal resolution and 5 tropospheric

layers, see Marais et al. (2021)) or sparse spatio-temporal coverage (aircraft measurements). Altogether, these measurements

are valuable for the quantification of tropospheric vertical column densities, surface concentrations, and to some extent the

tropospheric profile shapes. Nonetheless, the described methods also have drawbacks:

– The TROPOMI instrument can measure the tropospheric column density, but it cannot resolve along the lightpath or45

the vertical axis, meaning it can principally not return vertical NO2 profiles. Furthermore, the TROPOMI NO2 VCD

retrieval depends on a priori profiles. In the operational TROPOMI processor, these are taken from the TM5-MP model

(see Krol et al. (2005)), whose low horizontal resolution of 1°× 1° is known to be one of the main causes of significant

negative biases of typically −10 to −20 % (see Ialongo et al. (2020); Tack et al. (2021); Liu et al. (2021); Douros et al.

(2023)), but in some cases even up to−50% (Lange et al. (2023)). Alternative data products with higher resolved a priori50

profiles exist, but are not available globally.

– In-situ measurements often utilize the molybdenum-based chemiluminescence method, which is known for its severe

cross sensitivities to other atmospheric oxidants, causing large biases in the reported NO2 concentrations (see Dunlea

et al. (2007); Steinbacher et al. (2007); Lamsal et al. (2008); Boersma et al. (2009); Villena et al. (2012)). These biases

typically range from +20 % to +100 %, but Villena et al. (2012) even report biases of up to +300 % in extreme cases.55

As described in detail further into the manuscript, these biases can be strongly reduced down to a few percent within our

model framework.
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– MAX-DOAS measurements are quite sparsely located and cannot provide dense spatial coverage. Additionally, the

commonly used retrieval algorithms suffer from significantly reduced sensitivity at higher altitudes (> 2 km), and depend

on a priori assumptions. An intercomparison study of MAX-DOAS retrieval algorithms by Tirpitz et al. (2021) revealed60

relative retrieval uncertainties of between 3 % and 70 %, which can be expected to be the dominant part of the total

MAX-DOAS uncertainty.

Measurements are therefore often complemented by regional chemistry and transport (RCT) simulations. Examples of state-

of-the-art RCT models are WRF-Chem (Grell et al. (2005)), COSMO/MESSy (Kerkweg and Jöckel (2012)), Lotos-Euros

(Manders et al. (2017)), CAM-chem (Emmons et al. (2020)), and CHIMERE (Menut et al. (2021)). Such models can simulate65

realistic distributions of NO2 and other atmospheric trace gases with horizontal resolutions on the scale of 3 km× 3 km and

vertical resolutions of ∼ 1 m at the surface, to ∼ 1 km in the upper troposphere. High-resolution RCT simulations can be used

to estimate air pollution in the absence of in-situ measurement, and to obtain better resolved a priori profiles for the TROPOMI

retrieval. Unfortunately, the continuous deployment of RCT simulations is no easy endeavour, due to their computational

expense, dependence on input data which may not always be available in an up-to-date form at high resolution (in particular70

emission data), and the uncertainty in choice of simulation parametrizations. Another point of concern is the general accuracy

of these models: RCT simulations reported in recent literature have shown significant deviations from observational reference

data (see Visser et al. (2019); Kuik et al. (2016); Kuik et al. (2018); Poraicu et al. (2023)), e.g. an underestimation of the

summertime surface-level NO2 concentration of up to −50 %. A study by Douros et al. (2023) reveals overestimations of the

winter-time NO2 VCD by +50 %, and demonstrates that such biases even occur in ensemble models, such as the Copernicus75

Atmosphere Monitoring Service regional model (CAMS regional, consisting of 11 different RCT models with 0.1° × 0.1°

horizontal resolution). In previous work, we showed that a recalibration of the vertical mixing parametrization can mostly

resolve such biases in the WRF-Chem model in summer over Europe (see Kuhn et al. (2024)). However, the process of model

recalibration is tedious, computationally expensive, and domain-dependent. Altogether, it can be concluded that high-resolution

RCT simulations are of undisputed benefit, but their practical realization remains challenging.80

In this article we introduce "NitroNet", a new machine learning model intended to complement existing RCT models and

measurements of NO2. NitroNet is a feed-forward neural network, which was designed to predict full tropospheric NO2

profiles using TROPOMI VCDs alongside other ancillary data (meteorology, emissions, surface types, etc.) as input. Because

neural networks are universal function approximators, they are the ideal tool to capture such complex data relationships.

NitroNet is trained on numerically simulated data from the WRF-Chem model, operated on a European domain for the month85

of May 2019 as described in Kuhn et al. (2024). A data filtering scheme is used to ensure that only well-validated results from

the WRF-Chem simulation are used for training the neural network, e.g. training examples with significant disagreement to

colocated satellite observations are dismissed. Afterwards, NitroNet is used as a standalone model, without the necessity to

run the RCT simulation again. NitroNet expands on previous deep learning models trained on empirical data (see e.g. Gardner

and Dorling (1999); Kang et al. (2021); Chan et al. (2021); Ghahremanloo et al. (2021); Zhang et al. (2022); Jesemann et al.90

(2022); Cao (2023); all presented models were trained on in-situ surface observations) by inclusion of synthetic model data.

This approach provides intrinsic advantages: Firstly, NitroNet can predict full NO2 profiles, while models trained on empirical
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data can only be used for surface predictions. Secondly, the chemical mechanisms of RCT models allow for the explicit

treatment of in-situ measurement biases (typically larger than +20 %) by computation of suitable correction factors, while

empirically trained models cannot compute such correction factors and inevitably reproduce the biases inherent to the training95

data. Thirdly, synthetic datasets of NO2 profiles are typically much larger than the few empirical data, and also cover the

spatial domain continuously. This allows for the use of highly selective training data filtering, which demonstrably improves

the neural network’s performance.

The article is structured as follows: Section 2 gives an overview of the datasets used in our study. Section 3 gives a detailed

explanation of the NitroNet model. Section 4 shows an evaluation of NitroNet against satellite, in-situ, and MAX-DOAS data100

on a European domain for May 2022 (i.e. on input data, which the neural network has never seen before). This study is then

extended to different seasons and geographical domains (UK, Spain + Portugal, US west coast, India, and China). Section 5

concludes.

2 Datasets

The following datasets are used in our study:105

2.1 Vertical NO2 profiles from WRF-Chem

An RCT simulation using the WRF-Chem model (v. 4.2.2, see Grell et al. (2005)) provides the NO2 profiles on which Ni-

troNet is trained. The simulation was run for the month of May 2019 on a domain over Europe with a spatial resolution of

3 km× 3 km, 43 terrain-following pressure levels, and hourly output. A detailed description, discussion, and validation study

of this dataset was published in Kuhn et al. (2024). This study revolved around the question, how certain WRF-Chem model110

parameters can be optimized in order to improve the model’s agreement to various reference datasets. In particular, optimiza-

tion of the model’s vertical mixing parametrization was found to be crucial to improve the agreement to in situ observations

of surface NO2. Unfortunately, such optimization processes take a long time to solve if the underlying model is as compu-

tationally expensive as WRF-Chem. Additionally, wintertime RCT simulations are known to be particularly challenging (see

e.g. Douros et al. (2023)), mainly due to their tendency to overestimate the total NO2 columns severely. Therefore, full-year115

training data with a resolution and accuracy compared to our summertime data cannot be provided for now. Although NitroNet

was trained exclusively on summertime data, it can be used in other seasons as well, although with larger prediction errors (as

discussed in sect. 4.3).

The simulation setup additionally deploys the vertical emission profiles from Bieser et al. (2011). We will refer to this

dataset as "WRF-2019" from hereon. WRF-2019 contains approximately two million NO2 profiles, which are split into three120

partitions: A training set (80 %), a validation set (15 %), and a test set (5 %). The training set is used for training NitroNet

(described in sect. 3.3), the validation set for hyperparameter optimization (described in sect. 3.2 and Appendix A), and the

test set for evaluation of the neural network on previously unseen data. The partitioning is obtained by unweighted random

sampling without replacement.
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2.2 Input data for NitroNet125

NitroNet uses tropospheric NO2 vertical column densities (VCDs) from the TROPOMI satellite instrument as the main input.

Additionally, although much less influential, total O3 VCDs are used, assuming they are informative of the tropospheric O3

column, and thus of the tropospheric NOx photochemistry. The TROPOMI instrument on board of the S5P satellite observes

spectra of backscattered light from space with near global coverage, a daily overpass at around 13:30 local time, and a pixel

size of up to 3.5× 5.5 km (see Veefkind et al. (2012); van Geffen et al. (2022)). The retrieval of tropospheric NO2 VCDs is130

comprised of three steps: First, the NO2 total slant column density is obtained from the observed light spectra using differ-

ential optical absorption spectroscopy (DOAS, see Platt and Stutz (2008)). Then, the obtained total SCD is separated into a

stratospheric and a tropospheric component (SCDtrop). Finally, the tropospheric VCD is obtained by computing

VCDtrop =
SCDtrop

AMFtrop
(1)

where AMFtrop denotes the tropospheric air mass factor. Air mass factors are computed using an altitude-dependent look-up135

table together with simulated NO2 a priori profiles from the RCT model TM5-MP (see Krol et al. (2005)) with a horizontal

resolution of 1°× 1°. The process is described by van Geffen et al. (2022). Throughout our study, we only use data with a

high "quality assurance" value (fQA > 0.75), which is the general recommendation (see Eskes et al. (2019)). This also acts as

a cloud filter, as it removes observations with cloud fractions of above 50 %. Throughout the rest of the paper, "NO2 VCD"

refers to the tropospheric NO2 VCD, and "O3 VCD" refers to the total O3 VCD.140

Additionally, NitroNet uses meteorological variables from the ERA5 reanalysis (0.25°× 0.25°, see Hersbach et al. (2020))

and emission data from the EDGARv5 global emission inventory (0.1°× 0.1°, see Crippa et al. (2020)) as input data.

2.3 Validation data for NitroNet

The following three datasets are used to evaluate the NitroNet model:

1. The aforementioned tropospheric NO2 VCDs from the TROPOMI satellite instrument.145

2. In-situ surface measurements of NO2 from the European AirBase instrument network (see European Environment

Agency). This dataset is assembled from the submissions of individual countries of the European Union. The mea-

surements are available as hourly mean values and are classified into three groups: background, traffic, and industrial.

Traffic and industrial stations are typically located directly next to strong sources (e.g. near large streets or power plants),

where strong horizontal NO2 gradients occur on the scale of a few meters (see e.g. Beckwith et al. (2019)). Such gra-150

dients can neither be resolved by TROPOMI, whose observations are used as input data, nor by WRF-Chem, whose

simulation results were used for training NitroNet. Therefore, only background stations are included in our validation

study.

3. NO2 concentration profiles from MAX-DOAS instruments, operated within the "Fiducial Reference Measurements for

Ground-Based DOAS Air-Quality Observations" project in Europe (FRM4DOAS, see Fayt et al. (2021)). FRM4DOAS155
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uses the optimal-estimation based Mexican MAX-DOAS fit (MMF, see Friedrich et al. (2019)), and the Mainz Profile

Algorithm (MAPA, see Beirle et al. (2019)) for profile inversion. The resulting NO2 profiles are defined on a vertical

grid with approximately ∼ 200 m spacing, reaching to altitudes of up to 4 km. Each instrument produces approximately

five NO2 profiles per hour. All profiles flagged as "erroneous" by MAPA were discarded. Note, that although MAPA

does not support automatic cloud filtering yet, the described "error" flagging was shown to be sensitive to cloud effects,160

as well (see Beirle et al. (2019)).

3 NitroNet model description

The NitroNet model consists of an artificial neural network at its core and deploys additional non-machine learning code

for efficient data pre-processing and Monte Carlo uncertainty estimation on high performance computing (HPC) architec-

tures. NitroNet’s neural network uses the feed-forward topology and is trained with the standard backpropagation method (see165

Rumelhart et al. (1986)). It has one output neuron, which is used to predict a single NO2 concentration value per query. Full

NO2 profiles are obtained by concatenating multiple queries on a vertical grid of the user’s choice. Although WRF-2019 is

resolved on 43 vertical pressure levels, these correspond to different altitudes above ground across the spatio-temporal model

domain. Therefore, NitroNet can be trained to predict the NO2 concentration at arbitrary tropospheric altitudes. Throughout

this article, a vertical grid with 186 levels is used, resulting in vertical resolutions of ∼ 1 m near the surface, ∼ 50 m up until 4170

km altitude, and up to 400 m in the regions between 4 and 8 km altitude.

3.1 Description of the model input

The purpose of our model is to provide realistic NO2 profiles without the necessity to run computationally expensive RCT

simulations. For this reason it is imperative, that NitroNet is only trained on variables from sources accessible both at train-

ing and runtime. This may include simulation data from other operational models (e.g. the planetary boundary layer height175

(PBLH) from ERA5), but excludes many potentially informative variables exclusive to WRF-2019 (e.g. various trace gas con-

centrations). The training targets (i.e. the NO2 profiles) are exempt from this rule, because they can only be obtained from

WRF-Chem. In contrast to sect. 2.2, the descriptions given here are based on our design choices, e.g. how the used data were

selected and processed.

Table 1 gives an overview of all input variables ("features") to the neural network. For the NO2 and O3 VCDs, the most180

recent TROPOMI product version (2.04) is used. Tropospheric averaging kernels (AKs) are computed according to Eskes et al.

(2019) and defined on the vertical grid of the TM5 model. NitroNet uses the tropospheric AKs at the 9 lowest TM5 layers

(reaching up to ∼ 2300 m altitude), although in hindsight, it was discovered that the AKs contribute only very little to the

overall prediction quality, most likely due to the redundancy with other input variables (cloud data, surface albedo, sun zenith

angle, etc.). The ERA5 variables "wind speed" and "vertical velocity" are vertically resolved at 1000 hPa, 950 hPa, 900 hPa,185

850 hPa, 750 hPa, and 700 hPa. "Wind speed" refers to the absolute wind speed profile, i.e.
√
u2 + v2, where u, and v are

the northward and eastward wind speeds, respectively. "Boundary layer dissipation" is an ERA5 variable, which measures
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Figure 1. Overview of the NitroNet model. (a) and (b) depict the various input variables, which undergo feature transformation (c) before

entering NitroNet’s neural network (d). The output of the neural network is an NO2 profile on a vertical grid of the user’s choice.

the conversion of kinetic energy into heat due to small-scale eddies in the planetary boundary layer (PBL). NitroNet receives

NOx emissions from the EDGARv5 emission inventory, along with the corresponding relative contribution of four emission

bins based on the "Standard Nomenclature for Air Pollution" (SNAP, see European Environment Agency (2023)). The intent190

is to inform the neural network about the horizontal (EDGARv5) and vertical (SNAP) distribution of emissions. The SNAP

sectors used here are "1" (public power, cogeneration and district heating plants), "3" (industrial combustion), "4" (production

processes) and "surface emissions", by which we refer to e.g. road traffic or agricultural emissions. NitroNet uses a ternary

surface classification (urban, cropland, forest), which is available within the TROPOMI NO2 product. The "VCD influx"

variable represents the amount of NO2 that an observed TROPOMI pixel receives from its eight immediate neighbouring195

pixels due to advection. The corresponding wind speeds are taken from the ERA5 reanalysis.

An in-depth analysis of the "feature importance" of each input variable was conducted, see Fig. 2. The intention is to

compute the relevance of each input variable for the model’s prediction quality in a rigorous manner, here using the so-called
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Table 1. NitroNet’s input variables

Input variable name Data source Note

NO2 VCD (tropospheric) TROPOMI v. 2.04

O3 VCD (total) TROPOMI v. 2.04

tropospheric air mass factor TROPOMI

tropospheric averaging kernels TROPOMI 9 lowest TM5 layers

cloud radiance fraction TROPOMI

cloud pressure TROPOMI

aerosol absorbing index TROPOMI

surface albedo TROPOMI

surface pressure TROPOMI

sun geometry (zenith and azimuth angle) TROPOMI

satellite viewing geometry (zenith and azimuth angle) TROPOMI

planetary boundary layer height (PBLH) ERA5

planetary boundary layer dissipation ERA5

surface temperature ERA5

vertical velocity ERA5 see https://codes.ecmwf.int/grib/param-db/?id=135

wind speed ERA5 total absolute wind speed, i.e.
√
u2 + v2

NOx emissions (total) EDGARv5

NOx emissions (rel. contribution from SNAP 1) EDGARv5

NOx emissions (rel. contribution from SNAP 3) EDGARv5

NOx emissions (rel. contribution from SNAP 4) EDGARv5

NOx emissions (rel. contribution from surface sources) EDGARv5

surface classification (urban / cropland / forest) TROPOMI ternary mask

day — binary mask (0 = weekday, 1 = weekend)

VCD influx TROPOMI + ERA5

vertical grid — vertical grid, on which the resulting NO2 profiles are defined

Shapley scores (see Štrumbelj and Kononenko (2013)). As expected, the NO2 VCD is by far the most important input feature

(F = 30.9 %), followed by the emission variables (F = 8.9 %) and the PBLH (F = 6.9 %). A detailed explanation, and further200

interpretation are found in Appendix B.
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Figure 2. Feature relevance analysis of the NitroNet model. The legend in the top right indicates the data source of each input group.

3.2 Neural network design

NitroNet’s neural network design is based on an extensive hyperparameter study (see Bergstra and Bengio (2012)), in which

300 different variants of the neural network (with different number of hidden layers, neurons per layer, training algorithm, etc.)

were tested. The performance of a neural network can strongly depend on these parameters, but their ideal values cannot be205

determined on prior knowledge. The different variants were ranked based on their mean absolute percentage error (MAPE) on

the validation set of WRF-2019. The MAPE is defined as

MAPE(ypred,ytrue) =
1

n

∑N
i=1

∣∣∣∣ypredytrue
− 1

∣∣∣∣ (2)

where N is the number of instances in the validation set, ypred the neural network prediction, and ytrue the ground truth. The

best neural network with regard to this metric was chosen for NitroNet and is described in the following.210

The neural network has 8 hidden layers with 326 neurons each, corresponding to approximately 850000 trainable parameters.

It uses the Parametric Rectified Linear Unit activation function (PReLU, see He et al. (2015)), the Nesterov Adam optimizer

(NAdam, see Ruder (2016)), a learning rate of 3.4 · 10−4, a batch size of 2048, and the L1 loss function, defined as

L1(ypred,ytrue) = |ypred− ytrue| (3)

In order to reduce early stagnation of the training process as a result of too large learning rates, a simple learning rate scheduler215

was used (ReduceLROnPlateau, see Paszke et al. (2019)). The learning rate was halved whenever the training progress,

as measured by the validation loss, had stalled over several epochs (meaning full iterations over the training set). Detailed

information about the hyperparameter optimization procedure can be found in Appendix A. NitroNet further deploys feature
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transformations (e.g. the quantile transformation from the sklearn library, see Pedregosa et al. (2012)) to reduce scale differ-

ences and skewedness of the input variables. Feature transformations are known to improve the predictive capability of machine220

learning models, particularly if the features or targets have a skewed or long-tailed distribution. This is the case for some of

NitroNet’s input features (e.g. the NO2 VCD). Likewise, transformations are applied to NitroNet’s training targets (the NO2

concentrations at different altitudes), see e.g. Fig. C1. Prediction uncertainties are computed via the Monte Carlo method, for

which a comprehensive summary is found in Anderson (1976). Figure 1 shows an overview of the NitroNet model.

3.3 Training NitroNet on filtered data225

The overall performance of NitroNet can be significantly enhanced by the implementation of a training data filtering scheme.

The idea is to rank the NO2 profiles from WRF-2019 by their agreement to reference data, and only use the best few percent

for training. More specifically, we define two thresholds ∆VCD and ∆PBLH and remove all training instances where

∣∣∣∣VCDWRF−VCDTROPOMI

VCDTROPOMI

∣∣∣∣>∆VCD or
∣∣∣∣PBLHWRF−PBLHERA5

PBLHERA5

∣∣∣∣>∆PBLH (4)

230

Here, VCDWRF denotes the simulated NO2 VCD from WRF-2019, VCDTROPOMI the observed NO2 VCD from TROPOMI

(using the simulated NO2 a priori profiles), PBLHWRF the simulated PBLH from WRF-2019, and PBLHERA5 the PBLH

from ERA5. This way, profiles with poor agreement to the TROPOMI NO2 VCD (representing the total amount of NO2) or the

ERA5 PBLH (representing atmospheric mixing depth and profile shape) are identified and dismissed from training. The lower

∆VCD and ∆PBLH are chosen, the fewer instances remain in the training set. Therefore, we face a trade-off between training235

data quality and quantity, which we resolve by including ∆VCD and ∆PBLH in the hyperparameter optimization mentioned in

sect. 3.2. By this means, ideal values of ∆VCD = 0.2 and ∆PBLH = 0.1 were determined. With these thresholds, only the best

7 % of all profiles (approximately 100.000) remain for training. Figure C2 gives an overview of the spatial distribution of NO2

VCDs after filtering, and the fraction of remaining instances across the domain.

It should be mentioned, that the TROPOMI NO2 VCD and the ERA5 PBLH are quantities with significant uncertainties.240

For the retrieval of the tropospheric NO2 VCD, the tropospheric air mass factor uncertainty (typically 20 % - 50 %) is known

to dominate the overall uncertainty of the column (typically 30 % - 60 %), see e.g. Liu et al. (2021). Guo et al. (2024) report

summertime ERA5 PBLH errors of approximately 150 m over continental regions, derived from radiosonde measurements.

With an average PBLH of approx. 1500 m on the WRF-2019 domain, this amounts to a relative uncertainty of approx. 10 %.

However, caution is warranted: If the training dataset is manipulated in such a way, it may become unrepresentative of245

the "real world" (e.g. by extinction of feature modes). Evaluation on the validation set shows, that the use of filtered training

data introduces a low bias of approximately −10% to the NitroNet predictions in the lower layers of the atmosphere. This

bias can be determined immediately after training, stored in an altitude-dependent look-up table, and automatically subtracted

from NitroNet’s predictions. From a machine learning perspective, this look-up table is simply another hyperparameter, whose

optimization is justified via validation on the independent test set.250
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3.4 Treatment of out-of-distribution instances

Neural networks are known to struggle when presented with out-of-distribution (OOD) instances, i.e. input data which lies

outside the joint distribution of the training set. In the case of NitroNet (trained on one month of summertime RCT data in

Europe), OOD instances are likely to occur in previously unseen geographical regions or seasons. The impact of OOD input

variables on the neural network’s performance can be detrimental, even if the neural network’s sensitivity to the variable was255

low in the in-distribution case. In order to minimize the influence of OOD input variables, we implement a variant of the

winsorization method (see e.g. Ruppert (2014)): First, the marginal probability density distributions pxi(x) of the features xi

are estimated using kernel density estimation (KDE) on the training set. Instance entries are considered OOD, if they lay in

regions of relatively low probability density, e.g. if pxi
(x)< 0.15. In that case, they are replaced with a sample from pxi

. The

NO2 VCD and categorical input features (i.e. surface classifications) are exempt from this treatment. The described method is260

applied exclusively at prediction time. The amount of features affected depends mainly on the season and location of the input

data.

3.5 Correction of NOz biases of in-situ measurements

An important part of the validation study presented in sect. 4 will be the comparison of NitroNet predictions to in-situ mea-

surements at the surface. Over 90 % of the European in-situ measurements rely on the molybdenum-based chemiluminescence265

method, which is demonstrably cross-sensitive to other atmospheric oxidants (summarized as "NOz"), such as peroxyacetyl

nitrate (PAN), nitric acid (HNO3) and the alkyl nitrates (see Dunlea et al. (2007); Steinbacher et al. (2007); Lamsal et al.

(2008); Boersma et al. (2009); Villena et al. (2012)). Consequently, the reported NO2 values are often too large, because a

fraction of the NOz is falsely registered as NO2. Lamsal et al. (2008) give an empiric formula for the overestimation of the

NO2 concentration in the presence of NOz:270

F :=
[NO∗2]

[NO2]
= 1 +

0.95[PAN] + 0.35[HNO3] +
∑

alkyl nitrates

[NO2]
(5)

where [PAN], [HNO3], and [NO2] denote the true surface mixing ratios of PAN, HNO3, and NO2, while [NO∗2] denotes the

biased measurement result. The same formula was used in Kuhn et al. (2024), and was found to be crucial for the agreement

between simulation data and in-situ measurements. NitroNet was trained to predict F (as learned from WRF-2019) as an addi-275

tional output, so that when comparing NitroNet predictions to in-situ measurements, the measurement bias can be compensated.

Internally, this additional output is achieved by instantiating a second identical neural network, trained on the F targets from

WRF-2019 instead of the NO2 targets. Because alkyl nitrates are not included in the MOZART chemical mechanism used in

WRF-2019, we must assume
∑

alkyl nitrates = 0. According to Elshorbany et al. (2012), the contribution of the alkyl nitrates

to F can be estimated in the range of 2 % - 6 %. Based on the evaluation on the test set, NitroNet can reproduce the F -values280

from WRF-2019 with a relative precision of ±5 % and no bias.
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4 Results

4.1 Evaluation of NitroNet in May 2019

From hereon, we deal with the validation of the trained NitroNet model. The easiest way to confirm successful training of

the model is to validate it against new examples from the test set. Figure 3a shows four exemplary NO2 profiles from the285

test set and the corresponding predictions from NitroNet. Our model reproduces the shape and magnitude of the profiles well,

although there are small deviations, e.g. in profile (C) at∼ 3 km altitude. Within the boundary layer, almost no discrepancies are

observed. A noteworthy feature of the NO2 profiles is their upper-tropospheric portion starting at 8 km altitude. Here, a sudden

enhancement of the NO2 concentration is found, which could be linked e.g. to aircraft emissions, decay of NOx reservoirs,

lightning, or stratosphere-troposphere exchange. Figure 3b shows a scatter plot of all NO2 concentrations in the (filtered) test290

set against their corresponding NitroNet predictions. The linear regression reveals excellent agreement, a strong correlation

of R= 0.99, and a negligible bias of -0.4 %. The relative prediction errors are smaller at higher NO2 concentrations. This is

because the high NO2 concentrations at the surface are more strongly correlated to the NO2 VCD, which is the main model

input. Vice versa, the correlation is weaker in higher layers, where the concentration tends to be lower. Therefore, the combined

input variables are more descriptive of the lower, more polluted layers, and allow the neural network to make a more precise295

prediction. Note, that Fig. 3 shows data from the filtered test set exclusively. This choice was made for two main reasons: On

one hand, we aim to exclude supposedly erroneous NO2 profiles from WRF-Chem for the evaluation of NitroNet. These would

result in larger errors in the comparison between WRF-Chem and NitroNet, particularly because the WRF-Chem NO2 profiles

show systematic errors that NitroNet does not reproduce. This is demonstrated more explicitly further below. On the other

hand, the evaluation against filtered test data is an assessment of the neural network’s performance in isolation, i.e. it indicates300

its prediction errors on instances from the same distribution as the training set. For completeness, a version of Fig. 3 based on

un-filtered test data is shown in Fig. C3.

Next, we verify that the training on filtered data as described in sect. 3.3 does indeed have the desired effect. For this purpose,

we inter-compare observed and simulated NO2 VCDs and surface concentrations from WRF-2019, NitroNet, TROPOMI, and

AirBase. Figure 4a shows the comparison of monthly-mean NO2 VCDs from TROPOMI and the corresponding simulation305

results from WRF-2019. The simulated VCDs are computed as

VCDsim =
∑
l<ltp

cl ·∆hl (6)

where l denotes the layer index, ltp the tropopause layer index, cl the NO2 concentration in layer l, and ∆hl the vertical extent

of layer l. The NO2 a priori profiles used in the air mass factor computation of the TROPOMI VCDs were replaced with those

from WRF-Chem, following Eskes et al. (2019):310

VCDobs, corr = VCDobs ·
AMFtrop

AMF
·
∑

l<ltp
cl ·∆hl∑

l<ltp
cl ·∆hl ·Al

(7)

where VCDobs, corr denotes the VCD with exchanged a priori profile, VCDobs the original VCD, AMF the total air mass fac-

tor, AMFtrop the tropospheric air mass factor, and Al the tropospheric averaging kernel of layer l. Figure 4a reveals significant
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(b)(a)

Figure 3. Evaluation of NitroNet on the WRF-2019 test set. (a) Four exemplary NO2 profiles from the test set (triangular markers) with

corresponding NitroNet predictions (solid lines). (b) Scatter plot of all NO2 concentrations in the test set vs. their corresponding NitroNet

predictions. RMSE and intercept are expressed in units of 109 molec. cm−3.

biases in the WRF-Chem simulation of up to 1016 molec. cm−2 (e.g. in western Germany, northern Austria, and the Kalin-

ingrad Oblast). The simulated and observed NO2 VCDs agree with a mean bias of -2.9 %, a root mean squared error (RMSE)315

of 6.7 · 1014 molec. cm−2, and a correlation coefficient of R= 0.88. Here, and throughout the rest of the article, "correlation

coefficient" refers to the Pearson correlation coefficient. A more detailed discussion of the WRF-Chem simulation results can

be found in Kuhn et al. (2024).

Fig. 4b shows the same comparison, but using the NO2 profiles from NitroNet instead of WRF-Chem. Overall, much better

agreement is observed. In particular, the major overestimations observed with WRF-Chem have disappeared, while some320

weak underestimations remain. Although the absolute mean bias is slightly larger (-8.1 %), the correlation is much stronger

(R= 0.97) and the RMSE was almost halved (3.8 · 1014 molec. cm−2). In some regions of the domain (e.g. near the cities of

Frankfurt and Mannheim, Germany), these improvements are easily explained by the considerable reduction of the simulated

column. In other regions (e.g. at the border between Belgium, Netherlands, and Germany), the improvements must be partially

attributed to larger TROPOMI reference VCDs, resulting from the use of presumably more realistic a priori NO2 profiles.325

Because the NO2 VCD is the dominant input variable of NitroNet, and acts essentially as a scaling factor for the predicted

NO2 profiles, the relative prediction uncertainty is approximately equal to that of the NO2 VCD (here: 30 % - 60 %).

Figure 5 shows the comparison of monthly-mean NO2 surface concentrations from AirBase to the corresponding model

results at TROPOMI overpass time. The NOz bias correction described in sect. 3.5 was applied to the AirBase data, using

WRF-2019 and NitroNet model results for instruments using the "chemiluminescence" method with molybdenum converter.330

The "Difference" subplots of Fig. 4 and Fig. 5 show a clear correlation, e.g. in western Germany and northern Italy. Nonetheless,
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(a)

(a) WRF-Chem

(b) NitroNet

Figure 4. Comparison of monthly-mean TROPOMI NO2 VCDs against simulated NO2 VCDs from WRF-Chem (a) and NitroNet (b) (May

2019). The NO2 a priori profiles used in the air mass factor computation of the TROPOMI VCDs were replaced with those from WRF-Chem

and NitroNet, respectively. RMSE and intercept are given in units of 1014 molec. cm−2.

different spatial patterns can be identified between NitroNet and WRF-2019: In some model regions (e.g. in western Germany)

NitroNet produced smaller errors than WRF-Chem with respect to the VCDs and the surface concentrations. However, the

opposite is observed in other regions. For example, NitroNet produced smaller VCD errors, but larger surface concentration

errors in northern Italy. This demonstrates that filtering of the training data based on VCD and PBLH criteria alone may not335

always lead to better neural network predictions at the surface. Scatter plots for individual countries (Germany, Netherlands,

and Italy) with differing response to the data filtering (improvement, neutral, worsening) can be found in Fig. C4 and C5.

This finding is important for the interpretation of the presented results: WRF-Chem produces positive and negative errors in

moderate balance, while NitroNet produces similar negative, but much smaller positive errors. Subsequently, NitroNet shows

a smaller RMSE (3.2 µg m−3 vs 3.4 µg m−3), but larger absolute mean bias (-16.0 % vs. -11.7 %). In such a case, the increase340

in absolute mean bias is obviously not a suitable measure for overall model skill. The slight reduction in correlation coefficient

(R= 0.67 vs. R= 0.69) escapes this argument, but can be considered insignificant.

Figure 6 shows a histogram of the NOz biases of the in-situ measurements, computed from modelled PAN and HNO3

mixing ratios according to Lamsal et al. (2008), see sect. 3.5. The results obtained from WRF-Chem and NitroNet show values

14



(a) WRF-Chem

(b) NitroNet

Figure 5. Comparison of monthly-mean AirBase NO2 surface observations against simulated surface concentrations from WRF-Chem (a)

and NitroNet (b) at TROPOMI overpass time (May 2019). The AirBase observations were corrected for NOz biases, using WRF-Chem

model results for (a) and NitroNet predictions for (b), respectively. RMSE and intercept are given in units of µg m−3.

of up to +200 %. We show this figure with the intent of emphasizing that caution is required when using in-situ measurements345

for training and validation of RCT and machine learning models without a proper correction strategy. As mentioned before,

NitroNet is able to reproduce the NOz correction factors of WRF-Chem with a relative precision of ±5 % and no bias. Due

to the good agreement between WRF-Chem and NitroNet in this regard, the prediction of the NOz correction factors cannot

explain the low-biases observed in Fig. 5.

The results of this section demonstrate that our training method has the intended effect: Using filtered data, NitroNet produces350

NO2 profiles of overall more realistic magnitude and/or shape than WRF-Chem. Although the improvement to the simulated

surface concentrations is rather small, a much stronger improvement to the VCDs is obtained. Even better results are expected

by further filtering the training data by their agreement to the in-situ observations. However, this is impossible here, as the

surface observations are so sparse that too few data would remain for the training of the neural network.
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Figure 6. Histogram (a) and geographic distribution of the monthly-mean NOz biases from (b) WRF-Chem and (c) NitroNet corresponding

to the AirBase observations shown in Fig. 5.

4.2 Evaluation of NitroNet on unseen data (May 2022)355

We now address the validation of NitroNet on completely new input data from the month of May 2022. From hereon we

use NitroNet without comparison to RCT simulation data on a domain ranging from 42° to 56° latitude, and from -5° to 23°

longitude.

4.2.1 Validation against TROPOMI satellite data and AirBase in-situ measurements

Figure 7 shows the comparison of monthly-mean NO2 VCDs from TROPOMI against NitroNet predictions. The computations360

were conducted as explained in sect. 4.1. The NitroNet NO2 VCDs show similar magnitudes, geographical distribution, and er-

rors as in May 2019. However, the results for May 2022 show lower RMSE (2.8·1014 molec. cm−2 vs. 3.8·1014 molec. cm−2),

and increased mean bias (+6.7 % vs. -8.1 %). This apparent improvement could be purely coincidental: Figure 4b indicates

a slight underestimation of the NO2 VCDs on behalf of NitroNet. On the other hand, the NO2 VCDs in May 2019 were on

average 18 % higher than in May 2022; Subsequently, NitroNet can overestimate the true VCDs because it attempts to repro-365

duce the approximate magnitudes learned from 2019. If the two effects cancel each other out, this could reasonably explain the

smaller VCD errors observed in 2022.

Figure 7b shows the comparison of monthly-mean NO2 surface concentrations from AirBase against NitroNet predictions.

NitroNet correctly identifies surface pollution hotspots (e.g. in Paris (France), Essen (Germany), and Hamburg (Germany)), but

somewhat underestimates surface NO2 concentrations in various regions of the domain. Compared to May 2019, the results370

show a smaller mean bias (-10.5 % vs. -16.0 %), a higher correlation coefficient (R= 0.75 vs. R= 0.67), and significantly

reduced RMSE (1.7 µg m−3 vs 3.2 µg m−3). A key contribution to these differences is found in the Lombardy region of
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(a)

(a)

(c) w/o urban stations

(b) with urban stations

Figure 7. Comparison of monthly-mean TROPOMI NO2 VCDs (a) and AirBase surface observations (b) against NitroNet predictions (May

2022). Subfigure (c) is identical to (b), except that AirBase instruments of the type "urban background" were removed. RMSE and intercept

are displayed in molec. cm−2 for the VCDs, and µg m−3 for the surface concentrations.
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northern Italy. Here, significant underestimations were observed in 2019, but the corresponding data points are missing entirely

in 2022. Inspection of the AirBase metadata reveals, that in May 2019 over 92 % of the Italian measurements were flagged as

"valid", 5 % as "invalid", and 2 % as "below detection limit". In May 2022, however, only 48 % of the measurements were375

flagged as "valid", 13 % as "invalid", and 39 % as "below detection limit". Additionally, the total number of Italian instruments

was reduced from 320 in 2019 to just 69 in 2022. It remains unclear, why these measurements were removed from AirBase.

Another interesting observation is the dependence of NitroNet’s low bias on the measuring stations’ type. Here we refer to

the entire domain shown in Fig. 7. As explained in sect. 2.2, we exclusively use background stations throughout our study,

based on the argument that accurate modelling of traffic and industrial scenarios is known to require simulations of much380

higher resolution ("local scale"). So far we have assumed no errors in the classification of the AirBase instruments. However,

based on the resolutions of modern emission inventories, the variability of trace gas transport, and the scarce documentation

on classification criteria, it can be argued that the category "urban background" is a grey zone within this classification. After

all, emission inventories clearly show that urban regions are always affected by traffic emissions. Furthermore, Fig. 7 shows

significant low biases in NitroNet’s surface predictions, but no corresponding low biases in the tropospheric columns. This can385

partly be attributed to the inter-pixel variability of the TROPOMI measurements. Surface stations with a large NitroNet bias

are possibly located closer to strong traffic emissions, and thus less correlated with the NO2 VCD, which acts as the main

model input. We therefore investigated, whether the comparison of NitroNet’s results to in situ observations would improve

by removing the urban background stations, as shown in Fig. 7c. Significant improvements were revealed, manifesting in

increased slopes (from 0.84 to 1.00), lower absolute mean bias (-10.5 % to +2.2 %), and lower RMSE (1.7 µg m−3 to 1.2 µg390

m−3). These improvements can be explained either by a tendency of NitroNet to underestimate NO2 concentrations in urban

areas, or by an ambiguous categorization of the measurements. Due to the lack of information about the classification process,

we will omit the urban background stations in our evaluations from hereon.

4.2.2 Validation against FRM4DOAS MAX-DOAS measurements

We now validate the NO2 profiles from NitroNet against MAX-DOAS measurements from the FRM4DOAS dataset at six395

European locations. A temporal threshold of 60 minutes is used, meaning that each NitroNet NO2 profile is associated with the

average over all colocated MAX-DOAS profiles recorded within 60 minutes of the corresponding satellite overpass. Averaging

kernels are available from the MMF retrieval algorithm and given as an n×nmatrix A, where n denotes the number of vertical

layers in the retrieval. The i-th row of A describes the retrieval sensitivity of the concentration value of layer i to the other

n layers. An ideal retrieval would be characterized by A = 1l, where 1l denotes the unity matrix. In practice, the AK matrix400

diagonal is usually close to unity at the surface, but quickly drops below 50 % within the first 1-2 km above ground (see e.g.

Fig. C7, showing the AK matrix of the instrument in Heidelberg, Germany). The AKs are applied to the NitroNet profiles

following Rodgers (2000) by computing

csim, corr = Acsim + (1l−A)cap (8)

18



Figure 8. Comparison of FRM4DOAS NO2 concentrations against NitroNet predictions (May 2022). MAPA results are drawn in blue,

and MMF results in red. The thin scatter points represent a one-to-one comparison of NO2 concentration values (i.e. the concentrations of

individual profiles). The thick scatter points show the monthly-mean NO2 concentrations of each retrieval layer. RMSE and intercept are

displayed in molec. cm−3 and were computed based on the monthly-mean scatter points.

where csim denotes the original NitroNet profile and cap the assumed a priori profile. The AKs are applied as described when405

comparing NitroNet to MMF profiles. MAPA, on the other hand, does not supply AKs.

Figure 8 shows the results obtained with this procedure. The thin scatter points (legend handles "MAPA" and "MMF")

represent a one-to-one comparison of NO2 concentration values from NitroNet and MAPA or MMF. The thick scatter points

(legend handles "MAPA (monthly)" and "MMF (monthly)") show the monthly-mean NO2 concentrations of each retrieval

layer. The level of agreement between FRM4DOAS and NitroNet varies, depending on the instrument location. NitroNet and410
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Figure 9. Comparison of monthly-mean FRM4DOAS NO2 profiles against NitroNet profiles (May 2022). The monthly standard deviations

of the profiles are drawn as shaded regions in the background. Where available, colocated AirBase measurements of the surface NO2

concentration within a radius of 5 km were drawn at 0 m altitude.
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MAPA show significant differences in some locations, with biases ranging from −3.6 % (San Pietro Capofiume) to +99.6 %

(Heidelberg), RMSE values on the scale of 6 ·109 molec. cm−3 and correlation coefficients ranging fromR= 0.86 (San Pietro

Capofiume) to R= 0.95 (De Bilt). NitroNet and MMF show overall better agreement, with biases ranging from −34.3 %

(San Pietro Capofiume) to +8.7 % (Bremen), RMSE values on the scale of 4 · 109 molec. cm−3 and correlation coefficients

larger than 0.90. The linear regressions show significantly steeper slopes for MMF than for MAPA, but similar intercepts.415

MAPA tends to produce higher NO2 concentrations than MMF in the lowest few hundred meters above ground, but smaller

concentrations above. The NitroNet predictions are somewhere in between, manifesting in an "S"-shaped distribution of the

scatter markers (see e.g. the comparison to MMF in Heidelberg). The corresponding plots of monthly-mean NO2 profiles can

be found in Fig. 9. Additionally, colocated measurements from in situ measurements (within a radius of 5 km) were drawn

in the corresponding subplots of Fig. 9. NitroNet shows good agreement with the surface observations (except for the station420

"BETR012" in Uccle). This is made possible by NitroNet’s high vertical resolution at the surface (∼ 1 m), which is adequate

for the steep prevailing concentration gradients. This is not the case for MAPA and MMF, because the vertical sampling of

FRM4DOAS (∼ 200 m) is too coarse. Our observations in this regard align well with the findings of Bösch (2018), who

presents a a detailed comparison of MAX-DOAS measurements and colocated surface observations. The differences between

MAPA, MMF, and NitroNet can partly be linked to the models’ implementations and limitations: MMF uses a single, fixed425

NO2 a priori profile for all retrievals, which was obtained from a WRF-Chem simulation in Mexico (Friedrich et al. (2019)).

However, datasets like our own WRF-2019 show strong horizontal variability of NO2 profiles on the scale of just a few

kilometers. A single a priori profile is therefore not sufficient to fully represent the diversity of profile shapes and magnitudes.

Moreover, horizontal gradients also systematically affect the MAX-DOAS profile retrievals. Subsequently, it is not surprising

to see larger differences between MMF, MAPA and NitroNet (without AKs) in the regions of reduced sensitivity (small AKs)430

above 1 km altitude. Application of the AKs reduces the differences significantly in 3/6 locations (De Bilt, Cabauw, Bremen).

MAPA, on the other hand, makes a priori assumptions in the form of a pre-defined profile parametrization. The profiles shown in

Fig. 9 are qualitatively similar to those from MAPA’s original publication paper (Beirle et al. (2019)), with a strong exponential

shape and an optional peak in the 2nd or 3rd layer (San Pietro Capofiume and Cabauw). This could indicate the presence of

an elevated NO2 layer. NitroNet is unable to reproduce this profile type, most likely because the training dataset contains very435

few corresponding examples. As shown in Kuhn et al. (2024), the WRF-Chem model, which provides NitroNet’s training data,

also struggles to reproduce elevated layers in some locations. On the other hand, the elevated layers are not reproduced by

MMF either. In that regard, it is possible that they are falsefully produced by an incompatibility between the true NO2 profile

and MAPA’s profile parametrization (technically a form of "model misspecification error"). Overall, the differences between

MAPA and MMF demonstrate the large uncertainty from the choice of retrieval algorithm alone. Further sources of uncertainty440

(e.g. the influence of horizontal gradients), as well as the low statistical relevance of only six measurement locations must be

considered withal, and are not easily quantifiable. Within these limitations, the comparison to MAX-DOAS data shows no

glaring discrepancies, as much as it allows for no more than an approximate validation of profile shapes and magnitudes.
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4.3 Evaluation of NitroNet in other seasons and regions of the world

Lastly, we present an analysis of NitroNet’s ability to generalize to other seasons and regions of the world. The evaluations445

shown in sect. 4.2.1 were made for the same region (central Europe) and time of the year (May), on which the neural network

was trained. Hence they represent the least challenging test case. Good generalization to other domains and seasons is not

guaranteed, and associated with two challenges: Firstly, the neural network must respond reasonably to fundamentally differ-

ent input data (e.g. much lower temperatures in winter than in summer). This is controlled by the network’s regularization,

which we enforce mainly via the winsorization technique described in sect. 3.4. Secondly, the training data is expected to be450

"epistemically incomplete", meaning that it does not contain all relevant training examples for other seasons and regions. This

is a property of the training set, which we regard as a principal limitation that cannot be resolved in the scope of this article.

Nonetheless it is not implausible, that the fundamental relationships between the input and output data, as learned by NitroNet,

hold at least partly for other seasons and regions, as well.

We first investigate the regional generalization capability of the model using reference data from May 2022. Figure 10 shows455

the comparison to TROPOMI NO2 VCDs over the United Kingdom (UK, Fig. 10a) and the Mediterranean region of Portugal

and Spain (Fig. 10b). The results are overall very similar to those from the central European domain investigated previously.

However, Fig. 10b shows significant overestimations of approximately 1015 molec. cm−2 over the southern waterbodies (the

Alboran Sea and the Gulf of Cadiz). It is not generally unexpected to see such systematic errors in the predictions of a neural

network. The most likely explanation is that the training dataset does not contain enough representative examples of NO2460

profiles over water. The water regions of the training set must be assumed less representative, e.g. because they are pervaded by

unusually many shipping routes, which may lead NitroNet to overestimate NO2 over more remote water bodies. We exclude

these pixels from the statistical analysis, because they skew the results over the landmasses, over which we aim to validate

NitroNet in this article. Compared to the central European domain, the RMSE values are increased from 2.8·1014 molec. cm−2

to 3.3 ·1014 molec. cm−2 (UK) and 3.1 ·1014 molec. cm−2 (Spain and Portugal), while the correlation coefficients are reduced465

from R= 0.95 to R= 0.92 (UK) and R= 0.86 (Spain and Portugal). The mean biases are +12.3 % (UK) and +3.4 % (Spain

and Portugal), respectively. For context, an RMSE of 5.0 · 1014 molec. cm−2, a bias of +18.0 %, and a correlation coefficient

of R= 0.74 is obtained for the domain of Spain and Portugal if water pixels are included. The statistical analysis of the UK

domain, however, is practically unaffected by water pixels. Figure 11 shows the corresponding comparison to AirBase surface

observations in analogy to Fig. 7, including the omission of "urban background" stations. A version of Fig. 11 including470

urban stations is found in Fig. C6. The results are similar: On the UK domain, the RMSE is slightly increased from 1.2 µg

m−3 to 1.8 µg m−3, and the correlation coefficient is reduced significantly from R= 0.73 to R= 0.45. This is caused by

the two outliers in the south-eastern corner of the domain and amplified by the low number of total observations. On the

Mediterranean domain the number of observations is much larger, and the results are overall better, with an RMSE of 1.6 µg

m−3 and a correlation coefficient ofR= 0.71. This demonstrates, that NitroNet can generalize to new, but qualitatively similar475

domains with minor loss of prediction accuracy. NitroNet was also tested on three more "distant" domains covering the United

States (US) west coast, India, and western China (see Fig. 12). We obtain good agreement for the US west coast (RMSE =
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Figure 10. Like Fig. 7a, but for (a) the UK, and (b) the countries of Spain and Portugal. Water-pixels are drawn as gray dots in the right-side

scatter plots and excluded from the statistical analysis. RMSE and intercept are displayed in molec. cm−2.

2.7 · 1014 molec. cm−2, bias = +2.7 %, R= 0.84). The Indian domain shows stronger correlation, but lower accuracy due to

significant overestimations (RMSE = 8.0 ·1014 molec. cm−2, bias = +41.5 %, R= 0.91). The biggest deviations and weakest

correlations are observed on the Chinese domain (RMSE = 12.6 · 1014 molec. cm−2, bias = +12.5 %, R= 0.70). Here, as480

shown in Fig. 12c, NitroNet ignores entire pollution hotspot areas in the northern Shanxi and Shaanxi provinces. These regions

are known for their strong emissions from coal, steel, chemical and military industry (see e.g. Peng et al. (2023)). China’s rapid

economic development combined with fewer environmental state regulations make it plausible, that the EDGARv5 emission

data of the year 2015 might already be outdated in such locations. Besides, NitroNet may struggle with the differences in

atmospheric composition, e.g. the vastly higher aerosol pollution which prevails in China (see e.g. Meng et al. (2022)). The485

previously mentioned overestimation over waterbodies is observed in all three domains.

Finally, we investigate the seasonal performance of NitroNet. For this purpose, a whole year of data (August 2021 - July

2022) was processed on the central European domain. The NitroNet predictions were evaluated against TROPOMI and AirBase

observations, and time series of the bias, RMSE, and correlation coefficient were computed, see Fig. 13. Shown here are daily

mean values, as well as monthly mean values in analogy to the other evaluations presented up to this point. Note, that in490

23



(b)

(a)

Figure 11. Like Fig. 7c, but for (a) the UK, and (b) the countries of Spain and Portugal. RMSE and intercept are displayed in µg m−3.

this context "monthly-mean bias" refers to the bias computed on monthly means, as opposed to the monthly mean of daily

biases (which can be estimated from the daily values shown in Fig. 13). The same holds for the RMSE and the correlation

coefficient. Because averaging over multiple days reduces the noisiness of the NitroNet predictions, the monthly-mean RMSE

values are smaller, and the correlation coefficients larger, than on unaveraged data. The mean biases, however, are unaffected

by averaging. In the following, we will focus on the monthly means. NitroNet’s performance shows a clear seasonal cycle:495

The mean biases increase during wintertime and reach maximal values of -22.4 % (vs. TROPOMI, January) and -50.1 % (vs.

AirBase, December). Likewise, the RMSE increases during wintertime and reaches maximal values of 10.8·1014 molec. cm−2

(vs. TROPOMI, January) and 6.3 µg m−3 (vs. AirBase, December). The correlation coefficients are on the scale of R≈ 0.90

vs. TROPOMI and R≈ 0.70 vs. AirBase, with no conclusive annual cycle. The decrease in model performance in winter is

expected due to the reasons discussed earlier. In particular, the oxidative capacity (via the hydroxyl and peroxy radicals) is500

reduced in winter and results in increased NO2 lifetimes of more than 20 hours, as opposed to 2 - 6 hours in summer (see

e.g. Liu et al. (2016); Shah et al. (2020)). The results show that without specifically training on wintertime data, NitroNet’s

prediction for deep winter are only of limited value. Besides the obvious challenge of achieving good generalization from

summertime training data to wintertime predictions, higher uncertainties in the input satellite data should also be taken into
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account in this context (see e.g. Douros et al. (2023)). Nonetheless, compared to the typical performance of RCT simulations,505

NitroNet performs well for the majority of the analyzed time series. Compared to WRF-2019, with equivalent filter criteria,

the RMSE values of NitroNet’s NO2 VCDs and surface concentrations are lower in 9 out of 12 months. It should be noted,

that the performance of RCT simulations is expected to also drop significantly in wintertime. The scientific literature on the

topic is sparse, but a study by Douros et al. (2023) shows that CAMS (an ensemble model consisting of 11 RCT models)

produces summertime VCD biases of ∼ 15 % and wintertime VCD biases of ∼ 50 % in Europe. In light of such results,510

NitroNet’s seasonal performance on the European domain can be considered competitive to most recent RCT simulations.

Figure C8 shows examples of the comparison between NitroNet and TROPOMI for two individual days in summer and winter.

In contrast to the monthly-mean comparisons shown previously, the data contains a significant amount of gaps (e.g. due to

clouds), the correlation is reduced (R≈ 0.80), and the prediction errors are larger. This is expected, since averaging over an

entire month of data reduces the statistical noise of the model. Nonetheless, as reflected in Fig. 13, NitroNet’s daily performance515

is still competitive to that of WRF-Chem, indicating that it can reasonably be used for unaveraged predictions. A version of

Fig. 13 with urban stations included is found in Fig. C9.

Figure 14 shows a full-year evaluation of NitroNet against NO2 concentrations from FRM4DOAS in selected altitude ranges.

For this analysis, NitroNet’s average bias (left panel) and absolute error (right panel) over all previously shown FRM4DOAS

instruments were computed for a full year of data, with either MMF or MAPA used as reference. Each subplot of Fig. 14 is520

restricted to a specific altitude range (0 - 200 m, 200 - 400 m, 400 - 600 m, 600 - 1000 m, 1000 - 2000 m). In the lowest

evaluation layer, at 0 - 200 m, there is particularly good agreement between MAPA and MMF, with NitroNet biases between

−70 % and +20 % over the course of the year. Here, a similar tendency as in Fig. 13 can be observed, with low biases occurring

during winter, and high biases during summer. The summertime high biases are of similar magnitude than in the comparison

to TROPOMI VCDs and AirBase surface measurements (approximately +15 % vs. +23 %, and +10 %, respectively). Par-525

ticularly in the higher layers, the validation against MMF yields far lower mean biases, mostly in the range from −30 % to

+30 %, while the validation against MAPA result in larger biases of 100 % at 600 - 1000 m, and 200 % at 1000 - 2000 m.

This owes to the steeper vertical concentration gradients of the MAPA profiles due to their assumed profile shape, and aligns

well with the profiles shown in Fig. 9. The large relative biases of NitroNet in relation to MAPA might appear concerning at

first, and should be put into perspective based on the following considerations:530

First, it is hard to assess, which of the two retrieval algorithms yields more trustworthy results. Although conceptionally

different, MAPA and MMF both suffer from increasingly poor sensitivity at higher altitudes. This is also the case here, as

exemplified by the MMF averaging kernels shown in Fig. C7, which indicate an effective vertical sensitivity of up to 1.5 km

in Heidelberg, May 2022. In consequence, the retrieval results are considerably affected by a priori assumptions. In the case

of MMF, an a priori profile is taken from a WRF-Chem simulation over Mexico (see Friedrich et al. (2019)), which might535

be entirely unrepresentative of the central European domain investigated here. Parametrized retrievals such as MAPA do not

require a priori profiles, which is an advantage in this context. Nonetheless, MAPA still depends on other a priori assumptions,

e.g. in the form of the assumed profile shape by the choice of parametrization. In particular, the exponential tail of the MAPA

profiles towards higher altitudes, which is the dominant characteristic here, is prescribed.
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(a)
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(c)

Figure 12. Like Fig. 10, extended to (a) the US west coast, (b) India, and (c) western China. The uncoloured scatter markers in panel (a)

symbolize the entries over water, which were dismissed from the statistical analysis.
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(a) NitroNet vs. TROPOMI
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(b) NitroNet vs. AirBase
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Figure 13. Seasonal evaluation of NitroNet on the central European domain against (a) NO2 VCDs from TROPOMI and (b) surface

observations from AirBase. The gray dotted line "WRF-2019 (May)" shows the value of the statistical diagnostics (mean bias, RMSE, and

correlation coefficient) obtained from WRF-2019 for comparison.
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(a)  0 - 200 m

(b)  200 - 400 m

(c)  400 - 600 m

(d)  600 - 1000 m

(e)  1000 - 2000 m

2021 2022 2021 2022

Figure 14. Seasonal evaluation of NitroNet against NO2 concentrations from the FRM4DOAS dataset. Shown here are NitroNet’s monthly-

mean biases and absolute errors averaged over all available MAX-DOAS instruments in selected altitude ranges (a) 0 - 200 m, (b) 200 - 400

m, (c) 400 - 600 m, (d) 600 - 1000 m, (e) 1000 - 2000 m.
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Second, computing the relative biases of NitroNet involves division of the absolute errors by the NO2 concentrations of540

MMF, and MAPA, respectively. In the case of MAPA, these can be considerably small (e.g.∼ 0.1 ·1010 molec. cm−3 for 1000

- 2000 m, see Fig. 9 for reference), for the reasons discussed above. Thereby, even moderate absolute errors (see right-side

panel of Fig. 14) can result in large relative biases. Thus, the assessment of model performance by means of the prediction

biases is informative in the lowest 3 evaluation layers (up to 600 m), but not beyond.

Another important finding of Fig. 14 is that the seasonal trends observed in Fig. 13 are represented in the lowest layer (0 -545

200 m), but not the higher ones. This indicates, that the seasonal biases of NitroNet (and the underlying WRF-Chem training

data) might be rooted in the lower regions of the troposphere.

5 Conclusions, discussion, and outlook

In this article we have introduced NitroNet, a new deep-learning NO2 profile retrieval prototype for the TROPOMI satellite

instrument. NitroNet is trained on one month of RCT simulation data from the WRF-Chem model in central Europe, May 2019.550

The use of synthetic data allows to overcome several obstacles associated with the empirical datasets used in other studies. The

main benefits of our approach can be summarized as follows:

1. Because measurements of NO2 profiles are still sparse, empirical training data are effectively restricted to surface in-situ

observations. A synthetic training dataset allows the neural network to learn the prediction of full NO2 profiles instead.

These training profiles also cover the spatial domain continuously, and might cover scenarios which escape the in-situ555

observations altogether due to the strategic placement of the instruments.

2. The NO2 in-situ measurements used in empirical training sets contain a hidden NOz bias of typically > 20 % due to

cross sensitivities to atmospheric oxidants. Without access to model data, this bias cannot be corrected, and is silently

reproduced by other neural networks.

3. The abundance of training data from the RCT simulation allows for generous dismissal of untrustworthy training exam-560

ples without running into data shortage. We can therefore train the neural network on filtered data, which was purged

from erroneous example profiles. The neural network can then exceed the prediction quality of the original RCT simu-

lation.

The latter concept of "learning from the good examples, but dismissing the errors" of a data generating model was explored

in other publications (e.g. Sayeed et al. (2023); Li et al. (2023)), although in a somewhat different context. These publications565

describe the development of synergistic neural network + RCT combination models, while NitroNet is designed for standalone

use as a surrogate model for the computationally expensive and slow RCT simulations. To put this into perspective: Using 800

CPUs, it took ∼ 5 days to produce one month of WRF-Chem simulation data, while NitroNet can process the same amount of

data in just ∼ 20 minutes using 31 GPUs, with obvious operational advantages. Nevertheless, this functionality is limited to

the prediction of NO2 profiles, and NitroNet cannot be considered a full replacement for RCT simulations, which can predict570

the concentrations of many other trace gases and aerosols, as well as meteorological variables.
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Our main results were reported in sect. 4.2 in the form of an extensive evaluation of the NitroNet model. Three observational

datasets (NO2 VCDs from TROPOMI, background in-situ observations from AirBase, NO2 profiles from FRM4DOAS) were

used as monthly-mean reference data. First, an inter-comparison between NitroNet, WRF-Chem, TROPOMI and AirBase was

performed for May 2019. Hereby, the benefits of training the neural network on filtered data were demonstrated. NitroNet575

showed far better agreement to TROPOMI NO2 VCDs than did WRF-Chem, while the comparison to AirBase surface obser-

vations returned similar results for both models. The NOz cross sensitivities of the in-situ measurements were estimated based

on modelled PAN and HNO3 mixing ratios, resulting in significant bias correction factors of up to +200 %.

Next, NitroNet was evaluated on previously unseen data of May 2022. The comparison to TROPOMI NO2 VCDs showed

a strong correlation of R= 0.95, a bias of +6.7 % and an RMSE of 2.8 · 1014 molec. cm−2. The comparison to FRM4DOAS580

NO2 profiles showed good agreement when using the MMF retrieval algorithm (RMSE ≈ 4 · 109 molec. cm−3), and slightly

worse results when using the MAPA retrieval (RMSE≈ 6 ·109 molec. cm−3). The comparison to AirBase surface observations

resulted in a correlation of R= 0.75, a bias of−10.5 % and an RMSE of 1.7 µg m−3. By omitting the instruments categorized

as "urban background", the bias and RMSE were reduced to +2.2 %, and 1.2 µg m−3.

Lastly, the model evaluation was extended to different seasons (central European domain, August 2021 - July 2022) and585

regions of the earth (May 2022, UK, Spain and Portugal, US west coast, India, and China). Over the UK, Spain and Portugal,

and the US west coast, NitroNet performed similarly well as in the original central European training domain. Over India and

China, larger deviations and weaker correlations were found. The strongest differences occurred in the heavily industrialized

regions of northern China, where the emission data used as model input might have been outdated. In all domains (except

for the UK), NitroNet consistently overestimated the NO2 load over waterbodies by approximately 1015 molec. cm−2. The590

seasonal analysis revealed stable model performance in spring, summer, and early fall (March - September), but significant low

biases of up to -50 % in surface concentrations during late fall and winter (October - February). Part of these underestimations

may be attributed to the higher uncertainties of the main model input, the NO2 VCD, during wintertime.

In closing this article, we give an outlook on future improvements and use cases of NitroNet. We will attempt to produce

a full year of synthetic training data, possibly in more diverse geographical regions. This will result in more consistent model595

accuracy across different seasons and regions of the world. In particular, it might also help to resolve the prediction errors over

water, which could be useful in addressing some of the outstanding research questions related to NO2 over the oceans (e.g. the

contribution of ship emissions and lightning to the lower / upper troposphere). Similarly, NitroNet could benefit from training

data of higher horizontal resolution, which might improve its ability to reproduce more complex NO2 profile shapes, e.g. with

elevated layers. Until then, NitroNet should be considered a prototype. Furthermore, the inclusion of more data from new600

instruments will strongly influence the training and validation of future model versions. Here the most promising outlook is

the advent of geostationary satellites, such as GEMS (see Kim et al. (2020)), TEMPO (see Naeger et al. (2021)), and Sentinel-

4 (see Stark et al. (2013)). These will provide hourly resolved NO2 columns, allowing for the implementation of diurnal

cycles into our model. The use of more intricate MAX-DOAS retrieval algorithms could allow for better sensitivity to higher

layers of the troposphere (see e.g. Schofield et al. (2004), who achieve sensitivity to the stratosphere and upper troposphere605

with a zenith-sky viewing geometry). NO2 profile observations from cloud-slicing (see e.g. Marais et al. (2021)) or aircraft
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measurements (see e.g. Riess et al. (2023); Brenninkmeijer et al. (2007)) may be used for further validation of NitroNet at

various altitudes. The ongoing efforts in harmonizing observational datasets (see e.g. the GHOST dataset, see Bowdalo et al.

(2024)) will allow for easier model validation at the surface in all regions of the Earth. In particular, they might open up

new possibilities to include the valuable information from surface in situ measurements into NitroNet. Previous studies have610

reported on neural networks trained directly on in situ observations (see e.g. Gardner and Dorling (1999); Kang et al. (2021);

Chan et al. (2021); Ghahremanloo et al. (2021); Zhang et al. (2022); Jesemann et al. (2022); Cao (2023)). NitroNet aims to

overcome the aforementioned disadvantages associated with empirical training targets by using synthetic training data instead.

Nonetheless, information from in situ measurements could be included implicitly by using it as an additional criterion in

the data filtering procedure. This results in significantly smaller training sets, because the European in situ observations are615

sparse compared to the satellite measurements. Such limitations could be overcome by extension of the regional model’s spatio-

temporal domain, or neural network training methods specifically designed for sparse training data (e.g. by data augmentation).

Lastly, more complex neural network designs, such as the invertible neural networks (INNs, see Ardizzone et al. (2018)), or

physically informed neural networks (PINNs, see Raissi et al. (2019)), may be implemented once the remaining parts of the

project are deemed mature enough. This is motivated by the recent advancements in machine learning based weather forecasting620

(e.g. the Aurora model, based on vision transformers and encoder-decoder mechanisms, see Bodnar et al. (2024)). The NitroNet

model can be used for scientific research, such as:

1. A revision of existing studies on near-surface air pollution and the associated effect on human health, with explicit

treatment of the NOz biases of in-situ measurements.

2. Reprocessing of the TROPOMI NO2 columns by replacing the poorly resolved NO2 a priori profiles from the TM5625

model (horizontal resolution: 1°× 1°) with the much better resolved NO2 profiles from NitroNet (horizontal resolution:

3.5 km× 5.5 km).

3. Possibly the prediction of other trace gas profiles, such as SO2 or HCHO.

Altogether, the combined efforts of machine learning, RCT modelling, and instrumental development hold promising potential

for the near future.630

Data availability. All data is available from the authors upon reasonable request.

Video supplement.
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Table A1. Overview of NitroNet’s hyperparameters

Hyperparameter name Sampling range Optimal value

Hidden layers 3 - 10 8

Neurons per layer 200 - 400 326

Activation function ReLU, PReLU, CELU, GELU, SELU PReLU

Loss function MSE, L1, smooth L1
(1), RMSLE L1

Batch size 27 - 212 211

Optimizer NAdam, AdamW(2) NAdam

Learning rate 5 · 10−5 - 10−3 3.4 · 10−4

Batch normalization True, False False

Dropout probability(3) 0 - 0.15 0

∆VCD
(4) 0 - 0.7 0.2

∆PBLH
(4) 0 - 0.7 0.1

For a combined reference of these terms, see Schmidhuber (2015) and Paszke et al. (2019).
(1) see the PyTorch documentation: https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html
(2) see the PyTorch documentation: https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
(3) Original range was 0 - 0.5, but training diverged for runs with dropout probability > 0.15.
(4) see sect. 3.3

Appendix A: Hyperparameter study

The hyperparameter study for NitroNet is based on 300 different model versions. The model configurations were sampled

randomly ("random search", see Bergstra and Bengio (2012)). An overview of the hyperparameters and their respective sam-895

pling range can be found in table A1. Stochastic Gradient Descent (SGD) was not used, because all training runs using SGD

diverged. The Adam optimizer was found to be out-classed by NAdam and AdamW early-on and subsequently omitted from

the study. Figure A1 shows the results of the hyperparameter study in a parallel coordinate view. The validation MAPE, which

is used as a performance metric to compare the model configurations, ranges from ∼ 10 % - 30 %. This demonstrates, that a

hyperparameter search can potentially improve the neural network’s performance by up to a factor of 3, making it an essential900

step in the development of NitroNet.

Appendix B: Feature relevance analysis

In order to gain more insight into how the neural network of NitroNet operates, a feature relevance analysis was conducted.

The goal is to quantify, how strongly each input variable contributes to the overall model performance. The standard method

is to compute the Shapley scores of the input variables (see Shapley (1951)). The Shapley score of the i-th input variable xi is905
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Figure A1. Results of the hyperparameter study in a parallel coordinate view. Each hyperparameter is represented by one vertical axis

("hidden layers", "neurons per layer", ...). Each variant of the neural network is represented by a contiguous line, intersecting the vertical

axes at the network’s hyperparameter values. The last vertical axis shows the MAPE achieved on the validation set, which acts as the metric

for the selection of the best neural network configuration (lower = better). The optimal configuration is drawn as a thick red line.
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defined as

Ri =
∑

S⊆P\{xi}

|S|! (|P | − |S| − 1)!

|P |!
(f (S ∪{xi},ytrue,ypred)− f (S,ytrue,ypred)) (B1)

where P denotes the set of all input variable variables, and | · | the set cardinality. f(I,ytrue,ypred) is a function of choice,

which acts as a measure for model performance by comparison of the ground truth ytrue vs. the model’s predictions ypred,

using either all input variables (i.e. I = S ∪{xi}) versus omitting variable xi (i.e. I = S). Omission of an input variable xi910

is simulated by replacing its values with with random samples from the validation set (approximating a sample drawn from

the prior probability distribution of xi.). The "feature relevance" Fi is obtained by normalization of the Shapley scores, i.e.

Fi =Ri/
∑

iRi. The following further premises were made:

1. We define

f =
RMSE(I,ytrue,ypred)−RMSE(S = ∅,ytrue,ypred)

RMSE(S = P,ytrue,ypred)−RMSE(S = ∅,ytrue,ypred)
(B2)915

i.e. we we use a scaled RMSE to measure model performance. The "uninformed" case (omitting all input variables,

I = ∅) equates to a model performance of f = 0, and the "fully informed" case (omitting none of the input variables,

I = P ) equates to a model performance of f = 1. Subsequently, all Shapley scores lay in the interval [0, 1].

2. Because the sum in eq. (B1) iterates over a power set of large cardinality, not all summands can be evaluated. Instead,

Ri is approximated by computing random summands of eq. (B1) until the overall distribution of the feature relevances920

has converged.

3. Certain input variables are grouped together (e.g. the group "wind" contains all wind speed variables and does not

discriminate between u and v direction).

The feature relevance can also be computed separately for each vertical layer. The resulting feature relevance profiles are

shown in Fig. B1. We draw the following conclusions:925

1. The NO2 VCD is generally the most important input variable from 0 to 1500 m altitude.

2. The feature relevance of the PBLH peaks at ∼ 1800 m, which corresponds to the average PBLH value in WRF-2019.

Because the NO2 profiles show strong gradients at the top of the PBLH, this feature relevance profile shape is expected.

3. The NO2 concentrations above the PBL are known to be low and weakly correlated to satellite observations. Here, the

model performance is dominated by the input groups "surface class" and "tropospheric AMF", which the neural network930

most likely uses to predict average NO2 profile estimates, based on coarse general constraints (e.g. "over water", "rural

land", "urban land").

4. At the surface, there is a trade-off between the feature relevance of emission data and the NO2 VCD. This confirms that

emission data are a valuable addition to NitroNet, as they can improve the model performance by almost 20 %.
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Figure B1. Vertically resolved feature relevance analysis of the NitroNet model.

The feature relevance of the emission data is further demonstrated in Fig. B2. Comparing Fig. B2a and B2b shows, that when no935

emission data is used, NitroNet’s prediction of the NO2 surface concentration is essentially proportional to the NO2 VCD. Once

emissions are added as input (see Fig. B2c), the distribution of predicted surface concentrations becomes significantly more

complex: High values suddenly occur despite of comparably low VCDs (e.g. in the cities of Hamburg and Berlin, Germany)

and fine-scale infrastructure, such as car highways connecting cities, becomes visible.

Appendix C: Additional figures940
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AMT paper 
6.96986 in * 9.13422 in (full size) 
8.3 cm * 5.1297 cm (single col. Fig., golden ratio)

17.5 cm * 10.8156 cm (double col. Fig., golden ratio)

(a) (c)(b)(a)

Figure B2. Demonstration of the "emissions" feature relevance. Subplot (a) shows the monthly-mean NO2 VCD from TROPOMI (May,

2019). Subplots (b) and (c) show the corresponding NO2 surface concentration from NitroNet with all emissions turned off / on, respectively.

The figure was added to the Appendix of the manuscript.


The following sentences were added to sect. 3.2:  Feature transformations are known to improve the 
predictive capability of machine learning models, particularly if the features or targets have a skewed or 
long-tailed distribution. This is the case for some of NitroNet's input features (e.g. the NO2 VCD). Likewise, 
transformations are applied to NitroNet's training targets (the NO2 concentrations at different altitudes), see 
e.g. Fig. ??.


A sample-based splitting strategy was used. This means, that the training, validation, and test data are 
obtained by drawing a corresponding number of samples from the full dataset without replacement.  
 
The following sentence was added to sect 2.1: The partitioning is obtained by unweighted random sampling 
without replacement. 

3. It is suggested that section 3.1 be merged with section 2.2 as both sections describe the model 
input.


We prefer to keep the structure of section 3.1 and section 2.2 as is, for the following reason:


Section 2 describes the properties of the datasets used in our article. These are independent of our model 
design, choices in training procedure, and methodology.


Section 3.1, on the other hand, is highly specific to our design choices. Examples are the classification of 
SNAP sectors, the choice of ERA5 model levels, the ternary surface classification, etc.


We find that this is an important difference that justifies separate sections, particularly if they follow one 
another directly. The following sentence was added to sect. 3.1:


In contrast to sect. 2, the data described here is subject to our design choices, e.g. how they are selected 
and processed. 

4. Section 3.3: It is necessary to explain more about the filtering strategy. The filtering takes the 
TROPOMI data and the ERA5 PBLH data as reference data, but their uncertainty should also be 
acknowledged here. Meanwhile, it would be beneficial to show the spatial distribution of the filtered 
training samples to check if there are still enough samples left for different grids within the study 
area. For example, the number or proportion of training samples left for a grid.


The text was changed to acknowledge the uncertainty of the reference data. The following sentences were 
added to sect. 3.3: Figure C1 gives an overview of the spatial distribution of NO2 VCDs after filtering, and 
the fraction of remaining instances across the domain. 

Figure 1. Example of the data transformations used during the training of NitroNet. Shown here: 
histograms of the training targets (NO2 concentrations) at all altitudes before (a) and after (b) application 
of a logarithmic data transformation.

(a)                 original targets (b)                 transformed targets

Figure C1. Example of the data transformations used during the training of NitroNet. Shown here: histograms of the training targets (NO2

concentrations) at all altitudes before (a) and after (b) application of a logarithmic data transformation. The transformed targets are unitless.
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AMT paper 
6.96986 in * 9.13422 in (full size) 
8.3 cm * 5.1297 cm (single col. Fig., golden ratio)

17.5 cm * 10.8156 cm (double col. Fig., golden ratio)

(a) (b)(a)

Figure C2. Overview of the TROPOMI NO2 VCDs (with re-computed air mass factors) upon application of the data filter described in sect.

3.3. (a) shows the remaining data, averaged over all orbits of May 2019. (b) shows the remaining fraction of instances in relation to the

un-filtered dataset.

AMT paper 
6.96986 in * 9.13422 in (full size) 
8.3 cm * 5.1297 cm (single col. Fig., golden ratio)

17.5 cm * 10.8156 cm (double col. Fig., golden ratio)

(b)(a)

Figure C3. Like Fig. 3, but computed on the un-filtered test set.
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Figure C4. Scatter plots of the data shown in Fig. 5 restricted to individual countries (Germany, Netherlands, and Italy).
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Figure C5. Like Fig. C4, but without urban stations.
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(b)

(a)

Figure C6. Like Fig. 11, but with urban stations included. RMSE and intercept are displayed in µg m−3.
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Figure C7. Monthly-mean averaging kernel matrix from the FRM4DOAS instrument in Heidelberg, May 2022. The rows and columns are

ordered such that index 1 represents the lowest layer of the retrieval, and index 20 the highest. Each layer has a vertical extent of 200 m.
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(a)

(a)

NitroNet(b)

(a)

(b)

Figure C8. Like Fig. 7a, but for two single summer and winter days. (a) shows data of 2022-05-05. (b) shows data of 2021-11-05.
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Figure C9. Like Fig. 13, but with urban stations included.
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