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Abstract. Understanding global forest carbon stocks is necessary to assess the world’s global carbon budget, with 

land cover change being estimated to contribute roughly 20% of the emissions of greenhouse gases to the atmosphere. 15 

In the last decade or so, remote sensing has contributed estimates of above ground stocks of biomass - a key part of 

forest carbon stocks - with over twenty biomass maps available at pan-tropical and global scales. To further the 

understanding of forest carbon stocks, this research seeks to synthesize the findings of disparate data sources on: (i) 

forest cover, (ii) forest cover change, (iii) above ground biomass (AGB) / above ground carbon (AGC) stocks in 

forests. Satellite-derived forest cover and AGB estimates have substantial variability. In 2020, forests were estimated 20 

to cover between 22.6 million and 49.7 million km2 of the Earth’s land surface, thus ranging from 17.1% to 37.6% of 

total land cover. Likewise, examining forest cover change from available datasets, the estimated change in global 

forest cover between 2000 and 2020 was loss of approximately 88,734 to 124,184 km2 per year, combined with 

regrowth of forest cover of approximately 58,628 to 169,912 km2 per year. Combining that forest cover data with 

remotely sensed AGB estimates, total stocks of AGB for the year 2000 were estimated to be 325 - 697 Gt, while for 25 

the year 2020, the range was 401 - 580 Gt. The equivalent quantity of CO2 (i.e., CO2e) of that stock of forest biomass 

was therefore estimated to be 560 to 1,200 Gt for the year 2000, and 692 - 999 Gt for the year 2020. Our analysis 

found that the forest cover loss in tropics was the largest, at the rate of 1.4% to 3.5% net reduction between 2000 and 

2020, whereas for the same period, the temperate and boreal zones showed substantially lower forest cover loss (-

2.5% to 0.5% and 1% to 5.3% respectively). This synthesis paper demonstrates that there is a wide range of 30 

variability in estimates related to forest cover, forest cover change, and above ground biomass stocks, which are 

the main inputs for estimating forest carbon stocks and greenhouse gas emissions from land cover change. 

I. Introduction 

What do we truly know about the state of the world’s forests and their contribution to the global balance of carbon? 

Based on inter-linked methodologies established by the Intergovernmental Panel on Climate Change (IPCC), countries 35 

utilize data on forest cover and land cover change - referred to as one of various “activity data” - along with “emission 

factors” such as biomass stocks to determine budgets of standing forest carbon, and emissions related to land use 

change (IPCC et al., 2019b). Intrinsically tied to data on forest cover, land cover change, and biomass are key questions 
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of import to the scientific community, related to the status of the world’s forests, their rates of change (e.g. from 

deforestation and degradation), and the quantities of carbon sequestered in the world’s forests. While it is possible to 40 

address such questions by essentially summing up the outputs of respective countries’ reports to the United Nations 

Framework on Climate Change (UNFCCC) and other multilateral environmental agreements, global scale datasets 

also offer complementary vantage points. 

 

For that purpose, over the past fifteen years or so, at least a dozen sources of global and near-global biomass map 45 

datasets have been developed, mainly using methods combining [wall-to-wall] remotely sensed data1 with sparser 

coverage data from field plots. While there are methods for more accurately measuring the biomass stored in forest 

plots, such methods involve destructive sampling techniques, are cost restrictive, are impractical and undesirable to 

implement at large scales, and findings are seldom widely accessible. Other non-destructive methods involve 

measuring tree diameters and heights and using allometric equations to estimate biomass stocks at the plot level, but 50 

such methods are not considered to be as accurate as destructive sampling. 

 

Part of the challenge is that there is no single authoritative source for global forest cover data, nor a single authoritative 

source for above ground biomass (AGB) data, with each new study essentially advocating for use of its version of 

AGB data. Multiple studies have provided estimates of AGB stocks or alternatively, above ground carbon (AGC) 55 

stocks, at the global or pan-tropical scale, but because their geographical frames of reference differ - including whether 

they also include estimates of non-forest (AGB) - it becomes difficult to make “apples to apples” comparisons, 

necessitating the type of analysis this study pursues. 

 

While “apples to apples” comparisons are therefore not immediately possible just using summary statistics from the 60 

various studies, spatial analysis does allow for homing in on such details, including limiting analyses to frames of 

reference including specific climate zones (e.g., boreal, temperate, or tropical), or specific ecosystems (e.g., forests). 

Forests are used as a frame of reference, specifically because it is a common denominator in the various global biomass 

map datasets, with a handful of the mapping efforts not considering non-forest biomass. Furthermore, Trumper et al. 

(2009) indicates that over 60% of the world’s carbon stocks are found within forest ecosystems, with tropical forests 65 

storing a disproportionately large percentage of global forest biomass compared to boreal and temperate forests. 

Therefore, it would be useful to understand the potential range of values associated with forest cover and AGB within 

forests, especially in tropical climes. 

 

This study’s approach differs from previous studies which have characterized forest carbon stocks based on single 70 

sources. This study thus constitutes both a synthesis of the existing datasets and applied research which digs deeper 

into those datasets to explore their implications for tropical forest carbon monitoring and management. 

 
1 Some of the remotely sensed data used (e.g. vegetation index data derived from spectral reflectance data or radar 

backscatter) are acquired wall-to-wall, while other remotely sensed data (e.g. spaceborne profiles of vegetation 

height, from ICESat, ICESat-2, or GEDI) are obtained at sparser sampling. 
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II. Methods 

This study’s principal objective was to characterize global forest carbon stocks based on an analysis of an ensemble 75 

of available AGB datasets. Sub-objectives included the characterization of the following: 

 

○ 1: forest cover 

○ 2: forest cover change 

○ 3: forest AGB / AGB stocks 80 

 

This study’s research questions were therefore framed as follows: 

 

● What are the ranges and variabilities of estimates of the area of the world’s forests? 

● What are the ranges and variabilities of estimates of AGB / carbon in the world’s tropical forests? 85 

○ How do the different sources of forest cover impact the resulting standing forest carbon stock 

estimates? 

● How do the findings of this study compare with the findings of earlier studies? 

 

 90 
 

Figure 1: Simplified relationship between the study’s input datasets and outputs 

 

It is important to note that in determining forest carbon stocks [D], one must first estimate the extent of forests [A], 

one also needs data on the stocks contained within those forests [C], and the rates of change of such forests [B] (Fig. 95 

1). It should be noted that, unlike many of the studies this paper follows, this investigation does not seek to derive new 
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data on forest cover or AGB / AGC stocks. This study merely seeks to synthesize the outcomes of a growing body of 

remote sensing research on forests and their carbon stocks. 

 

Geographical domain 100 

 

Based on the 2019 refinement to the 2006 IPCC’s Guidelines for National Greenhouse Gas Inventories, and using the 

WorldClim 2.1 database’s 1km spatial resolution precipitation and temperature datasets as the input data sources, 

global land areas were stratified into three main climatic categories: boreal, temperate, and tropical zones (Hijmans et 

al., 2005; IPCC et al., 2019b) (Fig. 2). For instance, tropical areas were identified based on having a mean annual 105 

temperature at or exceeding 20 degrees C, in line with the IPCC’s climate typology, instead of merely representing 

areas between the Tropics of Cancer and Capricorn (IPCC et al., 2019a).  Antarctica was excluded from the analysis 

given its lack of forest. 
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 110 

 

Figure 2: Global terrestrial climate zones, based on the IPCC’s classification methodology (IPCC et al., 2019a). 
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From the various global land cover datasets available, data on forest cover were extracted. It should, however, be 

noted that for some datasets, in place of a “forest cover” class, a “tree cover” class had to suffice. To consider forest 

carbon stocks in the year 2000, the following land cover datasets were also acquired, from which forest cover was 115 

extracted: 

 

● CCI-Land Cover (300 m) (Lamarche et al., 2017) 

● Global Land Cover 2000 (1 km) (Bartholomé and Belward, 2005) 

● Hansen et al. / Global Forest Watch (30 m) (Hansen et al., 2013) 120 

● MODIS MCD12Q1 [for 2001] (500 m) (Friedl et al., 2010) 

 

To consider forest carbon stocks in the year 2020, the following global land cover datasets- all pertaining to calendar 

year 2020 - were utilized: 

 125 

● CCI-Land Cover (300 m) (Lamarche et al., 2017) 

● Dynamic World (10 m) (Brown et al., 2022) 

● Esri / Impact Observatory (10 m) (Karra et al., 2021) 

● Hansen et al. / Global Forest Watch (30 m) (Hansen et al., 2013) 

● JAXA Forest / Non-Forest Cover (25 m) (Shimada et al., 2014) 130 

● MODIS MCD12Q1 (500 m) (Friedl et al., 2010) 

● World Cover (10 m) (Zanaga et al., 2021) 

 

For the most part, the 2020 land cover datasets possessed a relatively high spatial resolution, with only the CCI-Land 

Cover and MCD12Q1 products not being available at 30 m spatial resolution or finer. For biomass, for a first level of 135 

analysis, twenty-two global and pan-tropical datasets were compiled, from the sixteen sources outlined in Table 1. 

Three of the data sources listed possess biomass maps for multiple years, allowing for a selection of fifty-one datasets 

spanning the period 2000 to 2020. Twenty-nine maps from two sources (Liu et al., 2015; Xu et al., 2021) were not 

considered, to avoid skewing the statistical analysis in favor of those sources. The data were also considered in terms 

of how they might contribute to an understanding of forest AGB stocks for specific time periods (i.e., circa 2000, circa 140 

2010, and circa 2020). 

 

Spatial resolutions of the 16 datasets varied. To facilitate comparisons, the land cover datasets were resampled to the 

1km spatial resolution of the AGB datasets, and the eight AGB datasets which were not 1 km spatial resolution were 

resampled to 1 km using nearest neighbor resampling. To facilitate equal area comparisons among the datasets, all 145 

data were also reprojected to the Mollweide projection shown in Fig. 1. 

 

For the estimation of carbon stocks in the tropics, using zonal statistical analysis, weighted sums of AGB were derived 

by spatially subsetting the biomass datasets to the derived tropical forest extents. The data were therefore resampled 
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to be able to analyze them across a common frame of reference, focusing on pan-tropical zones. While the twenty-150 

two AGB datasets were utilized for the first level of analysis, these were further down-selected to nineteen AGB 

datasets to ensure that multiple maps from the same source (in this case, CCI-Biomass maps for 2017, 2018, and 2019) 

did not skew the analyses. Consequently, that translated to having 11 AGB datasets for the circa 2000 period, 6 AGB 

datasets for circa 2010, and 3 datasets for circa 2020. 

 155 

Table 1: Characteristics of the AGB datasets used.2 

 

No. Source 2

0

0

0 

2

0

0

1 

2

0

0

2 

2

0

0

3 

2

0

0

4 

2

0

0

5 

2

0

0

6 

2

0

0

7 

2

0

0

8 

2

0

0

9 

2

0

1

0 

2

0

1

1 

2

0

1

2 

2

0

1

3 

2

0

1

4 

2

0

1

5 

2

0

1

6 

2

0

1

7 

2

0

1

8 

2

0

1

9 

2

0

2

0 

2

0

2

1 

Scale Includes 

non-

forest 

AGB? 

Pixel 

size 

(km) 

1 Ruesch and Gibbs, 2008 x                      global yes 1 

2 Liu et al., 2015 * * * * * * * * * * * * *          global yes 25 

3 Xu et al., 2021 * * * * * * * * * * * * * * * * * * * *   global yes 10 

4 Baccini et al., 2021 x                      global yes 0.03 

5 Saatchi et al., 2011 x - -                    tropics yes 1 

6 Hu et al., 2016     x                  global no 1 

7 Kindermann et al., 2008      x                 global no 50 

8 Avitabile et al., 2016 - - - - - x - - - -             tropics yes 1 

9 GeoCarbon, 2016 - - - - - x - - - -             global no 1 

10 Yang et al., 2020      x                 global no 1 

11 Zhang and Liang, 2020  - - - - x - - - - -            global yes 1 

12 Baccini et al., 2012        - x              tropics yes 0.5 

13 Spawn et al., 2020           x            global yes 0.3 

14 Santoro et al., 2021           x            global yes 0.1 

15 Dubayah et al., 2023                    - x - tropics yes 1 

16 Santoro et al., 2023           *       * * * *  global yes 0.1 

 
2 For AGB data which are not available for multiple years, an x denotes the mean year the dataset is interpreted to 

represent, and - symbols indicate the input years for the product. Bold text for source studies indicates multi-year 

data, and the individual years of available data are also indicated by * symbols. 
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Characterizing forest cover and forest cover change 

 160 

The four land cover datasets for c.2000 and the seven land cover datasets for 2020 were in turn used to generate 

estimates of forest cover, with their respective classification schemes being referenced to translate from land cover 

classes to a ternary forest / non-forest / water scheme. All the land cover datasets were reclassified into forest / non-

forest data based on widely accepted methods. 

 165 

Characterizing forest AGB 

 

For characterizing forest AGB through common frames of reference from the standpoint of forest masks, for circa 

2000, combining the 11 AGB datasets with the 4 available derived forest cover masks allowed for 44 permutations of 

forest AGB. For circa 2020, combining the 3 AGB datasets with the 7 available derived forest cover masks translated 170 

to 21 permutations of forest AGB. Those data were in turn combined with the climate type masks (i.e., boreal, 

temperate, and tropical zones). This allowed for tuning into nuances in the data, especially for those datasets which 

were ostensibly pan-tropical in their geographic scope, but which often covered some part of temperate or boreal zones 

(e.g. boreal areas in Asia and in South America). Using the IPCC default carbon fraction value of 0.47, AGB could in 

turn be translated to estimates of AGC (IPCC et al., 2006). Nevertheless, because of the simplicity of that AGB to 175 

AGC conversion, from this point forward, we will be focusing principally on AGB.  
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Figure 3: Data processing workflow 180 

 

Statistical analysis 

 

In addition to extracting the various datasets outlined above, such as AGB, basic statistical analyses were performed 

on a per-pixel basis, at a 1 km spatial resolution. The approach of extracting per-pixel statistics (e.g., mean, standard 185 

deviation, range, coefficient of variation) is a novel approach compared to direct dataset-to-dataset comparisons 

employed in other studies, many of which have looked at latitudinal trends in AGB or AGC. Zonal statistical analysis 
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was also performed on the datasets to produce summary tables. This process also served as a quality check on the data, 

illustrating for instance when certain data might have been overlooked as representing AGB when in fact the data 

represented AGC. 190 

III. Results 

To estimate standing global stocks of forest biomass, we need estimates of (i) current forest area, and (ii) AGB stocks. 

These can also be reframed in terms of activity data (i.e. estimates of forest area). 

 

i. Forest Cover Estimates 195 

 

Fig. 5 illustrates the diverging estimates of global forest cover in 2020, based on seven global scale land cover datasets. 

The MODIS-based MCD12Q1 data for 2020 indicate a global forest cover of only 22.3 million km2, compared to the 

six over estimates, all of which each exceed 39 million km2, with JAXA estimating the highest forest cover of the 

datasets at 49.7 million km2. Translating those data into proportions of land covered by trees or forest, the MCD12Q1 200 

data indicate that just under a fifth of the global land surface excluding Antarctica is covered by forest, while estimates 

range from 30.4% for the CCI-LC dataset to 37.6% for the JAXA dataset. Excluding the two outliers, the loss estimates 

were closer in agreement, ranging from 39.9 to 44.5 million km2. 

https://doi.org/10.5194/egusphere-2024-1179
Preprint. Discussion started: 29 May 2024
c© Author(s) 2024. CC BY 4.0 License.



11 

 

 
Figure 4: Combination of the various 2020 forest cover maps, with 1 indicating where only one forest cover map 205 

indicates the presence of forest cover, and 7 indicating where all seven maps coincide.
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Figure 5: Global forest / tree cover estimates for c.2000 and 2020, stratified by climate zones 210 

 

When such data are stratified by climate zones, the majority of the seven datasets generally converge in indicating that 

the tropical zone possesses roughly half or more of the world’s forest cover, with estimates ranging from 47% for 

CCI-LC to 60.1% for Dynamic World. The proportion of forest in the boreal zone nearly converges for four of the 

datasets (i.e., Esri, JAXA, UMD, World Cover), which all indicate that the zone possesses roughly a fifth of the 215 

world’s forests. This contrasts the Dynamic World and MCD12Q1 datasets that indicate that the boreal zone contains 

only roughly a tenth of the world’s forest cover, and the CCI-LC dataset which had 27% of forest in the boreal zone. 

The seven datasets, however, practically converge in indicating that the temperate zone possess roughly a third of the 

world’s forests, with estimates ranging from 26% (CCI-LC) to 33.2% (MCD12Q1). The differences in what the 

various datasets thus indicate for forest cover consequently have implications for estimating global forest biomass 220 

stocks. 
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ii. Forest Cover Change 

 225 

Table 2: Global forest cover / tree cover change estimates for c.2000-2020 

 

Data source Period Climate 

zone 

Stable Deforestation Regrowth 

Area (km2) 

CCI-LC 2000-2020 boreal 10,598,948 305,582 194,235 

temperate 10,913,617 251,352 195,042 

tropical 18,625,855 698,176 423,373 

MCD12Q1 2001-2020 boreal 2,173,844 569,837 425,607 

temperate 6,678,253 521,920 699,515 

tropical 11,486,422 1,255,652 840,006 

UMD 2000-2020 boreal 7,644,754 443,399 229,979 

temperate 11,430,503 263,820 210,687 

tropical 20,209,408 922,431 182,545 

 Change / year (km2) 

CCI-LC 2000-2020 boreal - 15,279 9,712 

temperate - 12,568 9,752 

tropical - 34,909 21,169 

MCD12Q1 2001-2020 boreal - 29,991 22,400 

temperate - 27,469 36,817 

tropical - 66,087 44,211 

UMD 2000-2020 boreal - 22,170 11,499 

temperate - 13,191 10,534 

tropical - 46,122 9,127 

 

Table 2 provides summaries of forest cover change based on the three forest cover datasets for which time series are 

available (i.e., CCI-Land Cover, MCD12Q1, and UMD / Global Forest Watch). Since there is a slight mismatch in 230 

terms of the periods covered, the annual rates of change are the most useful to examine, especially in terms of forest 

cover loss (i.e., deforestation) and forest cover gain (i.e., forest regrowth). The CCI-LC product indicates that globally, 

forest cover loss was on the order of only 81,000 km2 / year, compared to the MCD12Q1’s estimates of a loss of 

124,000 km2 / year. Similarly, it was also possible to extract data on forest cover gain, whose estimates ranged from 
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~31,000 km2 / year for the CCI-LC dataset to ~103,000 km2 / year for the MCD12Q dataset. At the global scale, the 235 

data indicate slight relative declines in forest cover. The CCI-LC data indicate that forest cover only declined by 1.1% 

over 20 years, compared to a 1.7% decline over 19 years estimated from the MCD12Q1 data, and a 2.5% decline over 

20 years for the UMD data. 

 

The forest cover loss for the tropical zone ranged from ~35,000 to 66,000 km2 / year in the three data sources, 240 

compared to the boreal zone, where forest loss was estimated to be in the range of ~15,000 to 30,000 km2 / year, and 

~13,000 to 27,000 km2 / year for the temperate zone. All three datasets indicated net forest cover loss for the periods 

indicated, ranging from a net loss of ~20,000 km2 / year for the MCD12Q1 to ~50,000 km2 / year for the UMD dataset. 

Those data likewise translate to overall declines of 1.4% (CCI-LC) to 3.5% (UMD) for the tropics. For the temperate 

zone, the data ranged from an estimate of a net gain of 2.5% forest cover based on the MCD12Q1 data to net losses 245 

of 0.5% forest cover for the CCI-LC ad UMD datasets. For the boreal zone, estimates of net loss ranged from 1% 

(CCI-LC) to 5.3% (MCD12Q1). Combined with AGB data, the forest cover change data in turn became inputs for 

estimating CO2 emissions from forest cover loss. 

 

iii. AGB Stocks in Forests 250 

 

Globally, the distribution of forest AGB by latitude is displayed in Fig. 6, utilizing a forest mask generated from the 

individual datasets displayed in Fig. 4. An interactive version of the Fig. 6 is available online 

(https://servirbz.users.earthengine.app/view/scap-agb-lat-01). The mean of all the datasets is also displayed as a thick 

black line. 255 
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 260 
 

Figure 6: Latitudinal averages of forest AGB (based on Santoro et al., 2023). 
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 265 

Figure 7: Global forest AGB stocks for c. 2000 (A), and c. 2020 (B), and tropical forest AGB stocks for 2020 (C). 

GEDI data were not included in B as its geographic coverage is mainly tropical. 
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While there is variance among the datasets and consequently variance from the mean across latitudes, in general, north 

of -20 degrees latitude, there is a fair amount of convergence, although a few datasets (e.g., Hu et al., 2016; Yang et 270 

al., 2020; Zhang and Liang, 2020) display higher values overall than the other datasets. The Ruesch and Gibbs (2008) 

data - based on nationally reported data from the IPCC’s Emission Factor Database - and the spaceborne LiDAR-

derived GEDI L4B data generally had lower forest AGB averages. For instance, near the equator, the GEDI L4B data 

had the lowest forest AGB estimates, while the Ruesch and Gibbs (2008) data had the overall lowest forest AGB 

estimates at higher latitudes. As is to be expected, the highest overall forest AGB estimates can be seen near the 275 

equator. While the mean forest AGB is lower south of the equator, a number of datasets, notably Hu et al. (2016), 

Zhang and Liang (2020), Yang et al. (2020)and also the CCI-Biomass v.4 (Santoro et al., 2023) data, had high forest 

AGB estimates between approximately -27 and -47 degrees latitude. 

 

With four global land cover datasets from which forest cover could be extracted for 2000, and eleven pan-tropical and 280 

global AGB datasets for that period, the result was forty-four combinations of forest cover and AGB for c.2000, while 

for c. 2020, there were twenty-one such combinations, stemming from the combination of seven land cover datasets 

and three AGB datasets. The sums of forest AGB resulting from those combinations are displayed in Fig. 7. Both sets 

of combinations could further be stratified into the three broad IPCC climate zones (boreal, temperate, and tropical). 

 285 

For c. 2000, the range of forest AGB stocks was wide, from 325.1 to 697.3 Gt. Irrespective of land cover data sources, 

the forest AGB stock estimates based on Zhang and Liang (2020) were the highest overall estimates, with 3 of the 4 

AGB / LC combinations exceeding 600 Gt of AGB. In contrast, the GeoCarbon data had the lowest overall forest 

carbon stock estimates, with the AGB / LC combinations generally resulting in total forest AGB stock estimates 

between 363.6 and 439.6 Gt. Focusing on the tropics, forest AGB stock estimates ranged from 221.9 to 495.2 Gt in c. 290 

2000. For c. 2020, the spread of combinations shown in Fig. 7 is lower at the global scale since the GEDI data are 

largely pan-tropical. Hence, forest AGB stocks ranged from 401.3 to 580 Gt. However, when zooming into the tropics 

for c.2020, and adjusting GEDI-based data to generate wall-to-wall estimates, the range of estimates was from 234.4 

to 362.6 Gt of forest AGB. 

 295 

Complementing Fig. 7, Fig. 8-11 show the spatial distribution of forest AGB for c.2000 and c. 2020. Fig. 8 and 10 

respectively show the derived mean forest AGB for c.2000 and c.2020 (based on the forest mask derived from the 

data shown in Fig. 4, while Fig. 9 and 11 respectively show the scaled coefficients of variation, CV (i.e., standard 

deviation divided by the mean) for c.2000 and c.2020. The mean forest AGB maps for both periods show that overall, 

areas in the tropics such as the Amazon, Congo Basin, and Southeast Asian islands of Borneo and New Guinea have 300 

the highest estimated AGB stocks. The CV maps for both periods show that while there is divergence among the 

various AGB datasets, in areas with high estimated AGB stocks in the tropics in particular, the estimates converge. 

Low convergence (shown as bright red colors) mainly occurs in areas with lower forest AGB stocks, indicating that 

the various models did not agree.
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 305 
Figure 8: Mean forest AGB for c. 2000, based on data from 11 sources  
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Figure 9: Coefficient of Variation (CV) of the forest AGB, for c. 2000, based on data from 11 sources  
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Figure 10: Mean forest AGB for c. 2020, based on data from 3 sources  310 
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Figure 11: Coefficient of Variation (CV) of the forest AGB, for c. 2020, based on data from 3 sources
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IV. Discussion 

There are many avenues of inquiry inspired by the results presented. Nevertheless, we will focus on a comparative 

analysis of the datasets, the implications of the findings, assumptions made which could have influenced those 315 

findings, caveats regarding the underlying data, and perspectives on the directions of future research. 

 

Comparative analysis 

 

In terms of a comparative analysis of the existing AGB datasets, it is acknowledged that Zhang et al. (2019) laid the 320 

groundwork in outlining the various products then existing at regional and global scales. They offer comparisons of 

the inputs and methods used to generate those datasets, and that analysis contributed to the development of their own 

global AGB dataset, Zhang and Liang (2020). To the extent that Zhang et al. (2019) have already provided a level of 

comparison of datasets, this study will not delve into similar comparisons, although just over half of the sources we 

utilized for the current study were generated since Zhang et al.’s study. Nevertheless, while Zhang et al. (2019) 325 

provides an overview of the datasets, they did not go as far as to compare the datasets to one another, which was the 

purview of this study. 

 

The basic zonal statistical analysis we performed, both globally and by climate zone, allowed for understanding how 

overall estimates differ or converge. Segmenting the data by decade also assisted in understanding the differences as 330 

potentially a function of differences in time. Where most of the datasets have an implicit focus on forest biomass (as 

compared to the stocks in other types of ‘natural’ vegetation or in agricultural systems), we nonetheless found it useful 

to further analyze the data in terms of forest masks we were able to derive from existing global land cover sources, 

both for the year 2000, and for 2020. An interest contrast that should also be highlighted, however, is that while there 

are fewer land cover inputs available for 2000, the bulk of the AGB datasets are for the c. 2000 period, in contrast to 335 

there being more land cover datasets available for 2000 and fewer AGB datasets available for 2020. We mention this 

because the differences in the numbers of available datasets likely have some impact on the findings. 

 

The forest cover change analysis shows that while at the global level, forest area decreased by between 1.1% and 

2.5%, overall, losses were greatest in the tropics, with the estimated loss ranging from 1.4% to 3.5%. For the temperate 340 

zone, the datasets did not agree, with the MODIS-based data showing an increase in forest cover, relative to the other 

two datasets which had indicated a slight decline. For future research, it would be useful to drill deeper into the data 

to examine how deforestation differs across geographic regions (e.g. in the tropical parts of the Americas vs. tropical 

parts of Asia or Africa). 

 345 

We should provide a caveat. From the data presented, while it may be useful to look at mean AGB values per data 

source, because the spatial distribution of areas with no data values varies significantly by dataset, the use of the sums 
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of total AGB is much more illustrative. That said, as already indicated, there were different spreads of the estimated 

quantities of total AGB across the various decades, before controlling for factors such as climate zone and land cover 

type. Still, there were more AGB datasets available for c. 2000, which may likely have contributed to the greater 350 

spread (452 to 1,019 Gt of AGB) than for c. 2010 (562 to 737 Gt of AGB) and for c. 2020 (558 to 744 Gt of AGB). 

 

Drilling down further, based on analysis of the tropics only, since there is more data for those areas due to the existence 

of maps covering only the pan-tropical zone, we see the spread decrease even further. For instance, for c. 2000, the 

spread is from 314 to 617 Gt of ABG, compared to 335 to 445 Gt for c.2010 and 336 to 435 Gt for c.2020. Nevertheless, 355 

while those numbers represent the total AGB mapped, do not control for internal data masks used by the various 

studies, which likely in turn influenced the extracted statistics. Thus, if we try to restrict the data to the same climate 

zones and the same land cover sources for 2020, we see a much smaller spread in terms of the AGB values when we 

make an additional area-based extrapolation for the GEDI data, which are not wall-to-wall unlike the other datasets. 

For instance, based on the MCD12Q1-derived forest cover and limited to the tropics, the spread between the three 360 

AGB datasets for 2020 is 234 to 283 Gt of AGB, while based on the JAXA forest cover data, that spread is from 257 

to 362 Gt of AGB. Nevertheless, these spreads are only based on three AGB sources (i.e., Dubayah et al., 2023; 

Santoro et al., 2023; Xu et al., 2021), compared to the c. 2000 data which is based on eleven sources of AGB data. 

 

Focusing solely on the global level for the year 2000, and considering only the four 2000 forest cover masks but not 365 

climate types, the spread is between 325 and 697 Gt of AGB. In terms of understanding the discrepancies among the 

various datasets, it is obvious that independent of the forest cover masks, the Zhang and Liang (2020) dataset had the 

highest overall AGB stock, with the various forest masks indicating AGB stocks between 507 and 697 Gt. In contrast, 

the GeoCarbon dataset had the lowest level of estimated total AGB stocks, ranging from 364 to 439 Gt. Why would 

one see such a difference in ranges? It is known that the Zhang and Liang data are based on a bootstrapping method 370 

involving existing datasets, compared to GeoCarbon, which is itself based on Avitabile et al. (2016) and Santoro et al. 

(2015), noting that the Avitable et al. data are themselves adjusted estimates based on the tropical AGB maps from 

Saatchi et al. (2011) and Baccini et al. (2012). In other words, Zhang and Liang’s bootstrapping method may have 

inflated numbers, while the Avitable et al. method underlying GeoCarbon may have adjusted down the biomass 

estimates. 375 

 

Part of the challenge to interpreting the findings is having an almost overwhelming array of estimates based on 

combinations of AGB and forest cover inputs. One way to sift the data would involve merely averaging the various 

datasets, or selecting only a single forest mask to use, because of the intricacies of the data. That is to say, the 

geographic domains differ, as do the focus vegetation types, and the timeframes, hence our seeking to put the data 380 

into common frames of reference to avoid having to discard useful data from the analysis. We are therefore of the 

perspective that an ensemble approach must be used to understand the full spread of the data. Instead of thinking that 

there is “one true” AGB dataset, it might be useful to consider that, given the uncertainties involved with each dataset, 

the most useful way forward is to use an ensemble approach. That approach is also employed in a related area of 
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geoscience where it is likewise difficult to ascertain “true” values, namely numerical weather forecasting, where 385 

instead of focusing on the exact quantity of rain that will fall, the idea is to look at the spread and of various forecasts 

to determine a general idea of the likely range of rainfall quantity. 

 

Making decisions under uncertainty is a main motivator for this review. When presented with a range of possible 

scenarios, decision makers may be better equipped to take appropriate actions and mitigate risk. An analogous case is 390 

the upstream weather and climate models that feed downstream flood and drought impact forecasts. Both upstream 

and downstream models can be produced in ensemble modes, allowing decision-makers to see how upstream 

uncertainties propagate downstream. Similarly, the global forest sector knows there is uncertainty in each specific 

model, but just how wide that uncertainty ranges has been difficult to capture. This review contextualizes individual 

AGB estimates on a more complete spread of all globally available AGB estimates.  395 

 

Assumptions 

 

Where we have used forest cover as a mask for understanding forest AGB stocks, it is therefore worth noting that 

there are discrepancies among how various datasets denominate forests or similar ecosystems. The JAXA and the 400 

MCD12Q1 products explicitly cite “forest cover,” while the remaining products such as the CCI-Land Cover, 

Dynamic World, Esri land cover, GLC 2000, original UMD / Global Forest Watch, and WorldCover products all have 

a single “tree cover” class which they indicate may include not only forest cover but also certain tree crops or tree 

plantations. By assuming that the majority of “tree cover” is forest cover, in some cases, in the estimates of AGB 

stocks we may unwittingly be including potentially lower biomass areas. Nonetheless, we see this principally as a 405 

classification scheme translation challenge and consider it beyond the scope of this study to determine how to separate 

out “true” forest cover from forest-like tree formations. 

 

Regarding forest cover and forest cover change specifically, another question concerns the extent to which spatial 

resolution is a [mediating] factor in determining how classes are mapped. For instance, of the various input land cover 410 

datasets used, the MODIS-based MCD12Q1 dataset was the most coarse, at 500 m spatial resolution, compared to the 

other datasets whose resolutions ranged from 10m (3 datasets) to 25m (the JAXA FNF dataset) to the 300m composite 

ESA CCI-LC dataset. 

 

There are other limitations to working with data from multiple spatial resolutions. While most of the datasets analyzed 415 

have a spatial resolution of 1km, a few (e.g., from Baccini et al., 2021; Santoro et al., 2021, 2023; Spawn et al., 2020) 

had spatial resolutions finer than 1km, while a few other datasets (e.g., from Kindermann et al., 2008; Liu et al., 2015; 

Xu et al., 2021) had resolutions exceeding 1km. The solution we came to was to resample all datasets to 1 km spatial 

resolution. It is noted that recent studies have, likely to facilitate rapid calculations, have analyzed AGB data 

differences on a scale of 5km2 and 10 km2, which represents 500 to 1,000 hectares (Araza et al., 2023; Labrière et al., 420 

2023). 
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Caveats 

 

As an in-depth exploratory analysis, this study has sought to determine the implications of the various data outputs 425 

from a host of globally significant studies focused on forest carbon. Therefore, to the extent that this study has limited 

itself to analyzing that data in place of generating new data, there are certain research avenues that this study does not 

delve into, specifically topics such as below ground carbon and soil carbon stocks. This is so because most of the 

inputs analyzed did not themselves address such carbon pools. Nevertheless, in terms of those carbon pools, it is 

known that above ground biomass makes up a significant portion of carbon pools, with AGB estimated to make up 430 

almost three quarters of total forest biomass in tropical forests (Trumper et al., 2009). In lieu of evaluating accuracy, 

this study has allowed for an assessment of the precision of the various AGB datasets in showing how much they 

differ from each other. 

 

Another important caveat to note is that most of the sources evaluated utilized similar approaches to estimating AGB 435 

using remote sensing, but as Santoro et al. (2023) notes, “AGB can only be inferred from observations since remote 

sensing instruments do not have the capability to measure the organic mass stored in vegetation.” Studies such as 

Saatchi et al. (2011), Baccini et al. (2012), Hu et al. (2016), Spawn et al. (2020), Yang et al. (2020), and Xu et al. 

(2021) used similar methods and multispectral and spaceborne LiDAR data inputs, while Santoro et al. (2021) and 

Santoro et al. (2023) used modeling approaches using radar data inputs. The data generated by both sets of approaches 440 

- which depended heavily on wall-to-wall remotely sensed data seemed to be more similar than the products of the 

approaches taken by Kindermann et al. (2008) or Ruesch and Gibbs (2008), one of which interpolated field plot data, 

and the other which mapped biomass essentially based on ecoregional characteristics encoded in the IPCC’s Emission 

Factor Database. From the datasets based on modeling using remotely sensed data, it is likely that the spatial variability 

inherent in the underlying multispectral or radar data influenced the AGB variability that was in turn mapped. 445 

 

Where the analysis of a score’s worth of AGB datasets and multiple land cover and land cover change data inputs 

could have gone in multiple, diverse directions, this paper has focused on AGB and carbon from an applications 

perspective. That is, rather than seeking to determine which dataset is the “best,” we have sought to explore the 

implications of the various datasets, especially from the perspective of AGB stocks. Likewise, from an applications 450 

perspective, if one is looking to utilize any or all of the respective AGB, land cover, and land cover change datasets 

for regional or national applications, it is useful to understand how the datasets differ and how they converge. From 

an applications perspective, we would merely ask what the wide range of AGB datasets ultimately means for several 

questions that data users and policymakers are already asking. 

 455 

One such application is the use of AGB data to quantify AGB stocks in protected areas. For instance, a recent study 

elaborated on AGB stocks in protected areas globally for the year 2020, using the GEDI biomass data (Duncanson et 

al., 2023). Had that study based its findings on any of the two other datasets available for that period, i.e. data from 
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the CCI-Biomass product or from Xu et al. (2021), they would have come to different conclusions at least in terms of 

the magnitude of AGB stocks. In other words, the availability of multiple AGB datasets poses certain implications in 460 

terms of quantifying forest AGB / forest carbon stocks. 

 

Implications 

 

This study has significant ramifications for estimates of global carbon budgets, and further work could show 465 

implications for greenhouse gas emissions estimates (specifically CO2) from land use change. Each new land cover 

and biomass dataset – whether global, regional, or national – presents yet another scenario for AGB estimates (and 

related GHG emissions). It also remains to be seen how a study like the current one might influence policy. For 

instance, could the acknowledgement that remotely sensed AGB datasets differ substantially in their assessments of 

forest carbon stocks and emissions potentially factor into countries’ estimates of their own forest carbon stocks? Could 470 

this research potentially influence upcoming stock take activities like the recently concluded joint global stock take 

activity by the Committee on Earth Observation Satellites (CEOS) and the UNFCCC to evaluate how countries take 

more advantage of Earth observation data? And to what extent can decision-makers in national governments act on 

the available data, especially considering the slightly different pictures they paint? 

 475 

Future research directions 

 

A key question concerns how the use of validated regional land cover and land cover change datasets can further refine 

carbon budgets. For instance, the SERVIR program - an initiative of the U.S. Agency for International Development 

(USAID), NASA, and leading regional organizations - operates in five key regions where the regional ‘hub’ 480 

organizations have generated regional land cover datasets with high relative accuracies, and which are considered 

reference datasets (Herndon et al., 2019). While the use of those datasets could essentially make the ensemble of land 

cover datasets even larger, since the data are considered references in their respective regions, these might lead to 

refinements in understanding of forest carbon stocks by potentially thinning the ensemble down. This is also the 

subject of ongoing research by the authors of this paper (e.g. Evans et al., in prep. and https://s-cap.servirglobal.net). 485 

 

In addition to the possibility of refining regional carbon budgets using higher accuracy regional land cover datasets, 

another future research direction could involve a variant on that topic by quantifying carbon budgets using the 

respective national forest reference emission level (FREL) reports submitted by various countries (Melo et al., 2023). 

Essentially similar to the approach taken by Kindermann et al. (2008), that route could involve comparing the various 490 

national estimates with remotely sensed ones, especially where FREL reports include information on carbon stocks, 

rates of forest cover change, and emissions estimates. 

 

Where this study has largely focused on understanding the levels of precision, i.e. the agreement among various AGB 

datasets, another obvious area of interest is understanding the accuracy of the datasets in terms of comparisons with 495 
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field data. While some of the datasets used such reference data for both calibration and validation purposes, it would 

be useful to perform a systematic analysis of accuracy across the range of available datasets. Another related future 

research direction would involve evaluating the biomass products’ findings through direct comparisons with the 

findings of the national FREL reports, e.g. determining if the FREL reports’ biomass ranges are on par with the 

remotely sensed AGB datasets. 500 

 

Lastly, reviewing the traditional machine learning methods used in generating many of the AGB datasets, e.g., use of 

regression models to integrate plot-level AGB estimates, spaceborne LiDAR heights, multispectral reflectance, and 

radar backscatter among others, we would therefore anticipate that it is only a matter of time before newer studies 

come along with different methods. Such methods would likely involve the use of more sophisticated deep learning 505 

techniques for estimating AGB using the input datasets mentioned. It bears to be seen, however, whether such 

techniques would result in more accurate AGB estimates. It also remains to be seen the extent to which more regionally 

and nationally relevant AGB models are going to be derived, although Zhang et al. (2019) documented a number of 

these, for instance, for countries such as Brazil, Cambodia, China, Colombia, Madagascar, Mexico, Panama, Peru, 

and the United States of America. They also documented regional scale models for Africa and the Amazon. It is 510 

anticipated that the development of finer scale models would likely provide for higher accuracies than might be 

afforded by global models. 

V. Conclusions 

Stemming from the uncertainties associated with the different existing AGB and forest cover datasets, we propose an 

ensemble approach to evaluate the spread of the various data, and we have utilized that approach to evaluate the AGB 515 

data, toward refinement of the biomass component of global carbon budgets. We have quantified forest carbon stocks 

by crossing forest cover estimates from multiple sources with AGB estimates from multiple sources. By separating 

the existing biomass datasets into their corresponding applicable time periods, i.e., c. 2000, c. 2010, and c. 2020, we 

have demonstrated that based on the range of available AGB and forest cover datasets, forest AGB stocks potentially 

ranged from 325 to 697 Gt for c. 2000, and 401 to 580 Gt for c. 2020, based on the spread of forest cover estimates 520 

for 2000 and 2020. Future studies could combine the AGB data with the forest cover loss data to determine further 

implications on global CO2 emissions from deforestation. 
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