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1:Centre for Machine Vision and Signal Processing, University of Oulu, Finland
2: Water, Energy and Environmental Engineering, University of Oulu, Finland

Umer.Saleem@oulu.fi, Ali.TorabiHaghighi@oulu.fi, Bjorn.Klove@oulu.fi, Mourad.Oussalah@oulu.fi

Abstract—In recent years citizen science emerged as
a promising technology in environmental science and
hydrology with the potential to overcome the lack of in-
situ measurements and create efficient ecosystems. This
paper provides an up-to-date systematic literature review5

of applications of citizen science technology in water qual-
ity monitoring and estimation. A bridge between citizen
science and remote sensing will be established to provide a
sound framework for comprehensively discussing the vari-
ous approaches and applications. A scrutinizing of various10

water quality parameters and associated measurement
& estimation methods is provided, delving into various
remote sensing systems (microwave and optical systems)
and imaging techniques (hyperspectral and hyperspectral
methods). A special interest is focused on reviewing15

existing relevant crowd-sourcing mobile apps such as
EyeOnWater, HydroColor, EnviObserver, Sechhi App,
Hydro Crowd, and SIMILE-Lake monitoring, detailing
their working mechanisms, algorithms, data acquisition
processes, used sensors, and measured water quality20

parameters. Finally, the paper summarizes key knowledge
gaps, challenges and promising directions in this research
field.

Index Terms—remote sensing, water quality parame-
ters, citizen science, microwave, optical, hyperspectral,25

multispectral, artificial intelligence, mobile applications

I. INTRODUCTION

Water is a fundamental resource for all life on Earth.
It is essential for human health, agricultural produc-
tivity, and ecosystem sustainability. However, with the30

constant increase in urbanization, mass-tourism, mega-
industry, large-scale agricultural activities, and climate
change effects, water quality degradation has become
a pressing global concern. Pollutants such as heavy
metals, nutrients, pesticides, and pathogens are contin-35

uously introduced into water bodies, posing significant
threats to both human and environmental health.

Traditional methods for measuring water quality
parameters have relied on labor-intensive and often
time-consuming processes, such as manual sampling40

and laboratory analysis. While these methods provide
valuable data, they are limited in their spatial and
temporal coverage, making it challenging to monitor
large-scale or remote water bodies effectively. More-
over, traditional approaches may not capture real-time45

changes in water quality or provide sufficient spatial

resolution for comprehensive monitoring. In response to
these limitations, there is a growing need to implement
remote sensing and citizen-science-based technologies
for measuring water quality parameters.50

Remote sensing technologies, including satellite, air-
borne, and unmanned aerial vehicle (UAV) [36], [120]
platforms, offer the ability to collect spatially explicit
and temporally continuous data over large areas [2], [3],
[5], [7], [10], [14], [17], [18], [22], [23], [25], [26], [28],55

[39], [46], [52], [59], [60], [64], [66], [69], [79], [80],
[86]–[89], [96], [97], [99]–[103], [105], [106], [108],
[109], [113], [115], [116]. These technologies enable
the monitoring of various water quality parameters with
improved spatial resolution and coverage. Moreover,60

the availability of open-access remote sensing data,
such as those from the Landsat [2]–[4], [7], [10], [23],
[24], [28], [29], [39], [51]–[53], [59], [64], [69], [86]–
[88], [90], [92], [95], [97], [99], [100], [102], [104],
[108], [114], [116] and Sentinel [7], [14], [26], [34],65

[41], [47], [48], [60], [61], [68], [81], [87], [103], [106],
[108], [113] missions, has facilitated widespread appli-
cations in water quality monitoring and management.

During the course of reviewing various research
literature related to remote sensing techniques for70

measuring water quality parameters, different remote
sensing sensors were considered, including Landsat
1-9, Sentinel-2A/2B, Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER), Mod-
erate Resolution Imaging Spectroradiometer (MODIS),75

Medium-Resolution Imaging Spectrometer (MERIS),
and RapidEye. The extensive utilization of these sen-
sors has enabled the accurate quantification of various
water quality parameters. These parameters include and
not limited to chlorophyll-a concentration [14], [60],80

[61], [69], [84], [103], [106], [108], [119], turbidity
[34], [41], [104], total suspended solids (TSS) [68],
total suspended matter (TSM) [10], [53], [81], [113],
total phosphate (TP) [47], [51], [80], [109], [110],
[114], [120], total nitrogen (TN) [51], [110], [114],85

ammonia nitrogen (NH3 −H) [36], [88],nitrate nitro-
gen (NO3 −N ) [3], [18], [23], [29], [36], [97], [105],
chemical oxygen demand (COD) concentration [22],
[47], [59], [102], [109], [116], [120], biochemical oxy-
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gen demand (BOD) concentration [5], [39], [52], [101],90

algal bloom [96], [115], colored dissolved organic
matter (CDOM) [24], [26], [66], [79], [80], [113], total
organic carbon (TOC) [28], [116], dissolved organic
carbon (DOC) [17], [25], [89], secchi disk transparency
(SDT) [48], [92], [95], suspended particulate matter95

(SPM) [119], suspended solids concentration (SSC)
[86], [100], secchi disk depth (SDD) [7], [87], [101],
pH [7], [46], [87], [88], total dissolved solids (TDS)
[2], [4], [10], [28], [53], [64], [81], [99], [117], and
electrical conductivity (EC) [4], [39], [46], [119].100

Also in recent years, the integration of citizen sci-
ence into water quality monitoring efforts has gained
significant traction. Citizen science involves the par-
ticipation of non-professional volunteers in scientific
research, data collection, and analysis. This approach105

not only enhances spatial and temporal data coverage
but also fosters public engagement and environmental
stewardship. Citizen scientists, equipped with simple
monitoring tools and mobile applications, contribute
valuable data on water quality from diverse geographi-110

cal locations, including remote and under-served areas.
Citizen science-based mobile applications play a piv-

otal role in democratizing water quality monitoring by
empowering individuals to become active participants
in environmental conservation. These applications offer115

user-friendly interfaces, real-time data visualization,
and educational resources, enabling users to easily col-
lect, upload, and share water quality data. Furthermore,
some applications incorporate machine learning algo-
rithms and crowdsourced data validation mechanisms120

to ensure data accuracy and reliability.
Citizen science-based applications also pose sev-

eral challenges. Firstly, ensuring data accuracy and
reliability remains a significant hurdle, as citizen-
contributed data may vary in quality due to differences125

in equipment, expertise, and sampling methods. Sec-
ondly, maintaining participant engagement and moti-
vation over the long term or even the course of the
study period is crucial for sustained data collection
efforts. Lastly, addressing issues of data privacy, se-130

curity, and ethical concerns surrounding the use of
citizen-contributed data requires careful consideration
and management.

The convergence of citizen science and remote sens-
ing for water quality assessment is an emerging field135

that has only been incorporated into peer-reviewed
literature within the past decade. Despite this recent
inclusion, comprehensive review papers on this topic
remain relatively sparse and widely underexplored. Pre-
vious reviews [12], [32], [72], [77], [107], [118] have140

focused on related aspects, such as crowdsourcing en-
vironmental data for flood modeling or utilizing remote
sensing for water quality characterization. However,
these reviews often lack a holistic examination of the

collaborations between citizen science and remote sens-145

ing specifically for water quality monitoring issues. For
instance, the review paper [72] explores the utilization
of citizen-generated data to enhance flood modeling but
it lacks a comprehensive discussion on water quality
parameters and its relation to citizen science and remote150

sensing. Similarly, [118] delves into the Forel–Ule
Index (FUI) for water color measurement using re-
mote sensing but fails to address broader questions
on how citizen science can augment traditional water
quality monitoring methods. In contrast, while the paper155

[107] highlights the significance of data availability in
wetland conservation, it does not specifically explore
the intersection of citizen science and remote sensing
for water quality monitoring. Likewise, authors in [77]
elaborate on computational approaches for water qual-160

ity index (WQI) assessment but overlook the role of
citizen science and remote sensing in this domain. [12]
discusses monitoring lake water quality with citizen-
collected data but does not sufficiently elaborate on
remote sensing applications or broader implications for165

water quality assessment. Review in [32] focuses on
citizen science in phenology observations, showcasing
models for broader data collection but lacks a focus on
water quality parameters.

Consequently, these gaps underscore the pressing170

need for a comprehensive review that addresses key re-
search questions associated with an up-to-date literature
on applications of citizen science technology in water
quality estimation / monitoring. This review aims to ex-
amine the impact of remote sensing and citizen science175

in water quality monitoring, exploring opportunities
for estimation of water quality parameters, extending
traditional monitoring capabilities, and assessing the
effectiveness of hybridizing remote sensing methodolo-
gies and citizen science in analyzing water body quality.180

Following are some of the research questions that this
article attempts to answer through examining the inter-
section of remote sensing and citizen science within
water quality monitoring.

1) What is the current the state-of-the-art in the185

application of citizen science technology for water
quality estimation and monitoring?

2) How does citizen science based applications ex-
tend traditional monitoring capabilities in the con-
text of water quality monitoring?190

3) What are the opportunities presented by combining
remote sensing and citizen science in water quality
monitoring?

This paper presents a comprehensive compilation of
research conducted through the years 2017 to 2024,195

focusing on the implementation of remote sensing tech-
niques for estimating various water quality parameters.
In this review article, we explore the opportunities
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offered by remote sensing and citizen science for water
quality monitoring. The organization of the review200

article begins with an Introduction section outlining
the importance and challenges associated with water
quality monitoring. Next, the Background and Moti-
vation section provides a conceptual understanding of
the terms Citizen Science, Remote Sensing, discuss the205

relation between them, and their significance towards
the assessment of water quality compared to the ex-
isting traditional methods. The Methodology section
guides about the various stages of refining literature
search resulting in exploring research articles that are210

closely related to the theme of the review paper. The
Results of Literature Review section presents the de-
tailed findings using the performed literature search
related to the collaborative remote sensing and citizen
science approaches for monitoring water quality and215

estimating various quality parameters. The Citizen Sci-
ence for Water Quality Analysis section also presents
the functionalities and different available citizen science
based mobile applications utilized for collecting and
analyzing data using various remote sensing and other220

techniques resulting in assessing the water quality of
different water bodies in various regions.Finally, the
Discussion section concludes with a summary of the
discussed remote sensing and citizen science based
methodologies in improving water quality management225

and also presents few recommendations for potential
areas of research based on the specified research ques-
tions mentioned in the Introduction section.

II. BACKGROUND AND MOTIVATION

A. Motivations grounds, Remote Sensing and Citizen230

Science

Water, the essence of life, is unequally distributed
across the globe, with some regions facing acute
scarcity while others having abundant reserves. This
disparity underscores the critical importance of water235

resources and the need for vigilant monitoring to ensure
equitable access and sustainable management. Water
bodies, from rivers to lakes to oceans, serve as vital
lifelines for ecosystems and human societies alike,
supporting biodiversity, agriculture, industry, and recre-240

ation. However, they face myriad challenges aggravated
by anthropogenic activities.

Human-induced pollution, originating from agricul-
tural runoff, industrial discharge, and urban sewage,
poses a significant threat to water quality. Nutrient245

enrichment, sedimentation, and chemical contamination
degrade aquatic habitats and impair water usability.
Moreover, the effects of climate change, such as altered
precipitation patterns and rising temperatures, further
strain water bodies, exacerbating issues of scarcity and250

pollution. Urbanization compounds these challenges,

amplifying the demand for water while simultaneously
increasing pollution through runoff and waste disposal.

Environmental concerns also loom large as the health
of water bodies deteriorates, impacting aquatic ecosys-255

tems and human health alike. Eutrophication, harm-
ful algal blooms, and the proliferation of pathogens
pose direct threats to biodiversity and public safety.
Additionally, poor water quality jeopardizes drinking
water supplies, leading to widespread health risks and260

economic losses.
Traditional methods for measuring water quality

typically involve in-situ measurements and periodic
sampling [56], [91], [111]. In-situ measurements are
conducted directly at the water body using handheld265

instruments or fixed sensors. These methods provide
real-time data but are limited in their spatial coverage
and may not capture dynamic changes adequately due
to the fixed nature of sensor placement. Additionally,
sampling involves collecting water samples at specific270

locations and times for laboratory analysis. These meth-
ods, while effective, often require trained personnel,
specialized equipment, and can be costly and time-
consuming.

Remote sensing techniques emerged as a response to275

these challenges, playing a crucial role in the modern
water quality monitoring approaches by enabling the
collection of essential data without the need for direct
physical contact with the water bodies being studied.
These techniques leverage various platforms, including280

satellites orbiting the Earth, unmanned aerial vehicles
(drones), and specialized airborne sensors with each
platform offering distinct advantages in terms of spatial
coverage, temporal resolution, and accessibility.

Fig. 1. An image highlighting spatial and temporal coverage of water
area using advanced remote sensing technology for water quality
assessment.

In recent years, there has also been a growing interest285
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in utilizing the power of citizen science for water
quality monitoring. In this context, citizen science aims
to engage and empower communities in monitoring
and understanding their local environment. Especially,
citizen science involves engaging the public in scientific290

research and monitoring activities, enabling individuals
to contribute to data collection and analysis. In the field
of water quality monitoring, citizen science initiatives
empower volunteers—ranging from random citizens
to domain experts to participate actively in gathering295

water quality data. This inclusive approach enhances
spatial and temporal coverage, allowing for a broader
understanding of the dynamics of water quality across
diverse landscapes.

Fig. 2. An illustration depicting the utilization of citizen science
towards contributing environmental data for measuring water quality
parameters.

The integration of remote sensing technologies with300

citizen science initiatives represents a collaborative ap-
proach that holds great promise for advancing water
quality monitoring efforts [9], [15], [33], [63], [70].
For instance, citizen scientists can provide ground-
truth data that can validate and enhance the interpre-305

tation of remote sensing observations. Remote sens-
ing technologies, such as satellite imagery and drone-
based sensors, excel in capturing large-scale spatial
information on water quality indicators over expansive
areas [10], [14], [53], [69], [81], [84], [90], [96], [99],310

[103], [106], [108], [117], [119]. However, the accuracy
and specificity of these observations can be further
refined and validated with localized data collected by
citizen scientists on the ground. Therefore, by integrat-
ing citizen-collected data with remote sensing outputs,315

researchers can achieve a more comprehensive under-
standing of water quality dynamics. This combined
approach not only improves data accuracy and coverage
but also fosters a sense of community engagement and

ownership in environmental monitoring efforts where320

citizen involvement empowers local communities to
actively contribute to scientific endeavors, promoting
environmental awareness and practises in analyzing
water quality.

B. Water Quality Components and Assessment325

Water quality can be defined as the assessment of
a water sample’s attributes against specific criteria.
Assessing water quality involves various tests, includ-
ing assessments of color, smell, temperature, acidity,
presence of bacteria, biodiversity, and more. These330

approaches typically involves obtaining measurements
of various water quality parameters which can be
broadly categorized into physical, chemical, biological,
and radioactive measurements [43] as highlighted in
table I.335

Physical parameters such as temperature, turbidity,
and depth are fundamental for assessing water quality.
Temperature readings, obtained using thermometers, re-
veal thermal fluctuations affecting aquatic ecosystems.
Turbidity, a measure of water clarity, is determined340

with turbidimeters that gauge light scattering caused by
suspended particles. Similarly, the evaluation of water
quality heavily relies also on chemical parameters. pH,
representing acidity or alkalinity, is gauged using pH
meters or indicators. Dissolved oxygen levels, crucial345

for aquatic life, are monitored with oxygen meters.
Nutrient concentrations (e.g., nitrogen, phosphorus) are
assessed using spectrophotometry or colorimetry. De-
tection of contaminants such as heavy metals, pesti-
cides, and organic compounds involves sophisticated350

techniques like chromatography (e.g., GC-MS) [6],
[112] or atomic absorption spectroscopy [1], [42], [78],
[85].

Biological parameters, being the third category, in-
cluding microbial activity and biodiversity, are assessed355

through direct observation and sampling techniques
[21], [49]. Microbial activity is often inferred through
tests targeting bacterial or algal presence and metabolic
rates, providing insights into water ecosystem health.
Biodiversity assessments involve sampling organisms360

ranging from macroinvertebrates to fish populations,
offering a comprehensive view of aquatic ecological
conditions.

Lastly, radioactive parameters are also crucial in
water quality analysis and monitoring, especially for365

assessing potential contamination from radioactive iso-
topes. Monitoring radioactive parameters entails mea-
suring specific isotopes like tritium, radium, or cesium
using sensitive detectors such as gamma spectrometers
or liquid scintillation counters [31], [71]. These mea-370

surements are essential for understanding the presence
and distribution of radioactive contaminants in water
bodies.
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Table I presents an overview of the physical, chem-
ical, biological, and radioactive categories of water375

quality parameters highlighting key metrics and their
relevance in water quality monitoring efforts.

TABLE I
DIFFERENT CATEGORIES OF WATER QUALITY PARAMETERS

Physical Chemical Biological Radioactive

Temperature pH Algae Alpha Emitter

Color DO, BOD Bacteria Beta Emitter

Turbidity Chloride Virus

Taste COD

Solids Acidity, Alkalinity

Electrical Conductivity

Despite their accuracy, traditional methods for mea-
suring various categories of water quality parameters as
mentioned above not only constitute substantial costs380

but are also prone to errors and inconsistencies due to
human factors. The dependence on skilled personnel
introduces a logistical challenge, particularly in remote
or inaccessible areas where deploying experts may be
challenging or costly. Furthermore, the spatial and tem-385

poral constraints associated with in-situ measurements
hinder holistic assessments of water quality across ex-
pansive aquatic environments. These limitations impede
our ability to obtain a detailed understanding of water
quality dynamics, particularly the fluctuations influ-390

enced by seasonal changes or anthropogenic activities.
Amidst these challenges, the role of remote sensing

and citizen science in water quality monitoring emerges
as a beacon of hope. By harnessing technological inno-
vations and community engagement, these approaches395

offer scalable and cost-effective solutions to gather real-
time data and foster environmental stewardship. The
next subsection explores the role of remote sensing
in water quality analysis, focusing on optical and mi-
crowave systems and their unique capabilities. It dis-400

cusses spectral imaging, comparing airborne and space-
borne sensors, and differentiating between optically
and non-optically active water parameters. Methods for
deriving water quality from spectral data are outlined,
including empirical, semi-empirical, analytical, and AI-405

driven approaches. A table summarizes studies using
remote sensing for water quality estimation.

C. Remote Sensing for Water Quality

Remote sensing systems play a pivotal role in the
monitoring and assessment of water quality, offering410

a comprehensive understanding of aquatic ecosystems.
These systems leverage various technologies and sen-
sors to gather data remotely, enabling efficient and
widespread monitoring over large geographic areas.

There are two primary categories of remote sensing415

systems employed in water quality monitoring: optical
remote sensing systems and microwave remote sensing
systems. Each system offers unique capabilities and
advantages, contributing to the advancement of research
and applications in this field.420

Optical remote sensing uses sensors to measure
reflected or emitted electromagnetic radiation from
Earth’s surface. It captures data based on sunlight inter-
actions, allowing for the retrieval of vegetation indices,
land cover, and surface temperature. Satellites like425

Landsat, Sentinel-2, MODIS, and MERIS are key tools
in global water quality monitoring. Microwave remote
sensing excels in water quality monitoring, especially in
challenging environments like cloudy or turbid waters.
These systems operate in the microwave spectrum,430

penetrating water to reveal subsurface properties. They
measure parameters such as temperature, salinity, and
surface roughness, serving as indicators of water qual-
ity. Microwave sensors, including Synthetic Aperture
Radar (SAR), can detect oil spills and algal blooms435

with high resolution and in any weather. Integrating
microwave data with optical and in situ measurements
improves the accuracy of water quality assessments,
providing a holistic view of aquatic ecosystems and
their responses to environmental changes.440

1) Spectral Images: Spectral imaging, with its abil-
ity to capture detailed spectral characteristics alongside
spatial information, holds significant advantages in the
domain of water quality monitoring benefiting greatly
from advanced imaging technologies. Spectral imaging445

captures and analyzes the spectral characteristics of var-
ious objects and scenes across different wavelengths of
the electromagnetic spectrum. Unlike traditional imag-
ing, which captures only spatial information, spectral
imaging also records spectral information for each pixel450

in the image.
Based on difference in the spectral resolution, the

spectral images can be further categorized into Multi-
spectral images and Hyperspectral images. Multispec-
tral images capture data across 3 to 10 spectral bands455

from the visible and near-infrared range of the elec-
tromangetic spectrum. The wavelength span of multi-
spectral images typically covers wavelengths from 0.4
to 10 µm. On the other hand, Hyperspectral images
capture data at hundreds of narrow contiguous spectral460

bands across a broad spectral range. This high spectral
resolution allows hyperspectral sensors to capture fine
spectral details and detect subtle spectral signatures.
The wavelength span of hyperspectral images covers
the same range as multispectral images.465

2) Airborne and Spaceborne Sensors: Airborne and
Spaceborne sensors represent two distinct yet comple-
mentary approaches to remote sensing, each offering
unique advantages in observing and understanding the
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Earth’s surface and atmosphere. Airborne sensors are470

typically mounted on aircraft or drones, allowing for
versatile and targeted data collection at relatively low
altitudes. They measure the reflectance and absorption
propertie of various surfaces from incoming solar radi-
ation operating in visible, near-infrared, mid-infrared,475

and thermal spectral bands enabling the acquisition
of high-resolution imagery and detailed measurements
of environmental parameters. Examples of airborne
sensors include optical cameras, multispectral cameras,
LiDAR (Light Detection and Ranging), and thermal480

infrared sensors.
Spaceborne sensors are deployed on satellites orbit-

ing the Earth, offering a broader coverage area and con-
tinuous monitoring capabilities on a global scale. These
sensors capture data across a wide range of wavelengths485

and resolutions, facilitating large-scale environmental
monitoring and analysis. Examples of spaceborne sen-
sors include Moderate Resolution Imaging Spectro-
radiometer (MODIS), Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER), Visible490

Infrared Imaging Radiometer Suite (VIIRS), Landsat,
and Sentinel satellites.

3) Remote Sensing Applications in Water Quality
Monitoring: Within the remote sensing applications,
the process of determining the water quality parameters495

from remotely sensed spectral data involves several
techniques, each tailored to the specific parameters of
interest and the characteristics of the water body being
studied.

1. Empirical Methods: Empirical methods [53],500

[69], [96], [108] rely on statistical relationships
between spectral signatures and water quality pa-
rameters. These relationships are derived through
in situ measurements and laboratory analysis of
water samples collected concurrently with satel-505

lite or airborne imagery. Once established, these
algorithms can be used to estimate water quality
parameters from remotely sensed data. The empir-
ical approaches are simple as easy to implement
for retrieving water quality.510

2. Semi-Empirical Methods: Semi-Empirical meth-
ods [117], [119] combine physical models with
empirical relationships to improve the accuracy of
water quality parameter estimation. These meth-
ods utilize theoretical principles such as radia-515

tive transfer theory to model the interaction of
electromagnetic radiation with water bodies. Then,
empirical relationships are incorporated to cali-
brate the model using in situ measurements. This
calibration helps to refine the model’s predictions520

and enhance its accuracy. Semi-empirical methods
are particularly useful when dealing with complex
environmental conditions and diverse water types.

3. Analytical Methods: These methods [2], [66],

[117] involve the development of mathematical525

models based on physical principles governing the
interaction between light and water. These models
consider various factors such as absorption, scat-
tering, and reflection of light by water constituents.
Examples include the radiative transfer equation530

and the bio-optical model. Analytical models are
often used to simulate the spectral reflectance of
water bodies under different conditions. By com-
paring simulated reflectance with observed spec-
tral data, water quality parameters can be inferred.535

Analytical methods provide a deeper understand-
ing of the underlying physical processes but may
require significant computational resources.

4. Artificial Intelligence (AI) Methods: AI based
methods [10], [81], [99], [103], [117] such as540

machine learning and deep learning, have gained
popularity for extracting water quality parame-
ters from remotely sensed data due to their abil-
ity to handle complex relationships and patterns.
These methods involve training algorithms on545

large datasets of spectral data and correspond-
ing water quality measurements. Neural networks,
support vector machines, random forests, and con-
volutional neural networks are commonly used AI
techniques. These algorithms learn the intricate550

relationships between spectral features and water
quality parameters, enabling accurate predictions
even in heterogeneous environments. AI methods
offer flexibility and scalability, making them suit-
able for a wide range of applications and data555

types.

In addition to the aforementioned parameters, water
quality assessments also address the presence of con-
taminants, notably volatile organic compounds (VOCs),
which pose significant risks to public health and envi-560

ronmental integrity. These compounds, prevalent due
to industrial activities, include aromatic hydrocarbons
(AHs) and chlorinated hydrocarbons (CHCs). Some
common VOCs found in water sources include tetra-
chloroethylene and trichloroethylene, particularly in565

groundwater reservoirs, as well as polynuclear aromatic
hydrocarbons (PAHs). Monitoring and mitigating the
impact of such contaminants are essential components
of comprehensive water quality management strategies,
aimed at ensuring the sustainability and safety of water570

resources for present and future generations.

Numerous research endeavors have employed di-
verse remote sensing sensors and methodologies to
extract water quality parameters, yielding a spectrum of
precision levels. Summaries of selected investigations575

leveraging remote sensing data for retrieval of various
water quality parameters are consolidated and presented
in Tables II.
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TABLE II
AN OVERVIEW OF MEASUREMENTS FOR WATER QUALITY PARAMETERS IN COMBINATION WITH VARIOUS MODEL IMPLEMENTATIONS FOR

REMOTE SENSING APPLICATIONS

Water Quality Parameters Data / Sensor Algorithm / Model Study Region References

Chl-a/SPM/Turbidity/EC/TDS RapidEye Semi-Empirical Borabey Dam, Turkey [119]
TDS/TSM/EC/pH/DO/BOD/Turbidity Landsat 8 OLI Empirical Tuby River, Philippines [53]

TDS/COD/BOD/NH3 −N ASD Spectrometer Semi-Empirical/AI/Analytical Sewage Treatment Plant, China [117]
TDS/DO/Temperature Landsat 8 OLI Artificial Intelligence Latian Dam, Iran [99]

Chl-a/TSS Landsat 8 Empirical West Flood Canal, Indonesia [108]
Chl-a/TSS Sentinel 2 MSI Empirical/AI Unisinos University / Broa Dam, Brazil [103]
Chl-a/TSS Landsat 8 OLI Empirical Different Dams, South Africa [69]

TDS/pH/TSM/Turbidity Landsat 8 OLI Empirical/AI Deepor Beel Lake, India [10]
TDS/TSM Sentinel-2 MSI Empirical/AI Chah-Nimeh Reservoirs, Iran [81]

Algal Bloom GLIMR Empirical West & East Coasts, USA [96]
Chl-a/TDS/TOC Landsat 8 OLI/TIRS Empirical Sanalona Reservoir, Mexico [90]

Chl-a Sentinel-2 MSI Empirical/AI Lake Balik, Turkey [14]
Chl-a Sentinel-2 MSI Semi-Empirical Reservoirs, North Texas, USA [106]
Chl-a GOCI sensor, COMS Empirical/AI Bohai–Yellow Sea, China [84]

Chl-a/TSS Sentinel-2 MSI Empirical/AI Unisinos University / Broa Dam, Brazil [60]
Chl-a Sentinel 2 Level 1C Empirical Bhadra Reservoir, India [61]

Chl-a/TSS/SD Sentinel 2A / 2B Empirical/AI Auburn Bay Wet Pond, Canada [68]
Chl-a/TDS/TOC Landsat 8 OLI Empirical J. A. Alzate Dam, Mexico [28]

Chl-a/TDS/Turbidity Landsat 8 OLI Empirical/AI Lake Tana, Ethiopia [64]
EC/TDS Landsat 8 OLI Empirical Syrdarya River, Uzbekistan [4]

TDS Landsat 8 OLI Empirical/Analytical Shatt al-Arab River, Iraq [2]
CDOM/Chl-a/TSM Sentinel-3 OLCI Empirical/AI Baltic Sea [113]

CDOM Land Cover Atlas Empirical/Analytical Yangtze River, China [66]
CDOM/Chl-a Sentinel-2A Empirical/AI Lake Huron, USA [26]

CDOM/TN/TP/NH3 −N Imaging Spectrometer, China Empirical/AI Guanhe River, China, [80]
CDOM/TSM/Chl-a PRISMA Imaging Spectrometer Analytical Lake Trasimeno, Italy [79]

CDOM Landsat 8 OLI Empirical/Analytical Lake Huron, USA [24]
COD/TOC/BOD Landsat-5 TM Empirical Shenzhen, China [116]

COD/Turbidity/TSS/BOD/DO Landsat 8 OLI Artificial Intelligence Saint John River, Canada [102]
COD/TN/TP Proximal Hyperspectral Imager Empirical/AI Lake Taihu, China [109]

COD SeaWiFS Empirical/Analytical Pearl River, China [22]
COD/BOD/DO Landsat TM Empirical/AI River Beas, India [59]

COD/TP/TN Sentinel-2 MSI Empirical/AI Urban Lake, China [47]
COD/TP/TN/BOD/Chl-a, Unmanned Aerial Vehicle Empirical/AI Maozhou River, China [120]

pH/Chl-a/DO/TSS/SDD/TDS Sentinal-2A/Landsat 2A/Gokturk-2 Empirical/AI Gala Lake, Turkey [7]
pH/Chl-a/SDD/Turbidity Sentinel-2 MSI/Landsat-8 OLI Empirical Tres Marias Reservoir, Brazil [87]
pH/DO/COD/NH3 −H Landsat-8 OLI Empirical/AI Taihu Lake, China [88]

pH/PO4/EC/TSS/Turbidity Landsat 8 OLI/TIRS Empirical Playa Colorada Bay, Mexico [46]
TN/pH/BOD/DO/SS/TP Landsat-5 TM Empirical/Semi-Empirical Chugoku, Japan [51]
TN/SD/Chl-a/TP/TSS Landsat TM Empirical/AI Lower Peninsula, USA [114]

TN/TP/COD Proximal Hyperspectral Imager Empirical/AI Taihu, Liangxi, and Fuchunjiang, China [110]
Turbidity Sentinel-2 MSI Empirical Baysh Dam, Saudi Arabia [34]
Turbidity Sentinel-2A/2B MSI Semi-Empirical Ganga River, India [41]
Turbidity Landsat 8 TIRS Empirical/Analytical Maine Coast, USA [104]

SSC Landsat 7 ETM+ Empirical Indus River, Pakistan [100]
SSC/Turbidity Landsat 8 OLI/7 ETM+/4–5 TM Empirical Mississippi/Missouri Rivers, USA [86]

BOD/pH/DO/TDS/TSS/Turbidity/EC Landsat 8 OLI Empirical Tubay River, Philippines [52]
BOD/TSS/SDD/Chl-a/TP/TN ATI Multispectral Sensor Empirical Ponds, USA [101]

BOD LIDAR DTM/DSM Empirical/Analytical Thames River Basin, UK [5]
BOD/pH/EC/DO/NO3 −N /SRP Landsat 8 OLI/TIRS Empirical/AI Four Rivers, Bangladesh [39]

SDT/Chl-a/TN/TP Sentinel-2A Empirical Burullus Lake, Egypt [48]
Chl-a/TP/SDT Landsat 8 OLI Empirical/Analytical Maninjau Lake,Indonesia [92]
Chl-a/TP/SDT Landsat 8 OLI Empirical Riam Kanan Reservoir, Indonesia [95]

Chl-a/PC/TSS/TN/TP/NO3 −N /pH ATP2000P Spectrometer Empirical/AI Haihe River, China [18]
NO3 −N Landsat 8 MSI Empirical/Analytical Plesne Lake, Czech Republic [97]

DO/NH4 −N /NO3 −N /V-phenol Landsat TM5/ETM7/OLI8 Empirical Erlong Lake, China. [3]
TSS/OP/TP/NH4 −N /NO3 −N /DO/BOD OW Network/3 Satellite Empirical/Analytical Occoquan Watershed,USA [105]

NO3 −N /NH4 −N /COD/DO/pH Landsat 5/7 ETM+/8 OLI Empirical/Analytical Mitidja Basin, Algeria [23]
BOD/NO3 −N /TSS/DO/NH3 −N Landsat 4/5/7/8 OLI-TIRS Empirical/Analytical Muar River, Malaysia [29]

NH3 −H/N2O Unmanned Aerial Vehicle Empirical University of Illinois, USA [36]

III. METHODOLOGY

For this review article, a rigorous methodology was580

employed to identify relevant literature focusing on

remote sensing and citizen science approaches for
monitoring water quality. The aim was to compre-
hensively survey peer-reviewed papers pertaining to
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citizen science and remote sensing initiatives and their585

applications in monitoring water quality.
To access a wide range of scholarly works, two

prominent academic databases, namely Web of Science
and Scopus, were utilized. These databases offer ex-
tensive repositories of peer-reviewed literature across590

multiple disciplines, making them valuable resources
for conducting comprehensive literature reviews. More-
over, each database provides distinct search function-
alities and subject areas, enabling tailored searches to
optimize the retrieval of relevant papers.595

To ensure the inclusion of pertinent literature, the
initial phase of literature search involved exploring
various combinations of keywords as displayed in Fig.
3. These keywords were carefully selected to capture
the breadth of the topic, ensuring a comprehensive600

exploration of the subject matter. Fig. 3 also presents
the number of articles for each relevant combination of
keywords.

The search results in both databases were further
refined using filters such as “Year,”, “Subject Area,”605

and “Article Source Type”. In the Scopus database,
the search was limited to specific subject areas: envi-
ronmental sciences, social sciences, engineering, agri-
cultural and biological sciences, computer science, and
earth and planetary sciences. Within the Web of Science610

database, the selected subject areas included environ-
mental sciences, ecology, water resources, engineering,
science and technology other topics, remote sensing,
computer science, public environmental and occupa-
tional health, agriculture, and geography. The ”Article615

Source Type” filter contains attributes such as Article,
Conference Paper, and Review for both databases.

The primary focus of this review article revolves
around the integrated strategies and methodologies po-
sitioned at the intersection of citizen science and remote620

sensing for water quality monitoring as highlighted
in the introduction and background section. Therefore,
from the initial selected 1,489 number of research arti-
cles as presented in Fig. 4, we only chose those articles
that are the result of searching keywords closely related625

to all three concepts namely citizen science, remote
sensing, and water quality. This drastically reduces the
achieved number of articles to 163. Table III presents
the detailed division of the number of articles selected
against each combination of keywords at this stage.630

As the last step of the screening process, we re-
move possible duplicates and also manually remove
any repeated or irrelevant articles that are not related to
the review topic before reaching a comprehensive final
aggregate of 47 articles within both databases as a result635

of keywords search that specifically addressed only
the combined utilization of remote sensing techniques
along with citizen science in the context of water
quality assessment.

Fig. 4 offers a detailed summary of the literature640

searches and screening outcomes related to articles
included in the systematic review. It outlines the piv-
otal stages of the screening process and illustrates
the respective counts of articles incorporated at the
implementation of each search filter; thereby, enhancing645

clarity regarding the selection methodology employed
in this systematic review.

IV. RESULTS OF LITERATURE REVIEW

In the domain of water quality monitoring, combin-
ing remote sensing technologies with citizen science650

approaches has emerged as a promising strategy to
improve data acquisition, analysis, and decision-making
processes. This section presents the findings as a result
of thorough screening process from the finalized 47
selected research papers, detailed in figure 4 of the655

Methodology section, highlighting recent advances in
utilizing remote sensing techniques and citizen science
methodologies for water quality assessment. Based on
the findings from the literature search, this section is
divided into three main categories presenting the fre-660

quently used methodologies concerning citizen science,
remote sensing and the different estimated water quality
parameters utilizing the mentioned approaches.

A. Frequent Citizen Science Approaches used for Water
Quality Monitoring665

In addressing the limitations of traditional water
monitoring methods, it becomes evident that various
citizen science-based approaches have been effectively
employed to gather data for analyzing water quality
across diverse water bodies.670

From the selected studies, a range of citizen sci-
ence based methodologies are implemented, including
crowd-sourced data collection through smartphone ap-
plications [9], [15], [20], [40], [55], [63], [70], [73],
[75], participatory sampling campaigns (PSP) [13], [37]675

based on conducting water quality sampling through
utilization of airborne sensors including drones or plac-
ing sensors as part of other equipments used by pro-
fessionals, and lastly community-based environmental
monitoring (CBEM) programs [33], [38], [44] involving680

the scientific data collection involving the participation
of youth, elders, researchers, and experts.

Figure 5 illustrates the distribution and frequency of
these approaches across different studies, highlighting
the versatility and comprehensiveness of citizen science685

initiatives in water quality monitoring.

B. Remote Sensing Methodologies

The literature surveyed deeply investigates into fre-
quently used remote sensing methodologies to assess
changes in water quality monitoring over time. Among690

the array of studies examined, diverse remote sensing
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Fig. 3. The figure illustrates the combination of diverse set of keywords utilized within the search query system, encompassing keywords related
to citizen science, remote sensing, and water quality monitoring.

Fig. 4. The figure presents the sequence of steps performed and the results for screening of literature review at each stage.
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TABLE III
EXTRACTED NUMBER OF ARTICLES FOR EACH COMBINATION OF KEYWORDS RELATED TO CONCEPTS OF REMOTE SENSING, CITIZEN SCIENCE,

AND WATER QUALITY MONITORING WITHIN THE TWO DATABASES.

List of Keywords Number of Papers
Scopus Web of Science

“Remote Sensing” AND “Citizen Science” AND “Water Quality” 16 27
“Remote Sensing” AND “Mobile Application” AND “Water Quality” 16 18
“Remote Sensing” AND “Crowdsourcing Application” AND “Water Quality” 2 1
“Remote Sensing” AND “Citizen Science” AND “Water Quality Parameter” 7 11
“Remote Sensing” AND “Citizen Science” AND “Water Quality Monitoring” 14 15
“Remote Sensing” AND “Mobile Application” AND “Water Quality Parameter” 7 7
“Remote Sensing” AND “Mobile Application” AND “Water Quality Monitoring” 9 11
“Remote Sensing” AND “Crowdsourcing Application” AND “Water Quality Parameter” 1 -
“Remote Sensing” AND “Crowdsourcing Application” AND “Water Quality Monitoring” 1 -

Fig. 5. The image depicts the distribution and variety of citizen
science approaches across different research articles.

approaches were employed to analyze shifts in land-
scape dynamics and ecological trends. An overview is
depicted in Figure 6, which highlights the distribution
and frequency of the remote sensing methods across695

multiple research works for analyzing water quality.
Predominantly, most of the studies involving remote

sensing methodologies are concentrated on utilizing
spatial and temporal data of Landsat Satellite [8], [11],
[27], [67], [83], [121]. Other notable studies explored700

remote sensing techniques for monitoring water bodies
include Sentinel Satellite [45], [57], [82], [83], [83],
smartphone Camera Applications for Remote Sensing
[15], [63], [70], Lidar [35], and Unmanned Aerial
Vehicle (UAV) [65].705

C. Common Estimated Water Quality Parameters

The reviewed literature included the estimation of
various water quality parameters for analyzing water
quality of water bodies. Within the finalized number
of reviewed studies, various water quality parameters710

are estimated across different studies. A comprehen-
sive summary is illustrated in figure 7 revealing the

Fig. 6. The image presents the number (y-xis) and types (x-axis)
of different remote sensing sensor technologies utilized in research
articles.

frequency and diversity of these parameters across
multiple research studies.

Fig. 7. The figure presenting the number of papers on the y-axis and
the involved water quality parameter in the research studies on the
x-axis.

Most of the studies focused on the estimation of715
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Secchi Disk Depth [50], [67], [83], [93] parameter
for assessing the water quality. There were also some
studies which focused on other water quality parame-
ters including algal blooms [8], [11], [57], [70], total
suspended matter (TSM) [121], temperature [30], [74],720

[75], [82], [94], and water clarity [50], [67], [83].

V. CITIZEN SCIENCE FOR WATER QUALITY
ANALYSIS

In recent years, the fusion of remote sensing tech-
nologies and citizen science has revolutionized water725

quality monitoring efforts. Leveraging the ubiquity of
mobile devices and the power of crowdsourcing, citizen
science-based mobile applications have emerged as
invaluable tools in this domain. These applications not
only empower individuals to contribute to scientific730

endeavors but also enable real-time data collection on
a scale previously unimaginable. In this section, we
delve into the diverse functionalities offered by various
citizen science-based mobile applications dedicated to
water quality analysis. From basic data collection to735

sophisticated analytical capabilities, these applications
play a pivotal role in enhancing our understanding of
water ecosystems and addressing environmental chal-
lenges.

A. Mobile Applications for Measuring Water Quality740

1) HydroColor: HydroColor [62] is a mobile ap-
plication designed for measuring the remote sensing
reflectance of water bodies. It employs the smartphone’s
digital camera as a three-band radiometer for calcu-
lating reflectance in the red, green, and blue broad745

wavelength bands of the collected input images. Eq 1
from Mobley [76] is used for determining the remote
sensing reflectance of the water surfaces:

Rrs =
Lt − ρLt

π
Rref

Lc
(1)

where Lt is the radiance leaving the water surface,
Ls is the radiance of the sky, Rref is the standard750

irradiance reflectance of a reflectance standard (18%
gray card is used here), Lc is the measured radiance
leaving the reflectance standard, and ρ is the sea surface
reflectance factor.

To calculate the value of reflectance following eq755

1, the user captures three images of the gray card,
the sky, and the water surface. The application guides
the user to orient the smartphone correctly using the
internal compass and gyroscope ensuring accurate mea-
surement by removing surface-reflected light entering760

the camera. The collected images are processed within
the HydroColor application for the calculation of the
remote sensing reflectance.

Fig. 8. The schema of data acquisition using HydroColor
application (Picture Source: (Leeuw & Boss, 2018 [62]))

2) EnviObserver: The paper [58] presents a water
quality monitoring approach called Secchi3000. The765

proposed architecture consists of a mobile application
that allows the users to act as sensors by reporting
the environmental observations using the mobile ap-
plication. The performed analysis for measuring water
quality makes use of the Secchi3000 device consisting770

of a container filled with water and two tags placed
inside the device at different depths for measuring the
water turbidity. After the device is filled with water,
the user takes a picture through a hole while looking
inside the container. The acquired picture along with775

additional information (GPS location, and measurement
site ID) is sent to the server for automated water quality
analysis. Here initially the application implements a
tag recognition algorithm to extract the black, grey,
and white areas within the two tags. Following tag780

recognition, the application employs a second algorithm
dedicated to water quality analysis. This algorithm
utilizes the RGB values extracted from the tags to
assess the water quality.

3) SIMILE - Lake Monitoring: As part of the SIM-785

ILE (Informative System for the Integrated Monitor-
ing of Insubric Lakes and their Ecosystems) Interreg
Italy-Switzerland project, the water quality monitoring
of the Maggiore, Como, and Lugano lakes is facili-
tated through the integration of techniques including790

in situ monitoring with buoys, remote sensing and
the development of a citizen science mobile appli-
cation. The mobile application [19] functions as a
crucial tool for monitoring and preserving lake water
quality, encompassing several key features. Initially,795

the users can precisely locate themselves on a map,
ensuring their observations are accurately positioned.
The primary function involves users submitting data,
including mandatory picture observations, to assess lake
areas. Additionally, users can provide supplementary800

details such as weather conditions and the presence
of various elements like algae or oil stains, enhancing
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the observation’s value. The application allows users to
view both their own and others’ entries on the map,
fostering community engagement and awareness. The805

users also receive notifications about local initiatives
and events, promoting involvement in lake conservation
efforts. Emphasizing the project’s objectives, the system
operates as free and open-source software, aligning
with the SIMILE project’s commitment to promoting810

knowledge sharing.
4) EyeOnWater: EyeOnWater [16] revolutionizes

water monitoring through a user-friendly smartphone
application designed to estimate surface water color
accurately. Leveraging the built-in capabilities of mod-815

ern smartphones, including the camera, GPS receiver,
accelerometer, and clock, the app seamlessly acquires
essential data. When a user initializes the application,
the user is navigated through specific instructions via
an introductory video, ensuring optimal data collection.820

These instructions allow the user to correctly position
the smartphone in relation to water surface and position
of the sun when capturing an image. Once the user
captures the image, they assign a color from the dig-
ital comparator scale of Forel-Ule (FU), conveniently825

provided within the application. Subsequently, users
respond to two simple questions regarding rainfall and
water bottom visibility. The captured image, along with
the selected color index and user responses, is securely
stored on the project server for further analysis (see830

Figure 4c). While additional tools such as a Secchi disk
and paper/plastic based FU scale palette are optional,
users may enhance data accuracy by providing Secchi
depth and observed FU index values. Developed by
a consortium including the Royal Netherlands Insti-835

tute for Sea Research, Vrije University of Amsterdam,
MARIS, and Veeder under the Citclops project (EU
H2020), EyeOnWater is readily accessible on both the
App Store and Google Play. Although not open-source,
the application boasts intuitive usability, preventing840

image capture until quality controls, such as proper
smartphone positioning, are met. A minor limitation lies
in the application’s post-processing, which exclusively
provides FU values, neglecting parameters such as
turbidity and total suspended solids. However, these845

parameters could be computed externally to augment
the application’s analytical capabilities.

5) Sechhi App: The Secchi Disk mobile application
[98] serves as a comprehensive tool for citizen scien-
tists and seafarers to measure ocean transparency and850

phytoplankton levels using a simple and cost-effective
method. Users can access the application on iOS and
Android devices as a native app or via a web browser on
Windows operating systems. The application provides
detailed instructions on making and using a Secchi855

Disk, including optimal measurement conditions such
as time of day, sun position, and cloud cover. To

Fig. 9. Left to Right: (a) Capturing an image (b) Picking the color
of water surface (c) Proving additional details for water quality

monitoring (Source: ©Google Maps) (Image adapted from Stefan et
al., 2019 [54]))

record a Secchi depth, users first use the application
to obtain GPS coordinates, date, and time using the
device’s GPS receiver. They then lower the Secchi860

Disk into the sea and record the depth at which it
disappears from sight. This data can be stored locally
on the device and uploaded to an online database when
connected to a network. Additionally, users can provide
supplementary observations such as sea temperature,865

text notes, and photographs (if the device has a camera).
The uploaded data is visualized on an interactive map
publicly available on the Secchi Disk study website,
allowing for easy access and analysis of collected data.

6) Hydro Crowd: The developed mobile application,870

created through close collaboration with hydrologists
at the University of Oulu, aims to facilitate crowd-
sourced data collection for various hydrological sce-
narios. HydroCrowd allows random users to contribute
observations via a template questionnaire, textual de-875

scriptions, and image uploads. The crowdsourced data
are stored in an online database, subsequently utilized
to update corresponding hydrological models. Four
distinct hydrological scenarios are addressed: Urban
Flood, Vegetation Conditions, Lake Water Quality, and880

River Ice Properties. Implemented as an Android app
using the Flutter framework, HydroCrowd features a
user-friendly interface guiding users through sign-up,
sign-in, and scenario selection processes. Each scenario
prompts users to provide specific information relevant885

to the scenario, such as water depth and area cover-
age for Urban Floods, algae presence for Lake Water
Quality, ice properties for River Ice, and vegetation
details for Vegetation Conditions. The app validates
submitted data before storing it in the online database.890

Additionally, HydroCrowd includes help functionalities
to guide users through filling in information screens and
understanding key hydrological terminologies, ensur-
ing accurate and meaningful contributions from users.
Overall, the application streamlines crowd-sourced data895

collection for diverse hydrological scenarios, enhancing
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the efficiency and effectiveness of water quality moni-
toring efforts.

Fig. 10. From left to right: Fig (a) Home Page Fig (b) Urban
Flood Report page. (Image Source: Retrieved from ©Google Play

(www.play.google.com))

Fig. 11. From left to right: Three screens corresponding to
different scenarios Fig (a) Lake Water Quality Fig (b) River Ice

Properties Fig (c) Vegetation Conditions. (Source: Retrieved from
©Google Play

The table IV below provides a comprehensive
overview of mobile applications utilized in citizen900

science projects for water quality monitoring. It details
the names of these applications, the platforms they are
available on, associated costs, as well as accessibility to
source code and data. This summary provides valuable
insights for researchers, practitioners, and stakehold-905

ers interested in leveraging citizen science for water
quality analysis, facilitating informed decision-making
regarding the selection and utilization of these tools in
environmental monitoring endeavors.

VI. DISCUSSION910

In essence, conventional methods for monitoring
water quality parameters through on-site measurements

are not only expensive but also demand continuous
laboratory and field efforts. Conversely, the utilization
of remote sensing techniques alongside geospatial tools915

presents a cost-efficient avenue for comprehensively
assessing water quality parameters across vast spatial
extents with reliable temporal consistency. Both space-
borne and airborne remote sensing sensors demonstrate
the potential to accurately estimate water quality param-920

eters. The derivation of these parameters from remote
sensing imagery entails a variety of methodologies,
including Empirical, Analytical, Semi-Empirical, and
Artificial Intelligence (AI) techniques.

Multispectral sensors have gathered widespread925

adoption in water quality monitoring, largely owing to
the global availability of their imagery. Their utilization
is particularly gaining traction in developing regions.
However, the use of multispectral imagery, such as
MERIS, in the examination of small inland lakes may930

present accuracy challenges due to its coarse resolution.
Coarse-resolution images, wherein one pixel represents
a sizable area, pose a potential source of error as distinct
features within small regions may not be adequately
captured. For instance, a study comparing the Chinese935

high-resolution GF-1 Wide Field Imager (WFI) data
with MODIS for Suspended Particulate Matter (SPM)
estimation revealed significant spatial distribution and
concentration consistency between GF-1 and Landsat 8
OLI data. GF-1 effectively resolved over 75% of spatial940

variations, whereas MODIS, with its 250-meter resolu-
tion, only addressed 40%, underscoring the limitations
of coarser-resolution imagery like MODIS.

The use of Unmanned Aerial Vehicle (UAV) air-
borne sensors is witnessing an upward trajectory due to945

their rapid advancement. Airborne spectrometers offer
efficient and adaptable solutions to mitigate temporal,
spectral, and spatial resolution limitations associated
with certain satellite sensors.

Remote sensing based retrieval of water quality950

parameters hinges upon the optical properties of the
water. Parameters such as total suspended solids (TSS),
colored dissolved organic matter (CDOM), chlorophyll-
a concentration, and turbidity can be directly inferred
from remote sensing images due to their optical activity.955

Conversely, optically weak or inactive parameters like
total dissolved solids (TDS), total nitrogen (TN), total
phosphorus (TP), chemical oxygen demand (COD), and
pH can be estimated through correlation with optically
active parameters.960

Based on the literature survey, the following table V
recommendations are proposed for future endeavors in
water quality assessment.
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TABLE IV
SUMMARY OF THE REVIEWED CITIZEN SCIENCE BASED MOBILE APPLICATIONS FOR MONITORING WATER QUALITY

Application Cost Platforms GitHub / Project Site Open Access to Data

HydroColor Free Android / iOS github.com/Thomas-Leeuw/HydroColor No Access

Sechhi App Free Android / iOS playingwithdata.com/secchi-disk-project User’s own data can be downloaded

SIMILE App Free Android / iOS github.com/interreg-simile/simile-app No Access

Lake Observer Free Android / iOS lakeobserver.org Yes (lakeobserver.org)

EyeOnWater Free Android / iOS eyeonwater.org Yes (eyeonwater.org)

Hydro Crowd Free Android No Access No Access

TABLE V
RECOMMENDATIONS FOR INTEGRATING REMOTE SENSING AND CITIZEN SCIENCE IN WATER QUALITY MONITORING

Sr.No Recommendations Description

1.
Incorporating Citizen

Science Approaches with
Remote Sensing Data

Citizen scientists can contribute valuable ground-truth data, enhance spatial coverage,
and validate remote sensing-derived water quality parameters. Establishing platforms
for citizen engagement and collaboration can strengthen community involvement in

environmental stewardship.

2. Automated Data
Processing Pipelines

Implement automated data processing pipelines to streamline the analysis of remote
sensing imagery. This includes pre-processing steps such as atmospheric correction,
image registration, and feature extraction. Utilizing cloud-based computing resources
can expedite data processing tasks and facilitate timely dissemination of water quality

information.

3.
Enhancement of
Spatial-Temporal

Monitoring

Expand the spatial and temporal resolution of monitoring efforts by integrating data
from diverse remote sensing platforms. This includes satellite-based observations,

UAVs, and ground-based sensors. By combining data from multiple sources,
researchers can capture fine-scale variability in water quality parameters and monitor

changes over time with greater accuracy.

4.
Incorporation of

Advanced Data Fusion
Techniques

Explore advanced data fusion techniques to integrate multi-source remote sensing data
effectively. Fusion methods such as Bayesian inference, data assimilation, and

multi-resolution analysis can synergistically combine information from disparate
sensors, enhancing the reliability and robustness of water quality assessments.

5.
Development of

Open-Source Analytical
Tools

Foster the development of open-source analytical tools tailored for water quality
monitoring applications. Providing access to user-friendly software packages and
algorithms encourages collaboration, transparency, and reproducibility in research

endeavors. Additionally, investing in capacity building programs can empower
stakeholders to leverage remote sensing data for informed decision-making.

6.
Promotion of

Interdisciplinary Research
Collaborations

Encourage interdisciplinary collaborations between remote sensing scientists, water
resource experts, policymakers, and stakeholders. By fostering cross-disciplinary

dialogue and knowledge exchange, researchers can address complex water quality
challenges from holistic perspectives and develop innovative solutions grounded in

scientific rigor and practical relevance.
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Townley, Esther Lévesque, Marc Amyot, Jan Franssen, and
Jean-Pierre Dedieu. Imalirijiit: A community-based environ-
mental monitoring program in the george river watershed,1180

nunavik,canada. Ecoscience, 25:381 – 399, 2018.
[45] Alessia Goffi, Gloria Bordogna, Daniela Stroppiana, Mirco

Boschetti, and Pietro Alessandro Brivio. Knowledge and data-
driven mapping of environmental status indicators from remote
sensing and vgi. Remote. Sens., 12:495, 2020.1185
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[55] Stefan Jovanović, Daniela Carrion, and Maria Antonia Brov-

elli. Citizen science for water quality monitoring applying
foss. ISPRS - International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, 2019.1230

[56] Lijuan Kang, Mengyuan Zhu, Guangwei Zhu, Hai Xu, Wei
Zou, Man Xiao, Chaoxuan Guo, Yunlin Zhang, and Boqiang
Qin. Decreasing denitrification rates poses a challenge to
further decline of nitrogen concentration in lake taihu, china.
Water research, 256:121565, 2024.1235

[57] Rabia Munsaf Khan, Bahram Salehi, Milad Niroumand-Jadidi,
and Masoud Mahdianpari. Mapping water clarity in small olig-
otrophic lakes using sentinel-2 imagery and machine learning
methods: A case study of canandaigua lake in finger lakes,
new york. IEEE Journal of Selected Topics in Applied Earth1240

Observations and Remote Sensing, 17:4674–4688, 2024.
[58] Ville Kotovirta, Timo Toivanen, Renne Tergujeff, and Markku

Huttunen. Participatory sensing in environmental monitoring
– experiences. pages 155–162, 07 2012.

[59] Vinod Kumar, Anket Sharma, Amit Chawla, Renu Bhardwaj,1245

and Ashwani Thukral. Water quality assessment of river
beas, india, using multivariate and remote sensing techniques.
Environmental Monitoring and Assessment, 188, 02 2016.
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[82] Katarı́na Onaillová, Michal Gallay, Daniel Paluba, Anna
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