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Abstract 

The El Niño-Southern Oscillation (ENSO) is a major driver of interannual variability in both tropical and mid-latitudes and 

has been found to have a strong impact on the distribution of tropospheric ozone in the tropical Pacific in satellite observational 

datasets, chemical transport models, and chemistry-climate simulations. Here we analyze inter-annual variability in tropical 10 

tropospheric ozone by applying composite analysis, empirical orthogonal function (EOF) analysis and multiple linear 

regression to the Real-time Air Quality Modeling System (RAQMS) Aura chemical reanalysis. As shown in similar studies, 

the dominant mode of inter-annual variability in tropical tropospheric ozone is driven by ENSO. ENSO composites show that 

the ENSO signature in tropospheric ozone is strongest near the tropopause. We also show an enhancement in tropical ozone 

over the maritime continent below 700 hPa during El Niño that is dependent on the magnitude of the biomass burning emissions 15 

in the region. We reconstruct the ENSO variability in tropical tropospheric ozone through a multiple linear regression of 

principal components for precipitation and CO. The multiple linear regression quantifies that variability in biomass burning 

contributes to ENSO variability in tropical tropospheric ozone though the dominant driver is convective precipitationion. 

1 Introduction 

The development of methods to calculate tropospheric ozone residuals (TOR) from satellite total column observations (eg. 20 

Fishman and Balok, 1999; Fishman et al., 1990; Fishman and Larsen, 1987) provided the first global view of tropospheric 

ozone and showed a systematic zonal wave one structure in the tropics. This zonal wave one structure is consistent with the 

climatological average state of tropical atmosphereatmosphere, which is dominated by the Pacific Walker circulation, defined 

by ascending motion over warm SSTs near the maritime continent and descending over cooler SSTs in the eastern Pacific, 

with easterlies at surface and westerlies aloft. Climatologically, tropospheric ozone columns are lowest over the Pacific and 25 

highest downwind of western Africa (Fishman et al., 1990, 1996, 2003). The enhancement downwind of western Africa is 

strongest during September-October-November (SON) and is associated with photochemical production of ozone from 

biomass burning emissions (Fishman et al., 1996, 2003, 2005). Tropospheric ozone concentrations over Africa and South 

America are lowest in March-April-May (MAM) (Fishman et al., 1990, 2003). The Fishman, Wozniak, and Creilson 2003 
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TOR seasonal climatology also shows a variance of 5-10 DU over the maritime continent from DecenberDecember-January-30 

February (DJF) to June-July-August (JJA). The El Niño-Southern Oscillation (ENSO) is a major driver of inter-annual 

variability in both tropical and mid-latitudes (eg. McPhaden et al., 2006; Trenberth, 1997), and has been found to have a strong 

impact on the distribution of tropospheric ozone in the tropical Pacific (Doherty et al., 2006; Peters et al., 2001; Sekiya and 

Sudo, 2012; Ziemke et al., 2010).  

ENSO phases of El Niño and La Niña are tracked using a variety of indexes including the Niño 3.4 index (Bamston et al., 35 

1997; Trenberth, 1997) and the Ozone ENSO Index (Ziemke et al., 2010). El Niño events occur when a warm SST anomaly 

develops in the eastern Pacific and reduces the east-west temperature gradient across the equatorial Pacific. In response to the 

SST anomaly, the trade winds weaken. Convection is enhanced over the eastern Pacific, leading to increased precipitation in 

the region and an eastward shift of the Walker Circulation. Correspondingly convection is suppressed over the maritime 

continent and leads to drier than usual conditions. During El Niño events, tropospheric ozone is lower over the Pacific as the 40 

enhanced convection lofts low ozone air masses from near the ocean surface higher into the column, and higher over the 

maritime continent as higher upper tropospheric ozone concentrations descends (eg. Doherty et al., 2006; Hou et al., 2016; 

Sudo and Takahashi, 2001). Variability in the location of the maximum SST anomaly during the El Niño phase has led to a 

distinction between canonical (eastern Pacific) El Niño events and El Niño Modoki (central Pacific) events (eg. Larkin and 

Harrison, 2005; Kim and Yu, 2012; Santoso et al., 2017). In the canonical El Niño, the maximum SST anomaly extends into 45 

the eastern tropical Pacific cold pool while during El Niño Modoki the maximum SST anomaly is in the central Pacific. The 

ascending branches of the  Walker circulation are over the central Pacific during El Niño Modoki (Ashok et al., 2007). 

Following from the differences in the Walker circulation, the pattern of the ENSO response in tropical tropospheric ozone 

depends on the type of El Niño (Hou et al., 2016).  

La Niña events occur when the eastern Pacific is cooler than average, and the atmosphere responds in a generallyn opposite, 50 

though not  mannersymmetric, manner to El Niño as enhanced vertical motion and convection occurs over the maritime 

continent, suppression of convection occurs over the east Pacific, and enhanced downwelling over the east Pacific. Tropical 

tropospheric ozone columns reflect the impacts of  higher upper tropospheric ozone concentrations upper tropospheric ozone 

descending over the Pacific and comparatively lower concentration lower tropospheric ozone  ascending near the maritime 

continent during La Niña (eg. Ziemke and Chandra, 2003; Doherty et al., 2006). 55 

The influence of ENSO on tropospheric ozone has previously been investigated in observational datasets, chemical transport 

models, and chemistry-climate models. Application of statistical techniques (regression, correlation, and empirical orthogonal 

functions) to TOR data revealed that interannual variability in measurements over the tropical Pacific is dominated by ENSO 

(eg. Doherty et al., 2006; Oman et al., 2013; Ziemke et al., 1998, 2010). ENSO variability in tropical tropospheric ozone 

columns has been reproduced in chemical transport models and climate models (eg. Sudo and Takahashi, 2001; Chandra et 60 

al., 2002; Peters et al., 2001; Doherty et al., 2006; Sekiya and Sudo, 2014). ENSO variability in equatorial Pacific tropospheric 

ozone was initially thought to be equally due to shifts in biomass burning emissions and meteorological conditions (Chandra 

et al., 2002; Sudo and Takahashi, 2001). More contemporary studies indicate enhancement in biomass burning during El Niño 
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results in regional enhancement of ozone with little contribution to global tropospheric ozone variability and that the response 

of tropospheric ozone to ENSO is primarily due to dynamical processes (Doherty et al., 2006; Inness et al., 2015).  65 

In this studystudy, we will investigate the inter-annual variability of tropical tropospheric ozone in a chemical re-analysis 

extending from 2006 through 2016. A chemical re-analysis produces a long-term data record by cycling  a model forecast and 

data assimilation system to combine forecasts and observations in a statistically consistent manner that accounts for forecast 

and observation error (Miyazaki et al., 2020; Yumimoto et al., 2017). The data record obtained is a best-estimate of the real 

composition of the atmosphere, as analyses produced are constrained by observations of a limited number of species and the 70 

evolution of those species by model physics (Miyazaki et al., 2020). A comparison of several recent chemical re-analyses 

including the Copernicus Atmospheric Monitoring Service (CAMS) reanalysis (Inness et al., 2019), and the Tropospheric 

Chemistry Reanalysis version 2 (TCR-2) (Miyazaki et al., 2020) found that these analyses are suitable for generating ozone 

climatologies and looking at trends, though individual re-analyses will differ due to model configuration (Huijnen et al., 2020). 

While chemical re-analysis hass been used to look at the ENSO signal in CO, O3, NOx, and smoke aerosols (Inness et al., 75 

2015), our analysis will make use of the chemical production and loss terms, convective mass flux, and diabatic heating from 

a chemical the re-analysis to examine variability in tropospheric ozone. We also focus on the 2006-2016 period, which includes 

significant biomass burning events during the 2015/2016 El Niño event. 

This study seeks to: 1) evaluate the tropical tropospheric ozone column variability associated with ENSO in a 1x1 degree 

chemical re-analysis using the Real-time Air Quality Modeling System (RAQMS, Pierce et al., 2007) and satellite 80 

measurements from the NASA Aura satellite (Pierce et al., 2016) and 2) investigate how the 2015/2016 extreme El Niño event 

impacts the ENSO response.   

2 Methods 

2.1 RAQMS-Aura 

The Real-time Air Quality Modeling System (RAQMS) Aura Reanalysis, hereafter RAQMS-Aura, is a chemical re-analysis 85 

using RAQMS (Pierce et al, 2007), a global chemical transport model with full stratospheric and tropospheric chemistry, and 

satellite trace gas and aerosol retrievals from the NASA satellites (Terra, Aqua, and Aura) covering 2006 through 2016. 

RAQMS-Aura provides 1°x1° global chemical analyses, on 35 hybrid model levels from the surface to approximately 60 km 

above ground level, at 3-hour time steps. The operational grid point statistical interpolation (GSI) 3-dimensional variational 

analysis system (Wu et al., 2002) is used to assimilate retrievals from the following Aura instruments: Aura Ozone Monitoring 90 

Instrument (OMI) cloud cleared total column ozone (McPeters et al., 2008), Microwave Limb Sounder (MLS) (Froidevaux et 

al., 2008) stratospheric ozone profiles, and OMI tropospheric column NO2 (Boersma et al., 2007; Bucsela et al., 2013). NASA 

Terra and Aqua Moderate Resolution Imaging Spectrometer (MODIS) aerosol optical depth (AOD) (Remer et al., 2005) and 

Atmospheric Infrared Sounder (AIRS) carbon monoxide profile (Maddy and Barnet, 2008; McMillan et al., 2005; Yurganov 

et al., 2008) are also assimilated at three-hour intervals. Analysis increments from the OMI tropospheric column NO2 retrievals 95 
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are used for off-line adjustment of apriori 2010 Hemispheric Transport of Air Pollution (HTAP, 2010) anthropogenic emission 

inventories following an offline mass balance approach similar to East et al. 2022. Biomass burning emissions in RAQMS-

Aura use Terra and Aqua MODIS fire detections and are calculated using a bottom-up approach developed by Soja et al. 2004 

and compared to other approaches in Al-Saadi et al. 2008. This approach estimates total carbon emissions at MODIS fire 

detections with the US Forest Service Haines Index (Haines, 1989) to determine fire weather severity and gridded, ecosystem-100 

dependent estimates of carbon consumption for low, medium, and high fire severity fires. Emission ratios are then used to 

estimate emissions of CO, NOx, and hydrocarbons from the calculated total carbon emissions.  

The dynamical core of RAQMS is the UW hybrid model (Schaack et al., 2004). The UW hybrid model utilizes physical 

parameterizations from the NCAR Community Climate Model (CCM3) (Kiehl et al., 1998), including the moist convection 

scheme. The CCM3 moist convection scheme combines the Zhang and McFarlane (1995) deep convection scheme with 105 

shallow and midlevel convection following Hack (1994). The deep convection scheme treats convection as an ensemble of 

updrafts and downdrafts, and the shallow convection scheme treats convection as separate plumes within 3 successive layers 

whereby mass is detrained from one layer into the next (Kiehl et al., 1998; Zhang et al., 1998). RAQMS-Aura initializes its 

meteorological fields with archived analyses from the National Center for Environmental Prediction (NCEP) Global Data 

Assimilation System (GDAS) (Kleist et al., 2009; Wang et al., 2013). These fields are impacted by updates to physics, 110 

resolution, and data assimilation used in the GDAS system (MODEL CHANGES SINCE 1991, 2023).  

2.2 ENSO Composites 

 Anomaly composites are used to evaluate how well RAQMS-Aura reproduces observed ENSO variability. El Niño and La 

Niña periods are determined by use of the Niño 3.4 index. ENSO events are defined as occurring when the index is at least 

0.4°C greater (El Niño) or less (La Niña) than average for 5 consecutive months (eg. Trenberth, 1997; Ziemke et al., 2015). 115 

AThe anomaliesy areis defined as the deviation from the average annual cycle during the RAQMS-Aura analysis period (2006-

2016). Anomaly composites for El Niño and La Niña periods are generated for precipitation, convective mass flux, diabatic 

heating, ozone concentration, carbon monoxide, and net ozone production from monthly mean RAQMS-Aura analyses. 

Anomaly composites are also generated for satellite observations of tropospheric ozone column, total column carbon 

monoxide, and total precipitation. To investigate the vertical structure of ENSO variability in RAQMS-Aura, anomaly cross 120 

section composites are calculated between 7.5°S to 2.5°N for convective mass flux, diabatic heating, ozone, carbon monoxide, 

and net ozone production. 

2.3 Empirical Orthogonal Function (EOF) Analysis 

EOF analysis has been used previously by Peters et al. 2001 and Doherty et al. 2006  to identify ENSO variability in modeled 

tropospheric ozone concentrations. EOF analysis is performed on de-seasonalized and de-trended precipitation, CO column, 125 

and tropical tropospheric ozone column (TTOC) monthly mean anomalies to determine the dominant modes of tropical 

variability in RAQMS-Aura analyses.  
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Following Doherty et al. 2006 the resulting EOF patterns for each RAQMS-Aura variable are multiplied by the standard 

deviation of the associated principal component (PC) to produce the physical magnitude of change associated with the mode. 

The PCs are correlated against the Niño 3.4 index to assess whether the mode captured by the EOF accounts for ENSO 130 

variability. A multiple linear regression is constructed using the precipitation and CO PCs to investigate how variability in 

convection and biomass burning emissions drive the ozone ENSO signal. 

3 Results 

3.1 Validation of RAQMS-Aura Precipitation 

Prior to investigating variability of the RAQMS-Aura chemical fields, we evaluate RAQMS-Aura convection and precipitation 135 

processes through comparisons with observations. In RAQMS-Aura, sub-grid-scale mass flux between model layers occurs 

through shallow and deep convective schemes. Diabatic heating is generated by the sub-grid-scale convective 

parameterizations and influences the grid-scale thermodynamics. Convective mass flux and diabatic heating will be used in 

the composite analysis to look at the impact of ENSO on vertical transport and tropical tropospheric ozone concentrations. 

 Monthly mean total and convective precipitation from RAQMS-Aura is compared to estimates of precipitation from the 140 

Tropical Rainfall Measuring Mission (TRMM) Multi-satellite precipitation Analysis (TMPA) 3B43 product (Huffman et al., 

2007). TRMM 3B43 merges satellite IR and microwave precipitation estimates with rain gauge data to produce a best estimate 

of monthly mean precipitation rate from 50°S to 50°N at 0.25x0.25 degree25 degree resolution, which in this study is averaged 

onto the RAQMS 1x1 degree grid. Our analysis is focused on meridional structure and seasonal maps to look at average 

regional biases, and time-series of the maritime continent and Pacific Intertropical convergence zone (ITCZ) regions to look 145 

at longer-term trends.  

3.1.1 Meridional Structure 

Figure 1 displays the meridional averaged convective, large-scale, and total precipitation for RAQMS-Aura and total 

precipitation from TRMM 3B43 for each season. The seasonal average meridional precipitation maxima in RAQMS-Aura are 

broader than observed in TRMM 3B43. During DJF and MAM, observed tropical precipitation peaks in both the northern 150 

hemisphere (NH) and southern hemisphere (SH). During JJA and SON, observed tropical precipitation peaks only in the NH. 

In DJF the observed hemispheric peaks are of similar magnitude with the NH peaking at 0.247 mm/hour and the SH peaking 

at 0.233 mm/hour. TRMM 3B43 MAM indicates that the NH branch is more active during this season than the SH branch, as 

the NH peak is 0.293 mm/hourhour, and the SH peak is 0.229 mm/hour. RAQMS-Aura reproduces the observed double peaks 

for DJF and MAM, though the magnitude is overestimated in RAQMS-Aura by 0.08-0.12 mm/hour, and the DJF SH peak is 155 

larger than the NH peak and 5 degrees to the south of the observed peak. In JJA and SON, the reanalysis reproduces the 

observed single maxima, though it is broader by more than 15 degrees latitude, and the absolute maximum is displaced 

approximately 2.5 degrees to the north. 
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Between 40°N and 40°S the total precipitation in RAQMS-Aura is predominately convective precipitation, with ratios of 

convective precipitation to total precipitation exceeding 0.6 on average. It is common for tropical precipitation to be 160 

predominately convective precipitation in global models, leading to a “drizzling bias”. This "drizzling bias" is the result of 

convective parameterizations producing convective precipitation that is too frequent and long-lasting but not as intense as 

observed while the total precipitation amount is realistic (Chen et al., 2021; Chen and Dai, 2019).  

 

Figure 1. Zonally and seasonally averaged precipitation from RAQMS-Aura and TRMM 3B43 for a) DJF, b) MAM, c) JJA, and d) 165 
SON. 
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3.1.2 Horizontal Structure 

While RAQMS-Aura reasonably reproduces the seasonality of the observed meridional structure, the distributions are broader 

than in observations. Seasonal maps of precipitation allow us to examine the reasons for this in more detail. Figure 2 shows 

seasonal maps of precipitation from the TRMM 3B43 observations and RAQMS-Aura. TRMM 3B43 and RAQMS-Aura are 170 

well correlated for all seasons, with DJF displaying a spatial correlation of 0.86, MAM a spatial correlation of 0.75, JJA a 

spatial correlation of 0.71, and SON a spatial correlation of 0.77. These correlations show that the RAQMS-Aura reanalysis 

broadly captures the seasonal changes in the spatial pattern of tropical precipitation. 

 

Figure 2. Seasonal mean precipitation for TRMM 3B43 (a, c, e, g) and RAQMS-Aura (b, d, f, h). 175 

Precipitation over land in South America and Africa is consistently overestimated relative to TRMM 3B43 by 0.2-0.3 mm/hour. 

This overestimation over land is a long-standing bias of the dynamical component of RAQMS (Schaack et al, 2006). RAQMS-

Aura overestimates precipitation in the Gulf of Mexico and Caribbean by >0.3 mm/hour during JJA and SON. During DJF 

and MAM, the average bias over the Gulf of Mexico is less than +/- 0.1 mm/hour. RAQMS-Aura overestimates precipitation 

over the Caribbean by ~0.14 mm/hour during DJF and by ~0.16 during MAM. RAQMS-Aura overestimates precipitation near 180 

India by >0.3 mm/hour during MAM and JJA. In the northwest Pacific, RAQMS-Aura shows larger overestimates of 
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precipitation in JJA and SON relative to DJF and JJA, with overestimates relative to TRMM of 0.05 mm/hour in DJF, >0.3 

mm/hour in JJA, 0.15 mm/hour in MAM, and >0.3 mm/hour in SON.  

RAQMS-Aura does capture precipitation features like the ITCZ and western North Atlantic storm track well, though there is  

biasis bias in the precipitation amount. RAQMS-Aura underestimates precipitation in the western North Atlantic off the east 185 

coast of the US along a storm track region by 0.17 mm/hour in DJF, ~0.15 mm/hour in JJA, ~0.15 mm/hour in MAMmam, 

and ~0.17 mm/hour in SON. During DJF, precipitation is overestimated by 0.2-0.3 mm/hour in RAQMS-Aura in the Southern 

Hemisphere maximum over the Pacific and off the northern coast of Australia. The strength of the SH maximum is consistently 

overestimated by RAQMS-Aura, as it is higher than TRMM 3B43 by ~0.1 mm/hour in JJA, 0.25-0.3 mm/hour in MAM, and 

~0.1 mm/hour in SON. RAQMS-Aura tends to underestimate the strength of the ITCZ in all seasons, with a small 190 

underestimate of ~0.05mm/hour in MAM and ~0.15 mm/hour in DJF. RAQMS-Aura underestimates the ITCZ over the east 

and central Pacific by a max of ~0.25 mm/hour in SON and JJA.  

3.1.3 Time Series 

The comparison of TRMM 3B43 precipitation and RAQMS-Aura indicates that RAQMS-Aura captures the expected 

seasonality in the ITCZ and over landmasses though tends to overestimate convective precipitation. Following this 195 

characterization of regional biases in RAQMS-Aura, we look closer at how the RAQMS-Aura represents precipitation within 

the tropics by evaluating the time series for 3 key regions, which are defined in figure 3. The region over the maritime continent 

is defined by broadscale ascent in the average Walker Circulation. Time series for the maritime continent, NH ITCZ, and SH 

maximum regions are displayed in figure 4.s 4, 5, and 6 respectively.  

 200 

Figure 3. Regions for timeseries overlaid on mean 2006-2016 TRMM precipitation. 

Over the maritime continent, RAQMS-Aura has a temporal correlation of 0.619 with TRMM and a mean bias of 0.064 

mm/hour (22.27%). The bias between TRMM and RAQMS-Aura is initially higher, ~0.2 mm/hour at a max, then decreases 

after 2010 within this region. There is also an increased bias in 2015 and late 2016 over the maritime continent. Across the 
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ITCZ in the northern hemisphere RAQMS-Aura has a temporal correlation of 0.715 and bias of -0.0115 mm/hour (-4.90%) 205 

with TRMM. Prior to 2010 RAQMS-Aura displays a small bias relative to TRMM 3B43. Post 2010 RAQMS-Aura 

underestimates peak precipitation, though the temporal correlation of the measurements with TRMM 3B43 slightly increases 

to 0.774 within this region. Within a section of the SH precipitation maximum, RAQMS-Aura has a temporal correlation of 

0.599 and bias of 0.038 mm/hour (13.53%) with TRMM. The good correlation and bias of less than 25% for each region 

indicate that RAQMS-Aura has skill in reproducing the observed precipitation in the regions of interest for this study.  Shifts 210 

in bias observed between 2009 and 2011 appear to be associated with tied to upgrades to the GDAS system. Changes to GDAS 

implemented in 2009 included use of variational quality control in the assimilation system and flow dependent reweighting of 

background error variance (MODEL CHANGES SINCE 1991, 2023).  

 

Figure 4. Mean precipitation for TRMM 3B43 and RAQMS-Aura Precipitation over the maritime continent (a), in the NH ITCZ 215 
region (b), and in the SH maximum precipitation region (c). Over the maritime continent, RAQMS-Aura precipitation is on average 

biased 0.064 mm/hour (22.27%) higher than TRMM 3B43. In the NH ITCZ region RAQMS-Aura precipitation is on average biased 

0.012 mm/hour (4.90%) lower than TRMM 3B43. In the SH maximum precipitation region RAQMS-Aura precipitation is on 

average biased 0.038 mm/hour (13.53%) higher than TRMM 3B43. 
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3.2 Validations of RAQMS-Aura O3 and CO 220 

To establish fidelity of the RAQMS-Aura chemical fields, we evaluate profilesozone profiles mixing ratio, tropospheric 

ozone column, and CO column. The RAQMS-Aura monthly mean tropospheric ozone column is compared to the OMI-

MLS TOR (Ziemke et al., 2006). The OMI-MLS TOR is a satellite residual product where total ozone columns from 

the OMI instrument and stratospheric columns from MLS instrument (both on-board the Aura satellite) are combined 

to infer the tropospheric ozone column. Monthly mean CO column from RAQMS-Aura is compared to CO column 225 

retrievals from Measurements of Pollution in the Troposphere (MOPITT) (Emmons et al., 2004). Both the OMI-MLS 

TOR and the MOPITT CO data used are monthly mean Level 3 products. We evaluate the RAQMS-Aura tropical O3 

vertical profiles structure with observations from 12 sites in the Southern Hemisphere Additional Ozonesondes 

(SHADOZ) network (Sterling et al., 2018; Thompson et al., 2017; Witte et al., 2017, 2018).

 230 

 

Figure 4. Mean precipitation over the Maritime continent for TRMM 3B43 and RAQMS-Aura Precipitation. RAQMS-

Aura precipitation is on average biased 0.064 mm/hour (22.27%) higher than TRMM 3B43. RAQMS-Aura and TRMM 

3B43 have a correlation of 0.619. 

3.2.1 Horizontal Structure in CO and tropospheric O3 columns  235 

Seasonal maps of CO column and tropospheric ozone column are evaluated for RAQMS-Aura and satellite datasets. Figure 5 

shows seasonal maps of CO columns from MOPITT and RAQMS-Aura. MOPITT and RAQMS-Aura are well correlated for 

all seasons, as DJF has a spatial correlation of 0.945, MAM a spatial correlation of 0.955, JJA a spatial correlation of 0.911, 

and SON a spatial correlation of 0.919. South American CO columns are overestimated in RAQMS-Aura by 0.4-0.8 x 1018 

mol/cm2 in SON and 0.4-0.5 x 1018 mol/cm2 in JJA, and < 0.3 x 1018 mol/cm2 during DJF and MAM. Over the maritime 240 

continent, bias is < ± 0.2 x 1018 mol/cm2 during DJF, MAM, and JJA and biased low during SON by ~0.3 x 1018 mol/cm2. 

Over the Pacific, RAQMS-Aura has a high bias of 0.15-0.3 x 1018 mol/cm2 (< 25% difference).  
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Figure 6 shows seasonal maps of Tropospheric O3 columns from OMI-MLS and RAQMS-Aura. OMI-MLS and RAQMS-

Aura are well correlated for all seasons, as DJF has a spatial correlation of 0.822, MAM a spatial correlation of 0.995, JJA a 

spatial correlation of 0.934, and SON a spatial correlation of 0.941. While the correlations areis strong, RAQMS-Aura 245 

tropospheric O3 is consistently biased high by >2DU in the tropics relative to OMI-MLS. 

 

Figure 5. Seasonal mean CO column for MOPITT (a, c, e, g) and RAQMS-Aura (b, d, f, h). 
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Figure 6. Seasonal mean tropospheric O3 column for OMI-MLS (a, c, e, g) and RAQMS-Aura (b, d, f, h). 250 

3.2.2 Time series of CO column and tropospheric O3 column over the Maritime Continent 

Following the characterization of seasonal mean regional biases in RAQMS-Aura CO column and tropospheric O3 column, 

we look at how well RAQMS-Aura represents variability over the maritime continent (as defined in fig. 3). Timeseries of CO 

column and tropospheric O3 over the maritime continent are displayed in figure 7. Unlike in the precipitation fields, the 

RAQMS-Aura CO columns and tropospheric O3 columns do not exhibit a large shift in the bias over time.  255 
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Figure 7. Time series of mean tropospheric O3 column (a) and CO column (b) over the maritime continent for RAQMS-Aura, 

MOPITT CO, and OMI-MLS TOR.   

RAQMS-Aura mean maritime continent tropospheric O3 column has a temporal correlation of 0.937 with the OMI-MLS TOR 

and a mean high bias of 3.273 DU (14.435%). RAQMS-Aura mean maritime continent CO column has a temporal correlation 260 

of 0.943 with MOPITT and a mean high bias of 0.0477 x 1018 mol/cm2 (2.93%). The very goodd  temporal correlation and 

bias of less than 25% for both CO column and tropospheric O3 column indicates that RAQMS-Aura has skill in reproducing 

the observed CO column and tropospheric O3 column in a key region of interest for this study. 

3.2.3 Vertical Structure of O3 

RAQMS-Aura ozone profiles are compared to the reprocessed v06 Southern Hemisphere ADditional OZonesondes 265 

(SHADOZ) ozone profiles (Thompson et al., 2021) at the SHADOZ sites in 100m altitude bins from 0km to 30km. The 

SHADOZ sites used in this study are shown in Figure 8 along with the 2006-2016 mean tropospheric ozone column from 
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RAQMS-Aura. The vertical distribution of mean bias in RAQMS-Aura O3 profiles for all SHADOZ sites is presented in figure 

9. RAQMS-Aura O3 exhibits a high bias of >20% near the surface. Above 3km, the average bias in RAQMS-Aura O3 is <10%.  

Bias, correlation R2, and RMSE for each site are presentedgiven in Table 1. The SHADOZ stations within the Maritime 270 

Continent region are in bold font. These statistics are evaluated for all observations within 4 altitude ranges: surface- 5km, 5-

10 km, 10-15 km, and 15-20km. The vertical distribution of mean bias in RAQMS-Aura O3 profiles for all SHADOZ sites is 

presented in figure 9. RAQMS-Aura O3 exhibits a high bias of >20% near the surface. Above 3km, the average bias in 

RAQMS-Aura O3 is <10%.The mean percent bias for the surface – 5km altitude range for all sites is 9.17%. The surface – 

5km  bias is larger than the mean at the Hilo, American Samoa, Costa Rica, San Cristobal, Nairobi, and Natal sites. This 275 

enhanced lower troposphere bias is associated with very low (< 20 ppbv) surface O3 concentrations The mean observed surface 

O3 concentration is very low (< 20 ppbv) atat American Samoa, San Cristobal, Fiji, and Hilo. RAQMS-Aura is moderately 

correlated (0.5-0.75) in time and space with SHADOZ between the surface and 5km for most sites. At the Kuala Lumpur site, 

RAQMS-Aura displays a small bias (6.909%) andbut a correlation of 0.458 with all SHADOZ ozone measurementsprofiles. 

RAQMS-Aura strongly overestimates the surface O3 concentration by >40% at Kuala Lumpur, though above the surface the 280 

average bias in this region is < 10% and the RAQMS-Aura O3 analysis is moderately (0.5-0.8) correlated with SHADOZ. 

Between 5-10km, the mean percent bias is < ± 10% for all sites except Java where it is 20.22%. However, RAQMS-Aura has 

a correlation of 0.6585 with Java between 5 and 10km.  

Overall, RAQMS-Aura does capture a substantial moderate portion of the observed variability in tropical ozone profiles as 

indicated by the moderate to strong correlations with SHADOZ ozone profiles, though it does significantly overestimate near-285 

surface ozone concentrations.  

     

 

Figure 8. SHADOZ ozonesonde sites (stars) and mean RAQMS-Aura tropospheric ozone column (contours).  
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 290 

Figure 9. Comparison of RAQMS-Aura O3 mixing ratio to tropical SHADOZ ozonesondes. Panel a shows the percent bias in 

RAQMS-Aura relative to the ozonesondes. Panel b is percentiles for SHADOZ (blue) and RAQMS-Aura (orange).     
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 295 

Table 1. Correlation, bias, and RMSE between SHADOZ ozonesondes and coincident RAQMS-Aura Ozone mixing ratio. 
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 Number of 

profiles 

Altitude 

Range 

Correlation RMSE (ppbv) Mean Bias 

(ppbv) 

Normalized 

Mean Bias (%) 

American 

Samoa 

(14.2∘S, 

170.6∘W) 

333 0-530 km 0.74150.9975 0.21929.360.0094 3.270.0033-

0.0373 

-2.0813.9 

5-100-5 

km 

0.63990.7415 0.009411.670.011

7 

0.00331.020.001 13.92.91 

10-155-20 

km 

0.68190.9821 0.04420.016.84 -0.00060.0033.9 -0.4310.26 

15-2020-

30 km 

0.97370.9915 0.38110.73.766 -0.1158-0.006.52 -2.17-1.97 

Ascension 

Island 

(7.56∘S, 

14.22∘W) 

237 0-5 km0-

30 km 

0.767530.9958 0.27240.013.329 0.03210.002.54 1.825.6652 

5-10 km0-

5 km 

076730.5743.0

988 

14.070.01330.104 0.0025-

0.00440.76 

5.52-6.541.18 

10-15 

km5-20 

km 

0.92240.58047

99 

0.07290.0117.13 0.00450.007.018 3.2811.16 

15-20 

km20-30 

km 

0.98740.9654 0.47067.150.0671 0.09130.011.172 1.744.010 

Costa Rica 

(10.0∘N, 

84.1∘W) 

475 0-5 km0-

30 km 

0.9970.5276 0.24150.0110.95 -

0.02610.0054.98 

-1.4115.36 

5-10 km0-

5 km 

0.39730.5276 0.01114.040.014 0.0050.00090 15.362.0 

10-15 

km5-20 

km 

0.41340.98 0.045417.870.017

9 

0.00880.003.34 6.426.68 

15-20 

km20-30 

km 

0.97190.9907 0.417375.370.075

4 

-0.09510.022.04 -1.777.03 

135 0-5 km0-

30 km 

0.9970.7828 0.2289.530.0095 -

0.03470.001.869 

-2.176.7 
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Suva, Fiji 

(18.1∘S, 

178.4∘E) 

5-10 km0-

5 km 

0.75170.7828 0.00950.012.02 0.00190.00081 6.71.93 

10-15 

km5-20 

km 

0.79070.9806 0.0490.015.283 0.00470.007.152 3.3017.9 

15-20 

km20-30 

km 

0.97120.9891 0.41570.084.02 -

0.12730.0065.49 

-2.431.83 

San 

Cristobal, 

Galapagos 

(0.92∘S, 

89.6∘W) 

139 0-5 km0-

30 km 

0.74690.9964 0.28860.009.667 -0.05140.004.89 -2.6818.09 

5-10 km0-

5 km 

0.58618610.74

69 

0.012.85290.0097 0.00490.001.74 18.093.76 

10-15 

km5-20 

km 

0.59740.9787 0.018.560.0441 0.00140.0043.96 0.977.45 

15-20 

km20-30 

km 

0.96960.9889 0.072.430.4996 -0.1602-0.001.44 -2.86-0.45 

Hanoi, 

Vietnam 

(21.02∘N, 

105.8∘E) 

222 0-5 km0-

30 km 

0.72390.9955 0.25250.012.89 0.0224-0.001.13 1.4-2.16 

5-10 km0-

5 km 

0.66840.7239 0.01290.012.52 -

0.00110..000769 

-2.161.18 

10-15 

km5-20 

km 

0.75830.9645 0.06150.017.215 0.00980.007.091 7.0712.36 

15-20 

km20-30 

km 

0.95180.9845 0.44940.104.64 0.05780.021.99 1.157.26 

Hilo, HI, 

USA 

534 0-5 km0-

30 km 

0.74640.9973 0.012.320.2172 -0.0190.0065.96 -1.0315.68 

5-10 km0-

5 km 

0.6710.7464 0.015.5760.0123 0.0060.004.475 15.688.89 
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(19.4∘N, 

155.4∘W) 

10-15 

km5-20 

km 

0.97350.8724 0.023.8990.0664 0.00930.005.56 5.088.43 

15-20 

km20-30 

km 

0.95780.9906 0.111.230.3703 -

0.07490.017.879 

-1.404.11 
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Irene, South 

Africa 

(25.9∘S, 

28.2∘E) 

131 0-5 km0-

30 km 

0.61840.9962 0.23840.012.80 -0.0146-0.001.12 -0.80-2.13 

5-10 

km0-5 

km 

0.74890.6184 0.01280.012.01 -0.0011-

0.0021.95 

-2.13-3.058 

10-15 

km5-20 

km 

0.85030.9785 0.0560.016.798 -0.002.820.0027 1.42-3.22 

15-20 

km20-30 

km 

0.96680.9852 0.40550.095.31 -0.04660.012.879 -0.913.10 

Watukosek, 

Java, 

Indonesia 

(7.6∘S, 

112.7∘E) 

104 0-5 km0-

30 km 

0.55560.9932 0.013.620.3429 -0.001.940.0128 -5.20.76 

5-10 

km0-5 

km 

0.65850.5556 0.013.3940.0136 0.007.02-0.0019 20.22-5.2 

10-15 

km5-20 

km 

0.69110.9722 0.016.540.0492 0.012.0910.0154 40.9114.19 

15-20 

km20-30 

km 

0.96020.9802 0.082.6670.609 0.027.410.0167 10.440.32 

Kuala 

Lumpur, 

Malaysia 

(2.73∘N, 

101.7∘E) 

197 0-5 km0-

30 km 

0.4580.9965 11.190.01120.282 0.002.2930.0848 6.915.76 

5-10 

km0-5 

km 

0.59870.458 0.009.840.0112 0.003.3840.0023 9.196.91 

10-15 

km5-20 

km 

0.56140.9814 0.013.430.0425 0.003.6970..0114 9.479.96 

15-20 

km20-30 

km 

0.97320.9886 72.920.07290.5268 0.27.900.2662 10.145.52 
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Nairobi, 

Kenya (1.3∘S, 

36.8∘E) 

447 0-5 km0-

30 km 

0.62760.9976 0.009.840.2096 0.0040.01733.98 10.740.9001 

5-10 

km0-5 

km 

0.64380.6276 0.013.8990.0098 -0.170020.004 10.74-0.33 

10-15 

km5-20 

km 

0.65430.982 0.017.610.0392 -0.000920.0034 -1.532.48 

15-20 

km20-30 

km 

0.97580.9928 0.063.9540.354 0.011.340.0443 3.780.82 

Natal, Brazil 

(5.4∘S, 

35.4∘W) 

300 0-5 km0-

30 km 

0.81520.9976 0.010.500.2061 0.003.90-0.0022 10.48-0.12 

5-10 

km0-5 

km 

0.72340.8152 0.012.630.0105 -0.001.110.0039 -1.8810.48 

10-15 

km5-20 

km 

0.76150.9831 0.014.6870.0359 0.003.30-0.0015 5.17-1.04 

15-20 

km20-30 

km 

0.97640.9924 0.058.9690.3586 -0.006.42-0.0065 -2.13-0.12 

All 3254 0-5 km0-

30 km 

0.77120.9966 0.239511.320.0113 -0.00360.003.33 -0.209.197 

5-10 

km0-5 

km 

0.722141760.7712 0.01130.030813.38 0.00330.001.29 9.172.061 

10-15 

km5-20 

km 

0.81030.9742 0.018.130.0518 3.890.00390.0056 7.023.85 

15-20 

km20-30 

km 

0.96660.989 82.350.08230.4158 0.011.92-0.0213 3.61-0.4 
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 300 

Figure 5. Mean precipitation in NH ITCZ region RAQMS-Aura precipitation is on average biased 0.012 mm/hour (4.90%) lower 

than TRMM 3B43. RAQMS-Aura and TRMM 3B43 have a correlation of 0.715. 

 

Figure 6. Mean precipitation in SH maximum precipitation region. RAQMS-Aura precipitation is on average biased 0.038 mm/hour 

(13.53%) higher than TRMM 3B43. RAQMS-Aura and TRMM 3B43 have a correlation of 0.599. 305 
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3.32 ENSO Composites 

Based on comparison of RAQMS-Aura total precipitation with TRMM 3B43 we conclude that RAQMS-Aura reasonably 

reproduces convection over the Pacific Ocean, particularly within the ITCZ. RAQMS-Aura captures the observed variability 

reproduces in tropospheric ozone but has a ~2DU high bias relative to the OMI-MLS TOR.  columns and RAQMS-Aura 

captures the observed CO CO columns in the tropics very well very well. Based on comparison of RAQMS-Aura ozone 310 

profiles with SHADOZ profiles, we conclude that RAQMS-Aura reasonably capturesreproduces observed variability in 

tropical ozone profiles but overestimates the near-surface concentrations. To characterize the anomaly associated with ENSO, 

composites for El Niño and La Niña periods are generated for precipitation, convective mass flux, diabatic heating, ozone 

concentration, carbon monoxide, and net ozone production from monthly mean RAQMS-Aura analyses.  

3.32.1 Precipitation 315 

Composites of the de-seasonalized anomaly in precipitation for TRMM and RAQMS-Aura for positive ENSO and negative 

ENSO are given in figure 10 7. The TRMM and RAQMS-Aura composites are strongly correlated, with a spatial correlation 

of 0.77 for El Niño composites and 0.739 for the La Niña composites. The dominant feature of the El Niño phase in the TRMM 

data and RAQMS-Aura re-analysis is an enhancement of precipitation in the tropics east from 150°E to the western coast of 

Central America and suppressed precipitation over the maritime continent. RAQMS-Aura however diverges from observations 320 

by displaying suppression of precipitation in regions around 7.5°S-39°S, 150°W-120°W and 7.5°N-20°N, 150°E-180°E where 

precipitation is enhanced in TRMM. During the La Niña phase, precipitation is suppressed over the central Pacific and 

enhanced over the maritime continent. For both TRMM and RAQMS-Aura the El Niño and La Niña composites are near 

mirrors of one another, with the location of the maximum change shifted west during the negative phase from the positive 

phase.  325 
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Figure 710. Composited precipitation anomalies for El Niño in RAQMS-Aura (a) and TRMM 3B43 (b) and La Niña in RAQMS-

Aura (c) and TRMM 3B43 (d). Shaded regions indicate where the composite is significant at the 95% confidence level from a t test. 

3.32.2 Response of Tropospheric Total Column Ozone and Carbon Monoxide Column to ENSO 

ENSO composites for OMI-MLS TOR (Ziemke et al., 2006) and Measurements of Pollution in the Troposphere (MOPITT) 330 

CO (Emmons et al., 2004) are used to confirm the representativeness of RAQMS-Aura ENSO chemical signals. The OMI-

MLS TOR is a satellite residual product where total ozone columns from the OMI instrument and stratospheric columns from 

MLS instrument (both on-board the Aura satellite) are combined to infer the tropospheric ozone column. Both the OMI-MLS 

TOR and the MOPITT CO data used are monthly mean Level 3 products. 

Tropical tropospheric ozone column (TTOC) anomalies in RAQMS-Aura and the OMI-MLS TOR for the positive and negative 335 

phases of ENSO are shown in figure  811. TTOC anomalies are 1-2 DU larger during the positive phase of ENSO than in the 

negative phase. Within both the RAQMS-Aura TTOC and OMI-MLS TOR, El Niño is associated with an increase over the 

maritime continent and a decrease over the central and eastern Pacific Ocean. The decrease over the Pacific Ocean is flanked 

by increased concentrations to the north and south. Outside of the Pacific region, the tropospheric column anomaly associated 

with the ENSO phase is less than 1 DU. During La Niña, a small decrease in tropospheric ozone occurs over the maritime 340 

continent while an increase occurs over the central-eastern Pacific. The location of the peak decrease in TTOC in the eastern 

Pacific depicted in the El Niño composite is comparable to that found by Oman et al. 2011 and Olsen, Wargan, and Pawson 

2016., Ewhile in the earlier studies of Peters et al., 2001, Doherty et al., 2006, and Ziemke and Chandra, 2003 show this peak 

decrease in TTOC is more towards the southeast. As our analysis is consistent with observations, the differences from earlier 
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analyses are likely due to variability in ENSO and the influence of the large 2015 El Niño event during the 2006-2016 period 345 

under consideration in this study.  

 

Figure 811. Composited TTOC anomalies associated with El Niño in RAQMS-Aura (a) and OMI-MLS TOR (c) and La Niña in 

RAQMS-Aura(b) and OMI-MLS TOR(d). Shaded regions indicate where the composite is significant at the 95% confidence level 

from a t test. 350 

CO column anomalies for RAQMS-Aura and MOPITT are presented in figure 912. MOPITT CO anomalies appear nosier due 

to the sparse spatial sampling of the MOPITT instrument. RAQMS-Aura reproduces ENSO-related variability in CO as 

observed by MOPITT with both El Niño and La Niña composites having a spatial correlation of 0.850. RAQMS-Aura CO 

column is on average increased across the tropics during El Niño, with stronger enhancements of 0.4 x 1018 mol/cm2 observed 

over the maritime continent. Enhanced CO over the maritime continent is tied to enhanced biomass burning during El Niño as 355 

precipitation is suppressed, increasing fuel aridity, and thereby increasing susceptibility to fire (Reid et al., 2013; van der Werf 

et al., 2017; Yin et al., 2016). RAQMS-Aura CO column decreases over the maritime continent during La Niña and is enhanced 

over South America. During La Niña, rainfall is enhanced over the maritime continent, resulting in CO decreases as fires are 

suppressed. 
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 360 

Figure 912. Composited CO column anomalies associated with El Niño in RAQMS-Aura (a) and MOPITT (c) and La Niña in 

RAQMS-Aura(b) and MOPITT(d). Shaded regions indicate where the composite is significant at the 95% confidence level from a t 

test.    

3.23.3 Vertical structure of tropospheric response to ENSO 

As this study utilizes reanalysis data, we can provide further context to the patterns in TTOC and CO columns. In particular, 365 

we explore how the vertical structure of convective mass flux, large-scale diabatic heating, and ozone production/loss terms 

respond to ENSO. Meridionally averaged vertical profile cross sections are calculated between 7.5°S and 2.5°N. This latitude 

band was selected as it cuts across the maximum and minimum precipitation anomalies associated with ENSO (fig 107) and 

for consistency with the cross-sections analyzed by Doherty et al. 2006. 

Convective mass flux anomalies between 7.5°S and 2.5°N for the positive and negative phases of ENSO are presented in 370 

Figure 130. The strongest convective mass flux anomaly is over the Pacific Ocean during both the positive and negative phase 

of ENSO. This strong convective mass flux anomaly is also where the absolute maximum precipitation anomaly occurs, which 

is expected given the dominance in convective precipitation in this region. Diabatic heating anomalies presented in figure 114 

are qualitatively similar to the convective mass flux ENSO anomalies. This is because the majority of the diabatic heating in 

this region is associated with the large-scale response to sub-grid-scale convective precipitation. The convective mass flux and 375 

diabatic heating anomalies during El Niño indicate decreased upward vertical transport over the maritime continent where 

precipitation is suppressed and increased upward vertical transport over the central Pacific where precipitation is enhanced. 

Conversely, the convective mass flux and diabatic heating anomalies during La Niña both indicate enhanced vertical transport 

over the maritime continent and increased downward vertical transport over the central Pacific. In Doherty et al. 2006 and 

Sudo and Takahashi 2001 the positive and negative mass flux anomalies are of similar magnitudes while here the negative 380 

flux anomaly over Micronesia is ½-⅓ the strength of the anomaly over the central-eastern Pacific. This may be a consequence 
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of the high bias in precipitation over Micronesia in the RAQMS-Aura reanalysis, as the precipitation anomaly El Niño 

composite indicates that precipitation is not suppressed as much as in observations over the region. However, these differences 

in the strength of the vertical motion anomalies are consistent with the ENSO precipitation anomaly over the central Pacific 

being larger than that of the anomaly over the maritime continent in TRMM observations and RAQMS-Aura analyses. The 385 

precipitation and mass flux anomaly patterns display suppressed (enhanced) vertical motion over the Pacific and enhanced 

(suppressed) vertical motion over the maritime continent during the negative (positive) phase. 

 

Figure 91103. RAQMS-Aura convective mass flux (CMFLX) anomalies for a) positive and b) negative ENSO phases. Shaded regions 390 
indicate where the composite is significant at the 95% confidence level from a t test. 
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Figure 101114. RAQMS-Aura diabatic heating anomalies (colors) and theta (contours) for a) positive and b) negative ENSO phases. 

Ozone anomaly cross-sections associated with ENSO are presented in Figure 125. During El Niño the tropospheric ozone 

anomaly extends across the depth of the troposphere over the maritime continent, with two distinct stronger (>3 ppbv) 395 

enhancements above 550 hPa and below 700 hPa. Over the central Pacific (from 160°E to 140°W) where the convective mass 

flux is enhanced in the El Niño composite through the depth of the troposphere, a decrease in the ozone concentration of 3-5 

ppbv occurs. The lower troposphere enhancement over the maritime continent is accompanied by a positive anomaly in net O3 

production (fig 147a), indicating that some of the enhancement in TTOC over the maritime continent during El Niño is due to 

enhancement in chemical production and not solely due to shifts in the circulation pattern. The El Niño ozone anomaly cross-400 

section is <1 ppbv throughout the majority of the troposphere off the South American Coast, indicating that the TTOC decrease 

is due to the decreased (>9 ppbv) concentrations near the tropopause, above 200 hPa. The La Niña ozone anomaly cross-

section  section shows enhancement in ozone over the central Pacific and decrease over the maritime continent. Over the 

maritime continent a distinct stronger (>2 ppbv) decrease is seen below 700 hPa and above 350 hPa. Tropical upper troposphere 

ozone is also impacted by the quasi-biennial oscillation (QBO) (Oman et al., 2013)., Wso we evaluated the QBO signatures 405 

for both zonal mean zonal wind and ozone. We find RAQMS-Aura does a reasonable job of capturing the stratospheric QBO 

signal in both zonal mean zonal winds and ozone. However, we find the influence of the QBO on RAQMS-Aura ozone in the 

tropical upper troposphere is smaller than the of ENSO influence during the 2006-2016 period considered in this study 

(Supplement). 
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 410 

Figure 111125. Anomalies in RAQMS-Aura ozone profiles below the tropopause associated with a) El Niño and b) La Niña. Shaded 

regions indicate where the composite is significant at the 95% confidence level from a t test. 

CO anomaly cross-sections for each ENSO phase are presented in figure 136. Tropical CO is anomalously high during El Niño 

and anomalously low during La Niña. Tropical CO is enhanced over the maritime continent during El Niño throughout the 

tropical troposphere, with the strongest enhancement near the surface indicative of a strong increase in biomass burning 415 

emissions. The near-surface enhancements in CO over South America and Africa during El Niño are also likely tied to CO 

emissions from biomass burning, though these enhancements are not spread through the depth of the troposphere as occurs 

over the maritime continent. The negative CO anomalies associated with La Niña are largest over the maritime continent and  

presentand are present through the depth of the troposphere. The enhancement in CO Column over South America associated 

with La Niña is not present in the La Niña vertical cross-section as it is to the south of the latitudes used to generate the cross-420 

section composite. 

 

Figure 121136. Anomalies in RAQMS-Aura CO profiles below the tropopause associated with a) El Niño and b) La Niña. Shaded 

regions indicate where the composite is significant at the 95% confidence level from a t test. 
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Net ozone production (production - loss terms) anomalies are presented in Figure 147. RAQMS has standard hydrogen oxides 425 

(HOxx), chlorine oxides (ClOx), bromine oxides (BrOx), and NOx ozone photochemistry (Eckman et al., 1995) with Carbon 

Bond-Z (CB-Z) (Zaveri and Peters, 1999) treatment of non-methane hydrocarbon chemistry. Chemical production and loss are 

calculated explicitly for the Ox family, which in RAQMS includes O(1D), O(3P), O3, NO2, HNO3, NO3, N2O5, HNO4, PAN 

(peroxynitrates), and MPAN. Since the shifts in precipitation within the tropics are largely associated with shifts in convective 

clouds (fig. 1) and the photolysis rates in RAQMS respond only to changes in atmospheric transmittance due to large-scale 430 

resolved clouds, changes in net ozone production associated with changes in convective cloud distributions are not  accounted 

for in this studyrelated to changes in photolysis rate.  The largest net ozone production anomalies are closest to the surface and 

below 700 hPa. The change in net ozone production is smaller in La Niña than El Niño. Enhanced production of 2-3 ppbv/day 

is found over central Africa, Indonesia, and the Amazon rainforest in Brazil. These regions show reductions of ~ 1.3 ppbv/day 

in ozone production in the La Niña composite. El Niño is known to increase fire emissions in Indonesia as a consequence of 435 

the decreased rainfall over the region (Field et al., 2016; Park et al., 2021), and so the increased production of ozone during El 

Niño captured by RAQMS-Aura is likely to be partially due to enhanced chemical production of ozone in biomass burning 

plumes. Enhanced production during El Niño occurs over all 3 biomass burning regions but only the maritime continent shows 

a significant (>4 ppbv) enhancement in O3 below 700 hPa. In contrast, the enhanced production over South America and Africa 

is associated with weak (<2 ppbv) ozone enhancement. The average winds below 800hPa during El Niño over South America 440 

(not shown) are northeasterly, resulting in transport of the ozone associated with biomass burning to the south and out of the 

latitudes included in the cross-section (7.5°S to 2.5°N). Over the maritime continent, the average winds below 750 hPa are 

southerly and decline in strength through the cross-section. Based on these wind patterns, ozone associated with biomass 

burning over the maritime continent experiences less meridional transport and has stronger influences on the ozone profile 

within this meridional cross-section. 445 

 

Figure 131147. Anomalies in RAQMS-Aura net O3 production associated with a) El Niño and b) La Niña. Shaded regions indicate 

where the composite is significant at the 95% confidence level from a t test. 
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3.43 EOF Analysis 

In addition to composite analysis, Empirical Orthogonal Function (EOF) analysis is used to investigate the role played by 450 

ENSO in TTOC variability. The first EOF of TTOC has been previously found to be associated with ENSO, while TTOC 

EOFs 2 and 3 are uncorrelated with ENSO (Doherty et al., 2006; Sekiya and Sudo, 2012). ENSO positive and negative phases 

are near opposites of each other, and so it is reasonable to expect that much of the variability associated with ENSO can be 

captured with a single EOF. The EOF spatial patterns are displayed for TTOC, precipitation, and CO column in figures 15, 16, 

and 178, 19, and 20. PC time series are presented in figure 2118, alongside the Niño 3.4 index for reference.  455 

3.43.1 EOFs 

EOF patterns for TTOC are displayed in figure 185. The TTOC PC1 has a temporal correlation of 0.747 with the Niño 3.4. 

The associated EOF indicates a 2-2.5 DU enhancement over the maritime continent and a 1.6-2 DU decrease over the Pacific 

(figure 1815a). EOF1 captures similar features to those in the El Niño TTOC composite, though the enhancement in TTOC 

near Vietnam is weaker relative to the enhancement near Indonesia in the EOF compared to the composite. TTOC PC2 and 460 

PC3 are weakly correlated with the Niño 3.4 index, with temporal correlations of -0.144 and -0.209 respectively. TTOC EOF2 

explains around half as much variance as TTOC EOF1 and shows a wave 1 like pattern with a peak in the northeast Pacific. 

TTOC EOF3 accounts for changes of less than 1 DU on average, and a maximum near 3 DU. At the most, this is ~10% of the 

mean TTOC and less than 1% on average. TTOC EOF3 captures an increase across the equatorial Pacific and decreases 

elsewhere.  465 
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Figure 141158. Patterns for RAQMS-Aura TTOC EOF 1-3, scaled by 1 standard deviation of the associated PC. EOF1 explains 

17.20% of the non-seasonal variance in TTOC, EOF2 explains 8.70% and EOF3 explains 6.00%.   

EOF patterns for total precipitation are displayed in figure 196. The precipitation PC1 is strongly correlated with the Niño 3.4 

index, with a temporal correlation of 0.870, as well as a strong temporal correlation with the TTOC PC1 (0.818).  The associated 470 

EOF pattern is ssimilar to the El Niño precipitation composite in figure 107a, though the magnitude of the decreased 

precipitation in the western Pacific relative to the enhancement in the central Pacific is smaller than in the composite. 

Precipitation EOFs 2 and 3 combined capture a similar amount of the variabilityvariability in precipitation as EOF1 alone. 

Their PCs are not correlated with the Niño 3.4 index, with a PC2 temporal correlation of -0.02, and a PC3 temporal correlation 

of -0.093. The EOF2 pattern depicts a small, localized enhancement in the central southern Pacific oceanPacific Ocean, slightly 475 
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stronger enhancements of ~0.06 mm/hour in the Caribbean and NW equatorial Pacific, and decreased precipitation in the 

remainder of the northern hemisphere Pacific. The EOF3 pattern accounts for changes of <0.03 mm/hour on average. The 

largest of these small changes are a decrease in precipitation in the central Pacific to the east of where the maximum 

precipitation anomaly associated with ENSO is located. Precipitation PC3 has a correlation of 0.695 with TTOC PC2, indicating 

there is some co-variability between the two. 480 

 

Figure 151169. Patterns for RAQMS-Aura total precipitation EOF 1-3, scaled by 1 standard deviation of the associated PC. EOF1 

explains 8.33% of the non-seasonal variance in total precipitation, EOF2 explains 4.73% and EOF3 explains 4.46%.   

EOF patterns for CO column are displayed in figure 1720. Inter-annual variability in tropical CO has been shown to be 

predominately influenced by biomass burning emissions (Rowlinson et al., 2019). All 3 CO column EOF patterns appear to 485 
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be heavily influenced by extreme biomass burning events, as the strongest changes are over the maritime continent and South 

America and the peaks in the PCs correspond with years with enhanced biomass burning in the regions highlighted by the 

largest values in the EOF (eg. van der Werf et al., 2017). CO PC amplitude peaks are larger than 2 for PC1 in late 2015; PC2 

in 2006, 2007, 2010, and 2015; and PC3 in 2006, 2015, and 2016 (figure 2118). EOF1 explains 46.96% of the non-seasonal 

variance in CO, while EOF2 explains 9.46% and EOF3 explains 6.48%.   490 

 

Figure 1720. Patterns for RAQMS-Aura CO Column EOF 1-3, scaled by 1 standard deviation of the associated PC. EOF1 explains 

46.96% of the non-seasonal variance in CO column, EOF2 explains 9.46% and EOF3 explains 6.48%.   
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Figure  2118. Timeseries of PC1 (a), PC2 (b), and PC3 (c) for TTOC, total precipitation, and CO Column. Niño 3.4 Index time series 495 
included for reference. 

 Most variability in CO columns from 2006-2016 is explained by EOF1. The physical pattern is indicative of a tropics-wide 

decrease (increase) in CO, with the peak change of ~0.3 x 1018 mol/cm2 centered over the maritime continent. CO PC1 has a 

temporal correlation of -0.399 with the Niño 3.4 index, which indicates an ENSO influence on CO variability. Additionally, 

CO PC1 is temporally correlated with precipitation PC1 (-0.435), suggesting that ENSO related changes in precipitation 500 

contribute to the ENSO driven CO variability. This is consistent with precipitation influences on biomass burning.  The CO 

EOF2 pattern shows CO column enhancements over Brazil and decreases over the maritime continent. CO PC2 has a temporal 

correlation of -0.297 with the Niño 3.4 index, and temporal correlation of -0.435 with TTOC PC1, suggesting that ENSO 
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related changes in CO contribute to ENSO driven TTOC variability. EOF3 pattern again highlights the maritime continent and 

Brazil varying together, with an opposing change in CO across the Pacific. CO PC3 displays a correlation of -0.145 with the 505 

Niño 3.4 index.  

3.43.2 Multiple Linear Regression reconstruction of TTOC PC1 

From the composite analyses we are able to show that ENSO related shifts in precipitation correspond with changes in vertical 

motion, CO concentration, net ozone production, and tropospheric ozone concentrations. The composite analysis also indicates 

that some of the enhancement in TTOC over the maritime continent during El Niño is due to enhanced production of ozone 510 

from biomass burning emissions. The EOF analysis further links variation in biomass burning to the TTOC variation as CO 

PCs 1 and 2 are mildmoderately temporally anti-negatively correlated with TTOC and precipitation PC1. This negative 

correlation is due to the suppression of biomass burning during precipitation. To quantify the relative importance of dynamical 

and biomass burning variability on ENSO related variability in TTOC, a multiple linear regression analysis is constructed 

using the principal components. The regression equation is shown in equation (1). 515 

PC1TTOC = w1PC1CO+ w2PC2CO+ w3PC3CO + 𝑤4𝑃𝐶1𝑝𝑟𝑒𝑐𝑖𝑝 + 𝑒  (1) 

The principal components are from the EOF analysis; w1, w2, w3, w4w1, w2, w3, w4, and e are regression coefficients as 

determined using a least squares fit.. The resulting regression model is shown in equation (2). 

PC1TTOC = 0.11* PC1CO –  0.2 ∗  PC2CO+0.004*PC3CO + 0.8 ∗ 𝑃𝐶1𝑝𝑟𝑒𝑐𝑖𝑝 –  3.3𝑥10−10 (2)  

This multiple PC regression reproduces the PC1TTOC very well, with the regression-based estimate correlating with the original 520 

PC1TTOC at 0.85 (fig 2219a).    
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Figure  2219. a) TTOC PC1 from EOF analysis and reconstructed from multiple linear regression. b) Contribution to regression of 

Precipitation PC1 and combined contribution of CO PCs 1-3. 525 

The strongest weighted PC in the regression is the precipitation PC1, which is expected given its strong correlation with TTOC 

PC1. This supports the result from Doherty et al. 2006 and Inness et al. 2015  that ENSO variability in TTOC is primarily 

driven by convective transport. The weights for CO PC1 and PC2 are also significant, indicating that CO, as a proxy for biomass 

burning, also contributes to TTOC variability.  

A timeseries showing breaking down the contributions of precipitation PC1 and the combined CO PCs to the TTOC PC1 530 

predicted by the regression is shown in figure 2219b. The precipitation PC1 regression contribution is positive during El Niño 

periods and negative during La Niña periods. The combined regression contribution of the CO PCs shows that variability in 

CO contributes to ENSO variability in TTOC in an episodic way. As the CO column anomaly is linked to anomalous biomass 

burning emissions and net ozone production near the surface, it can be concluded that a portion of the ENSO variability in 

TTOC is due to biomass burning though it is a smaller portion than that linked to the dynamical effects of ENSO.  535 
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Additionally, each component of the regression can beis removed independently in order to evaluate the impact of co-

variability between the CO PCs and precipitation PC1 on the overall fit. RMSE and R2 for the standard fit and the alternate fits 

are given in table 2. R2 is maximized and RMSE minimized for the case where all CO PCs are considered. The poorest fit is 

obtained when precipitation PC1 is removed. The linear regression that relates ENSO TTOC variability to only ENSO 

precipitation variability performs similarly to the regression with CO PC2 removed, highlighting that the redistribution of O3 540 

and O3 precursors by convection is the most significant contributor to ENSO variability in TTOC. The best regression fits (R2 

>0.7) include CO PC2 and precipitation PC1. This confirms that while variability in CO is not independent of precipitation, it 

does meaningfully contribute to ENSO variability in TTOC. 

Table 2. RMSE and R2 for TTOC PC1 multiple linear regression models. 

Regression equation R2 RMSE 

PC1TTOC = 0.11* PC1CO –  0.2 ∗ PC2CO+0.004*PC3CO + 0.8

∗ 𝑃𝐶1𝑝𝑟𝑒𝑐𝑖𝑝 –  3.3𝑥10−10 

0.724 0.5258 

PC1TTOC = -0.2177*PC2CO - 0.0526*PC3CO + 0.7440 ∗ 𝑃𝐶1𝑝𝑟𝑒𝑐𝑖𝑝  

−  2.072𝑥10−10 

0.714 0.5347 

PC1TTOC = 0.1433*PC1CO  −  0.0262*PC3CO + 0.8752 ∗ 𝑃𝐶1𝑝𝑟𝑒𝑐𝑖𝑝  

−  4.507𝑥10−10 

0.687 0.5591 

PC1TTOC = 0.1151*PC1CO - 0.1984*PC2CO + 0.8102 ∗ 𝑃𝐶1𝑝𝑟𝑒𝑐𝑖𝑝  

−  5.293𝑥10−10  

0.722 0.5273 

PC1TTOC = -0.2373*PC1CO - 0.4351*PC2CO - 0.2023*PC3CO + 9.887𝑥10−10 0.287 0.8446 

PC1TTOC = 0.812 ∗ 𝑃𝐶1𝑝𝑟𝑒𝑐𝑖𝑝 −  4.777𝑥10−10 0.669 0.5750 

 545 

As inferred from the regression, El Niño increases in TTOC over the maritime continent are associated with are linked to CO 

PC1 CO enhancements in CO over the maritime continent while CO PC2 is associated with enhancements in CO over South 

America and Africa and decreases over Indonesia. Timeseries of the CO column and TTOC anomalies (not shown) have a 

temporal correlation of 0.668 over the maritime continent and 0.566 over South America. The TTOC and CO anomalies over 

the maritime continent are positive during El Niño events and negative during La Niña events. Over South America, the sign 550 

of the TTOC and CO anomalies are less consistent with ENSO phase.  

3.54 2015/2016 extreme El Niño 

Through the satellite era, extreme El Niño events in 1982/1983, 1997/1998, and 2015/2016 have been observed alongside 

weak and moderate events. These extreme events have a larger impact on the distribution of TTOC and have a larger 

contribution from biomass burning emissions than weaker El Niño events (Doherty et al., 2006; Inness et al., 2015). The 555 

2015/2016 extreme El Niño was the strongest El Niño since the 1997/1998 event (Santoso et al., 2017). 2015 and 1997 are 
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also among the most extreme maritime continent biomass burning events, with 1997 ranking first followed by 2015 in an 

analysis of surface visibility at airports in Sumatra and Kalimantan from 1990-2015 (Field et al., 2016). Here we investigate 

how the inclusion of the 2015 extreme El Niño influences our interpretation of the importance of biomass burning on TTOC 

ENSO variability.  As in prior analyses (Chandra et al., 1998, 2009; Sudo and Takahashi, 2001), we focus on October as 560 

biomass burning in the maritime continent peaks around October and would have its greatest impact on TTOC around the 

same time (Field et al., 2016). In RAQMS-Aura, the CO PC amplitudes have the largest variability in October and the largest 

contributions of the CO PCs to the TTOC PC1 regression occur in October.   
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Figure 2203. RAQMS-Aura October 2015 a) TTOC anomaly, b) convective mass flux anomaly, and c) tropospheric ozone profile 565 
anomaly, d) P-L, e) CO. 
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The RAQMS-Aura 2015 October TTOC anomaly is shown in figure 230a. This pattern is similar to the October 1997 anomaly 

in TTOC modeled by Sudo and Takahashi 2001 with an increase over the maritime continent that is 2-3 times stronger than 

the decrease over the eastern Pacific. However, the peak decrease over the eastern Pacific is more towards the central Pacific 

during 2015 than in 1997. The maximum increase over the maritime continent is 10-15 DU in October 2015, less than the 570 

maximum 20-24 DU increase in October 1997. RAQMS-Aura TTOC increases over South America in October 2015 by 1-4 

DU, while the Sudo and Takahashi simulated October 1997 changes by less than 2 DU over South America. These differences 

over Africa and South America in 2015 versus 1997 are consistent the differences in patterns of convective mass flux. In 2015 

mass flux is decreased aloft over Brazil and Africa (fig 2023b), while in 1997 changes in mass flux over Brazil and Africa are 

weaker and are slightly positive (Sudo and Takanashi, 2001). The core of the upward mass flux anomaly over the Pacific is 575 

~30-40 degrees closer to the dateline in 2015. 

Over the maritime continent, the ozone concentration anomaly below 650 hPa is stronger than in the 2006-2016 El Niño 

average (fig 203c). This is linked to stronger ozone production in October 2015 (fig 203d). This enhancement in O3 production 

in 2015 is likely due to increased fire activity, as CO column is increased throughout the tropics in 2015 (fig 203e) and the CO 

anomaly over the maritime continent is more widespread and stronger by ~0.2x1018 mol/cm2 than the 2006-2016 El Niño 580 

average. There is also an enhancement in CO, ozone, and net ozone production over South America in October 2015 relative 

to the 2006-2016 El Niño composite. This shows that the biomass burning activity in 2015 was anomalous compared to the 

other El Niño years included in the RAQMS-Aura reanalysis, with significant burning occurring over both South America and 

the maritime continent.  

4 Conclusions 585 

The RAQMS-Aura reanalysis captures observed ENSO variability in TTOC, CO, and precipitation. ENSO composites of 

tropospheric ozone, carbon monoxide, convective mass flux, diabatic heating, and ozone net chemical production show that 

the observed ENSO signatures in TTOC result from a combination of convective redistribution and variability in production 

of ozone from biomass burning emissions, which are modulated by ENSO variability in precipitation. The location of the peak 

decrease in TTOC resulting from increased vertical motion in the eastern Pacific depicted in the El Niño composite found by 590 

this study is comparable to other studies of TTOC variability in the 2000s and 2010s (Olsen et al., 2016; Oman et al., 2011). 

The location of the peak decrease in TTOC contrasts with that found by analyses of 1970s-2000 where it is more towards the 

southeast and near the South American coast (Doherty et al., 2006; Peters et al., 2001; Ziemke and Chandra, 2003). The 

RAQMS-Aura El Niño TTOC composite is in agreement with the El Niño composite OMI-MLS TOR observations, and the 

analysis of convective flux indicates that the ozone decreases over the central Pacific are due to enhanced vertical motion. 595 

Therefore, we believe the difference in position of the peak decrease in TTOC is due to characteristics of El Niño during our 

analysis period. El Niño events from 2006-2016 were predominately El Niño Modoki events, while El Niño events between 

1979 and 2002 display greater variability in type of El Niño and includes more canonical ENSO events (Hou et al., 2016; Lee 
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and McPhaden, 2010; Santoso et al., 2017). The ascending branches of Walker circulation cell is over the central Pacific during 

El Niño Modoki (Ashok et al., 2007), while during canonical El Niño the ascending branch is over the eastern Pacific. Since 600 

TTOC is decreased where vertical motion is enhanced during ENSO and increased where vertical motion is suppressed, it is 

expected that under El Niño Modoki conditions the largest decrease in TTOC will be in the central Pacific with TTOC increases 

in the western and eastern Pacific. This response of TTOC to El Niño Modoki is shown by Hou et al. 2016 and is in-line with 

the El Niño RAQMS-Aura TTOC anomaly composite calculated by this study (Fig 911a). 

The strongest ENSO variability in tropospheric ozone is shown to occur near the tropopause. An enhancement in ozone below 605 

700 hPa during El Niño occurs over the maritime continent that is dependent on the magnitude of the biomass burning 

emissions. The EOF analyses and multiple linear regression further indicate that ENSO variability in TTOC is driven by shifts 

in the location of the ascending and descending branches of the Walker circulation. The EOF and multiple linear regression 

analyses also indicate that variability in biomass burning, as inferred from CO anomalies, contributes to ENSO variability in 

TTOC. During the 2015/2016 strong El Niño event TTOC, CO, and convective mass flux anomalies were stronger than in the 610 

weaker ENSO events captured by the RAQMS-Aura reanalysis. The 2015 CO concentrations align with the mode captured by 

CO EOF1 while the other El Niño years in our analysis align with the mode in CO EOF2. Biomass burning enhanced TTOC 

and CO anomalies occurred over both South America and the maritime continent in October 2015 in contrast to the other El 

Niño years between 2006 and 2016 where biomass burning enhanced TTOC and CO was only found over the maritime 

continent.   615 
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