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Abstract. In geosciences, including hydrology and geomorphology, the reliance on numerical models necessitates the precise
calibration of their parameters to effectively translate information from observed to unobserved settings. Traditional calibra-
tion techniques, however, are marked by poor generalizability, demanding significant manual labor for data preparation and
the calibration process itself. Moreover, the utility of machine learning-based and data-driven approaches is curtailed by the
requirement for the numerical model to be differentiable for optimization purposes, which challenges their generalizability
across different models. Furthermore, the potential of freely available geomorphological data remains underexploited in exist-
ing methodologies. In response to these challenges, we introduce a generalizable framework for calibrating numerical models,
with a particular focus on geomorphological models, named Iterative Model Calibration (IMC). This approach efficiently
identifies the optimal set of parameters for a given numerical model through a strategy based on a Gaussian neighborhood al-
gorithm. Through experiments, we demonstrate the efficacy of IMC in calibrating the widely-used Landscape Evolution Model,
CAESAR-Lisflood (CL). The IMC process substantially improves the agreement between CL predictions and observed data

(in the context of gully catchment landscape evolution), surpassing both uncalibrated and manual approaches.

1 Introduction

Parameters of numerical (e.g. geomorphic) models play a crucial role in predicting their behavior. These models are usually
calibrated based on observations at known data points or settings. However, it is often necessary to forecast how the system
would behave at test data points or settings where direct observations are not possible.

A qualitative calibration approach involves a manual comparison of model and field data making it time-consuming and
less likely to reveal the optimal model parameter configuration. On the other hand, a quantitative calibration of a numerical
model involves assessing the model’s error using statistics and is more suitable for complicated models with many parameters.
Recently, there has been renewed interest in developing such automatic calibration routines to explore a model’s parameter
space (Becker et al., 2019; Brunetti et al., 2022; Beck et al., 2018; Tsai et al., 2021). Still, a large number of conventional

approaches suffer from limitations like calibration of selective parameters, poor generalizability, extensive manual components
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in data pre-processing and model calibration, and restrictive assumptions like differentiable and learning data-driven surrogate
numerical models.

We propose a novel calibration algorithm: Iterative Model Calibration (IMC). The IMC is a fully automated calibration
approach, which needs minimal manual interference and requires minimal data pre-processing. The method operates on a
simple but effective concept of Gaussian-guided iterative parameter search. The process calibrates a defined list of parameters
sequentially (high to low priority), with one parameter being adjusted at a time, keeping others fixed. The parameter values
are sampled from a Gaussian neighborhood surrounding the latest parameter value. The model’s output due to each predicted
parameter is then compared to the observed ground-truth data, and an error is calculated. This error serves as a fitness measure
and a minimum threshold for finalizing the value corresponding to that particular parameter.

In the following segment, we present a brief review of conventional approaches for calibrating geoscientific numerical
models, specifically concerning LEMs such as CAESAR-Lisflood (CL). Some qualitative calibration strategies concentrate
on one or a few chosen model parameters for calibration. For example, in (Ramirez et al., 2022), the focus was on the “m-
value” of CL’s hydrology model (TOPMODEL), which is responsible for controlling the change in soil moisture storage for
ungauged primary sub-catchments. They used a three-step approach: first, they ran a five-year simulation of the CL model
with a 1km spatial resolution. Second, they repeated this process for a secondary sub-catchment, using the same rainfall input
and calibrated parameters, lumped and spatially distributed. Lastly, they ran the calibrated primary sub-catchment hydrological
model, which had spatially distributed m values, for a crucial short-term (3 h) extreme weather event, obtaining a simulated
discharge from the primary sub-catchment.

In a study by Peleg et al. (2020), the hydrological TOPMODEL parameter “m” and Courant number were calibrated through
selective calibration. This was done by finding an optimal fit between simulated hydrographs of 14 days and observed hydro-
graphs. While carrying out this calibration, a number of parameters were manually set, with the help of published data from
nearby locations and domain knowledge. In another work by Wang et al. (2022), CL calibration was carried out at selected
locations by reproducing the geomorphic changes and water depth driven by an extreme rainfall event. The parameter settings
were set manually, based on domain knowledge and research data. Feeney et al. (2020) started with choosing CL parameter
values from prior published literature. They then tested various combinations of the values to satisfy the two equations utilized
in the lateral erosion algorithm in CL. Additionally, during calibration, they modified one parameter at a time while keeping the
others constant. Skinner et al. (2018) employed the Morris Method on the CL model in two diverse catchments to discern the
impact of parameters on model behavior. Though centered on sensitivity analysis, this work indirectly aids model calibration
by pinpointing key parameters for effective adjustments, thereby refining the calibration process.

The tool described in (Beck et al., 2018) serves to calibrate the Lisflood hydrological model for designated catchment areas,
deliberately omitting the upstream catchment region. It employs a genetic algorithm, LEAP, for the calibration process and is
developed using Python. Nevertheless, a considerable amount of manual preprocessing of the input files, specifically scripts, is
necessary prior to initiating calibration runs. In contrast to previous approaches, Tsai et al. (2021) proposed a data-driven differ-
entiable parameter learning (dPL) framework. This approach involves a parameter estimation module that maps raw input data

to model parameters. These parameters are then fed into a differentiable model or its surrogate, such as a neural network-based
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model. Differentiability allows for gradient calculation with respect to model variables or parameters, facilitating the discovery
of hidden relationships in high-dimensional data through variable optimization. However, many physical or numerical models
are not fully differentiable. Re-implementing a non-differentiable model into a differentiable one demands significant domain
knowledge (Shen et al., 2023). Alternatively, a differentiable model can be developed from data using neural networks as sur-
rogate models (Tang et al., 2020; McCabe et al., 2023), but this method requires extensive, often costly, field data collection
and may struggle without specific historical data. These challenges limit the applicability and generalization of differentiable
models and data-driven surrogates to complex numerical models like CL. A number of approaches leverage ML algorithms
and general optimization algorithms for calibration. Brunetti et al. (2022) introduces a hybrid strategy calibration approach for
hydrological models, combining precision ML algorithms like Marquardt-Levenberg with Comprehensive Learning Particle
Swarm Optimization (CLPSO). Central to this approach is an objective function aimed at reducing the gap between HYDRUS
model forecasts and empirical observations.

To sum up, the calibration of numerical models is hindered by reliance on extensive domain knowledge, manual tuning, and
the high cost of data collection for ML approaches restricts their effectiveness and applicability. The expertise needed for model
differentiation further limits widespread usage, underscoring the demand for adaptable and data-efficient calibration strategies
in geoscientific modeling. A large number of conventional calibration techniques are tailored for hydrological models and have
access to their wealth of data from global networks. But they fall short for geomorphological models (Abbaspour et al., 2004;
Jetten et al., 2003) due to a lack of diverse and accessible data such as DEMs and information on soil, sediment, vegetation,
and geology. This data scarcity undermines traditional calibration methods and hampers the use of newer data-driven ML in
geomorphology, which depends on large datasets for accuracy. Our calibration approach aims to leverage limited DEM data to
effectively calibrate geomorphological models, addressing a critical gap in current methodologies.

IMC algorithm introduces the following unique contributions:

1. Highly customizable approach: Due to the simplicity of the underlying process of iterative error-based search and param-
eter calibration, the algorithm is adaptable to any numerical model. Besides depending on the application, input-output

files, and loss functions may be customized and substituted with ease.

2. Capable of calibrating a large number of parameters: The IMC is highly scalable and can calibrate for any number of

numeric valued parameters of numerical models.

3. Minimal manual involvement requirement with a complete automated process: Apart from minimal data pre-processing

and parameter initialization, IMC can run without any human supervision.

4. Generalizable for any numerical model: The algorithm doesn’t have any restrictions regarding the type of numerical
model. Being gradient-free, our approach requires neither the differentiability of the numerical model nor a neural
network-based surrogate. With its generalization, it can be used as an add-on module and patched with any numeri-

cal model for calibration.
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In the following sections we elaborate the IMC algorithm for calibrating numerical models, specifically targeting geo-
morphological models. We showcase the effectiveness of IMC by applying it to the Landscape Evolution Model, CAESAR-
Lisflood, in the context of gully erosion modeling. The rest of the paper is structured as follows: Section 2 introduces the
foundational concepts of model calibration techniques and establishes a general mathematical framework for addressing the
problem. Section 3A is dedicated to a comprehensive exposition of our proposed IMC algorithm, including a detailed descrip-
tion of the algorithm itself and a discussion on each component of the IMC, referenced against the functional diagram shown
in Fig. 2. In subsection B of Section 3, we offer a concise rationale for choosing Mean Square Error (MSE) as the metric for
performance evaluation in our IMC algorithm. Section 4 outlines our case study, including the problem statement, details about
the study location, and a discussion of the calibration results, supported by various tables and figures. In Section 5, we present
a factual comparison of different calibration methods reviewed in this study against our IMC, complemented by an in-depth
experimental analysis and additional experiments. The paper concludes with Section 6, where we summarize our findings and

suggest promising directions for future enhancements to our work.

2 Preliminaries of Model Calibration

Calibration is an essential process in which the parameters of a model are adjusted to ensure that its output matches the observed
historical data. The objective is to determine a set of parameter values enabling the model to produce data similar to the studied
system (Oreskes et al., 1994; Gupta et al., 1998; Beven, 2006). Usually, a single fitness or loss value is sought to summarise the
relationship between the predicted and observed data. As shown in Fig. 1, the model’s parameters are adjusted repeatedly until
the difference between the model output and the observed data is reduced below a certain threshold. Once a predetermined
level of accuracy or error is attained, the calibration process is concluded and the model is deemed effective in simulating the
real system or scenario.

When it comes to simple models, adjusting parameters and calculating errors is usually straightforward. However, numerical
geomorphic models, e.g. Landscape Evolution Models, are more complex and have many configurable parameters. These
model parameters can often have inter-related nonlinear effects on the model’s behavior, making it challenging to anticipate
how the model will behave with new parameter configurations (Skinner et al., 2018; Tucker and Hancock, 2010; Coulthard
et al., 2007; Braun and Willett, 2013). As a result, doing trial and error matching of a model’s parameters to specific field
conditions is often complex, intricate, and time-consuming.

Furthermore LEMs often exhibit equifinality, where diverse parameter sets yield similar outcomes, highlighting the com-
plexity of interpreting these models (Phillips, 2003). This phenomenon suggests multiple evolutionary pathways can lead to
comparable landscapes, challenging model solution uniqueness and necessitating meticulous calibration and validation efforts
(Beven and Freer, 2001). Additionally, equifinality may result in seemingly accurate landscape representations for incorrect
reasons, pointing to the oversimplification of geomorphic processes (Lane et al., 1999).

Here we introduce mathematical notation to explain the calibration mechanism in general. Let p and # denote the vectors

of constant and calibration input parameters of dimension d; andds respectively, of a certain numerical model M. Constant
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Figure 1. Overview of a typical calibration process.

input parameters stay the same over the whole calibration process, while the calibration parameters are sequentially optimized
by the IMC algorithm. Also, let S represent a collection of all input data, typically constituting DEMs, rainfall and soil data,
etc. Formally we can describe the mapping of the constant, calibration input parameters, and input data to the expected model

output as follows:

y(p,0,8) =n(p,0,S) +¢

here & represents the inherent randomness in the output of the numerical model, which is the uncertainty or variability that arises
due to certain features within the simulation process. Sources of inherent randomness include system variability, incomplete
knowledge, model imperfections, and numerical approximations. Here, the output of the numerical model is denoted by y(.),
which is a function of constant and calibration input parameters as well as input data. When calibrating a certain numerical

model (M), we assume we have certain information available to us.

1. The n observations of the real system (e.g. natural processes) response X = {1, -+, 2, }, corresponding to n initial
condition data By = {Sy,---,S,}

2. The n outputs generated by the numerical model y = {y1,- -,y } for n given input (initial condition) data and constant

and calibration parameter vectors, i.e. Bo = {(S1,p1,61), -, (Sn,Pn,0n)}

The objective of the calibration algorithm is to iterative search for the unknown true calibration parameter vector §*, which is
the 6§ that parameterizes the numerical model to best match the observation of the real system or physical process. This naive

calibration approach or direct calibration may be typically formulated as the following optimization problem:

min@e@ L({,C, y(pa 67 S))



Where the goal is to find the 6, such that it minimizes the above loss L(.). The loss is calculated considering the observed
response x and the model generated output y(p, 6, S).

3 Iterative Model Calibration (IMC)

3.1 Details of IMC algorithm

145 Fig. 2 presents a high-level overview of the interface of the IMC (proposed calibration algorithm) with the numerical model

and their connection with other components and operations.
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Figure 2. The calibration algorithm with a LEM numerical model presented here works in the following way. Firstly, the algorithm reads
information regarding parameters from a PD file and updates the parameter suggestions in the XML file. Then, the numerical model reads the
parameter values from the XML file and generates the output. The generated and target data are then compared, and the error is calculated
based on a loss function. This loss is fed back to the algorithm, which uses it to set or update its loss threshold. The algorithm uploads a new

parameter suggestion in the XML. This cycle continues until a stopping criterion is reached.

The following list briefly introduces the primary components of the setup:

1. Parameter list and prior data (PD file): contains a list of all the parameters 6, that need to be calibrated. Along with
the list, the file also contains prior best-known values of these parameters, the value’s lower-upper limits (upy,lwg) and
150 standard deviation oy values, which is used to range the Gaussian search neighborhood. For more details on the contents

and structure of this file, refer to Appendix and Table A2.

2. Calibration algorithm: is the proposed IMC algorithm that initiates by reading the calibrated parameter list, correspond-

ing prior best-known values, value limits, and constraints (from the PD file) and outputs a new parameter value. This
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parameter value is then passed on to the XML configuration file, which updates its parameter vector and forwards it to

the numerical model. The IMC later reads the error calculated from comparing the model output and observed data.

3. XML configuration file: holds the intermediate parameter values after being generated by the calibration algorithm. The
numerical model reads the updated parameter vector from this file and generates simulated results accordingly. After the
completion of the calibration process, the same file serves as the output, since the final calibrated values of the parameters

are updated to the file.

4. Numerical model (M): is the model whose parameters are being calibrated. The model loads the constant and calibrated
parameter vector sets (p, ) along with input data S(= Sgesm U s1yp) and generates output y(p, 0, S). Here sge, refers to
the initial year DEM (i.e. DEM year-0) and s;,,, represents all the other types of typical data inputs that are loaded by
the model e.g. Rainfall data and soil data.

5. Error calculation: Based on a predetermined loss function, this module compares the observed system response (x) with
the model’s output and quantifies the difference or similarity between them through a numerical value or score. We have
used Mean Squared Error (MSE) as the error-generating function which is represented as follows:

1

L(z,y(p,9,8)) = s

[231:12?2:1 (K(qv T>7P(q7 r)]z

where = K(.) and y(.) = P(.) are ground truth and model predicted 2D numeric arrays respectively of dimension

1% ].

In the below explanation and the algorithm that follows, we have relaxed the dependence of y on input data S from the
notations but it is understood that outputs are with respect to these inputs. In the IMC algorithm, each model parameter is
numerically adjusted through a search process within its latest Gaussian neighborhood. A Gaussian neighborhood refers to the
local region around a current parameter value, defined by the spread of the Gaussian distribution (typically within one standard
deviation of the mean). Initially, the mean and standard deviation are set as prior values, establishing a Gaussian distribution for
each parameter. This distribution guides the exploration of parameter space during the calibration process. For each parameter
0; € 0 where © =1,--- ,da, the algorithm conducts a series of searches to find the optimal parameter value. Specifically, it
performs J x C' rounds of searching, where J is the number of iterations for each parameter and C' is the number of rounds in
each iteration.

The optimal parameter search is represented by rounds, where a model parameter value from it’s latest Gaussian neighborhood
is selected and tested in the numerical model. Here, the parameter refers to the specific value being tested to see how well
it performs. An iteration consists of a set of such rounds (= C), representing multiple parameter searches. At the end of
each iteration, if a better numerical model parameter is found that reduces the loss (beyond a certain threshold), the mean of
it’s Gaussian distribution is updated. This update process refines the distribution, improving the chances of selecting better
numerical model parameters in future rounds. Therefore, the number of iterations represents the number of instances (for each

parameter) where the Gaussian distribution’s parameter is considered for an update.
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The calibration is sequential and while calibrating for a certain parameter say 6; all other 6\0; parameter values are kept
constant. Each j*” iteration (where j = 1,---,.J) runs multiple rounds of random search in the Gaussian neighborhood of the
last best-known parameter value. The Gaussian neighborhood is determined by the parameter’s best-known value 6¢ (known
as prior information or passed on from previous iteration) and its fixed standard deviation oy, i.e. N'(6?,0p,). A randomly
sampled data point () from this neighborhood serves as the parameter value for the current round. It is also ensured that the
sampled value  is well within the upper and lower value limits of the current parameter i.e. upy, <y < lwg,.

Each iteration also keeps track of the best parameter value 9? " across its C rounds, based on the minimum loss scored

¢ in- Besides a minimum loss threshold £ is also maintained across all iterations and parameters. After each iteration if the

L¢

¢ in < L then its corresponding best parameter 9? *“ is saved as best value of the current parameter 6; i.e. 60 < 9? *“ and the

min loss threshold is updated i.e. £ < L¢ . . The whole process is elaborated as an algorithm as follows:

min*

Algorithm 1 The complete IMC algorithm

Require: Read parameter list 6, their corresponding values (prior), s.d. (o¢) and value limits upg, lwy from file.

Ensure: Updated values for 6 based on optimization criteria.

1: for all §; € {0} do

2 for j =1to J do

3 forc=1to C do

4 Obtain 05 < ~y, where v ~ N (6%, 09,) s.t. lwg, <y < upe,
5: Calculate y(p,6) where 8 = (6\6;) U 6
6 Evaluate loss L = L(y(p,05),z:)
7 Update 05" + 65

8 Save (Lfm-mH?/‘C)

9

if L;,;,, < L then

10: Update 67 < 6°° and £ « LS,;,,
11: end if

12: end for

13:  end for

14: end for

3.2 Choosing LEM performance evaluation metric

Assessing model performance is crucial for accurately depicting geomorphic changes. Choosing the right evaluation metrics,
like the MSE of DEMs, is an efficient metric since directly measures topographic accuracy, a fundamental aspect of landscape

studies.
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LEM performance can be evaluated through various lenses, including erosion and deposition rates, sediment yield, hydro-
logical accuracy, and more. These metrics serve to assess different facets of landscape dynamics and processes simulated by
the model (Coulthard et al., 2002; Hancock and Willgoose, 2001; Tucker and Slingerland, 1997; Skinner et al., 2018; Barn-
hart et al., 2020; Skinner and Coulthard, 2023). Each metric focuses on specific attributes of landscape evolution, from the
quantification of sediment transport to the replication of hydrological responses under varying climatic conditions. Notably,
topographic accuracy emerges as a fundamental criterion, as it encapsulates the geomorphological fidelity of model simulations
in replicating real-world landscapes (Temme and Schoorl, 2009).

The rationale for employing MSE between observed and LEM-estimated DEMs as a metric lies in its direct quantification
of the discrepancy in topographical features. This approach allows for a granular assessment of model performance in simu-
lating the spatial configuration of landscapes. Given the critical role of topography in governing hydrological and geomorphic
processes, the accuracy of DEM simulations directly influences the reliability of LEM outputs in representing erosion patterns,
sediment transport, and hydrological dynamics.

Moreover, the use of MSE aligns with the principle of evaluating model efficiency through quantitative measures that provide
clear benchmarks for improvement (Nash and Sutcliffe, 1970). By quantifying errors in elevation across the landscape, MSE
offers a comprehensive overview of model performance in capturing the intricate details of terrain morphology.

Additionally, the comparison of DEMs through MSE facilitates the identification of systematic biases or inaccuracies in
model simulations, guiding further calibration and refinement of LEM parameters (Beven and Binley, 1992). This aspect is
particularly crucial in landscape evolution modeling, where the spatial distribution of elevation changes significantly influences

erosion and sedimentation processes.

4 Case Study: Calibration of LEMs for predicting Gully Evolution
4.1 Problem statement

Our primary objective is to calibrate the numerical model (here CL) using geomorphological data from two distinct years,
2019 and 2021, including DEMs, soil, and rainfall data. IMC calibration aims to enhance the model’s reliability by ensuring
its outputs closely match observed data. Achieving this alignment is essential for gaining accurate insights into landscape
evolution dynamics.

Additional objectives include comparing our calibration method with existing approaches to highlight its broader applicability
and reduced human effort. We aim to conduct experiments with varying calibration run lengths to assess their impact on
calibration quality, focusing on erosion volume and spatial accuracy. Furthermore, we seek to evaluate the efficiency of the
proposed IMC algorithm in re-estimating known parameter values from deliberate perturbations, demonstrating its accuracy

and robustness.



235

240

245

250

255

260

4.2 Study area and data

The study area is a gully catchment region situated 20 km to the east of Mount Abbot National Park (Scientific) in the Bowen
Basin region of Northern Queensland, at a location: 20°13'S,147°33'20” E, see Fig. 3. For hourly rainfall data (see Fig. 3(b))
we have used pluviometer reading from Ernest Creek Pluvio of Burdekin basin, Queensland (WMIP), between the dates 15
July 2019 — 2021. The DEMs are collected using Airborne Laser Scanning (ALS) by the Department of Agriculture Water and
the Environment, Australia under project names Bogie 2019 and Strath Bogie 2021 and hosted on an online repository (ELVIS).
The required DEMs are downloaded from the mentioned source with the following specifications: Resolution: 0.5m, Vertical
Accuracy: +0.15m @ 67% CI, Horizontal Accuracy: +0.3m @ 67% CI. For ease of computation, we have used a downsampled
version (i.e. 1m) of the original DEMs, in all our experiments.

We chose gully erosion in Australia as a case study due to its environmental significance, the availability of extensive
data, and the unique challenges posed by Australia’s climate and soil. The study aims to inform local policymakers and land
managers, fill research gaps, and develop targeted strategies for erosion mitigation. Additionally, the insights gained from this
specific context can illustrate the framework’s adaptability and transferability to other regions facing similar environmental

challenges.

4.3 Calibration experiments and results

In the following sections, we introduce the study area and present the essential parameters and settings used for running IMC in
CL parameter calibration. Additionally, we provide comparative results from the experiments, including CL with uncalibrated

parameters, CL with manually calibrated parameters, and CL with manual + IMC calibrated parameters.
4.3.1 Calibration details and experimental setup

We present Table 1, which summarizes essential information regarding the primary parameters of the CL numerical model,
including numerical values from existing literature. Additionally, the table shows the prior values used to initialize the IMC
for each parameter to be calibrated in the PD file. In the IMC’s calibration process, the loss function is very important. As
mentioned in Section 4, we consider the MSE of ground truth target data and CL predicted data in image format, for calculation
of error at each round. We explore different forms of ground truth and CL-predicted data (such as DEMs and differences of
DEMs i.e. DOD) and show how they can be purposed for specific experimentation.

Our primary experiments investigate the effectiveness of the IMC approach in calibrating the parameters of CL, with a
particular focus on accurately predicting erosion volume. This is important because erosion volume impacts landform stability,
environmental health, and cost-effectiveness, and is significant for landform design and risk assessment. We use the input and

predicted DEMs (i.e. DEMyear0, DEMyearT and DEM yearT), to generate the target and predicted difference of DEMs

10
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Figure 3. Study site information (a) Satellite image of the Bowen Basin, with the yellow box highlighting the study location. Inset shows the
location of the Bowen basin (yellow star) in Australia. (b) Magnified (zoomed-in) view of the study region (c) Hourly rainfall data between
July 2019-2021, pluviometer reading. (Source: Basemap and data provided by Esri and its Community Map contributors. Pluviometer
reading from Ernest Creek Pluvio of Burdekin basin, Queensland (WMIP), between the dates 1% July 2019 — 2021).
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Table 1. Primary CL parameters, their values from manual, literature, and their model’s sensitivity. Sensitivity scoring uses asterisks (*) to
indicate the impact of parameters on model outcomes, from very high “***” to low “*”. The table also presents the default parameter and

prior values assumed by the IMC algorithm.

Parameter Names Model Sensitivity CL Reference Tin Creek IMC algorithm | IMC priors
(Skinner et al., 2018) | Manual (Australia) Search Range (p,0)
Max erode limit (m) ok 0.01(10m) 0.001 —0.003 0.001 —0.01 0.003,0.001
In-channel lat. Erosion ok 5—50,200— 1000 | 10.0 —30.0 10.0 —30.0 20,05
Vegetation crit. Shear stress (Pa) | *** Not specified 2.0-7.0 2.0-17.0 3,1
Min Q for depth calculation (m) | *** DEM resol./ 100 0.025—0.075 0.009 —0.01 0.01,0.001
Slope failure threshold ( ° ) Hokk Not specified 40 — 50 40 — 60 50,5
Evaporation rate (m/day) ok Not specified 0.0025 —0.01 0.002 —0.01 0.005,0.001
Soil creep rate (m/yr) ok 0.0025 0.00125 —0.00375 | 0.001 —0.004 0.0025,0.001
In-out difference allowed (mg/s) ok Not specified 0.1-0.4 0.1-0.4 0.2,0.1
Slope for edge cells ok Not specified 0.0025 — 0.0075 0.002 —0.01 0.005,0.001
Manning n wE Variable 0.03 —0.04 0.005—-0.2 0.01,0.001
Grass maturity rate (yr) * fromOto 1 0.5-2.0 0.1—-2.0 0.5,0.1
m value * 0.02,0.005 - 0.005 —0.02 0.01,0.001

i.e. DOD and DOD as follows:

DODrgrget = DEMyear0 — DEMyearT
DODpyegicted = DEMyear0 — DEMyearT

In order to focus the calibration on the erosion volume we multiplied the DODs with a mask (= m(e, f)), which can be defined

as follows:
m(e, f) = 0,val(e, f) <0
=1,val(e, f) >0

where (e, f) represents a location on a DOD and val(e, f) represents the signed magnitude of that data-point. Such that the

final DODs can be written as
DODTarget = DODTarget * m(e7 f)a

DODPredicted - DODPredicted * m(ea f)

In later experiments (Section 5.3) we also investigated the accuracy of IMC-based calibration of CL’s default parameters. In
the experiments we try to estimate a single parameter at a time from a perturbed value, keeping all other parameters fixed. In

that context we have simply considered the following:

DEMrqrget = DEMyearT
DEMpredicted = DEMyearT

See the relevant section for more details on the experiments.

12
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4.3.2 Calibration results

In this section, we present and discuss the results of the calibration process. Comparative results are presented in Table 2
and Fig.4, highlighting the differences between the CL model results obtained using different variations of calibrated and
uncalibrated parameter sets. For the uncalibrated set, we consider the default CL parameters and simply adapt them to our
study area and DEM dimension. In the (manual calibration) set, we use existing literature-based knowledge of parametric
values w.r.t the study area and update the default CL parameter set. Finally, in manual + IMC set (also referred to as IMC for
brevity), we start or initialize the IMC calibration process with the (manual calibration) set data. Additionally, Table3 provides
the comprehensive results of the IMC calibration process for all CL parameters, across three separate calibration runs of the
same length (5 x 5).

In detail, Table 2 numerically shows that IMC-based calibration of CL parameters encourages the CL to predict future erosion
volume with substantial accuracy as compared to the CL’s results with uncalibrated and manually calibrated parameters. We
also show that using only basic knowledge of the value range of parameters of the study region, two temporally separated
DEMs (i.e. 2019 and 2021), and the rainfall data over this period the IMC can calibrate the CL parameters, evident by its
prediction of the target erosion volume. The target erosion volume is derived from the difference between the 2021 DEM and

the 2019 DEM.

Table 2. Comparison of Total Erosion Volume and corresponding MSE loss: Observed data vs. CL Using Uncalibrated, Manually Calibrated,
and IMC Calibrated Parameters. The results presented below are from three separate calibration runs, each with fixed-length runs (5 x 5) and
taking around 5 hrs. Due to the stochastic nature of the calibration process, the mean values are reported along with their standard deviations

(mean =+ std. dev.).

Case Erosion volume (m3) | MSE

DOD Observed 49.551 —

DOD Uncalibrated parameters 21.756 —

(CL config. adapted for Im DEM, DEM ours, rain ours)

DOD Calibrated parameters (manual) 38.819 —

DOD Calibrated parameters (manual + IMC) [Mean= std] | 50.068 +2.161 0.000333£2.1 x 10~6
DOD Calibrated parameters (manual + IMC) [Best] 51.495 0.000328

13



295

300

305

Table 3. CL parameters calibrated via IMC across three separate calibration runs of fixed length (5 X 5), denoted as “Run01, Run02, and
Run03”. An “IMC initial value” column presents the parameter initialization value for each run. The last two columns display the mean with
standard deviation, and the coefficient of variation (CV). The CV, a standardized measure of dispersion, is defined as the ratio of the standard
deviation to the mean, expressed as a percentage. It is useful for comparing the relative variability of parameters with different units or scales.
High variability is observed in parameters 1 to 4, indicated by higher CV values (see also Fig. 5). The concluding row, showcases MSE loss,

which identifies “Run03” as the optimal calibration run.

‘ Sl no. ‘ Parameter names ‘ IMC ‘ Separate IMC calibration runs ‘ Mean =+ Std. deviation ‘ Coefficient of Variation (%) ‘
initial value | Run_01 Run_02 Run_03
1 slope of edge cell (initialq) 0.005 0.00452 0.00657 0.00238 0.0045 4 0.0020 45.37
2 Max erode limit (m) 0.3 0.0087 0.005 0.00358 0.0057 4 0.0026 45.61
3 Evaporation rate (m/day) 0.005 0.004 0.005 0.00905 0.0060 + 0.00267 44.50
4 In-out difference (initscans) (m®/s) 0.2 0.2619 0.15967 0.11447 0.1787+0.0755 4224
5 In-channel lat. Erosion 20 15.554 12.893 24.1937 17.5469 % 5.9080 33.67
6 Grass maturity rate (yr) 0.5 0.3509 0.515 0.6736 0.5131+£0.1613 3143
7 m value 0.01 0.00687 0.0118 0.00862 0.0091 £ 0.0024 26.37
8 Manning n 0.01 0.0111 0.012 0.00714 0.0101 4+ 0.0025 24.55
9 Vegetation crit. Shear stress (Pa) 3 4.0934 2.765 3.6401 3.4995 £ 0.6752 19.29
10 Soil creep rate (m/yr) 0.0025 0.00343 0.0039 0.00397 0.0038 4 0.0003 8.47
11 Min Q (m) 0.01 0.00965 0.0097 0.01059 0.0099 £ 0.00052 525
12 Slope failure threshold (°) 50 41.2818 40.372 40.2236 40.6258 +0.5729 1.41
MSE loss - 0.000332 | 0.000329 | 0.000328

In Fig.4, we further elaborate on the numerical results presented in Table2 through extensive visual comparison. Here, we
compare the CL’s prediction of erosion volume using three different sets of parameters: uncalibrated, manual, and manual +
IMC. The results demonstrate that the combination of basic manual calibration with the automated IMC process significantly

enhances CL’s accuracy in predicting the target erosion volume.

5 Comparisons and Experimental analysis
5.1 Comparison with existing calibration approaches

A majority of calibration approaches surveyed so far calibrate for specific and partial parameters only, involve a consider-
able human effort towards parameter value selection/customization (Wang et al., 2022; Peleg et al., 2020; Ramirez et al.,
2022; Feeney et al., 2020), and operate for a particular type of numerical model e.g. Lisflood (Beck et al., 2018), CAESAR-
Lisflood(CL) (Wang et al., 2022; Peleg et al., 2020; Ramirez et al., 2022; Feeney et al., 2020), HYDRUS (Brunetti et al., 2022)
and Victoria(Tsai et al., 2021) numerical models.

The usability and generalizability of a certain approach directly depends on the set of input data required during parameter
calibration. The requirement of data in addition to the ones used by the target numerical model increases the complexity to
adapt the calibration for different settings and adds a heavy overhead. The following table summarizes the differences between

the existing calibration approaches for LEMs, specifically CL.
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Figure 4. Each column of the above figure-matrix compares the different results of CL, with the use of different parameter sets. The leftmost
column presents the initial DEMs (year 2019), which are used as CL’s input. Column two presents the 2021 DEM, which in row one is
the observed data from the study area and the rest are CL predicted. The third column presents the DOD of the first two DEMs, showing
only erosion volume, placed on the 2021 DEM hillshade, with near zero erosion volume shown as transparent. The final column presents a
surface plot of the same DODs highlighting erosion. Compared to all other parameters, the IMC+manual parameters (p) show the closest

resemblance of erosion volume to the Observed (d), both spatially and volumetrically. (DEM Source: (ELVIS)).
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Figure 5. Comparison of parameter variability across three calibration runs, using standardized standard deviation (SSDev). SSDeyv represents
the z-score of the standard deviation of each parameter’s repeated experiment (three individual calibration) values. This metric quantifies how
many standard deviations a parameter’s variability deviates from the mean variability of all parameters, facilitating a direct comparison of
consistency and stability among different parameters. Lower SSDev values indicate parameters with variability below the average, signifying

higher consistency, while higher SSDev values indicate greater variability relative to the repeated experiment average.

Table 4. Comparison of different calibration approaches

- Input files and preliminary assumptions Param. calibrated | Manual comp. | Target Model
(Beck et al., 2018) TS observed discharge, Static maps (DEM, land use, etc.) | All High Lisflood
TS input meteo variables over calibration period
(Wang et al., 2022) Typical CL inputs Hydrology param. Very high CL
(Peleg et al., 2020) Typical CL inputs, hydrograph Hydrology param. Very High CL
(Ramirez et al., 2022) | Typical CL inputs Hydrology param. Very High CL
(Feeney et al., 2020) Typical CL inputs Partial Very high CL
(Skinner et al., 2018) | Typical CL inputs All Low CL
(Brunetti et al., 2022) | Hydrology parameters - Low HYDRUS Simunek et al. (2016)
(Tsai et al., 2021) Typical model inputs All Low VIC model (Hamman et al., 2018)

Differentiable model or NN-based model surrogate

Ours Typical CL inputs All Very low CL (customizable)

5.2 Experimental analysis

In this section we discuss experiments with different lengths of calibration runs, which is equal to the total rounds (= rounds x
iterations) of calibration operated per parameter (see Fig. 6); refer to section: 3.1, for the explanation on the terms round and
iteration. It is important to understand that the quality of calibration of CL parameters using IMC would be reflected through
a couple of quantities. First, the proximity of the predicted and the observed DODs in terms of the total volume of erosion
(numerically). Second, both volumetric and spatial similarity of the erosion and their location of occurrence, are quantifiable
by the MSE loss.

Also, the similarity of total erosion volume of the predicted and Observed DODs/ DEMs doesn’t alone guarantee actual

similarity and they still may be far apart if their MSEs are substantially different. This phenomenon can be seen in Fig. 6b,
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Figure 6. Calibration run/ duration (a) Shows comparison of error or calibration losses for different lengths of calibration runs (= rounds x
iterations) run for 1m resolution DEM (b) Shows a side-by-side comparison of the total time taken by different calibration runs and the

erosion volume achieved (target being 49.551).

where the calibrations with lesser calibration (i.e. 2x5 and 5x2) duration though have a close enough erosion volume to the
observed but show higher MSE. This portrays that the parameter exploration has been inadequate and due to the selection of
sub-optimal parameters the end resulting erosion volume though numerically similar is spatially misplaced or distributed on

the surface.
5.3 Further experiments: evaluating IMC’s Efficiency in CL parameter re-estimation

In this experiment, we want to show how accurate and efficient IMC is at re-estimating known ( we refer as Benchmark)
parameter values for CL software after deliberately changing them. These known parameter values are the default settings
provided with the CL software distribution. We use the default CL parameters, the initial DEM ( as DFEMcqr0 ) and other
provided data and create a future ( or DEM,cq,7) DEM. Next, we use these two DEMs to re-estimate the parameters with
IMC, starting from their deliberately perturbed versions. we intend to show that IMC can accurately return to the known
parameter values.

To ensure the experiment remains both insightful and manageable, we focus on two key parameters: Maximum erode limit
and Lateral erosion rate. They are selected due to CL’s pronounced sensitivity to these, as seen in (Skinner et al., 2018) and
listed in Table 1. In this experiment, we start with producing a target DEM (i.e. DEMcq,7, Where T' = 2 years) entirely using
CL’s default parameter and dataset (provided with distribution (Coulthard et al., 2024)). Next, we individually alter each of
these two key parameters mentioned earlier, maintaining the rest at their original values. Subsequently, we employed the IMC

algorithm to accurately estimate the true values of these parameters from their altered states.

17



0.06

0.05

0.04

0.03

Max erode limit (m)

—

H B B BN
N A OO 0 O

Lateral erosion rate
=
o

o N A O

Benchmark

(@

()

0.02
0

Benchmark IMC Initial 2x5(best) 5x5(best)
= Max erode Limit (far seed)

2x5(avg) 5x5(avg)
Max erode Limit (near seed)

IMC Initial  2x5(best)  5x5(best)
® Lateral erosion rate (far seed)

2x5(avg) 5x5(avg)
Lateral erosion rate (near seed)

Figure 7. Estimating known numerical values (Benchmark) of CL parameters from their deliberately perturbed versions (a) Estimation of

Max erode limit parameter (b) Estimation of Lateral erosion rate parameter. Benchmark refers to the “known” CL parameter value and IMC

initial is the perturbed version of the same, from where the IMC starts calibrating. IMC is run at different lengths (= round X iteration)

repeatedly and the best and average (of three separate calibration runs)of estimated parameter values are presented.

Table 5. Calibration data regarding CL known parameter re-estimation experiment, detailed in Sec 5.3

Benchmark | IMC initial | IMC initial | IMC search | IMC priors
value (far seed) (near seed) | range (u,0)
Max erode limit (m) | 0.02 0.05 0.03 0.01 - 0.06 (IMC initial, 0.01)
Lateral erosion rate | 10 18 13 8-20 (IMC initial, 5)
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The parameters are estimated through individual IMC calibration runs, which are repeated three times to account for the
stochastic nature of the process. The mean value of the repeated runs is calculated and presented alongside the best value,
which is closest to the observed. Please refer to Fig. 7 for a visual representation of this data.

At the beginning of each calibration, we set the values of the “Maximum erode limit” and “Lateral erosion rate” parameters
to their respective “IMC initial” values, which are deliberately perturbed from observed values. We conducted the experiments
using “IMC initial” values selected from positions both proximal (termed “near seed”’) and distal (termed “far seed”) relative
to the observed values of each parameter. This approach was designed to affirm IMC’s effectiveness irrespective of the initial
proximity of the “IMC initial” values to their observed counterparts.

The experimental outcomes are detailed in Fig. 7, with corresponding calibration data provided in Table 5. These results
illustrate IMC’s capability to accurately re-estimate the true values of both the parameters. Specifically, for the Maximum

Erode Limit, we observe a minimum absolute error of 0.0028 (= | Benchmark — Estimated

), with the best-estimated value
being 0.0228 (2x5(best)) compared to the observed value of 0.02. In the case of the Lateral Erosion Rate, the minimum absolute
error recorded was 0.302, where the best-estimated value reached 10.302 (5x5(best)), closely aligning with the observed value
of 10.

The slight deviations in accurately estimating the observed parameter values can potentially be linked to the sensitivity of the
MSE loss function to noise, wherein minor discrepancies could be amplified into seemingly larger differences. Moreover, the
intricate nonlinear relationship between a parameter in the CL model and its resultant geomorphic output can occasionally lead
IMC into local optima traps. These challenges could be mitigated by adopting a tailored loss function specifically designed
to capture the complex geomorphological dynamics more effectively. Additionally, incorporating strategies such as stochastic
perturbation and advanced optimization techniques may facilitate overcoming the hurdles of local minima, thereby enhancing

the fidelity of parameter estimation in geomorphological simulations.

6 Conclusions

This study introduces a versatile, adaptable, and scalable calibration algorithm for numerical models, demonstrated through its
application in calibrating the Landscape Evolution Model: CAESAR-Lisflood. The outcome of this calibration is the generation
of geomorphic data for a gully catchment landscape evolution scenario, with significantly closer predictions to observed data,
compared to uncalibrated and manual approaches.

The proposed calibration technique is adaptable to various numerical models and requires minimal extra input beyond
conventional CL inputs. However, it has its limitations. Although erosion volumes are similar to target patterns in both space
and volume, discrepancies remain. Specifically, the “IMC + manual” approach tends to spread erosion volume across the study
area in small amounts, affecting calibration precision. Additionally, the calibration process is inherently stochastic, resulting
in non-unique, varying parametric vectors across calibration sessions, even under identical conditions. We used Mean Squared

Error (MSE) for its ease and ability to emphasize large errors, widely applied in areas such as computer vision. However,
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MSE’s equal treatment of all data points overlooks differences in regional importance, potentially resulting in high MSE scores
that fail to reflect true perceptual resemblance.

In future work, the development of a custom loss function tailored to intricately capture the dynamic complexities present
in geomorphic imagery is proposed. Such advancement aims to refine the measure of similarity between modeled and real
landscapes, resulting in a more accurate and precise loss function. This enhancement is anticipated to significantly improve
calibration accuracy within geomorphological modeling. It is important to highlight that our IMC framework offers flexibility
and can readily accommodate alternative evaluation metrics, should they better suit the user’s specific requirements.

However, exploring the applicability and effectiveness of the IMC approach in calibrating other physical or numerical models
beyond the CL model warrants investigation. Assessing the IMC method’s performance across diverse geomorphic environ-
ments, spanning various geographical locations and temporal scales, is crucial. Such comprehensive evaluation will illuminate
the strengths and potential limitations of the IMC approach when applied to specific geomorphic contexts or environmental
settings. Additionally, it would be intriguing to create a synthetic final landscape or DEM. Investigating how the IMC method
autonomously calibrates CL or other numerical geomorphic models to achieve this predetermined end state could offer novel

insights into the method’s predictive capabilities and its utility in forward modeling geomorphological changes.

Code and data availability. The executable code, data and other relevant files are publicly available at https://github.com/cbanerji/IMC

Appendix A
Al Parameter list preparation and value selection

In table A1, we present the exact structure of the PD file for reference. The names of all the parameters that need to be calibrated
are included in the top row. In the second row, we include the names of these parameters as represented in the CL configuration
XML file, e.g. the parameter “max erode limit” is represented using “maxerodelimit”. The next two rows present the numeric
upper and lower limits of the IMC search for a certain parameter. Finally, the last two rows present the prior (1, c) or (mean,
std) values that define the Gaussian distribution from where the IMC starts its search. The prior (mean) also called the IMC
initial values can be adjusted with the help of values published in the literature. The prior(std) value is set on intuition and may

be updated based on the search space and the scale of values, for a certain parameter.
A2 Procedure to setup the calibration
A2.1 Data preparation

The DEMs should be aligned, of the same resolution, and set all no-data values of the DEMs to “-9999”. One can use the
“setnull” tool from ArcGis-Pro for the same. We tested with DEM rasters that have been converted to Esri ASCII text files

(with .txt extension).
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Table A1. Structure and default values of the Parameter List and Prior data (PD file)

395 A2.2

Parameter name Maximum | In-channel Vegetation critical | Min Q | Slope failure | Evaporation | Soil creep | I/P O/P Slope “m” value
erode limit | lateral erosion | shear stress threshold rate rate difference | edge cells

Parameter name max- lateral- vegcritshear ming slopefailure- | evaporation | creeprate | initscans initialq mvalue

(in CL config. file) | erodelimit | erosionrate threshold

lower-limit 0.001 15 80 0.001 20 0.002 0.0015 0.3 0.001 0.0057

upper-limit 0.005 25 120 0.015 | 85 0.006 0.0035 0.7 0.1 0.02

prior(mean) 0.003 20 100 0.01 50 0.004 0.0025 0.5 0.01 0.005

prior(std.) 0.001 5 10 0.001 10 0.001 0.001 0.1 0.001 0.001

Initializing the calibration

As mentioned before the xml file serves as a read-write center for the calibration algorithm and the numerical algorithm,

respectively. So we follow the following two-step for initiating the calibration process:

— Prepare your template xml and take care of all warnings: Open a CL (orig.) exe and load the template XML file. Next,

400

405

410

browse and select each of the relevant DEM and rainfall time series data files. Finally, save the changes back to the XML

template and load the data to check for warnings.

Some parameters also need to be adjusted depending on the data/ DEM and the temporal separation between DEM year-
0 and DEM year-T. Calculate hour (hrs) and minute (mins) equivalent of the time difference between the two DEMs.
Update parameter “Save file every min.” with mins, and all other time parameters on “Files” page on CL(orig.). Next
on the “Numerical” page, update “max. run duration” with hrs + 1. For example, in case, DEM year-0 (= July, 2019)

and DEM year-T (= July, 2021), i.e. a difference of3 years, so hrs = 17544, mins = 1052640.
Resolve all the warnings and exit.

These changes can also be made directly in the template XML file through an XML editor but using the CL. GUI is more

efficient and error-free.

Use updated template xml: Now this template XML, is updated with the relevant file locations and other data, relevant

to the experiment. It should be placed in the Calibration-alg. package and calibration may be initiated from the console.
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