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Abstract. Snow depth is an important component of the annual climatic and hydrological cycles. Previous studies have shown

predominantly decreasing trends of average seasonal snow depth across the European Alps. Additionally, prior work has shown

bivariate statistical relationships between average seasonal snow depth and mean air temperature or precipitation. Building

upon existing research, our study uses observational records of in situ station data across Austria and Switzerland to better

quantify the sensitivity of historical changes in seasonal snow depth through a multivariate framework that depends on eleva-5

tion, mean temperature and precipitation. These historical sensitivities, which are obtained over the 1901/02-1970/71 period,

are then used to predict snow depths over the more recent period 1971/72-2020/21. We find that the year-to-year predictions of

snow depths, which are derived from an empirical-statistical model (SnowSens), that rely solely on the historical sensitivities

are nearly as skillful as the operational SNOWGRID-CL model used by the weather service at GeoSphere Austria. Further-

more, observed long-term changes over the last 50 years are in better agreement with SnowSens than with SNOWGRID-CL.10

These results indicate that historical sensitivities between snow depth, temperature and precipitation are quite robust over

decadal-length scales of time, and they can be used to effectively translate expected long-term changes in temperature and

precipitation to changes in seasonal snow depth.

1 Introduction

Snow on the ground is an important component of the hydrological cycle, the climate system, and mountain ecosystems15

throughout the world (Beaumet et al., 2021; Beniston et al., 2018; Gobiet et al., 2014; Notarnicola, 2022). The timing of

snowfall, along with its accumulation, has profound implications on water resources (Viviroli et al., 2011; Colombo et al.,

2023; Avanzi et al., 2024), mountain tourism (Elsasser and Bürki, 2002), and mountain hazards such as avalanches (Marty

et al., 2017). Understanding the impact that climate change has on this valuable resource is therefore essential in order to better

assist regional planning and preparedness.20

Correctly quantifying changes in the climate system or hydrologic cycle, generally require robust measurements with suffi-

ciently long time series of high data quality. Historically, there are two quantities that have been measured in situ by national

hydrometeorological services that fulfill these criteria: 1) snow depth and 2) the depth of snowfall. Depth of snowfall is defined
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as freshly fallen snow that accumulated on a snow board during a standard observing period of 24 hours, while snow depth is

the total accumulated snowpack from the ground surface to the snow top (Haberkorn, 2019). In the European Alps, there is a25

long history of snow depth and snowfall measurements that date back to the 19th century (Scherrer et al., 2013). Over the more

recent past, satellite data are becoming increasingly important to provide information on specific spatial patterns (Hüsler et al.,

2014; Lievens et al., 2019). However, the measurement record of satellite data is reasonably short and unfortunately cannot

provide the same quality of information as in situ observations when it comes to quantities involving snow depth (Lievens

et al., 2022). Other variables describing snow characteristics, such as snow water equivalent (SWE), were introduced later in30

the measurement record and with a lower density network (see e.g. Haberkorn (2019)).

Matiu et al. (2021) was one of the first studies to provide an extensive and comprehensive analysis of changes in snow

depth for the period 1961-2020 that truly covers the entire region of the Alps. It is worth mentioning their great effort in

merging many individual stations across different institutions and networks. In their study, Matiu et al. (2021) were able to

show predominantly a decreasing trend of snow depth across the Alps. In addition to the regional differences that they found35

in the trends, they also showed a strong elevation dependence of snow depth trends. However, this elevation dependence of the

snow depth trends is conflated to some degree with the fact that stations at higher elevations also typically receive more snow.

As a result, there is also a benefit in investigating whether the relative changes in snow depth are increasing or decreasing with

elevation (Laternser and Schneebeli, 2003; Marty and Blanchet, 2012; Marty et al., 2023).

Beyond quantifying historical trends in snow depth and snowfall themselves (Bertoldi et al., 2023), it is additionally useful40

to attribute these changes to a certain set of physical drivers. The accumulation of snow depth over a season is primarily

driven by temperature and precipitation (Sippel et al., 2020; Pepin et al., 2022). There have been several prior studies that have

linked changes in snow depth, at different elevations, across the Alps to changes in air temperature and precipitation (Scherrer

and Appenzeller, 2006; Morán-Tejeda et al., 2013; Sospedra-Alfonso et al., 2015; Scalzitti et al., 2016; Schöner et al., 2019;

Monteiro and Morin, 2023). Overall, these studies have shown snow depth being strongly related to air temperature at low45

elevations and to precipitation at high elevations (Morán-Tejeda et al., 2013; Schöner et al., 2019). However, these studies also

experience to some extent a conflation between snow depth quantities and elevation. Furthermore, the statistical relationships

shown are often correlations, which do not capture how much snow depth would change, for example, as a function of air

temperature.

Our study aims to extend prior work in a number of ways. First, we start by computing anomalies of snow depth, temperature,50

and precipitation data for stations across Austria and Switzerland. This step removes regional and elevation-dependent climato-

logical differences, thereby allowing us to better quantify anomalous or relative changes. Next, we observe how sensitive snow

depth has been in the historical record to anomalous changes in temperature and precipitation for stations within specified ele-

vation bands. Then, we use the historically derived sensitivities to construct an empirical-statistical model to predict seasonal

snow depth provided seasonal anomalies of temperature and precipitation. Lastly, we evaluate model performance. The model55

is calibrated over the period 1901/02-1970/71, and evaluation is performed over the period 1971/72-2020/21. Model evaluation

is also compared to that of Geosphere’s SNOWGRID-CL model for the Austrian domain. Our primary objective is to provide
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an effective yet easy to interpret method to translate expected long-term changes in temperature and precipitation to changes

in seasonal snow depth.

2 Data60

Stations with daily measured snow depth were collated from the Austrian and Swiss meteorological services GeoSphere Aus-

tria, Hydrographischer Dienst (HD), MeteoSwiss, and the WSL Institute for Snow and Avalanche Research (SLF). Some of

these stations began record keeping in the 1880s, while many others became active in the early part of the 20th century. At the

time that the authors collected the data, these stations primarily have data coverage through the spring of 2021. While seasonal

values of snow depths, mean temperature, and precipitation reflect the accumulations or averages spanning from one year to65

the next, for the duration of the paper we simply use the year in which the season ends. So, for example, the year 2021 would

refer to the season November 2020 - March 2021. There are a total of 291 snow stations with 107 stations in Austria and 184

stations in Switzerland. The stations range in elevation between 121 and 2536 meters with a mean height of 1097 meters (see

Figure 1). While we use the non-homogenized snow depth measurements in this study, it is not expected that the results would

substantially change using homogenized snow data. Through personal communication, the authors of a recent homogenization70

study in the Alps (i.e., Resch et al. (2022)) have indicated that there are not any systematic changes in snow depth one way

or the other as a result of the homogenization procedure (Marcolini et al., 2019; Buchmann et al., 2022). Furthermore, the

primary focus of this study is to present a useful methodology or approach to quantify the influence that anomalous seasonal

temperature and precipitation has on snow depth.

Monthly homogenized temperature and precipitation data for Austria are obtained from GeoSphere (previously ZAMG)75

as part of the HISTALP data set (i.e., Historical Instrumentation Climatological Surface Time Series of the Greater Alpine

Region, https://www.zamg.ac.at/histalp/dataset/station/csv.php), while homogenized precipitation and temperature data for

Switzerland are obtained from MeteoSwiss (https://www.meteoschweiz.admin.ch/service-und-publikationen/applikationen/

ext/climate-tables-homogenized.html). There are a total of 43 temperature stations and 48 precipitation stations in Austria

(see Figure 1), while in Switzerland, there are a total of 29 temperature stations and 27 precipitation stations.80

We evaluate the statistical model across Austria against a dynamical snow cover model SNOWGRID-CL (Olefs et al.,

2020), which is a simplified climate version of the operational snow model SNOWGRID (Olefs et al., 2013) at GeoSphere

Austria. The model was developed for climatological simulations such as long historical runs and future scenarios. It relies

on an extended degree-day scheme to approximate snow ablation from air temperature and the shortwave radiation balance

(see Olefs et al. (2020) for further details). The model is forced with an observation-based gridded dataset of air temperature85

and precipitation (SPARTACUS v2.1, Hiebl and Frei (2016, 2018)) and simulates daily fields of snowpack properties (i.e.,

snow depth, SWE) at a spatial resolution of 1km x 1km over the Austrian domain. The model output is updated daily and

stands publicly available at Geosphere Austria’s Data-Hub (https://public.hub.geosphere.at/public/datahub.html?id=snowgrid_

cl-v2-1d-1km/filelisting&anonymous=true#/snow_depth/).
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Figure 1. Study region with elevation. Stations with historical measurements of daily snow depth are plotted as the magenta circles. Monthly

homogenized temperature and precipitation stations are plotted as the hollow orange boxes and the filled blue squares, respectively.

2.1 Evaluation Metrics90

Performance of different modeled time series of snow depths are compared using the root mean squared error (RMSE) statistic.

This metric is used becuase it measures how well predictions covary with observations, while it additionally reflects whether or

not there is any systematic mean bias between the two time series. This metric is computed using both time series of absolute

(not to be confused with the mathematical absolute value, but the raw modeled and observed values expressed in centimeters)

and anomalous values. The modeled RMSE is calculated as,95

RMSEMOD =

√√√√ 1

n

n∑
i=1

(ymod,i − yobs,i)2 . (1)

where ymod,i and yobs,i are seasonal time series of modeled and observed snow depths at station, i, respectively. Likewise,

RMSECLIM , is defined as,

RMSECLIM =

√√√√ 1

n

n∑
i=1

(yclim,i − yobs,i)2 . (2)

and reflects the error associated with climatological predictions, where yclim,i is the reference mean climatological snow depth100

at station, i. One can think about yclim,i as either a single value (i.e., the climatological mean) or a time series array with all

of the values being the same. The values of ymod,i and yclim,i change depending on whether we are computing the RMSE

skill score using absolute values or anomalies. For the absolute values evaluated over the period 1972-2021, yobs,i, ymod,i and
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yclim,i would all contain values expressed in centimeters, where yclim,i are the mean seasonal snow depths, computed station

by station, over the 1902-1971 calibration period. When computing the skill of the predicted anomalies, yobs,i, ymod,i and105

yclim,i all contain values expressed as % of normal (e.g., 120% of normal, which is 20% above normal), where yclim,i is the

mean seasonal snow depth, at station i, over the 1902-1971 calibration period (i.e., 100%). Additionally, a RMSE skill score is

also used to evaluate the performance of the models in their ability to capture observed trends. In that case, a trend of 0% per

decade is treated as the climatological reference. Then, the RMSE skill score, SSRMSE , is defined as,

SSRMSE = 1− RMSEMOD

RMSECLIM
, (3)110

where an SSRMSE value of 1.0 would be perfect predictions, values between 0.0 and 1.0 reflect predictions that perform better

than climatology, and values below 0.0 indicate that the model is less skillful than climatology.

3 Methods

3.1 Seasonal Snow Depth

In this paper, we focus on snow depth averaged over the November-March season. Our first goal is to investigate historical115

empirical relationships between mean seasonal temperature, precipitation and snow depth. And second, we use these histor-

ically derived empirical relationships to predict changes in snow depth driven by changes in mean seasonal temperature and

precipitation. During warmer months, and especially with stations at lower elevations, an observable amount of precipitation

will not always translate to a measured snow depth. This would result in trying to fit a predictor time series (i.e., precipitation),

which does vary, with our predictand time series that does not (i.e., snow depth). We try to minimize the number of cases120

where there is zero measured snow depth by excluding the months of April and May from our seasonal average, since those

months often contain more stations with zero recorded snow depth. That way, we can have consistency in the lengths of our

seasons for both the predictors, T and P, and our predictand, SD. Figure 2a shows the percentage of data for which the 291

stations in this study measured an average monthly snow depth greater than 0.0 cm. For example, when considering all of the

Januaries between 1901-2020, there were 20,263 station-months with full data coverage. Of those, 500 recorded 0.0 cm for125

every day throughout January at a station. The percentage of zero measured snow depth for January is then 2.5%, which is

equal to 500/20,263 (this quantity is also equal to 100% minus the percentage shown in the left-most bar of Fig. 2a). We used

the season November-March, because each of those five months contained less than 20% zero measured snow depth. While the

November-March season is somewhat shorter than what some other studies have used (e.g., Matiu et al. (2021); Morán-Tejeda

et al. (2013)), the average anomalous November-March snow depth (anomalies are represented as % of normal, see Eq. 6)130

varies strongly with the average anomalous snow depth over the longer November-May season (see Fig. 2b). So, if one can

skillfully predict November-March snow depth, then these will also be skillful for a longer season such as November-May. In

Figure 2c, average seasonal snow depth can be seen to vary with elevation, with higher elevations generally receiving more

snow.
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Figure 2. Figure 2a plots the percentage of data where the monthly average snow depth was greater than 0.0 cm. (b) plots November-March

average snow depth, as percent of normal over the period 1902-2021, against the longer November-May season. (c) shows how the the

average seasonal snow depth varies with elevation, with higher elevations generally receiving more snow. Note the logarithmic scaling of the

y-axis in (c).

3.1.1 Observed Changes in Seasonal Snow Depth135

Figure 3 shows the trends of snow depth anomalies (see Eq. 6), across the Austrian and Swiss Alps, for the period of record

1902-2021 using our four elevation bands. Here, we have computed linear trends. However, we should mention a couple of

small caveats in doing this. First, the data is bounded by zero, and a negative trend line would eventually cross the origin to

produce negative values of snow depth, which cannot physically happen. Second, the data does typically exhibit some level

of positive skewness, and as a result the data cannot be considered truly Gaussian. In order to allow for a easily interpretable140

trend information, linear trends are computed over the time series. That way, even though the values are bounded by zero and

also cannot be considered truly Gaussian, it can be illustrated that values have decreased over time, i.e. show a negative trend.
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Additionally, we primarily want to illustrate that trends have decreased across each elevation band, and that the trends have

been greatest at lower elevations. For the stations below 500 meters, the decrease in snow depth is -8.1% per decade (Figure

3a), while the stations at elevations above 1500 meters exhibit less than half of the relative trend at -3.4% per decade (Figure145

3d). Additionally, the regime shift at the end of the 1980’s described by Marty (2008) for the Alps and (Reid et al., 2016) on

the global level is nicely visible, especially for the two lower elevation bands. Please refer to Appendix A to see trends over a

more recent period, and the spatial patterns of the historical changes.

Different snow depth stations have different record lengths. As a result, the anomalies from the estimated mean seasonal

snow depth can vary to some degree depending on which seasons are used to compute the average. In Table 1, we show a range150

of historical trends depending on how much data coverage we set as a threshold. The trends are not found to change very much

when only the stations with more complete data coverage are used.

3.2 Constructing Homogenized Temperature and Precipitation Time Series at the Snow Stations

By itself, snow depth is not a measure of how much melted water is contained in the snow mass. Many different meteorological

conditions can affect the density of the snowpack or the melting of snow. As a result, we cannot directly infer how much precip-155

itation had fallen by the snow depth measurements themselves. The precipitation could have fallen as rain, while precipitation

falling as snow can accumulate at varying densities. Ultimately, we want to quantify historical changes in mean temperature

and precipitaion and how these have translated into changes in snow depth. Therefore, since many of the snow depth stations

have neither temperature or precipitation measurements, we construct these time series using monthly homogenized values of

temperature and precipitation using nearby stations over the period 1901-2021.160

First, we obtain November-March sums of precipitation and averages of mean temperatures at all of homogenized stations

(see Figure 1) over the years 1901/02-2020/21. Additionally, time series of standardized anomalies (i.e., z-scores) are computed

for each homogenized station (the mean and standard deviations are computed using the calibration period 1902-1971). Then,

for each snow depth station, we find the nearest five homogenized stations for temperature and separately for precipitation.

Next, we compute two time series. The first contains the averaged standardized anomalies of temperature or precipitation as165

a function of the inverse distance of the nearest five stations. The second time series contains the averaged absolute values of

temperature or precipitation as a function of the inverse distance of the nearest five stations. The inverse-distance weighted

standardized anomalies of the first time series are then adjusted to match the mean and standard deviation of the second time

series. This is performed by simply reversing the steps of computing a z-score, where the weighted standardized anomalies, at

each station, are first multiplied by the standard deviation of the second time series at the same station, and then we add the170

mean of the second time series (also at the same station). This provides us with time series of seasonal (i.e., November-March)

mean temperature and precipitation that are located at each one of our 291 snow depth stations.

3.3 Sensitivity of Snow Depth to Temperature and Precipitation

Information concerning the bivariate correlations between either mean temperature and snow depth and/or precipitation and

snow depth can be useful. However, correlations by themselves do not provide information about the steepness of the slope175
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Figure 3. The seasonal (Nov-Mar) snow depth anomalies for all stations and all seasons are plotted as the dots for each of the four different

elevation bands. Trend lines, and the relative change per decade, are also plotted. Here, we use the entire period of record. All station-season

values are used to compute the historical trend. For example, the trend in Fig. 3a is the least-squares regression fit to all of the points in Figs.

3a. Bootstrapping is used to estimate 95% confidence intervals, which are shown as the blue shading.

between the two variables. For example, given a 1.0◦C increase in mean temperature or a a 20% increase in precipitation, what

would be the expected impact on snow depth? Additionally, how might these expected changes be affected by elevation? Fur-

thermore, what would be the multivariate impact on snow depth given some combination of mean temperature and precipitation

changes? And finally, can we apply methods that do not have an underlying assumption of linearity?
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All Stations >80% Coverage >90% Coverage >95% Coverage

0-500m trend (1902-2021) [% decade−1] -8.1 -8.1 -7.6 -7.8

500-1000m trend (1902-2021) [% decade−1] -5.5 -5.3 -4.9 -4.9

1000-1500m trend (1902-2021) [% decade−1] -3.6 -3.5 -3.4 -3.5

>1500m trend (1902-2021) [% decade−1] -3.4 -3.8 -3.4 -3.3

0-500m trend (1952-2021) [% decade−1] -15.7 -15.8 -15.3 -15.3

500-1000m trend (1952-2021) [% decade−1] -10.3 -10.3 -10.1 -10.3

1000-1500m trend (1952-2021) [% decade−1] -6.0 -5.7 -5.3 -5.7

>1500m trend (1952-2021) [% decade−1] -3.6 -3.8 -3.8 -3.7

0-500m change (1992-2021 vs. 1952-1981) [%] -46.4 -46.7 -45.4 -45.6

500-1000m change (1992-2021 vs. 1952-1981) [%] -34.6 -34.7 -34.6 -35.5

1000-1500m change (1992-2021 vs. 1952-1981) [%] -25.1 -24.7 -23.5 -24.6

>1500m change (1992-2021 vs. 1952-1981) [%] -15.8 -16.7 -16.7 -16.2

0-500m (number of stations) 52 39 33 32

500-1000m (number of stations) 75 61 45 40

1000-1500m (number of stations) 91 72 62 57

>1500m (number of stations) 73 47 38 36

Table 1. Table values express trends and changes across different time periods for the four elevation bands. The trends are percentage changes

per decade, given for the two different time periods from Fig. 3 and Fig. A1 from the Appendix, while the changes are the average percentage

changes between two periods over the last 70 years. Stations have varying data lengths and coverages, which can influence mean estimation.

The percentage of data coverage is evaluated over the 1951/52-2020/21 period, where 80% coverage would mean that a particular station had

at least 56 years of data. The first three sets of rows show how much the trends change when using stations with more or less data coverage.

The bottom set of rows gives the number of stations used to compute the trends and changes. The units of the rows are provided within the

square brackets.

In Figures 4a and 4b, one can observe the spatial distribution of the bivariate correlations between snow depth and temper-180

ature, and similarly the correlations between snow depth and precipitation. In Figures 4c and 4d, these correlations are shown

to vary as a function of elevation. Generally, we find the largest correlations (either positive or negative) at lower elevations for

temperature and at higher elevations for precipitation. For example, a station below 500 meters is more likely to see increas-

es/decreases in temperature translate more strongly to decreases/increases in snow depth than for stations at higher elevations.

The opposite influence is observed for snow depth and precipitation. Therefore, stations (or regions) at lower elevations are185

primarily driven by changes in temperature, while stations at higher elevations are primarily driven by changes in precipitation.

These relationships support prior findings such as Morán-Tejeda et al. (2013) and Schöner et al. (2019).
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Figure 4. The size and magnitudes of the Pearson correlation coefficients between NDJFM snow depth and temperature are plotted in

subplot (a). (b) shows the same as (a), but using the seasonal precipitation time series instead of temperature. Downward and upward facing

triangles reflect negative and positive correlations, respectively. The sizes of the triangles reflect the magnitude of the correlation. (c) plots

the relationship between station elevations and the correlations between snow depth and temperature (i.e., the same values as in (a)), while

(d) plots the relationship between station elevations and the correlations between snow depth and precipitation (same values as in (b)).

The utility of the information from Figure 4 can be improved in the following ways: 1) Instead of only considering the

bivariate statistical relationship between either temperature with snow depth or precipitation with snow depth, we can consider

all three variables in a non-linear, multivariate framework. 2) By computing anomalies of the data, we can leverage information190

across multiple stations to provide a more robust empirical-statistical relationship.

In Figure 5, we illustrate why it can be important to use anomalous values with our methodology. Figures 5a-5c shows bar

plots for the distribution of values using absolute temperature, precipitation, and snow depth, respectively, for the Austrian and

Swiss stations between 500-1000 meters. The average station elevation of the Austrian stations used is 745m, while it is 742m

for the Swiss stations. Hence, the average station elevations are not much different between the two regions. One can observe in195

Figs. 5a and 5b that the Swiss stations are generally warmer and wetter than their Austrian counterparts. At the same time, the

Swiss stations have lower seasonal averages of snow depth. In order to stress our point regarding the usefulness of anomalies
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Figure 5. Figures 5a-5c show bar plots for the distribution of absolute temperature, precipitation, and snow depth, respectively, for the

Austrian and Swiss stations between 500-1000 meters over the historical period 1902-1971. The percentages of the blue and orange bars in

each subplot (5a-5c) sum to 100%. The bar plots are comprised of 1,755 observed data points for Austria and 558 data points for Swizterland.

A subset of these Austrian and Swiss data points are shown as the scatter plots in 5d and 5e, respectively. These are historical, observed

individual seasonal measurements that fall within the climatological regions bounded by the black rectangles. The size of the colored squares

reflect the values of absolute snow depth, where larger squares correspond to larger snow depths. The average values of the Austrian and

Swiss subsets of the data are provided as the inset text in 5d and 5e.

versus absolute values in our methodological context, we can take a further subset of these Austrian and Swiss data points

over this 500-1000m elevation band. The individual values of these subsets of data are shown as the scatter plots in Figures

5d-5e. A Student’s t-test shows that the means (for temperature, precipitation, and snow depth) of the subset of Austrian data200

points (Figure 5d) are all statistically significantly different than the subset of Swiss data points (Figure 5e). We find that while

this subset of data points in Austria has a greater absolute temperature and less absolute precipitation than the Swiss subset,

the Austrian stations have significantly more absolute snow depth than the Swiss stations. As we decrease temperature and

increase precipitation, we should expect snow depth to increase. However, this is exactly the opposite of what the absolute

data is telling us. By simply using the absolute data alone, we can potentially get the wrong signal when comparing one region205

to another. This spatial climatological difference can be addressed through computing anomalies, station by station, for the

different variables. After computing anomalies, we can then leverage information across a larger region.

To compute anomolies of the data, we begin with absolute (or raw) values of November-March seasonal temperature, pre-

cipitation, and snow depth data. Then, November-March average temperature anomalies, T∗
x,t, for station x ∈ (1, ...,291), and
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year t ∈ (1902, ...,2021), are computed as,210

T∗
x,t =Tx,t −Tx , (4)

where Tx is the time-averaged mean temperature over the calibration period 1902-1971 at station x. Anomalies of November-

March precipitation accumulations, P∗, are computed as,

P∗
x,t =

Px,t

Px

, (5)

where Px is the time-averaged precipitation over the period 1902-1971 at station x. And similarly, anomalies of November-215

March average snow depths, HS∗, are obtained by,

HS∗
x,t =

HSx,t

HSx

, (6)

where HSx is the time-averaged snow depth over the period 1902-1971 at station x.

Once we have computed our data anomlies, we can plot in Figure 6 the observed historical anomalous snow depths (i.e.,

HS∗) along with temperature and precipitation anomalies (i.e., T∗ and P∗, respectively). The larger squares, bounded by the220

black lines, correspond to the anomalous measurements for one example station. That station, named "Feldkirch" with number

"11110" has the coordinates (lat = 47.27, lon = 9.60) and is situated at an elevation of 439 meters. As one would expect, the

average snow depth anomalies increase as the temperature anomaly decreases and the precipitation anomaly increases. This

figure can also be used to show that for some increase/decrease in temperature, there can a corresponding increase/decrease in

precipitation that will yield approximately the same snow depth anomaly. Consider, for example, the snow depth anomalies in225

Figure 6 between 2-3 degrees below normal temperature and between 100-150% of normal precipitation. Similar snow depth

anomalies can also be observed between 0-1 degrees below normal temperature and between 200-250% of normal precipitation.

This gives us a general idea of how sensitive snow depth anomalies are to temperature and precipitation anomalies. Even though

Figure 6 gives us a first look at the multivariate sensitivity of snow depth to temperature and precipitation anomalies, we can

refine the approach by adding in a third variable. The sensitivities will change as elevation changes. Therefore, we can break230

up the multivarite sensitivities shown in Fig. 6 into different elevation bands. We have chosen to use four elevation bands:

0-500 meters (containing 52 stations), 500-1000 meters (75 stations), 1000-1500 meters (91 stations), and >1500 meters (73

stations).

The points along the left column in Figure 7 are like those from Figure 6, except that the data is broken up by the four

elevation bands, and the data is now only plotted for the calibration period of 1902-1971. This is the data that we will use to fit235

a model, and make predictions for our 1972-2021 validation period.

To begin, we calculate averages of snow depth anomalies across 2-dimensional bins of mean temperature and precipitation

for different elevation bands. In our effort to construct the sensitivity diagrams, let us first consider the elevation band 0-500

meters. In the lowest elevation band over the calibration period, the arrays T∗, P∗, and HS∗ all have a maximum possible

number of measurements of 3,640 (which is 70 seasons, 1902-1971, multiplied by the 52 stations from that band). Next, we240

find all of the values in HS∗
0−500m that fall within a 0.8◦C window centered about a given temperature anomaly (with 0.2◦C
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Figure 6. Seasonal temperature anomlies, for all stations and all seasons, are plotted on the x-axis against seasonal precipitation anomalies

on the y-axis. The colormap corresponds to snow depth anomalies, given the pairings of temperature and precipitation anomalies. That open

black squares show the values for one example station, which is named "Feldkirch" with number "11110" and has the coordinates latitude =

47.27 and longitude = 9.60. These anomalies are shown for the entire 1902-2021 period of record.

increments of the binning window), T∗
0−500m, and a 40% window centered about a given precipitation anomaly (with 10%

increments), P∗
0−500m. We did experiment using different bin sizes, though we found that the choice of bin size does not

strongly affect model performance (please refer to our comments in the paper discussion at https://doi.org/10.5194/egusphere-

2024-1172-AC2). We calculate the average of all of the station snow depth anomalies that fall within this 2-dimensional245

window of temperature and precipitation anomalies, given that there were at least 50 observed snow depth measurements that

fall within that 2-dimensional window. Then, we move the center of the window in order to perform the same set of operations

across the range of temperature and precipitation anomalies. And lastly, we repeat the process for the other three elevation

bands. The resulting averages using these two-dimensional bins are shown in Figs. 7e-7h.

Next, the snow depth anomalies, resulting from the multivariate binning (Figs. 7e-7h), are used to construct a smoothed and250

extrapolated sensitivity surface that will then allow us to predict new values outside of what has been seen in the calibration

record. For all binned values across the two-dimensional temperature/precipitation space, distances (in data space) are com-

puted between each specific bin-center and the center of all of the bins where we computed averages in the previous section

(i.e., those are the grid cells which are colored in Figs. 7e-7h). Multiple linear regression is then fit to the nearest quartile of

values, where the bin-centers of mean temperature and precipitation amomalies are the predictors and the binned averages of255

snow depth anomalies are our predictands. To find the nearest quartile of values, we use a Euclidean distance measure which

essentially equates the distances of a 10% precipitation anomaly with a 0.2◦C temperature anomaly. So, a data point that had

the coordinates of (0.4◦C warmer, 0% of normal precip) with respect to a point of interest, and another data point with coordi-

nates (0.0◦C, 20% of normal precip), would be treated as the same distance. We did not find the model to be overly sensitive

to providing more or less weight to the temperature or precipitation axes. Then, the regression coefficients are used along with260
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Figure 7. Figures 7a-7d and the same as Figure 6, except that the data is broken up by elevation band and we only plot the data over

the 1902-1971 calibration period. 7e-7h show the binned anomalies of snow depth using two-dimensional bining windows. The bins are

centered using 0.8◦C temperature binnning window (with 0.2◦C increments of the binning window) and a 40% precipitation window (with

10% increments). 7i-7l show the fitted surface through localized linear regression using the nearest quartile of bins from 7e-7h (see text).

The dashed black lines show contours of 100% of normal snow depth.

the the center point of the bin to obtain a snow depth anomaly. Our application of localized linear regression is only fit to the

nearest quartile of data points for each bin-center, and therefore, it can accomadate a non-linear response surface across most

of the data domain. At the same time, it smooths out the sensitivity surface (Figs. 7i-7l), and also provides extrapolated values

beyond what was observed in the calibration period.

3.4 A Multivariate Sensitivity Model to Predict Snow Depth265

The multivariate sensitivity plots shown in Figs. 7i-7l, which are constructed using only data in the 1902-1971 calibration

period, are now used to predict snow depth anomalies at all stations and for all NDJFM seasons over the period 1972-2021.
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For each station, first we determine the elevation band in which it falls (e.g., 0-500m, 500-1000m, etc.). Second, we locate the

nearest bin-center given each season’s (e.g., November 1971 - March 1972) anomalies of mean temperature and precipitation.

The snow depth anomaly corresponding to that bin is then used as the predicted value for that season for that station. For270

example, consider a station in the elevation band 0-500m which experienced a mean seasonal temperature 2.0◦C above normal

(where normal is defined with respect to 1902-1971) and a mean seasonal precipitation at 100% of normal. The snow depth

anomaly in Fig. 7i at 2.0◦C along the x-axis and 100% of normal along the y-axis corresponds to 37.6% (indicated by the color

at that bin). So, given those meteorological anomalies at that station and in that season, the historical sensitivities would predict

that the snow depth would be 37.6% of normal. This procedure is repeated to produce the predictions for all 291 stations and275

for all 50 seasons over the 1972-2021 validation period. The predictions derived in this manner, and driven by the historical

sensitivities, are referred to as the SnowSens model for the duration of the paper.

To be clear, we use known values of concurrent seasonal temperature and precipitation anomalies to predict snow depth

using the SnowSens model. As a result, our modeled values are not true forecasts. While we refer to the values produced by

the SnowSens model as "predictions," our broader aim is that the model is capable of producing actual forecasts of future snow280

depth conditions given future projections of temperature and precipitation. True long-term forecasts of snow depth over some

future period can be thought of as a modeling chain with two chain links. The first link in the modeling chain are the projec-

tions of temperature and precipitation, while the second link are the projections of snow depth driven by the temperature and

precipitation projections from the first link. In this paper, our model validation is quantifying the skillfulness or the uncertainty

associated with the second link of that modeling chain. With knowledge of how skillful the SnowSens model is, the model can285

then be forced or driven with a plausible range of future projections of temperature and precipitation. In that way, the SnowSens

model can be run to produce actual forecasts of snow depth, which also contain the uncertainty of future projections from the

first link of the modeling chain.

When evaluating the performance of the SnowSens and the SNOWGRID-CL models, we use both the absolute and anoma-

lous values. The methodology outlined above provides SnowSens predictions, as anomalies, for all stations and seasons. At290

the same time, the SNOWGRID-CL model provides predictions of absolute snow depths. Therefore, we must produce abso-

lute predicted values for the SnowSens model and predicted anomalies for the SNOWGRID-CL model. Let us begin with the

predictions of the SnowSens model, were the absolute snow depths, HSMOD, are computed as,

HSMOD,x,t =HS∗
MOD,x,t ×HSOBS,x , (7)

where HS∗
MOD,x,t are the SnowSens predicted anomalies at station x and time t, and HSOBS,x is the observed mean seasonal295

snow depth at station x over the calibration period 1902-1971. Now, we have absolute predictions for both models. Next, we

want to address any mean biases present in the models, while simultaneously computing anomalies of the data. To do this,

a common period of record is used. The SNOWGRID-CL predictions begin in 1962, and therefore we then use the common

reference period 1962-1971 to compute the anomalies and bias correction.

HS∗
MODBC ,x,t =

HSMOD,x,t

HSMOD1962−1971,x

×HS
∗
OBS1962−1971,x , (8)300
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where HS∗
MODBC ,x,t are our predicted anomalies at station x and time t which have been bias corrected to remove any mean

biases present over the common period 1962-1971. Eq. 8 is applied to both models to provide the predicted anomalies which

have been mean bias corrected for all of the stations (i.e., all Austrian stations for SNOWGRID-CL and all Austrian and Swiss

stations for SnowSens).

4 Results305

4.1 Model Performance

4.1.1 Comparing the SnowSens and SNOWGRID-CL Models

The skill of the SnowSens model is evaluated with respect to the SNOWGRID-CL model. The SNOWGRID-CL model is run

over the Austrian domain, and as a result, the performance of the SnowSens model is evaluated in this section only using the

107 stations within Austria.310

Prior to any bias correction, the SNOWGRID-CL predictions perform about as well or worse than climatology. The per-

formance of the SNOWGRID-CL absolute model values over the period 1972-2021 can be evaluated using different periods

to calculate the climatological mean, or what is treated as normal. When this period is 1902-1971, the SNOWGRID-CL has

an SSRMSE value of 0.03, and when the 1972-2021 period is treated as the climatological normal, SNOWGRID-CL has an

SSRMSE value of -0.09. In contrast, the absolute predictions of the SnowSens model has greater skill with SSRMSE values315

of 0.25 and 0.16, respectively for the two different climatological periods (the skills with respect to climatologies computed

over the 1902-1971 period can be found in Table 2).

After applying mean bias correction to both models, the performance of the SNOWGRID-CL model is much improved. Now,

using the predicted anomalies which have been bias-corrected, the skills (i.e., SSRMSE) of SNOWGRID-CL and SnowSens

models over the 1972-2021 evaluation period are 0.34 and 0.26, respectively. Figures 8a-d show the modeled seasonal snow320

depth anomalies against the observed seasonal snow depth anomalies for the two models for each of the four elevation bands.

While both contain statistically significant skill (p<0.01, where we used bootstrapping to assess the statistical significance), the

bias-corrected SNOWGRID-CL model is found to be more skillful than the SnowSens model when it comes to modeling the

year-to-year variability of the seasonally averaged snow depths.

Next, we want to know how well the observed trends over the evaluation period have been modeled by both SNOWGRID-325

CL and SnowSens. The relative changes are computed for all of the Austrian stations between the period 1997-2021 and the

period 1972-1996. This is done for the two models, and for the observations. These values are plotted in Figure 8e. When it

comes to correctly modeling the trend, the SnowSens model now outperforms SNOWGRID-CL. SNOWGRID-CL generally

overestimates the changes over the last 50 years. The skill scores, SSRMSE , for the modeled versus observed changes over the

evaluation period are 0.19 for the SnowSens model and 0.10 for SNOWGRID-CL (see Table 2 for a number of comparative330

skill scores).
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Figure 8. SnowSens and SNOWGRID-CL predicted seasonal (Nov-Mar) snow depth anomalies (x-axis) plotted against observations (y-axis)

for stations which fall in each of the four elevation bands, (a)-(d), respectively. The predicted changes in seasonal snow depth for the two

models are plotted against observed changes in (e). Changes in (e) are the differences, at each station, in the anomalous seasonal snow depths

between the more recent period 1997-2021 and the prior period 1972-1996. The black lines in (a)-(e) show the one-to-one lines.

0− 500m 500− 1000m 1000− 1500m > 1500m All Stations

SNOWGRID-CL SSRMSE (HS) -0.24 0.05 -0.06 0.18 0.03

SnowSens SSRMSE (HS) 0.44 0.21 0.26 0.25 0.25

SNOWGRID-CL SSRMSE (HS∗) 0.37 0.35 0.34 -0.02 0.34

SnowSens SSRMSE (HS∗) 0.39 0.20 0.22 0.27 0.26

Ensemble Mean SSRMSE (HS∗) 0.47 0.35 0.37 0.31 0.39

SNOWGRID-CL SSRMSE (%Changes) 0.37 -0.10 0.05 0.41 0.10

SnowSens SSRMSE (%Changes) 0.35 0.05 0.24 0.15 0.19

Ensemble Mean SSRMSE (%Changes) 0.39 0.04 0.35 0.62 0.24

Table 2. A comparison of different skill scores for the two models over the Austrian domain. In the top two rows, the absolute year-to-year

skill (i.e., using the raw model predictions) is shown for each elevation band and for all stations. The middle three rows give the year-to-year

model skill using the predicted anomalies, which have been bias-corrected, for each of the two models and an ensemble average of the

two. The last three rows provide skill scores of how well the models predict relative changes between the period 1997-2021 and the period

1972-1996.

We also computed an ensemble average of the two models using their predicted anomalies, and this was found to be more

skillful than either model alone. This is true for both the skill scores of year-to-year variability and relative changes observed
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0− 500m 500− 1000m 1000− 1500m > 1500m All Stations

SnowSens SSRMSE (HS) 0.43 0.24 0.22 0.19 0.21

SnowSens SSRMSE (HS∗) 0.32 0.24 0.20 0.20 0.25

SnowSens SSRMSE (%Changes) 0.49 0.10 0.21 -0.02 0.24

Table 3. Skill scores of the SnowSens model for different elevation bands over the entire domain. The top and middle rows are the skill

scores using the absolute and predicted anomalies, respectively. The bottom row is the skill in predicting the relative changes between the

1997-2021 and 1972-1996 periods. The three skill scores in the right-most column (which includes all stations over the entire domain) are

statistically significant with p<0.01.

in the last 50 years. Given this result, using an ensemble such as between these two models has the potential to futher improve

the projections of future seasonal snow depth.335

4.1.2 Model Performance for the Entire Domain

In the last section, we compared how well the predictions of the SnowSens and SNOWGRID-CL models performed at the

locations of the 107 stations across Austria. We investigated the ability of the models to capture both the year-to-year variability

and the historical trends of the observed records. Here, we present the results of the SnowSens model performance for all of

the stations. Since we do not have SNOWGRID-CL predictions for the Swiss domain, we are now only showing the results for340

the SnowSens model.

In the previous section, we found that the SNOWGRID-CL model better captures the observed year-to-year variability

at the station scale. However, we want to be clear that the SnowSens model still exhibits substantial skill for the year-to-

year seasonal predictions at the station scale. Figure 9 shows all of the predicted seasonal snow depth anomalies against the

observed anomalies for the 1972-2021 validation period. The Pearson correlation coefficient between predicted and observed345

anmomalies for these 10,985 cases is 0.59, with a SSRMSE of 0.25 (p<0.01). We used bootstrapping to assess the level of

statistical significance, where different shuffled seasons from the calibration period are used as predictions for the validation

period. That way, the spatial autocorrelative structure of the seasonal snow depths is preserved in our bootstrapping procedure.

We evaluated the skill of 10,000 bootstrapped simulations, and found the largest SSRMSE value from these randomly generated

simulations to be 0.022 (compared to the 0.25 value from the SnowSens model). While we present our p-value as less than350

0.01, it is actually much smaller. Please also refer to Table 3 for some additional model skill scores using all of the seasons and

all of the stations in study domain.

We would also like to know how well the model performs in its ability to extrapolate to new climatological terrain. Put

another way, how well does the model perform in cases which it hadn’t really seen before in the calibration period? In Figure 10,

we test the effectiveness of the SnowSens model in a climatological region that had rarely seen observations in the calibration355

period. Figure 10a shows the 95 cases where the average seasonal temperature in the validation period was greater than +1.0◦C
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Figure 9. All seasonal SnowSens predictions versus observations over the validation period using all of the stations in the study domain.

Again, the black line plots the one-to-one line.

and less than 50% of normal precipitation. The error of the SnowSens predictions, for these cases, is less than half of the

climatological predictions (indicated by SSRMSE>0.50). Averaging across this set of cases (the larger green squares), we

find that both the modeled average and the observed average are 33% of normal. In Figure 10b, we increase the sample size

by using a threshold of less than 75% of normal precipitation (instead of 50%). This gives us 988 cases. Again, the average360

model error is less than half of climatological predictions. The modeled and observed averages over these cases are 42% and

41%, respectively. So, while we are extrapolating to “unknown” climatological terrain, we find the model is quite capable of

performing well in that new terrain, especially when aggregating over a number of cases.

A spatial plot showing the geographical distribution of the station-by-station skill scores is shown in Figure 11a. With the

help of Figure 11b, it can be observed that the skill of the predictions generally decreases with elevation (it is not shown, but365

the SNOWGRID-CL model also sees decreasing skill with increasing elevation). This makes sense, given that stations at lower

elevations are more sensitive to temperature changes, and the range of these temperature changes at lower elevations have been

particularly large in the context of climate change. Figure 11c plots the modeled and observed relative changes in seasonal

snow depth between the periods 1972-2021 and 1902-1971, while Figure 11d shows this between the periods 1997-2021 and

1972-1996. The yellow diamonds are relative changes averaged across the four elevation bands. The SSRMSE of the band-370

averaged predicted changes for these two periods are 0.80 and 0.73, respectively. By implementing spatial averaging of the

predictions across elevation bands, the predictive skill dramatically improves. We should also note that we had also applied

the same methodology to snow water equivalent (SWE) values that we constructed via the approach outlined in Winkler et al.

(2021). While not shown here, the skill of the SWE predictions follows very closely to the skill in predicting snow depth.
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Figure 10. Figure 10 shows the effectiveness of the SnowSens model in its ability to predict in new climatological terrain. (a) plots the

pairings of modeled versus observed anomalies for the 95 cases where the average seasonal temperature in the validation period was greater

than +1.0◦C and less than 50% of normal precipitation. (b) plots the pairings for the 988 cases when using a threshold of less than 75% of

normal precipitation (instead of 50%). The larger green squares show the modeled versus observed averages across the respective cases from

(a) and (b). Again, the one-to-one lines are plotted in black.

In Figure 12, predicted anomalies of seasonal snow depth are averaged across all of the stations which fall within each of the375

four elevation bands. The resulting band-averaged time series can be seen alongside the band-averaged observed time series in

the subplots of Figure 12. Again, we find that SnowSens is not fully capturing the observed year-to-year variability and is not

able to reproduce the high and low extreme values. However, we do find that the model performance is further improved using

these band averages.

Figure 13 provides a useful and simple to interpret plot of expected future changes in snow depth as a function of temperature380

and precipitation anomalies. A user can take a range of expected future projections of temperature and precipitation, and

evaluate how these would translate into expected changes in snow depth. In Figure 13, we have simplified the information

provided in Figures 7i-7l. Figure 13 shows cross-sections of Figures 7i-7l for three different precipitation anomalies, and those

are 100% of normal along with 80% and 120% of normal (i.e., 20% below and above average). The vertical pink lines show

how much warming has already taken place in each elevation band over the period 1972-2021 with respect to the period385

1902-1971. The average predicted and observed snow depth anomalies are plotted respectively as the open square and the "x".

One can use this plot to gain a more detailed understanding of how something like an additional 2◦C would translate to snow

depth anomalies at different elevations, given the assumption that precipitation stays about the same (100% of the 1902-1971

normal). For elevations below 500 meters, an additional 2◦C (which is 3.2◦C above the 1902-1971 normal) could lead to

seasonally averaged accumulated snow depths being a thing of the past. Put another way, there would be nearly no snow depth390

accumulation projected at those temperature anomalies. Given two additional degrees of warming in the other three elevation

bands, we could expect snow depth anomalies of approximately 25%, 50%, and 80% of normal, respectively.
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Figure 11. (a) Prediction skill over the 1972-2021 evaluation period at each of stations. (b) Plotting how prediction skill varies with respect

to elevation. (c) Modeled versus observed relative changes in snow depth between the periods 1972-2021 and 1902-1971. (d) Same as (c), but

using the periods 1996-2020 and 1972-1996. The larger yellow diamonds in (c) and (d) show the changes averaged across the four elevation

bands.

5 Conclusions

Climate change has already had an observable impact on the average seasonal snow depths across the European Alps. Over the

historical period 1902-2021, stations across Austria and Switzerland have shown a decrease of seasonally averaged November-395

March snow depth ranging between -8.1% per decade at elevations below 500 meters and -3.4% per decade for elevations

above 1500 meters. Over the more recent historical period 1952-2021, these changes are even greater with decreases ranging

between -15.7% per decade and -3.6% per decade for stations below 500 meters and above 1500 meters, respectively (see

Appendix A). Changes in seasonally averaged snow depth can primarily be attributed to changes in meteorological forcing

variables such as mean temperature and precipitation. Our study leverages using anomalies of historical observations to better400

quantify the multivariate response of seasonally averaged snow depth as a function of elevation, temperature, and precipitation.

Using historical observations of seasonally averaged temperature, precipitation, and snow depth at four different elevation

bands over the period 1902-1971, we constructed a multivariate empirical-statistical model, which is named SnowSens. Model

validation, which was performed over the period 1972-2021, show that both the SnowSens and SNOWGRID-CL models can
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Figure 12. Average (Nov-Mar) predicted snow depth anomalies and observations are plotted as time series for each of the four elevation

bands. The thinner and thicker lines show the average anomalies during the calibration and validation periods, respectively. The text in the

upper right of each subplot lists a select number of metrics (i.e., observed trend per decade, modeled trend per decade, SSRMSE , and Pearson

correlation coefficient) corresponding to the 1972-2021 validation period. We should also note what the corelation coefficients are between

the modeled and observed time series when the trends of both time series have been removed over the validation period. In those cases, the

correlations are 0.89, 0.83, 0.79, and 0.74, respectively, which are very similar to what are reported in the figure with the trends present. The

number of stations used to compute the band averages are 52, 75, 91, and 73, respectively (see Table 1).

skillfully predict year-to-year seasonally average snow depths across the Austrian domain. While SNOWGRID-CL is found to405

better predict the year-to-year variability of snow depth, the SnowSens model better predicts historical trends. The SnowSens

model is not to be seen as a replacement for operational models such as the SNOWGRID-CL. Rather, this paper highlights

how effectively historical senstivities can be used in a multidimensional framework to produce quite accurate predictions of

long-term changes in snow depth. The model performs particularly well when the predictions are aggregated over a number of

cases, such as across different elevation bands (as seen in Fig. 12). Furthermore, SnowSens relies on a comparatively simplified410

modeling framework, which lends itself well to easily translating projected changes in temperature and precipitation to changes

in snow depth. Our results show that the historical sensitivities have been robust and persistent. If these sensitivities continue
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Figure 13. This figure plots cross sections of Fig. 7 at 80%, 100% and 120% of normal precipitation. Within a climate change context,

this figure serves to provide greater ease in quantifying the changes in snow depth given a range of projected changes in temperature and

precipitation. The vertical pink lines show how much warming has already taken place in each elevation band over the period 1972-2021

with respect to the period 1902-1971. The average (Nov-Mar) predicted and observed snow depth anomalies over the 1972-2021 validation

period are plotted respectively as the open square and the "x".

to remain persistent into the future, and future projections of temperature and precipitation are also skillful, then this modeling

approach can be expected to yield skillful forecasts for the next 50 years.

The impacts of a changing climate will vary from region to region. We developed multivariate sensitivities that are regionally415

specific to the Austrian and Swiss Alps. While outside of the scope of this study, the same approach can be applied to other

mountain regions. How might the sensitivities of the Rocky Mountains or the Cascades of the United States compare to

what we observe in the Alps? Another way our research can be extended relates to quantifying the changes in snow depth

versus streamflow. Are specific reductions in snow depth at certain elevations noticeably affecting aggregated streamflow
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measurements, or is it rather the timing of discharge that is impacted? And lastly, it would be valuable to investigate how420

capable a variety of different GCMs/RCMs are in capturing the observed sensitivities that we have produced.

Snow depth is a valuable resource that affects many communities adjacent to and downstream of mountain regions. Changes

in snow depth can have broad impacts that range from water resources to snow tourism and avalanche preparedness. Climate

change is expected to bring about further increases in temperature across the Alps, while it is less clear what the impact will be

on precipitation. With improved tools, we can better quantify the impact that these meteorological changes will have on snow425

depth. Thus, allowing communities to better plan and prepare for the changes to come.

Data availability. Supporting data can be found at https://doi.org/10.6084/m9.figshare.25623714.

Appendix A: Appendix A

In Figure A1, we plot the historical trends over the more recent period 1952-2021. There are greater relative decreases in snow

depth over a more recent historical record 1952-2021 (in contrast to Fig. 3). In this more recent period, we observe decreases in430

snow depths ranging between -15.7% per decade (Figure A1a) for stations below 500 meters to -3.6% per decade for stations

at elevations above 1500 meters (Figure A1d). Anthropogenic climate change is often more clearly recognisable in the recent

past, and hence, the trends derived for this period can help to improve our understanding of the expected future changes in

snow depth.

Figure A2 plots the raw changes in snow depth over the last 30 year period 1992-2021, compared to the period 1952-1991, as435

a function of elevation. Greater absolute changes in snow depth are observed as elevation increases. However, this information

needs to be placed in the context of differences in climatology. As was shown in Figure 2c, the average seasonal snow depth

scales with elevation. The relative changes of snow depth over the last 30 years are plotted against elevation in Figure A2b.

Using anomalies, we obtain a stronger relationship between the more recent changes in snow depth and elevation (compare

the correlations between Figs. A2a and A2b). The variance explained between elevation and relative changes is approximately440

34%, while it is only about 10% when using the absolute changes. In addition to giving us a better statistical relationship,

we also get a clearer picture of where we can observe the greatest relative changes in snow depth. While stations at lower

elevations saw smaller absolute changes in their snow depth over the last 30 years, these same stations saw a greater relative

decrease over the same period of time. For example, stations below 500 meters had an average absolute change of -1.58 cm, but

this reasonably small absolute amount reflected a large relative change, which was 71% of normal. In contrast, stations above445

1500 meters had an average absolute change of -8.38 cm, while the average relative change was 93% of normal. Next, we

observe whether where changes in snow depth have been greatest/least as a function of geographic location. To do this, we first

isolate the influence of latitude and longitude (i.e., x and y space) by removing the dependence of these snow depth changes on

elevation (i.e., z space). The dashed line in Figure A2b shows the fitted line through least-squares linear regression of the data.

The data are detrended with respect to the regression line, while preserving the population mean (Fig. A2c). The downward-450
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Figure A1. Same as Fig. 3, but using the 1952-2021 period of record.

facing and upward-facing triangles in Figure A2d show anomalous snow depth conditions over the period 1992-2021, where

the influence of elevation has been removed. Figure A2d, along with Figures A2e and A2f, shows that as one traverses the

Austrian and Swiss Alps from east to west and from north to south, the stations experienced slightly greater relative decreases

in snow depth.
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Figure A2. Changes in snow depth (1992-2021 vs 1952-1991). (a) shows the absolute snow depth changes as a function of elevation. (b)

shows the relative or anomalous snow depth changes as a function of elevation. The dashed line is the fitted least-squares regression of the

data. (c) plots the snow depth anomalous changes where the elevation dependence has been removed by detrending the data with respect to

the dashed line from (b). The solid lines in (b) and (c) show 100% of normal with the elevation dependence removed, while the colors and

direction of the triangles reflect the stations which experienced positive or negative changes after removing elevation dependence. (d) plots

the detrended anomalous changes (from Fig. 8c) across the study region. The size of the triangles reflect the size of the anomalies. (e) and (f)

show the detrended anomalous changes against longitude and latitude, respectively.

26



Author contributions. The study was conceived by Matthew Switanek. Gernot Resch and Christoph Marty curated and shared the snow455

depth data, while Daniel Günter helped to access the SNOWGRID-CL data. All analysis, results, and figures were produced by Matthew

Switanek with input from all coauthors. The original draft was written by Matthew Switanek with assistance from all of the other coauthors.

Competing interests. The authors do not have any competing interests.

Acknowledgements. The authors want to thank the Austrian Water Budget Department for the access to their datasets. This research was

developed with the financial support of the FWF (FWF Fonds zur Förderung der wissenschaftlichen Forschung, Project Hom4Snow, Grant460

Number: I 3692) and the University of Graz. The lead author would like to thank Peter Troch for some early discussions concerning the utility

of historical hydrometeorological sensitivities. The lead author would also like to thank Sven Kotlarski (MeteoSwiss) who provided some

useful discussion and feedback at an early stage of this study. The authors would also like to thank Michael Matiu and another anonymous

reviewer for their help in improving the quality of our paper.

27



References465

Avanzi, F., Munerol, F., Milelli, M., Gabellani, S., Massari, C., Girotto, M., Cremonese, E., Galvagno, M., Bruno, G., di Cella, U. M., Rossi,

L., Altamura, M., and Ferraris, L.: Winter snow deficit was a harbinger of summer 2022 socio-hydrologic drought in the Po Basin, Italy,

Commun. Earth Environ., 5, https://doi.org/10.1038/s43247-024-01222-z, 2024.

Beaumet, J., Ménégoz, M., Morin, S., Gallée, H., Fettweis, X., Six, D., Vincent, C., Wilhelm, B., and Anquetin, S.: Twentieth century

temperature and snow cover changes in the French Alps, Regional Environmental Change, 21, 1–13, https://doi.org/10.1007/s10113-021-470

01830-x, 2021.

Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald,

H., Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C., Morán-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A.,

Six, D., Stötter, J., Strasser, U., Terzago, S., and Vincent, C.: The European mountain cryosphere: a review of its current state, trends, and

future challenges, The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, 2018.475

Bertoldi, G., Bozzoli, M., Crespi, A., Matiu, M., Giovannini, L., Zardi, D., and Majone, B.: Diverging snowfall trends across months and

elevation in the northeastern Italian Alps, Int. J. Climatol., 43, 2794–2819, https://doi.org/10.1002/joc.8002, 2023.

Buchmann, M., Coll, J., Aschauer, J., Begert, M., Brönnimann, S., Chimani, B., Resch, G., Schöner, W., and Marty, C.: Homogeneity

assessment of Swiss snow depth series: comparison of break detection capabilities of (semi-)automatic homogenization methods, The

Cryosphere, 16, 2147–2161, https://doi.org/10.5194/tc-16-2147-2022, 2022.480

Colombo, N., Guyennon, N., Valt, M., Salerno, F., Godone, D., Cianfarra, P., Freppaz, M., Maugeri, M., Manara, V., Acquaotta, F., Petrangeli,

A. B., and Romano, E.: Unprecendented snow-drought conditions in the Italian Alps during the early 2020s, Environmental Research

Letters, 18, 074 014, https://doi.org/10.1088/1748-9326/acdb88, 2023.

Elsasser, H. and Bürki, R.: Climate change as a threat to tourism in the Alps, The Cryosphere, 20, 253–257, 2002.

Gobiet, A., Kotlarski, S., Beniston, M., Heinrich, G., Rajczak, J., and Stoffel, M.: 21st century climate change in the European Alps - A485

review, Sci. Total Environ., 493, 1138–1151, https://doi.org/10.1016/j.scitotenv.2013.07.050, 2014.

Haberkorn, A.: European Snow Booklet - an Inventory of Snow Measurements in Europe, https://doi.org/10.16904/envidat.59, 2019.

Hiebl, J. and Frei, C.: Daily temperature grids for Austria since 1961 - concept, creation and applicability, Theoretical and applied climatol-

ogy, 124, 161–178, https://doi.org/10.1007/s00704-015-1411-4, 2016.

Hiebl, J. and Frei, C.: Daily precipitation grids for Austria since 1961 - development and evaluation of a spatial dataset for hydroclimatic490

monitoring and modelling, Theoretical and applied climatology, 132, 327–345, https://doi.org/10.1007/s00704-017-2093-x, 2018.

Hüsler, F., Jonas, T., Riffler, M., Musial, J. P., and Wunderle, S.: A satellite-based snow cover climatology (1985–2011) for the European

Alps derived from AVHRR data, The Cryosphere, 8, 73–90, https://doi.org/10.5194/tc-8-73-2014, 2014.

Laternser, M. and Schneebeli, M.: Long-term snow climate trends of the Swiss Alps (1931–99), International Journal of Climatology, 23,

733–750, 2003.495

Lievens, H., Demuzere, M., Marshall, H. P., Reichle, R. H., Brucker, L., Brangers, I., de Rosnay, P., Dumont, M., Girotto, M., Immerzeel,

W. W., and Jonas, T.: Snow depth variability in the Northern Hemisphere mountains observed from space, Nat. Commun., 10(1), 4629,

https://doi.org/10.1038/s41467-019-12566-y, 2019.

Lievens, H., Brangers, I., Marshall, H.-P., Jonas, T., Olefs, M., and De Lannoy, D.: Sentinel-1 snow depth retrieval at sub-kilometer resolution

over the European Alps, The Cryosphere, 16, 159–177, https://doi.org/10.5194/tc-16-159-2022, 2022.500

28

https://doi.org/10.1038/s43247-024-01222-z
https://doi.org/10.1007/s10113-021-01830-x
https://doi.org/10.1007/s10113-021-01830-x
https://doi.org/10.1007/s10113-021-01830-x
https://doi.org/10.5194/tc-12-759-2018
https://doi.org/10.1002/joc.8002
https://doi.org/10.5194/tc-16-2147-2022
https://doi.org/10.1088/1748-9326/acdb88
https://doi.org/10.1016/j.scitotenv.2013.07.050
https://doi.org/10.16904/envidat.59
https://doi.org/10.1007/s00704-015-1411-4
https://doi.org/10.1007/s00704-017-2093-x
https://doi.org/10.5194/tc-8-73-2014
https://doi.org/10.1038/s41467-019-12566-y
https://doi.org/10.5194/tc-16-159-2022


Marcolini, G., Koch, R., Chimani, B., Schöner, W., Bellin, A., Disse, M., and Chiogna, G.: Evaluation of homogenization methods for

seasonal snow depth data in the Austrian Alps, 1930–2010, Int. J. Climatol., 39, 4514–4530, https://doi.org/10.1002/joc.6095, 2019.

Marty, C.: Regime shift of snow days in Switzerland, Geophysical Research Letters, 35, https://doi.org/10.1029/2008GL033998, 2008.

Marty, C. and Blanchet, J.: Long-term changes in annual maximum snow depth and snowfall in Switzerland based on extreme value statistics,

Climatic Change, 111, 705–721, https://doi.org/10.1007/s10584-011-0159-9, 2012.505

Marty, C., Tilg, A.-M., and Jonas, T.: Recent Evidence of Large-Scale Receding Snow Water Equivalents in the European Alps, J. Hydrom-

eteorol., 18, 1021–1031, https://doi.org/10.1175/JHM-D-16-0188.1, 2017.

Marty, C., Rohrer, M. B., Huss, M., and Stähli, M.: Multi-decadal observations in the Alps reveal less and wetter snow, with increasing

variability, Front. Earth Sci., 11, https://doi.org/doi.org/10.3389/feart.2023.1165861, 2023.

Matiu, M., Crespi, A., Bertoldi, G., Carmagnola, C.-M., Marty, C., Morin, S., Schöner, W., Berro, D.-C., Chiogna, G., Gregorio, L. D.,510

Kotlarski, S., Majone, B., Resch, G., Terzago, S., Valt, M., Beozzo, W., Cianfarra, P., Gouttevin, I., Marcolini, G., Notarnicola, C., Petitta,

M., Scherrer, S., Strasser, U., Winkler, M., Zebisch, M., Cicogna, A., Cremonini, R., Debernardi, A., Faletto, M., Gaddo, M., Giovannini,

L., Mercalli, L., Soubeyroux, J.-M., Sušnik, A., Trenti, A., Urbani, S., and Weilguni, V.: Observed snow depth trends in the European

Alps: 1971 to 2019, The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-1343-2021, 2021.

Monteiro, D. and Morin, S.: Multi-decadal analysis of past winter temperature, precipitation and snow cover data in the European Alps from515

reanalyses, climate models and observational datasets, The Cryosphere, 17, 3617–3660, https://doi.org/10.5194/tc-17-3617-2023, 2023.

Morán-Tejeda, E., López-Moreno, J.-I., and Beniston, M.: The changing roles of temperature and precipitation on snowpack variability in

Switzerland as a function of altitude, Geophys. Res. Lett., 40, 2131–2136, https://doi.org/10.1002/grl.50463, 2013.

Notarnicola, C.: Overall negative trends for snow cover extent and duration in global mountain regions over 1982–2020, Scientific Reports,

12, https://doi.org/10.1038/s41598-022-16743-w, 2022.520

Olefs, M., Schöner, W., Suklitsch, M., Wittmann, C., Niedermoser, B., Neururer, A., and Wurzer, A.: SNOWGRID-A new operational snow

cover model in Austria, in: International snow science workshop grenoble-chamonix mont-blanc, pp. 38–45, 2013.

Olefs, M., Koch, R., Schöner, W., and Marke, T.: Changes in Snow Depth, Snow Cover Duration, and Potential Snowmaking Conditions in

Austria, 1961–2020—A Model Based Approach, Atmosphere, 11, 1–21, https://doi.org/10.3390/atmos11121330, 2020.

Pepin, N. C., Arnone, E., Gobiet, A., Haslinger, K., Palazzi, E., Seibert, P., Serafin, S., Schöner, W., Vuille, M., and Adler, C.: Climate Changes525

and Their Elevational Patterns in the Mountains of the World, Reviews of Geophysics, 60, https://doi.org/10.1029/2020RG000730, 2022.

Reid, P. C., Hari, R. E., Beaugrand, G., Livingstone, D. M., Marty, C., Straile, D., Barichivich, J., Goberville, E., Adrian, R., Aono, Y.,

Brown, R., Foster, J., Groisman, P., Hélaouët, P., Hsu, H.-H., Kirby, R., Knight, J., Kraberg, A., Li, J., Lo, T.-T., Myneni, R. B., North,

R. P., Pounds, J. A., Sparks, T., Stübi, R., Tian, Y., Wiltshire, K. H., Xiao, D., and Zhu, Z.: Global impacts of the 1980s regime shift,

Global change biology, 22, 682–703, https://doi.org/10.1111/gcb.13106, 2016.530

Resch, G., Koch, R., Marty, C., Buchmann, M., Begert, M., and Schöner, W.: A quantile-based approach to improve homogenization of snow

depth time series, Int. J. Climatol., 43, 157–173, https://doi.org/10.1002/joc.7742, 2022.

Scalzitti, J., Strong, C., and Kochanski, A.: Climate change impact on the roles of temperature and precipitation in western U.S. snowpack

variability, Geophysical Research Letters, 43, 5361–5369, https://doi.org/10.1002/2016GL068798, 2016.

Scherrer, S. C. and Appenzeller, C.: Swiss Alpine snow pack variability: major patterns and links to local and large-scale flow, Clim. Res.,535

32, 187–199, 2006.

Scherrer, S. C., Wüthrich, C., Croci-Maspoli, M., Weingartner, R., and Appenzeller, C.: Snow variability in the Swiss Alps 1864–2009, Int.

J. Climatol., 33, 3162–3173, https://doi.org/10.1002/joc.3653, 2013.

29

https://doi.org/10.1002/joc.6095
https://doi.org/10.1029/2008GL033998
https://doi.org/10.1007/s10584-011-0159-9
https://doi.org/10.1175/JHM-D-16-0188.1
https://doi.org/doi.org/10.3389/feart.2023.1165861
https://doi.org/10.5194/tc-15-1343-2021
https://doi.org/10.5194/tc-17-3617-2023
https://doi.org/10.1002/grl.50463
https://doi.org/10.1038/s41598-022-16743-w
https://doi.org/10.3390/atmos11121330
https://doi.org/10.1029/2020RG000730
https://doi.org/10.1111/gcb.13106
https://doi.org/10.1002/joc.7742
https://doi.org/10.1002/2016GL068798
https://doi.org/10.1002/joc.3653


Schöner, W., Koch, R., Matulla, C., Marty, C., and Tilg, A.-M.: Spatiotemporal patterns of snow depth within the Swiss-Austrian Alps for

the past half century (1961 to 2012) and linkages to climate change, Int. J. Climatol., 39, 1589–1603, https://doi.org/10.1002/joc.5902,540

2019.

Sippel, S., Fischer, E. M., Scherrer, S. C., Meinshausen, N., and Knutti, R.: Late 1980s abrupt cold season temperature change in Europe

consistent with circulation variability and long-term warming, Environ. Res. Lett., 15, https://doi.org/10.1088/1748-9326/ab86f2, 2020.

Sospedra-Alfonso, R., Melton, J. R., and Merryfield, W. J.: Effects of temperature and precipitation on snowpack variability in the Central

Rocky Mountains as a function of elevation, Geophysical Research Letters, 42, 4429–4438, https://doi.org/10.1002/2015GL063898, 2015.545

Viviroli, D., Archer, D. R., Buytaert, W., Fowler, H. J., Greenwood, G. B., Hamlet, A. F., Huang, Y., Koboltschnig, G., Litaor, M. I.,

López-Moreno, J. I., Lorentz, S., Schädler, B., Schreier, H., Schwaiger, K., Vuille, M., and Woods, R.: Climate change and moun-

tain water resources: overview and recommendations for research, management and policy, Hydrol. Earth Syst. Sci., 15, 471–504,

https://doi.org/10.5194/hess-15-471-2011, 2011.

Winkler, M., Schellander, H., and Gruber, S.: Snow water equivalents exclusively from snow depths and their temporal changes: the ∆SNOW550

model, Hydrol. Earth Syst. Sci., 25, 1165–1187, https://doi.org/10.5194/hess-25-1165-2021, 2021.

30

https://doi.org/10.1002/joc.5902
https://doi.org/10.1088/1748-9326/ab86f2
https://doi.org/10.1002/2015GL063898
https://doi.org/10.5194/hess-15-471-2011
https://doi.org/10.5194/hess-25-1165-2021

