
Reviewer #3 

Thank you for the opportunity to review this manuscript. The major concern I have on the manuscript is centered 

on the analysis of the data. These emissions data are multivariate, strictly positive and relative which means they 

are compositional data and should be analyzed as such. The data can be transformed into log-ratios which places 

them on the real number line thus enabling application of many familiar statistical tools. References for this 

approach to the analysis of emissions data are presented in the comments below. Failure to use this approach can 

result in spurious correlations between the emissions and errors in interpretation of results. Another commonly 

used technique in emissions analysis and source apportionment is positive matrix factorization (Sekimoto, K., 

Koss, A. R., Gilman, J. B., Selimovic, V., Coggon, M. M., Zarzana, K. J., Yuan, B., Lerner, B. M., Brown, S. S., 

Warneke, C., Yokelson, R. J., Roberts, J. M., and de Gouw, J.: High- and low-temperature pyrolysis profiles 

describe volatile organic compound emissions from western US wildfire fuels, Atmospheric Chemistry and 

Physics, 18, 9263–9281, https://doi.org/10.5194/acp-18-9263-2018, 2018). This multivariate technique does not 

consider the relative nature of emissions data composition. 

Response: We would like to thank the reviewer for the comments and suggestions to improve the current work. 

We will have the reviewer comments in black, address the comments in blue, and modified sentences in red. 

 

These emissions data are multivariate, strictly positive and relative which means they are compositional data and 

should be analyzed as such. 

Response: We do not believe that compositional data analysis provides the correct basis with which to analyze 

the data because the data in our work presented here is not strictly positive (i.e., there are zero values), which is 

a requirement of this data analysis (Greenacre, 2021). The results are not all real, positive, values because there 

are some species are that observed above our limit of detection in some emissions that are not observed in other 

types. Consequently, we have ruled out this approach. 

 

Another commonly used technique in emissions analysis and source apportionment is positive matrix 

factorization (Sekimoto, K., Koss, A. R., Gilman, J. B., Selimovic, V., Coggon, M. M., Zarzana, K. J., Yuan, B., 

Lerner, B. M., Brown, S. S., Warneke, C., Yokelson, R. J., Roberts, J. M., and de Gouw, J.: High- and low-

temperature pyrolysis profiles describe volatile organic compound emissions from western US wildfire fuels, 

Atmospheric Chemistry and Physics, 18, 9263–9281, https://doi.org/10.5194/acp-18-9263-2018, 2018). This 

multivariate technique does not consider the relative nature of emissions data composition. 

Response: As a laboratory we are very familiar with positive matrix factorization (PMF), while PMF could be 

a useful addition when discussing a time series (similar to the citation shown) (Tong et al., 2021; Qi et al., 2020; 

Qi et al., 2019; Stefenelli et al., 2019; Wang et al., 2020; Wang et al., 2021; Crippa et al., 2013; Tobler et al., 



2021; Mohr et al., 2012). Though, we disagree in its implementation when using average measured composition 

across many discreet fuel types.  

 

1. 81-83 This is a 1 sentence paragraph. Either expand the text or include it in the preceding or subsequent 

paragraph. 

Response: We have already merged this single sentence with the preceding paragraph as suggested. 

 

2. 99 Does the VOCUS identify the characteristic compound or does post-sampling analysis by an investigator 

identify a “characteristic” compound? What is meant by the term “characteristic” compound for a fuel type? 

Response: To avoid ambiguity, we have removed all instances of the term “characteristic compounds” from the 

manuscript. Instead, we now refer to the selected substances as “potential markers” based on the statistical 

methods used, similar to those employed by Zhang et al. (2023). This change helps in providing a more precise 

scientific explanation. 

 

3. 111 Are you measuring the solid fuel combustion emissions (which would be from char) or the emissions 

produced from the combustion of gaseous products produced by the pyrolysis of solid fuels? 

Response: The emissions being measured are combination of both: the solid fuel combustion emissions, which 

would include emissions from the char, and the emissions produced from the combustion of gaseous products 

generated by the pyrolysis of the solid fuels. The specific contributions of each depend on factors such as the 

combustion temperature and conditions. Within this study a full cycle of burning commenced, where the VOCUS 

measured the composition.  

For clarification, we have added the following text (Line 124-138):  

With those six different fuels, we categorized six burning types for this experiment. 1) beech logs stove, 2) spruce/pine 

logs stove, 3) spruce/pine branches and needles open, 4) dry straw open, 5) cow dung open and 6) coal stove. We 

selected these six solid fuels and conducted emissions tests to simulate certain types of burning found in the 

atmosphere. Among the list above, 1) beech logs stove and 2) spruce/pine logs stove are representative of residential 

wood burning, which are burned separately in a stove, consistent with the materials used in two previous articles 

(Bertrand et al., 2017; Bhattu et al., 2019). To represent forest fires or wildfire and agricultural field combustion, 3) a 

mixture of fresh spruce/pine branches and needles and 4) straw were combusted in an open stainless-steel cylinder (65 

cm in diameter and 35 cm in height). Traditional cooking and heating practices in regions like India are represented 

by 5) cow dung cakes open burning by using half-open stoves (Loebel Roson et al., 2021). Finally, traditional cooking 

and heating practices in rural regions of developing countries are represented by 6) coal stove burning in a portable 

cast iron stove purchased from the local market (Liu et al., 2017). Of course, these conditions do not fully accurately 

represent the conditions found in actual fires, which consistent of a variety of burning species (e.g., trees, underbrush, 

peat soils, etc…), but represent laboratory burning conditions.  

 



4. 117 Was either proximate or ultimate analysis performed on the fuels? I would expect a significant 

difference in N in the cow dung compared to the other fuels. If such a difference exists in the unburnt fuel, it 

would seem that it would translate through the combustion and into the emissions and identification of the 

characteristic compounds. The fuel composition is also compositional data and should be analyzed accordingly. 

Response: We agree that the fuel composition would be of interest, but unfortunately proximate / ultimate 

analysis was not performed on the fuels and lied outside of the scope of these studies. Proximate / ultimate 

analysis is not routinely measured in accompanied emission measurements, though it is certainly useful when 

available. Similar to other studies that do not have this type of analysis, the composition of the fuels should be 

reflected in the emissions observed from the fuels.   

 

5. 125 What was used to represent agricultural waste? Was agricultural was straw only? Please clarify the 

difference between the agricultural waste and the fuels used to simulate “forest fires”? Was there a difference 

between the fuel arrangement or the burning conditions?  I recommend that you don’t use these fuels to 

characterize “forest fires” as there is a wide range of fuels which burn in forest and bush fires ranging from peat 

soils to coniferous and hardwood forest fuels to grasses to various shrub fuels. 

Response: We selected these six solid fuels and conducted emissions tests with different combustion methods 

to simulate certain types of biomass burning found in the atmosphere. Our goal was not to comprehensively 

characterize any specific type of combustion, such as forest fires. As the reviewer points out, we did not attempt 

to replicate the diverse fuel types and conditions present in actual forest fires, which indeed can vary significantly. 

Instead, we focused on the direct emissions from the selected fuels under controlled conditions. Therefore, we 

chose a representative fuel, e.g., straw, to test a specific type of agricultural waste. In our subsequent analysis, 

we focused only on individual fuels like straw, rather than analyzing agricultural waste as a broader category. 

Accordingly, we have revised the sentences and added explanations to clarify this point (Line 124-138): 

With those six different fuels, we categorized six burning types for this experiment. 1) beech logs stove, 2) spruce/pine 

logs stove, 3) spruce/pine branches and needles open, 4) dry straw open, 5) cow dung open and 6) coal stove. We 

selected these six solid fuels and conducted emissions tests to simulate certain types of burning found in the 

atmosphere. Among the list above, 1) beech logs stove and 2) spruce/pine logs stove are representative of residential 

wood burning, which are burned separately in a stove, consistent with the materials used in two previous articles 

(Bertrand et al., 2017; Bhattu et al., 2019). To represent forest fires or wildfire and agricultural field combustion, 3) a 

mixture of fresh spruce/pine branches and needles and 4) straw were combusted in an open stainless-steel cylinder (65 

cm in diameter and 35 cm in height). Traditional cooking and heating practices in regions like India are represented 

by 5) cow dung cakes open burning by using half-open stoves (Loebel Roson et al., 2021). Finally, traditional cooking 

and heating practices in rural regions of developing countries are represented by 6) coal stove burning in a portable 

cast iron stove purchased from the local market (Liu et al., 2017). Of course, these conditions do not fully accurately 

represent the conditions found in actual fires, which consistent of a variety of burning species (e.g., trees, underbrush, 



peat soils, etc…), but represent laboratory burning conditions.  

 

6. 133-143 The burning of the logs is described. How did this differ from the straw burning? Straw will ignite 

and burn more quickly than wooden logs. What was the moisture content of the various fuels? Was a constant 

heating rate used? These pyrolysis and combustion characteristics will affect time to ignition as well as the 

composition of the emissions. 

Response: The method of burning wood (logs) and straw differs, as described in Section 2.1 "Fuel and Burning 

Types." Straw was combusted in an open stainless-steel cylinder (65 cm in diameter and 35 cm in height), while 

wood (logs) was burned in a stove. We did measure the moisture content of the woods, where the water content 

for dried logs was 10-12%, and the water content for the wet (open burning) logs was 30-40%. 

We did not use a constant heating rate. Instead, we initiated the burning and then allowed the combustion to 

proceed according to the properties of the fuels. As expected, we observed that the straw burned faster (fully 

being consumed within ~3-5 min.) than the logs (burning for ~30-45 min.). In this study, we did not use a heating 

device to sustain combustion; rather, we aimed to simulate real-world burning conditions, where the fuel burns 

on its own after ignition. We specifically described the burning of spruce/pine logs in this section because we 

altered the oxygen content in the stove during the combustion process to explore the changes in emission factors 

and chemical compositions under different combustion phases (flaming and smoldering) as discussed in Section 

3.2. This is particularly relevant since both combustion states are commonly present in household wood burning. 

Based on your comments, we have revised the sentences and added explanations to clarify this point. 

Line 118-119: Six solid fuels were studied (coal briquettes and biomass fuels: beech logs, spruce/pine logs, fresh 

spruce/pine branches and needles, dry straw, cow dung) with three to six replicate burns.  

Line 140-156: The experimental design is shown in Figure S1. In summary, it is made up of a burner and a set of 

diluters with heated lines. The zero air was provided by a zero air generator (737-250 series, AADCO Instruments, 

Inc., USA) for cleaning and dilution (Heringa et al., 2011; Bruns et al., 2015). The zero air generator takes ambient 

air and scrubs particulates and volatile organic compounds from the air leaving a mixture that is largely made up of 

N2, O2, and Ar at ambient concentrations. Other trace gases are scrubbed to lower than atmospheric concentrations 

including CO2 (< 80 ppb) and CH4 (< 40 ppb). Before each burn, a continuous stream of zero air was passed through 

the gas lines overnight to avoid cross-contamination between burns and to ensure a low background of VOCs. Once 

a burn is initiated from the various combustibles, emissions are sampled from the chimney through a heated line (473 

K). The emissions (both gas and particle phases) are then diluted by two Dekati diluters (DI-1000, Dekati Ltd.) which 

dilutes the emissions by a factor of ∼ 100 (473 K, DI-1000, Dekati Ltd.). Note that beech logs combustion cycles 

consist of a first cycle referred to as the ‘first load’ and subsequent cycles, referred to as ‘reloads’. The first load 

consisted of a cold start, flaming, smoldering, and burn-out phase, and the reloads were comprised of a warm start, 

flaming, smoldering, and burn-out phase. Organic vapor emissions of solid fuel combustion are released within 10-30 

min after loading according to the properties of the fuels. We define the time until full ignition duration for burning 

encompasses 80% of the entire process, starting from loading the fuels to burnout.  

Line 357-361: Also, we note a specific difference in the oxygenated aromatic compounds and those with C > 6 for 



open wood burning conditions, compared to the stove. This difference may be driven by the difference in the water 

content of the wood, which is significantly higher for open wood burning (30-40%) compared to stove burning (10-

12%). The increase in these oxygenated components comes at the expense of species containing carbonyl and furan 

functionalities. 

 

7. 180-181 While Andreae and Merlet used the carbon mass balance approach in 2001, it was first used as 

early as 1969 (Boubel, R. W., Darley, E. F., and Schuck, E. A.: Emissions from burning grass stubble and straw, 

Journal of the Air Pollution Control Association, 19, 497–500, https://doi.org/10.1080/00022470.1969.10466517, 

1969) and was well-established by the mid-1980s (Nelson, R. M., Jr.: An evaluation of the carbon balance 

technique for estimating emission factors and fuel consumption in forest fire, USDA Forest Service, Southeastern 

Forest Experiment Station, Asheville, NC, 1982.) 

Response: Based on the comments from Meinrat O. Andreae and your suggestions, I have updated the references 

accordingly. 

 

8. 193 Please make sure that the subscripts for C, O, and N are consistently italicized (or not). Make sure that 

the subscript for oxygen is O and not zero. 

Response: Thank you for pointing that out. We will ensure that the subscripts for C, O, and N are consistently 

italicized throughout the text, and we will verify that the subscript for oxygen is correctly represented as "O" 

and not zero. 
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9. 202 It has been recently shown that smoke emissions data are multivariate, not independent and are relative 

values that are dependent on the compounds present in the mixture (Gibergans-Baguena, J., Hervada-Sala, C., 

and Jarauta-Bragulat, E.: The quality of urban air in Barcelona: a new approach applying compositional data 

analysis methods, Emerg Sci J, 4, 113–121, https://doi.org/10.28991/esj-2020-01215, 2020; Jarauta-Bragulat, E., 

Hervada-Sala, C., and Egozcue, J. J.: Air Quality Index revisited from a compositional point of view, Math 

Geosci, 48, 581–593, https://doi.org/10.1007/s11004-015-9599-5, 2016; Weise, D. R., Palarea‐Albaladejo, J., 

Johnson, T. J., and Jung, H.: Analyzing wildland fire smoke emissions data using compositional data techniques, 

J. Geophys. Res. Atmos., 125, e2019JD032128, https://doi.org/10.1029/2019JD032128, 2020). These 

characteristics of the data apply whether the emissions data are expressed as emission factors, emission ratios, 

mole ratios or mass ratios (van den Boogaart, K. G. and Tolosana-Delgado, R.: Analyzing compositional data 

with R, Springer, Heidelberg, 258 pp., 2013.). 

It has also been shown that MCE as an index describing the completeness of combustion is not independent of 



the quantities of other emissions and that it should not be used as a predictor for the other gases in the composition. 

Response: This study presents the emissions from many different fuel sources and demonstrates that the 

composition of the gaseous emissions is indeed dependent upon the compounds present within the fuel mixture 

itself (assuming the composition of the emissions are similar to those in the combustion source). We demonstrate 

that changing the MCE impacts the emission factors and the concentrations of the emitted gases within the 

measurement itself and specifically changes the composition of the emissions as well. This work also 

demonstrates there is a specific change in the chemical composition of the emissions when the MCE changes. 

 

10. How is the Mann-Whitney test and other techniques used in this manuscript affected by the statistical 

characteristics of your data? The Mann-Whitney test is a univariate test. You should consider using the 

generalized multivariate version if it has been applied to compositional data 

(https://doi.org/10.1016/j.jmva.2022.104946). As compositional data analysis has been used more extensively in 

Europe, recommend reaching out to the statisticians listed in the various publications above. You should also 

consider a global test (instead of pairwise comparisons) that controls the experiment-wise probability of 

committing a Type 1 error (such as false discovery rate-Benjamini, Y. and Hochberg, Y.: Controlling the false 

discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society. 

Series B (Methodological), 57, 289–300, 1995). 

Response: Although it is possible to use a multi-variate approach, we have chosen to use Mann-Whitney to 

identify outliers (potential markers) to be consistent with previous work and align with identification of markers 

used in various other mass spectrometric approaches in analytical chemistry (White et al., 2019; Chen et al., 

2012; Teunissen et al., 2011; Chmaj-Wierzchowska et al., 2015; Nomura et al., 2004; Jasperse et al., 2007; Nagai 

et al., 2020; Sun et al., 2019; Tritten et al., 2013). Further the data that is being used is not always positive (there 

are 0 values), which means the use of compositional data analysis is not a valid approach for our data (Greenacre, 

2021). We have chosen the univariate approach to identify molecular formula that are specific statistical outliers 

relative to the other emissions, which differs from other studies that have focused on emission factors from 

specific sources. Only species that are confirmed outliers between each and every pair-wise comparison is chosen, 

we believe this is a cautious approach that lowers the probability of committing a Type 1 error, which is already 

low in the case for a single pair-wise comparison. If the probability of committing a Type 1 error is 5% and 4 

groups are used, then the probability of committing a Type 1 error across 4 different comparisons is 0.00062%. 

 

11. 232 What does 0.99 +/- 0.02 mean? Is this arithmetic mean and standard error or standard deviation? Since 

MCE is a proportion that can not exceed 1, the correct formula for the confidence interval of this proportion 

should not exceed 1. The geometric mean is the appropriate measure of central tendency for relative (proportional 



data). EFs are expressed as gm pollutant/gm fuel burned which is a rate (and a relative value so a geometric 

mean should be used as in Butler, B. M., Palarea-Albaladejo, J., Shepherd, K. D., Nyambura, K. M., Towett, E. 

K., Sila, A. M., and Hillier, S.: Mineral–nutrient relationships in African soils assessed using cluster analysis of 

X-ray powder diffraction patterns and compositional methods, Geoderma, 375, 114474, 

https://doi.org/10.1016/j.geoderma.2020.114474, 2020. 

Response: We apologize for the error in reporting 0.99 ± 0.02. Based on the data from Table S1, the standard 

deviation is actually less than 0.001, so we have corrected this and omitted the unnecessary margin. In this study, 

the emission factors (EFs) are calculated as arithmetic mean ± standard deviation. We chose this method to 

maintain consistency with previous studies that calculated VOC, CO and CO2 emission factors using the same 

approach. This allows for direct comparison with their results (Andreae, 2019; Janhäll et al., 2010; Koss et al., 

2018). 

 

12. 257 Correlation is not an appropriate measure for compositional data as the value of the correlation 

coefficient is dependent upon the other compounds in the composition. Dropping a gas from the composition 

changes the pairwise correlations (Aitchison, J.: A concise guide to compositional data analysis, 2003. Available 

at http://ima.udg.edu/activitats/codawork03/; Weise, D. R., Fletcher, T. H., Safdari, M.-S., Amini, E., and 

Palarea-Albaladejo, J.: Application of compositional data analysis to determine the effects of heating mode, 

moisture status and plant species on pyrolysates, Int. J. Wildland Fire, 31, 24–45, 

https://doi.org/10.1071/WF20126, 2022). Proportionality has been suggested as an appropriate measure of the 

association between two components of a composition (Lovell, D., Pawlowsky-Glahn, V., Egozcue, J. J., 

Marguerat, S., and Bähler, J.: Proportionality: a valid alternative to correlation for relative data, PLoS Comput 

Biol, 11, e1004075, https://doi.org/10.1371/journal.pcbi.1004075, 2015). Drawing conclusions based on the 

measure of association between two variables without determining the significance of the measure by a statistical 

test of some sort is not recommended. 

Response: We agree with the reviewer that a simple correlation matrix is likely not the most appropriate measure 

for compositional data if we were trying to demonstrate anything quantitative. The reviewer should also consider 

the point of using such a simplistic approach as a tool to discuss the results. The use of a correlation matrix as 

shown in Figure 2 highlights the similarity between all biomass combustion sources investigated, and that there 

is a specific difference for coal. The correlation matrix is not used in absolute terms regarding the emissions but 

is used in qualitative terms as a discussion tool in order to discuss the reproducibility from burn to burn and the 

similarity (or differences) between the emissions which are shown in detail in Figures 4 and 5, where a specific 

difference for coal comes from the emissions of non-oxygenated aromatic compounds. It would be just as 

feasible to put 6 mass spectra representing the different emission types. 



Note the use of the correlation matrix on lines 316 - 324: 

To assess the feasibility of distinguishing differences between combustion solid fuel types based on the measured 

species, we evaluated the similarity of the mass spectra obtained from each experiment using the correlation coefficient 

(r), as shown in Figure 2. Organic vapors from the same burning fuel are strongly correlated (0.82-0.99), indicating 

the general repeatability of the experiments. Furthermore, we observed a weak intra-fuel correlation between coal and 

other biomass sources (0.44-0.78), suggesting significant differences in chemical composition. By contrast, the 

separation between different solid fuel type is not stark and all possess a correlation between 0.6-0.98. Overall, the 

correlation coefficient highlights similarities between all biomass-based emissions, which will now be discussed in 

detail. 

 

13. 290 In compositional data analysis, the effect of fuel type on the log-ratios between different groups of 

compounds can be tested in an analysis of variance context to determine differences. These log-ratios are known 

as balances (Egozcue, J. J. and Pawlowsky-Glahn, V.: Groups of parts and their balances in compositional data 

analysis, Mathematical Geology, 37, 795–828, https://doi.org/10.1007/s11004-005-7381-9, 2005; Weise, D. R., 

Fletcher, T. H., Safdari, M.-S., Amini, E., and Palarea-Albaladejo, J.: Application of compositional data analysis 

to determine the effects of heating mode, moisture status and plant species on pyrolysates, Int. J. Wildland Fire, 

31, 24–45, https://doi.org/10.1071/WF20126, 2022). 

Response: As stated above, we do not believe that compositional data analysis provides the correct basis with 

which to analyze the data because the data in our work presented here is not strictly positive (i.e., there are zero 

values), which is a requirement of this data analysis (Greenacre, 2021). The results are not all real, positive, 

values because there are some species are that observed above our limit of detection in some emissions that are 

not observed in other types. Consequently, we have ruled out this approach. 

 

14. 308 see comment below for figures S4, S5 regarding error bars. 

Response: We have double-checked the data and corrected that the error bar represents 1 standard deviation, not 

½. We have corrected them in the SI.  

 

15. 348 You are discussing differences in relative terms which is appropriate. The statistics used to describe 

and test hypotheses should also recognize the relative nature of the data. 

Response: I agree that addressing the relative nature of the data is essential, especially when making 

comparisons. I’ll ensure that the statistical methods used align with this approach and clearly reflect the relative 

differences within the data. We have added the standard deviation in the manuscript (Line 294-296).  

On average, EFs for organic vapors in the flaming stage are approximately four times lower (31.4 ± 7.1 g kg-1) than 

those in the smoldering stage fires (121.9 ± 24 g kg-1).  

 



16. 370 See the earlier comment regarding the Mann-Whitney test, the multivariate nature of the data and the 

probability of committing a Type 1 error. 

Response: We have chosen the univariate approach to identify molecular formula that are specific statistical 

outliers relative to the other emissions, which differs from other studies that have focused on emission factors 

from specific sources. Only species that are confirmed outliers between each and every pair-wise comparison is 

chosen, we believe this is a cautious approach that lowers the probability of committing a Type 1 error, which is 

already low in the case for a single pair-wise comparison. If the probability of committing a Type 1 error is 5% 

and 4 groups are used, then the probability of committing a Type 1 error across 4 different comparisons is 

0.00062%. 

 

17. 398 Which supplementary table contains the characteristics compounds? 

Response: We realized that we forgot to upload the Excel file. The file has now been uploaded. 

 

18. 423 Where is the chemical composition of unburnt cow dung presented? 

Table 1 Are the values arithmetic mean +/- standard deviation?  Please provide more information on values. 

Should use geometric mean and present a confidence interval (or the standard error of the mean). Consider 

including complete fuel composition (CHNSO). Also, proximate analysis because cows have ability to digest 

cellulose which make affect the burning characteristics or the relative amounts of cellulose, hemicellulose and 

lignin in the fuels which will affect both the pyrolysis and combustion processes as well as emissions production. 

Response: As mentioned above, unburnt chemical analysis of the cow dung was not performed. 

 

19. Figure 2-5 Recommend making the axes and other information larger fonts (relative to titles). 

Response: Thank you for your suggestion. We have updated figures to increase the font size of the axes and 

other information relative to the titles to improve readability. 

 

20. Figure 5 What do the different sized circles labeled 0.1, 0.5, 1 and 2 indicate? 

Response: In the caption, we mentioned that the markers are scaled according to the square root of the fractional 

contribution (%). Therefore, the sizes of the circles labeled 0.1, 0.5, 1, and 2 represent the square roots of the 

corresponding fractional contributions. 

 

21. Figure S4, S5 Why is ½ of 1 standard deviation used as an error bar? Is this is based on the assumption 

made for normally distributed data that 1 standard deviation captures about 68 percent of the data and 2 standard 

deviations capture about 95% of the data? This is based on the population and not the sample. A confidence 



interval should be calculated.  Also, these data are not normally-distributed. They are proportions which are 

constrained between 0 and 1 (or 0 and 100). 

Response: We have double-checked the data and corrected that the error bar represents 1 standard deviation, not 

½. While the data from a single experiment may not be normally distributed, the average data and standard 

deviation were calculated from multiple repeated experiments. The error bars reflect the standard deviation of 

the relative contributions across these repeated experiments. 

 

22. Figure S13 Caption needs to be fixed. 

Response: We have revised the caption.  
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