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Abstract. We present gridded surface air quality datasets over South Korea for three key species – ozone (O3), carbon 5 

monoxide (CO), and nitrogen oxides (NOx) during the timeframe of the Korea–US Air Quality (KORUS–AQ) mission (May–6 

June 2016). The tenth degree hourly averaged abundances are constructed from the 300+ air quality network sites using inverse 7 

distance weighting with simple declustering. Cross–comparing the interpolated fields against the site data that was used to 8 

create them reveals high prediction skill for O3 (80%) throughout South Korea, and moderate skill (60%) for CO and NOx on 9 

average in densely observed regions after individual mean bias corrections. The gridded O3 and CO interpolations predict the 10 

NASA DC–8 observations in the planetary boundary layer (PBL) with high skill (80%) in the Seoul Metropolitan Area (SMA) 11 

after subtracting the mean bias. DC–8 NOx observations were much less predictable on account of consistently negative vertical 12 

gradients within the PBL. Our gridded products capture the mean and variability of O3 throughout South Korea, and of CO 13 

and surface NOx in most site–dense urban centres (SMA, Cheongju, Gwangju, Daegu, Changwon, and Busan). 14 

1 Introduction 15 

Air quality control has become a priority in the Republic of Korea following an upward trend in ozone (O3) pollution in all 16 

major cities since the 1980s (Susaya et al., 2013). In May–June 2016, the Korea–US Air Quality (KORUS–AQ) mission was 17 

launched with the goal of improving knowledge of the factors controlling Korean air pollution; this mission gathered extensive 18 

observational data via aircraft, ground stations, ships, and remote sensing (Crawford et al., 2021). 19 

Comparisons of modelled grid–cell values (i.e., averages) with point data from station sites remains awkward, 20 

especially in high–emission environments with high sub–grid and temporal variability. Ground site comparisons in South 21 

Korea have thus far used the arithmetic mean of sites within a grid cell or ungridded quantile analysis (Lennartson et al., 2018; 22 

Peterson et al., 2019; Eck et al., 2020; Jordan et al., 2020; Schroeder et al., 2020; Park et al., 2021; Oak et al., 2022; Travis et 23 

al., 2022), but these unweighted means can be biased by site clustering, and they lose information outside the cells. In this 24 

work we develop a gridded dataset of key surface–level pollutants (in this case, O3, NOx, CO) observed during the KORUS–25 

AQ timeframe. In contrast to arithmetic means, we apply Inverse Distance Weighting (IDW) interpolations (Shepard, 1968) 26 

improved by Schnell et al. (2014) to create a country–wide continuous mapping of the National Institute of Environmental 27 

Research (NIER) ground site data. We subsequently integrate the interpolated field over a 0.1°x0.1° grid. To evaluate the 28 

interpolation, we predict NIER station measurements using the leave–one–out cross validation method; we predict 29 
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observations from two research sites (Olympic Park and Taehwa Forest) to verify instrumental cohesion; and, we compare our 30 

gridded fields with DC–8 observations within the planetary boundary layer (PBL) to gauge how well the data products 31 

reproduce upper PBL abundances. In addition to providing gridded PBL datasets, we discuss the applicability and limitations 32 

of our methodology for each key species. 33 

The observational data sets are described in Section 2, and the methods in Section 3. Results are summarized in 34 

Section 4. Conclusions and recommendations are presented in Section 5.  35 

2 KORUS–AQ data 36 

All the KORUS-AQ datasets introduced in this section are publicly available via 37 

https://doi.org/10.5067/Suborbital/KORUSAQ/DATA01. 38 

2.1 NIER air quality stations 39 

The AirKorea monitoring network (https://www.airkorea.or.kr/eng) provided ground measurements of the key species 40 

averaged every 5 minutes at 323 stations across South Korea, of which 319 reported O3, 311 reported CO, and 321 reported 41 

NOx (Fig. 1). We calculate hourly median readings centred on the hour for each station, but discard clearly erroneous O3 and 42 

NOx dropouts. These dropouts are manifest as stably low concentrations (1–4 ppb) persisting for multiple hours in stark contrast 43 

with the typical variability at the site. We were able to flag most dropouts algorithmically by analyzing the cumulative density 44 

functions (CDFs) of the station data partitioned into non–overlapping weekly intervals; improbably frequent low data often 45 

featured flat empirical gradients (less than 100th of the median CDF gradient) at the tail of the CDF. This technique proved 46 

insufficient at some stations however, and so we manually removed dropouts that were not flagged by our algorithm, as did 47 

Eck et al, 2020. The NIER instruments and procedures are not well documented and there remain some oddities: CO was 48 

reported with 1 ppb precision at 68 sites, and with 100 ppb precision at the remaining 250 sites. 49 

2.2 Research stations 50 

2.2.1 Olympic Park 51 

The Olympic Park research station lies at the southeast edge of Seoul at 37.5216°N, 127.1242°E, 30 m above sea level, and 52 

served as a reference for ground–level Seoul pollution during the KORUS–AQ campaign (red star in Fig. 1). Hourly averages 53 

for the key species were recorded using NOx–Ecotech EC9841, CO–Ecotech EC9830, and O3–Ecotech EC9810 instruments 54 

(PI: Cho Seogu) during the KORUS–AQ period (10 May 01:00:00 to 18 June 00:00:00 LT). As Olympic Park station has four 55 

proximal NIER stations within 5 km, reproducing this research station data from the NIER interpolation should be a test of the 56 

small scale variability of Seoul pollution provided the instruments are well calibrated.  57 
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2.2.2 Taehwa Forest 58 

The Taehwa Forest wilderness site lies 30 km southeast of Olympic Park at 37.3123°N, 127.3105°E and at 200 m elevation 59 

(blue star in Fig. 1).  It was used primarily to investigate the mixing of urban Seoul pollution with the biogenic volatile organic 60 

compounds (BVOCs) of the forest. The three key species were measured by the existing NIER instruments (PI: Youngjae Li), 61 

but supplemented by a Thermo Scientific 42i instrument for NO and a Cavity Ring–Down Spectroscopy for NO2 (PI: Kim 62 

Saewung, Kim et al., 2022). 63 

 64 

Figure 1: (Left) The geographical distribution of NIER ground stations and the two surface research stations operating during 65 

the KORUS–AQ campaign. High–precision stations (white circles) recorded CO at 1 ppb precision; low–precision stations 66 

(grey circles) recorded CO at 100 ppb increments. (Right) Effective NIER station density (colour) within a 10 km radius (𝑄, 67 

see Eq. (3)) gridded over 0.1°x0.1° cells. The number of contiguous DC–8 flight transects through each box in the PBL is 68 

printed in each cell. The aircraft radar altitude was evaluated against the ERA5 PBL height (based on hourly 0.25°x0.25° 69 

gridded data, Hersbach et al., 2023). The ERA5 data was interpolated in time to match the aircraft data.  70 

2.3 NASA DC–8 71 

The DC–8 aircraft routinely profiled the air over Taehwa Forest via loop manoeuvres in the morning and afternoon on flight 72 

days between 2 May 2016 and 11 June 2016. It sampled other regions above South Korea and the Yellow Sea according to 73 

pollution plume transport and cloud forecasts. We use the 10 s merged data our three key species: O3, NO, and NO2 were 74 

measured with a 4–channel chemiluminescence instrument (Weinheimer et al., 1994); and CO, by Differential Absorption 75 
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Carbon monOxide Measurement (DACOM) (Sachse et al., 1991). We also use the 10 s data for latitude, longitude, radar 76 

altitude, UTC time, and potential temperature (PI: Melissa Yang). From the DC–8 potential temperature measurements and 77 

ERA5 surface data (Fig. A1) we can show that the ERA5 PBL heights accurately select DC–8 observations that are 78 

adiabatically mixed from the surface (i.e., dθ/dz ~ 0), which is confirmed by the afternoon O3 and CO profiles (Fig. A2). To 79 

determine when the aircraft was in the PBL and thus could be compared with the interpolated surface map, we use the ERA5 80 

PBL height data from reanalysis (hourly, 0.25°x0.25° grid, Hersbach et al., 2023). This approach is more accurate than simply 81 

assuming that all DC–8 observations below 1.5 km radar altitude fall within the PBL (e.g., Oak et al., 2019). 82 

3 Methods 83 

Interpolation techniques compute an objective estimate 𝑍′(𝑥, 𝑡) of a field 𝑍(𝑥, 𝑡) at any geographic location 𝑥 and time 𝑡 as a 84 

weighted mean of observations 𝑍𝑘(𝑡) at stations indexed by 𝑘 with weights 𝑤𝑘(𝑥): 85 

     𝑍′(𝑥, 𝑡) = ∑ [𝑤𝑘(𝑥)𝑍𝑘(𝑡)]𝑘 / ∑ 𝑤𝑘(𝑥)𝑘     (1) 86 

Ordinary Kriging and Inverse Distance Weighting (IDW) are two common interpolation methods that operate by this premise 87 

but differ in how the station weights (𝑤𝑘) are calculated (Matheron, 1963; Shepard, 1968). Kriging is a family of statistical 88 

techniques based on the supposition that phenomena are autocorrelated in space, relying on an empirical distance–based 89 

covariance model of 𝑍(𝑥, 𝑡) determined from the station data. In our work we find minimal correlation between ground station 90 

separation and covariance for any of the key species, so we opt for the modified IDW approach of Schnell et al. (2014). 91 

3.1 Inverse Distance Weighting 92 

In IDW techniques, weights are calculated from the reciprocal distances between estimation point 𝑥 and the station coordinates 93 

𝑥𝑘, scaled by the exponent 𝛽. The greater density of observations in some regions creates a source of oversampling bias. 94 

Schnell et al. (2014) address this clustering effect by reducing all station weights by 𝑀𝑘, the number of other stations within 95 

distance 𝐷 of site 𝑘.  In order to smooth the spatial heterogeneity in 𝑍′(𝑥, 𝑡) at small length scales, the distance 𝐷 also serves 96 

as the minimum cutoff of 𝑥– 𝑥𝑘, and hence determines the maximum weighting 𝑤𝑘(𝑥) of any nearby station. L is a maximum 97 

cutoff of 𝑥– 𝑥𝑘 used to reduce excess calculations for extremely distant and unimportant sites. The weight formulae are 98 

summarized in Eq. (2): 99 

       𝑤𝑘(𝑥) =
𝐷−𝛽

𝑀𝑘
                                                𝑥 − 𝑥𝑘 ≤ 𝐷 100 

    𝑤𝑘(𝑥) =
(𝑥−𝑥𝑘)−𝛽

𝑀𝑘
                               𝐷 < 𝑥 − 𝑥𝑘 ≤ 𝐿   (2) 101 

         𝑤𝑘(𝑥) = 0                                                    𝑥 − 𝑥𝑘 > 𝐿 102 

Our NIER station data consists of 𝑘 ∈ {1, 2, . . . , 323} locations (Fig. 1) and 𝑡 ∈ {1, 2, . . . , 936} hourly observations (10 May 103 

01:00:00 to 18 June 00:00:00 LT) for each of our three key species (O3, CO, NOx) with some unreported or erroneous data. 104 

We optimize 𝛽 and 𝐷 for each key species 𝑍 by randomly removing a fifth of the stations from the algorithm and then predicting 105 
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the abundance at each missing station 𝑘′. In minimizing the total root–mean–square error between predictions 𝑍′𝑘′(𝑡) and 106 

observations 𝑍𝑘′(𝑡) over the time series, we find similar optimal values for each species (𝛽 ~ 2, 𝐷 ~ 5 km, 𝐿 ~ 80 km), with 107 

no significant improvement for larger 𝐿. The effective density of observations 𝑄(𝑥) is defined as the effective number of NIER 108 

sites within a 10 km radius of 𝑥 in Eq. (3) (also called Quality of prediction, Eq. (5) of Schnell et al., 2014). We expect 𝑄 to 109 

correlate with prediction accuracy:  110 

𝑄(𝑥) = 10𝛽 ∑ 𝑤𝑘(𝑥)𝑘       (3) 111 

3.2 Statistical techniques 112 

To evaluate the accuracy and predictive capability of an interpolation, we examine the error 𝐸(𝑡) in a time series of predictions 113 

𝑃𝑟𝑒(𝑡) and observations 𝑂𝑏𝑠(𝑡) at a given location for a given species with all time points equally weighted  equally. We 114 

calculate a sequence of three error series defined as follows: 115 

𝐸1(𝑡)  = 𝑃𝑟𝑒(𝑡) − 𝑂𝑏𝑠(𝑡) 116 

𝐸2(𝑡)  = 𝑃𝑟𝑒(𝑡) − 𝑂𝑏𝑠(𝑡) − (𝑃𝑟𝑒(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑂𝑏𝑠(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅)   (4) 117 

𝐸3(𝑡) = 𝑏 𝑃𝑟𝑒(𝑡) − 𝑂𝑏𝑠(𝑡) − (𝑏 𝑃𝑟𝑒(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑂𝑏𝑠(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅) 118 

Where 𝐸1(𝑡) is the absolute error in the predictions, 𝐸2(𝑡) is the error after correcting for the mean prediction bias (𝑃𝑟𝑒(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ −119 

𝑂𝑏𝑠(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅) and 𝐸3(𝑡) is the error relative to a simple linear regression (LR) model of 𝑃𝑟𝑒(𝑡) vs. 𝑂𝑏𝑠(𝑡) fitted by ordinary least 120 

squares, i.e., after correcting for mean bias and slope (𝑏). We then apply the coefficient of determination to compute the fraction 121 

of the observed sample variance, 𝑉𝑎𝑟(𝑂𝑏𝑠(𝑡)), explained by e.g. the raw predictions (𝐸1(𝑡)): 122 

R2
E1 = 1–

𝑀𝑒𝑎𝑛(𝐸1(𝑡)2)

𝑉𝑎𝑟(𝑂𝑏𝑠(𝑡))
     (5) 123 

And do similarly for 𝐸2(𝑡) and 𝐸3(𝑡). R2
E1 is a predictive accuracy statistic that ranges from minus infinity to one and is 124 

identical to the forecast skill score referenced to the mean of observations (Murphy, 1988). R2
E2 describes how well the 125 

predictions capture the temporal variability in the observations regardless of any mean bias and has the same range as R2
E1. 126 

R2
E3 is the common definition of R2 in regression analysis and ranges from zero to one due to the fitting constraint. R2

E3 127 

describes the predictability of the observations from the LR model regardless of any difference in the mean or variance of 128 

𝑃𝑟𝑒(𝑡) and 𝑂𝑏𝑠(𝑡). A score of zero for a given R2
E is equivalent to predicting a static mean of observations across the time 129 

domain. The maximum score for R2
E1 and R2

E2 is limited by the interpolation variance, which is typically damped relative to 130 

the contributing stations, especially in regions with highly heterogeneous emissions. Figure 2 (right-hand side) suggests the 131 

average station predictability (R2
E1 and R2

E2) score has an upper bound of around 0.9 for O3 and 0.8 for CO and NOx. 132 

3.2 Leave–one–out cross validation 133 

In this trial, we sequentially remove each station 𝑘, then interpolate (predict) its value from the remaining stations: 𝑃𝑟𝑒(𝑘, 𝑡) =134 

𝑍′(𝑘, 𝑡), where 𝑂𝑏𝑠(𝑘, 𝑡) = 𝑍(𝑘, 𝑡) (see Eq. (4); Brauer et al, 2003; Hochadel et al., 2006). A perfect interpolation would 135 

accurately reproduce the mean and standard deviation of the measurements, indicating (1) no mean bias error and (2) 136 
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preservation of daily maximae and minimae. Our optimized IDW interpolation has clearly worked well in terms of mean bias 137 

(left half of Fig. 2). The box quartiles and non–outlier whiskers (i.e., the full range of values within one–and–a–half 138 

interquartile ranges from the outer quartiles) are well centred on zero bias, with the spread broadening from O3 to CO to NOx. 139 

The symmetry of the whiskers comes from the case where two sites, distant from the remaining sites but near one another, are 140 

the only sites used to interpolate one another and hence if one site has twice the mean value of another, we get symmetric plus–141 

minus biases for each site. The median of the mean NOx site biases is +13%, and this appears to be an artefact of low NOx 142 

abundances in rural (𝑄 < 5) locations. The absolute mean NOx bias averages –0.6 ppb (urban –3.0 ppb, rural +6.5 ppb). 143 

Incoherence among nearby urban stations combines to dampen the interpolation variability, especially for CO and NOx, which 144 

feature independent high spatial variability from local sources. This is shown on the right half of Fig. 2, where most of the 145 

standard deviation ratio quantiles lie below unity. We believe this reduced standard deviation in the prediction time series 146 

better represents the average over a grid cell that contains several incoherent sites. 147 

 148 

Figure 2: (left) Box plots of normalized mean bias: 𝑁𝑀𝐵(𝑘) = 𝑀𝑒𝑎𝑛(𝑃𝑟𝑒(𝑘, 𝑡) − 𝑂𝑏𝑠(𝑘, 𝑡))/𝑀𝑒𝑎𝑛(𝑂𝑏𝑠(𝑘, 𝑡)) and (right) 149 

standard deviation ratio 𝜎(𝑃𝑟𝑒(𝑘, 𝑡))/𝜎(𝑂𝑏𝑠(𝑘, 𝑡)) for interpolated time series at each NIER site using leave–one–out cross 150 

validation. Whiskers show the range of non–outliers, where outliers are data beyond one–and–a–half interquartile ranges from 151 

the outer quartiles. Results are shown for O3 (blue), CO (red), and NOx (green). Mean bias is normalized by the observed mean, 152 

and the ratio of standard deviations is analogous to the gradient of a linear regression. 153 

 154 

The sequence of R2
E scores (E1–3) for each site and each species are shown in Figure 3. The O3 scores (top row) are consistently 155 

high across the sequence. R2
E1 through R2

E3 scores for O3 indicate that the O3 interpolation was accurate and unbiased at almost 156 

all NIER stations in South Korea. For CO (middle row) and NOx (bottom row), there is an improvement in absolute prediction 157 
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accuracy (R2
E1) as the density of observations (𝑄) increases, and further improvement after correcting the mean bias in the 158 

predictions (R2
E2). The linear regression models (R2

E3) offer an obvious improvement to predictability in rural regions (low 𝑄) 159 

where information is lacking, but no significant improvement in well sampled urban regions (high 𝑄). With no large net mean 160 

bias for any key species (Fig. 2), we assert that the average of our interpolations should capture the mean and possibly the 161 

variability of a well–mixed gridded domain. We test this assertion later using aircraft PBL observations averaged into 0.1°x0.1° 162 

cells. The high range of R2
E values for NOx and CO, even where 𝑄 > 10, suggests that absolute mean error in the prediction is 163 

a problem for many sites, implying they are driven by very small scale (<1 km) local emissions. For NOx, the sequence to E2 164 

and E3 greatly improves the prediction accuracy. For CO, there remains a large fraction of unpredictable sites, often with very 165 

high standard deviations (dark red circles), implying large nearby emissions. Figure A3 (middle and right panels) shows the 166 

clustering of such sites for CO and NOx in Daejeon (central–western South Korea) and in the southern coastal cities of 167 

Gwangyang, Yeosu, Suncheon, Jiju, and Ulsan (no NOx data), possibly explained by high industrial activity in the coastal 168 

cities. 169 

We have additionally compared the interpolation accuracy during the four meteorological phases presented by 170 

Peterson et al. (2019), i.e., dynamic, stagnant, low-level transport, and rex blocking. O3 showed no significant difference across 171 

the phases, while NOx seemed slightly more predictable by our metrics during the dynamic and stagnant weather phases. CO 172 

predictability improved slightly during the stagnant phase only. 173 
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 174 

Figure 3: Generalized coefficient of determinations (R2
E, Eq. (5)) for NIER station predictions vs. the effective density of 175 

nearby observations (Q, effective number of sites in a 10 km radius). The three columns show the sequence R2
E1, R2

E2, and 176 

R2
E3.  The three rows are for the species O3 (top), CO (middle), and NOx (bottom).  The calculations use the leave–one–out 177 

cross validation at each NIER station (circles) coloured by the standard deviation of observations. The blue conjoined crosses 178 

show the median R2
E values for five percentile partitions of Q: 0–20%, 20–40%, 40–60%, 60–80%, and 80–100%. 179 

3.3 Gridded air quality data 180 

A major objective of this study was to obtain grid–cell averages (0.1°x0.1°, approx. 10 km x 10 km) for testing regional air 181 

quality models. Within each 0.1°x0.1° cell, we interpolate the key species to twenty five points on a 0.02°x0.02° grid centred 182 
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in the cell, and then average these values. The averages do not account for latitudinal differences in quadrangle areas, which 183 

are minor for South Korean latitudes. We apply the same treatment to the density of observations to produce the gridded Q 184 

values as seen in Fig. 1B. 185 

3.4 Aircraft cell averages 186 

We collect the measurements of O3, CO, and NOx from NASA DC–8 taken over land at radar altitudes below the PBL heights 187 

taken from the ERA5 data. The DC–8 measurements used here are 10 second merges corresponding to approximately 1 km 188 

flight segments 𝑆 ∈ {1, 2, . . . , 13942}. To compare the segments with the gridded site data, we average the contiguous 189 

segments through each grid cell to produce transect–averaged observations 𝑂𝑏𝑠(𝑇), where transects 𝑇 ∈ {1, 2, . . . , 2106} 190 

contain around seven segments whose midpoints lie in the cell bounds. For the prediction set 𝑃𝑟𝑒(𝑇), we interpolate the 191 

traversed cells in time to match the mean aircraft time of flight during the respective transects. The number of transects through 192 

each cell is indicated by the gridded numbers in Fig. 1B. 193 

4 Results 194 

Table 1: The generalized coefficients of determination R2
E1, R2

E2, and R2
E3 (Eq. (5)) for predictions vs. measurements at 195 

research stations (Olympic Park and Taehwa Forest) and along flight transects in the PBL. Each flight transect is a median of 196 

contiguous 10 s observations through a grid cell (See Fig. 1 for sampling distribution and Fig. 4 for scatter plots), and the 197 

predictions are gridded values interpolated linearly in time to match the aircraft time of flight, then averaged. E1, E2, and E3 198 

are time series of prediction errors defined in Eq. (4). NOx measurements at Taehwa Forest are taken from Kim et al., 2022.  199 

 200 

 Olympic Park Taehwa Forest DC–8 (all transects) DC–8 (Q > 10 transects) 

Species R2
E1 R2

E2 R2
E3 R2

E1 R2
E2 R2

E3 R2
E1 R2

E2 R2
E3 R2

E1 R2
E2 R2

E3 

O3 0.90 0.92 0.96 0.68 0.82 0.82 0.02 0.69 0.69 0.26 0.81 0.90 

CO 0.73 0.75 0.76 –2.70 0.69 0.71 –2.20 0.28 0.41 –0.91 0.83 0.84 

NOx 0.67 0.68 0.68 –12.0 –3.60 0.00 –2.60 0.34 0.62 –0.84 0.51 0.73 

4.1 Research site prediction 201 

Research stations provide case studies where the quality of measurements is carefully controlled, and so instrumental drift, 202 

noise, and biases are minimized. For each key species, we compare the NIER station data interpolated to the coordinates of 203 

the research stations, either at Olympic Park or Taehwa Forest, against the research station instruments (Fig. 4). Olympic Park 204 

and Taehwa Forest have effective sampling densities (𝑄) of 16 and 6 stations per 10 km respectively. Figure 4 shows accurate 205 

prediction of O3 at both sites with predictably more scatter at Taehwa Forest where less information was available. We see a 206 

similar pattern for CO, but with a mean bias (predicted NIER interpolated value minus research instrument measurement) of 207 

+100 ppb at Taehwa Forest. NOx is predicted reasonably well at Olympic Park except in the highest measured range (>100 208 
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ppb), but predictions appear random at Taehwa Forest. Table 1 indicates excellent prediction accuracy at Olympic Park for all 209 

species (R2
E1), and at Taehwa Forest for O3. At Taehwa Forest, CO prediction improves when mean biases are removed (R2

E2), 210 

but NOx remains unpredictable. The linear regressions (R2
E3) lead to very little improvement over mean bias correction (R2

E2), 211 

implying that the temporal variability measured by the research stations was well captured. High R2
E1 scores suggest good co–212 

calibration between the Olympic Park instruments and surrounding NIER instruments. We are unable to characterize the mean 213 

biases at Taehwa Forest. 214 

 As an isolated wilderness site, Taehwa Forest presents a unique problem for interpolating NOx values based on NIER 215 

stations. The closest three NIER sites surround the forest station at a distance of around 10–15 km, and all are subject to NOx 216 

roadside emissions, thus our interpolation maps these high–NOx values into the relatively NOx–depleted forest. 217 
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 218 

Figure 4: Predicted vs. measured abundances of the three key species at Olympic Park (red) and Taehwa forest (blue) research 219 

stations. Predicted abundances are computed as point interpolations as per Equation (1). Dashed lines are linear regression 220 

(LR) models fitted by ordinary least squares. 221 

4.2 DC–8 comparison 222 

Figure 5A shows that the gridded surface–site predictions of the DC–8 O3 observations are consistently lower than observed 223 

but remain strongly correlated. CO predictions (Fig. 5B) show a consistent bias of around +100 ppb, but otherwise capture the 224 

https://doi.org/10.5194/egusphere-2024-1173
Preprint. Discussion started: 22 August 2024
c© Author(s) 2024. CC BY 4.0 License.



12 

 

variability of the aircraft CO measurements reasonably well. NOx predictions (Fig. 5C) show a consistent positive bias along 225 

with randomness in the low measured range (<10 ppb). The gridded O3 and CO predictions are highly accurate (R2
E2 = 80%) 226 

in grid cells with effective observation density (Q) exceeding ten, mainly sampled in the Seoul Metropolitan Area (Fig. 1B). 227 

These findings show that with enough ground information, our gridded O3 and CO datasets can predict upper PBL variability 228 

even in regions with intense small–scale emission heterogeneity. NOx is exceptional, however, due to the rapid falloff in 229 

abundance with altitude even within the PBL (Fig. A3 of Appendix A, see also Fig. 2 from Kim et al., 2021). O3 titration in 230 

the Seoul Metropolitan Area also leads to a slight underestimation in predicted variability, shown by a 10% increase in 231 

predictability using linear regression (R2
E3 = 90%, Table 1). Obtaining vertically averaged concentrations rather than surface 232 

values remains a challenge given the substantial near-surface gradients inferred from Figures 5 and A2, and suggests the need 233 

for vertically resolved chemical and dynamical modelling. 234 
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 235 

Figure 5: Comparison of 10 s DC–8 observations in the PBL and gridded (0.1°x0.1°) hourly ground station data. Each data 236 

point represents the median of the contiguous aircraft transect through a grid cell (y–axis) and the median of the gridded ground 237 

station data interpolated linearly in time to match the aircraft time of flight (x–axis). 238 
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5 Conclusions 239 

We create gridded (0.1°x0.1°) observational datasets from NIER ground station measurements of air quality over South Korea. 240 

The method includes information from all nearby stations, including those outside of the cell boundary, while also mitigating 241 

sampling bias from site clustering. Our results suggest that the mean and variability of ground level O3 is well captured over 242 

the whole of South Korea. For CO and NOx, our leave–one–out cross validation revealed mean biases in certain NIER site 243 

predictions, but otherwise good prediction accuracy in most densely observed urban regions after the biases were subtracted. 244 

The well predicted regions include the Seoul Metropolitan Area, Busan, Changwon, Daegu, and Cheongju, whereas prediction 245 

accuracy was poor in the conjoined coastal cities of Gwangyang, Yeosu, and Suncheon, and in Ulsan. The aircraft comparisons 246 

confirm that the variability of O3 and CO in the PBL are well captured from the surface stations; however, NOx vertical 247 

gradients in the PBL confound attempts to predict the aircraft NOx measurements. 248 

 249 

 250 

 251 

 252 

 253 

 254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 
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6 Appendices 270 

Appendix A 271 

 272 

Figure A1: DC–8 10 s potential temperature (θair) measurements (dots) in a half degree radius of Taehwa Forest research 273 

station with gridded (0.25°x0.25°) surface potential temperature (θground) subtracted, taken below (left) and above (right) the 274 

ERA5 designated PBL height. Lines connecting dots indicate contiguous transects, and all data was taken during ascent or 275 

descent (aircraft vertical speed > 1 m s–1). θground was calculated using the ERA5 2 metre temperature and surface pressure 276 

fields at native resolution (0.25°x0.25°, hourly), interpolated in time to match the aircraft time of flight. 277 

 278 
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 279 
Figure A2: Vertical profiles of the DC–8 measured O3 (left), CO (middle), and NOx (right) in the ERA5 PBL within a half 280 

degree radius of Taehwa Forest research station. All data is sampled between the hours of 12:00 and 17:00 LT, and quartiles 281 

are shown for aircraft data (blue) partitioned into altitude bins (0–250, 250–750, 750–1250, and 1250–1750 m) and for the 282 

available ground research station measurements at Taehwa Forest (red) supplemented by Kim et al., 2022 (green). 283 
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 284 

Figure A3: The geographical distribution of NIER station prediction accuracies with the mean prediction bias removed from 285 

each station (R2
E2, Eqs. (4) and (5)), shown for the three key species: O3 (left), CO (middle), and NOx (right). Negative R2

E2 286 

values are truncated to zero. Cities are shown by text and boxes in the O3 panel, including the approximate bounds of the Seoul 287 

Metropolitan Area. 288 
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