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Abstract. Water depths of supraglacial lakes on the ice sheets are difficult to monitor continuously, due the lakes’ ephemeral

nature and inaccessible locations. Supraglacial lakes have been linked to ice shelf collapse in Antarctica and accelerated flow

of grounded ice in Greenland. However, the impact of supraglacial lakes on ice dynamics has not been quantified accurately

enough to predict their contribution to future mass loss and sea level rise. This is largely because ice-sheet-wide assessments

of meltwater volumes rely on models that are poorly constrained due to a lack of accurate depth measurements. Various recent5

case studies have demonstrated that accurate supraglacial lake depths can be obtained from ICESat-2’s ATL03 photon-level

data product. ATL03 comprises hundreds of terabytes of unstructured point cloud data, which has made it challenging to use

this bathymetric capability at scale. Here, we present two new algorithms – Flat Lake and Underlying Ice Detection (FLUID)

and Surface Removal and Robust Fit (SuRRF) – which together provide a fully automated and scalable method for lake

detection and along-track depth determination from ATL03 data, and establish a framework for its large-scale implementation10

using distributed high-throughput computing. We report FLUID/SuRRF algorithm performance over two regions known to

have significant surface melt – Central West Greenland and Amery Ice Shelf catchment in East Antarctica – during two melt

seasons. FLUID/SuRRF reveals a total of 1249 ICESat-2 lake segments up to 25m deep, with more water during higher melt

years. In absence of ground truth data, manual annotation of test data suggests that our method reliably detects melt lakes along

ICESat-2’s ground tracks whenever the lakebed is visible or partially visible, and estimates water depths with a mean absolute15

error < 0.27m. These results imply that our proposed framework has the potential to generate a comprehensive data product

of accurate meltwater depths across both ice sheets.

1 Introduction

Earth is warming and both of its ice sheets (Greenland and Antarctica) are losing mass to the ocean at increasing rates (Rignot

et al., 2011; Smith et al., 2020), leading to sea level rise. There is growing evidence that some of this retreat is irreversible,20

thus committing coastal communities to embrace costly sea level rise adaptation strategies for decades and centuries to come

(DeConto et al., 2021; Garbe et al., 2020; Gregory et al., 2020; Nordhaus, 2019). To address the resulting societal challenges,

policy makers and coastal planners require accurate and actionable sea level rise projections (Moon et al., 2020). However,

the projected contribution from the ice sheets is highly uncertain, to the point that the Sixth Assessment Report of the United
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Nations Intergovernmental Panel on Climate Change designated it as “deep uncertainty” (IPCC AR6; Fox-Kemper, 2021).25

Building confidence in projections of the ice sheets’ contribution to future sea level rise requires better mechanistic understand-

ing of relevant mass balance processes for inclusion in ice sheet models (Golledge, 2020; Aschwanden et al., 2021). However,

ice sheet wide details of many of these processes are poorly known because they have been under observed in both space and

time.

Supraglacial melting on the ice sheets is one example of a process which has a potentially important contribution to future sea30

level rise projections, yet has been under observed so is poorly understood. In a warming climate, supraglacial lakes have the

potential to trigger positive feedback loops and catastrophic collapse (Gilbert and Kittel, 2021), yet the underlying mechanisms

and associated likelihoods are vaguely defined due to a lack of high-quality observations (Arthur et al., 2020a). In particular,

models that attempt to capture the influence of supraglacial hydrology on ice sheet behavior require accurate estimates of

volumes of pooled surface meltwater as input (Zwally et al., 2002; Parizek and Alley, 2004; Krawczynski et al., 2009; Robel35

and Banwell, 2019). However, there are few direct in situ observations of supraglacial lake depths (none in Antarctica, and ten

lakes up to 11.5m deep in Greenland), which leads to errors in total water volume estimates. This introduces biases into model

inputs for meltwater flow, impacting projections of future ice sheet evolution (Melling et al., 2024). To ensure that coupled

hydrological-dynamical models accurately represent the underlying physics, it is important to find a method to acquire lake

depths that are accurate, and also spatially and temporally and continuous.40

Launched in 2018, NASA’s Ice, Cloud and land Elevation Satellite (ICESat-2) laser altimeter became the first (and thus

far only) satellite capable of making direct, accurate water depth measurements from space, due to its green light being able

to penetrate water, which allows its sensor to register the elevation of photons that were reflected from both the lake surface

and the lakebed (Fig. 1; e.g., Fair et al., 2020; Fricker et al., 2021; Xiao et al., 2023). This allows ICESat-2 to measure water

depths up to 41m under ideal conditions (very clear water and high bottom reflectivity), with typical accuracies of about 0.5m45

(Dietrich et al., 2024). While ICESat-2 has the unique capability to make direct and accurate measurements of water depth

from space, its fundamental limitation is spatial coverage. ICESat-2 data are limited to discrete, one-dimensional ground tracks

that are coarsely spaced on the Earth’s surface (∼ 9.9km between neighboring reference tracks and ∼ 3.3km between all

neighboring beam pair tracks at 70◦N/S) with a relatively long revisit time of three months. This means that no supraglacial

lake depth data product derived from ICESat-2 alone is able to provide samples of all (or even nearly all) supraglacial lakes on50

the ice sheets: ICESat-2’s track spacing means that the majority of lakes form in locations that ICESat-2 ground tracks never

sample, and the three-month return period means that for a significant number of ground tracks ICESat-2 never passes over at

the time at which melt lakes are visible. ICESat-2 is also unable to penetrate optically thick clouds, thus further limiting the

amount of data available for water depth measurements.

While ICESat-2 data alone cannot be used to continuously monitor melt lake volumes, several case studies have shown55

that ICESat-2 depth measurements can be used to constrain parameters in models that estimate lake volumes from satellite

imagery (Datta and Wouters, 2021; Leeuwen, 2023; Lutz et al., 2024). For instance, Datta and Wouters demonstrated that it is

possible to accurately extrapolate depths along ICESat-2’s ground track segments to the full lake basins that these segments

intersect. To be able to use ICESat-2 to improve depth estimates of supraglacial lakes in locations where (and at times when)
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Figure 1. An ICESat-2 ATL03 data segment over a supraglacial lake, showing a particularly strong bathymetric return from the lakebed.

(Data from ICESat-2 Track 406 on 20 July 2021; granule: ATL03_20210720053125_04061205_006_01.h5. The imagery in the left panel is

a Sentinel-2 scene from the same day: S2B_MSIL2A_20210720T151809_N0301_R068_T27XVG_20210720T175839.)

ICESat-2 measurements are not directly available, it will be necessary to rely on statistical methods that can generalize the60

relationship between water depth and reflectance for a particular passive optical sensor under a wide variety of conditions

and independently of the availability training data that are close-by in space and time (Hastie et al., 2009). For this to work

effectively, the data that is used to train statistical learning models capable of multiple non-linear regression for representing a

complex depth-reflectance relationship need to adequately cover the parameter space defined by the combination of predictors

that are included (Markham and Rakes, 1998; Wang et al., 2022). Since ICESat-2 observations of melt lakes are relatively65

sparse, it is therefore crucial to to obtain as many ICESat-2 depth estimates as possible from different locations and times

(and thus under a wide variety of environmental conditions) to be able to effectively use ICESat-2 to improve monitoring of

meltwater volumes across the ice sheets. This suggests that large-scale extraction of accurate supraglacial lake depths from

a wide range of ICESat-2 photon-level data in combination with concurrent optical satellite imagery can provide a labeled

training data set enabling the application of machine learning methods (e.g., Leeuwen, 2023) capable of generating a well-70

constrained data-driven model for ice-sheet-wide lake volume estimation (Melling et al., 2024).

While automated and scalable algorithms for lake detection and depth retrieval in ATL03 photon data have been proposed

(e.g., Datta and Wouters, 2021; Xiao et al., 2023), in practice no previous ICESat-2 studies have applied supraglacial lake depth

estimation methods to more than a handful of manually picked lake segments or data granules, or presented a straightforward

pathway to large-scale computational implementation across the ATL03 data catalog, which comprises hundreds of terabytes75
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Figure 2. Study regions for testing the FLUID/SuRRF framework. a) and b) Maps of the two regions chosen for this study. The black

outlines show the boundaries of the regions which were obtained by thresholding the corresponding ice sheet drainage basins (c and d) by

the elevations shown in the legends. The green lines show ICESat-2 reference ground track coverage.

of unstructured point cloud data (Neumann et al., 2023b). To address this challenge, we present a framework for ice-sheet-

wide implementation of our own fully automated and scalable algorithm for along-track lake segment detection and depth

determination from ICESat-2 data. Here, we present this algorithm, apply it to two entire drainage basins in Greenland and

Antarctica (Sect. 3.5, Fig. 2) using distributed high-throughput computing, and demonstrate its performance for two full melt

seasons.80

2 Background

2.1 How supraglacial lakes affect ice sheet mass loss

Supraglacial water has different roles in Greenland and Antarctic ice sheet mass loss processes, largely because of its different

spatial extent on each ice sheet. Across most of the Greenland Ice Sheet’s ablation zone, meltwater pools in supraglacial lakes

that extend from the ice margins up to about 2000m on the plateau, and are forming further inland as temperatures increase85
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(Leeson et al., 2015; Tedstone and Machguth, 2022). On the Antarctic Ice Sheet, pooling of surface meltwater in lakes is not

as pervasive and is mostly observed on the floating ice shelves and at low elevations near their grounding zones (Stokes et al.,

2019; Corr et al., 2022), with large regional and interannual variability (Arthur et al., 2022). Pooling and storage of meltwater

in supraglacial lakes can affect ice sheet mass loss directly or indirectly in four ways:

1. Surface runoff: Supraglacial lake drainage and transport of water off the ice sheet through surface streams or englacial90

pathways contributes to mass loss directly as surface runoff. This is already a significant component of the Greenland

Ice Sheet surface mass balance (The IMBIE Team, 2020), but has also been observed on the Antarctic Ice Sheet (Bell

et al., 2017; Warner et al., 2021; Trusel et al., 2022) and could become more significant in a warming future (Kingslake

et al., 2017; Bell et al., 2017). Such runoff also results in surface elevation lowering, which further increases meltwater

production by exposing the ice sheet surface to the higher temperatures found at lower elevations (Levermann and95

Winkelmann, 2016; Bell et al., 2018).

2. Surface albedo lowering: Supraglacial lakes lower the surface albedo, which can further accelerate melting and result in

a temperature increase in the adjacent ice column (Tedesco et al., 2012; Ryan et al., 2017; Stokes et al., 2019).

3. Bedrock lubrication: On grounded ice, rapid drainage of surface lakes by hydrofracture delivers pulses of meltwater

to the base of the ice sheet, which has the potential to lubricate the bedrock and cause acceleration of ice flow due to100

enhanced basal sliding. This is a well-studied phenomenon in Greenland (e.g., Das et al., 2008; Bartholomew et al.,

2010; Tedesco et al., 2013; Davison et al., 2019; Maier et al., 2023) but recent observations suggest that this mechanism

is also driving ice flow speed-ups on the Antarctic Ice Sheet (Tuckett et al., 2019), where it could become an increasingly

important mechanism as future warming will cause its hydrology to become more similar to Greenland’s current ablation

zone (Bell et al., 2018).105

4. Ice shelf collapse: In Antarctica, the ponding and draining of supraglacial lakes can weaken and fracture the floating ice

shelves (Munneke et al., 2014; Banwell and Macayeal, 2015; Banwell et al., 2019; Lai et al., 2020), which, in extreme

cases, has been linked to their collapse by hydrofracture (MacAyeal et al., 2003; Scambos et al., 2004; Banwell et al.,

2013). The resulting loss of buttressing back-stresses leads to accelerated discharge of upstream grounded ice into the

ocean, which causes sea level rise (De Angelis and Skvarca, 2003; Scambos et al., 2004; Rignot et al., 2004; Rott et al.,110

2018). It has been hypothesized that these melt-driven hydrofracture processes could expose marine ice cliffs that are

sufficiently tall and weakened to be prone to mechanical failure, which would trigger buoyancy-driven calving and could

therefore lead to sustained, rapid ice sheet collapse, referred to as the Marine Ice Cliff Instability (MICI; Bassis and

Walker, 2012; Pollard et al., 2015; DeConto and Pollard, 2016; Bassis et al., 2021, 2024).

Incorporating those processes through which surface meltwater ponding affects ice dynamics into ice sheet models can dras-115

tically increase projected future sea level rise (Martin et al., 2019; Edwards et al., 2021), yet they currently rely on poorly

constrained parametrizations, making projections highly uncertain (Robel et al., 2019; Pattyn and Morlighem, 2020). This
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means that there is an urgent need to improve our understanding of the key underlying physical processes based on accurate

observations (Hanna et al., 2024).

2.2 Observations of supraglacial lake depths120

In situ observations of melt lake depths are scarce (e.g., Tedesco and Steiner, 2011) due to the challenging logistics and planning

required to collect such data. Supraglacial hydrological systems on ice sheets form seasonally in some of Earth’s most remote

and inaccessible locations, and they can rapidly evolve in complex and unpredictable patterns (Dirscherl et al., 2020; Gantayat

et al., 2023), making survey planning difficult. Therefore, to obtain ice-sheet-wide observations of meltwater lake depths for

each melt season, it is necessary to rely on satellite remote sensing techniques (Moussavi et al., 2016; Melling et al., 2024).125

Besides ICESat-2’s novel capability to directly observe water depths from photon refraction, various methods have been used

to indirectly estimate lake depths from satellite data, which all have different advantages and disadvantages.

One such method is to apply a radiative transfer equation (RTE, Philpot, 1987, 1989) to estimate lake depth from optical

imagery (Sneed and Hamilton, 2007; Moussavi et al., 2020; Leeson et al., 2020). This approach has been widely used since

optical imagery provides continuous spatial coverage at short temporal intervals and because it is assumed that its physics-130

based principles hold everywhere, which makes it possible to apply it at scale. However, the RTE approach relies on poorly

constrained choices of water attenuation coefficients and lakebed albedo, and makes simplifying assumptions such as: no sus-

pended particulate matter; a homogeneous lakebed albedo; no surface disturbances caused by wind; and the water column has

vertically homogeneous optical properties (Brodskỳ et al., 2022). As a result, it has been shown that the RTE approach can

significantly over- or underestimate lake depths in different environments: in Fricker et al. (2021) the RTE method underesti-135

mated depths by 30 to 70% on Amery Ice Shelf in East Antarctica, whereas in Melling et al. (2024) it overestimated depths by

up to 153% in Southwest Greenland.

Another approach to estimating lake depths is using empirical models derived from regression of in situ depth measurements

with optical imagery (e.g., Tedesco and Steiner, 2011; Legleiter et al., 2014; Pope et al., 2016). However, in situ measurements

of supraglacial lake depths are very sparse, with (to the best of our knowledge and at the time of writing) no such data available140

for Antarctica, and data available for only ten lakes up to 11.5m deep on the Greenland Ice Sheet between 2005 and 2024:

Box and Ski (2007) sampled two lakes on Jakobshavn Isbræ and Sermeq Avannarleq in 2005, Sneed and Hamilton (2007)

sampled one lake on Helheim Glacier in 2008, Tedesco and Steiner (2011) sampled one lake in Central West Greenland in

Legleiter et al. (2014) sampled three supraglacial water bodies on Isunnguata Sermia, Russell Glacier in 2012 and Lutz et al.

(2024) sampled three lakes on Zachariæ Isstrøm in 2022. This makes the observations provided by Lutz et al. the only in situ145

depth data of supraglacial lakes that overlap with the Landsat 8 and Sentinel-2 missions. Further, it has been shown that the

relationship between water depth and reflectance values in optical imagery can vary significantly by geographical region (Lutz

et al., 2024). Thus, the regression coefficients of these empirical models are limited to the spatial area of the original in situ

measurements, making them impractical for application on a larger, ice-sheet-wide scale.

A third approach is to use digital elevation models (DEMs) of a lake’s bed topography that were acquired before it filled150

or after it drained, and then to determine its fill level from imagery (Moussavi et al., 2016; Yang et al., 2019b). While this
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has the advantage of being independent of the optical properties of the water column, currently available DEM acquisitions

are sporadic and the method cannot account for changes in the lakebed topography between acquisitions, due to, for example,

bottom ablation (Tedesco et al., 2012). Because this approach requires acquisitions from before a lake fills or after it drains,

it is not suitable for perennial lakes that freeze over and are buried in winter without draining (Koenig et al., 2015; Schröder155

et al., 2020; Leppäranta et al., 2013), and it cannot be directly applied to lakes on floating ice shelves, where any filling and

draining events result in a hydrostatic adjustment that bends the ice surface (Scambos et al., 2009; Warner et al., 2021).

3 Data and methods

We use individual photon data from the ICESat-2 instrument, provided in a data product known as Global Geolocated Photons

(ATL03; Sect. 3.1). Our method to extract water depths consists of two algorithms that are run consecutively on ATL03 data:160

(1) Flat Lake and Underlying Ice Detection (FLUID, Sect. 3.2) automatically detects the locations of supraglacial lakes visible

in the point cloud data; (2) Surface Removal and Robust Fit (SuRRF, Sect. 3.3) determines the along-track depth for each

detected lake segment. To automatically compute results for large numbers of ATL03 data files over extensive geographical

regions, we use the Open Science Grid’s (OSG) Open Science Pool for distributed High-Throughput Computing (Sect. 3.4;

OSG, 2006; Pordes et al., 2007). Figure 3 summarizes the various steps of this method in a flowchart, and we describe each of165

them in more detail below.

3.1 ICESat-2

ICESat-2 was launched in September 2018 and carries the Advanced Topographic Laser Altimeter System (ATLAS) instru-

ment, a photon-counting green light (532nm) laser altimeter operating at a frequency of 10kHz, which results in a 0.7m

along-track resolution (Markus et al., 2017). ATLAS divides the laser pulse it emits into six beams, forming three beam pairs,170

each of which consist of a weak and a strong beam. The footprint of each beam is about 11m in diameter on the ground

(Magruder et al., 2021a). The six resulting ground tracks (GTNXs) are referred to as GT1L, GT1R, GT2L, GT2R, GT3L and

GT3R, where the number N refers to the beam pair from left to right in direction of flight, and the X refers to the left (“L”) or

right (“R”) track within each pair (Neumann et al., 2022). The three track pairs are separated 3.3km on the ground, and the two

tracks within a pair are separated by 90m each. The ICESat-2 spacecraft can fly in either forward or backward orientation, and175

flips between the two approximately twice a year (Neumann et al., 2019; Smith et al., 2019). In forward orientation, ATLAS’s

strong beams – numbered 1, 3 and 5 – are on the right side of each beam pair in the direction of flight and point to GTs 3R,

2R and 1R, respectively. Similarly, after a yaw flip to the backward orientation, the strong beams are on the left side of each

beam pair and point to GTs 1L, 2L and 3L. This means that the data acquired along a particular GTNX can be associated with

a strong or a weak beam, depending on the spacecraft orientation at the time of data acquisition. The ATLAS receiver uses180

photomultiplier tubes (PMTs) designed to detect individual reflected photons, with 16 independent timing channels for each

strong beam and four for each weak beam (Yang et al., 2019a). The strong beams have four times more energy than the weak

beams, resulting in a correspondingly higher count of laser photons returned per shot.
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Figure 3. Flowchart of the FLUID/SuRRF framework for detecting and determining the depths of supraglacial melt lakes in ICESat-2 data

for any melt season over any drainage basin of the Antarctic or Greenland ice sheets. All modules in the blue box can be parallelized for large

amounts of input data granules, as a batch of compute jobs on a computer cluster or a platform for distributed High-Throughput Computing,

such as the OSG Open Science Pool.
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ICESat-2 repeats its orbit every 91 days, after completing 1,387 distinct reference ground tracks (RGTs). Over land ice,

ATLAS routinely points to these RGTs near its nadir to acquire repeat measurements (Magruder et al., 2021b). The satellite185

began targeting the planned RGTs in late March 2019, once the on-orbit pointing calibrations were finalized and updated in

the onboard pointing control systems (Martino et al., 2019). Consequently, any observations during the 2018-19 Antarctic melt

season do not align with the planned repeat tracks. ICESat-2 was in “safe-hold” from 26 June through 9 July 2019, which

means that no data was collected during this 14-day period coinciding with the 2019 Greenland melt season.

Over shallow (< 41m) and non-turbid water bodies, ATLAS’s green light is able to pass through the water column, which190

means that signal photons can be reflected from both the flat open-water surface and the lakebed (Fair et al., 2020; Fricker

et al., 2021). Most land ice applications use the ATL06 data product designed for glacier and ice sheet surfaces (Smith et al.,

2019). However, the ATL06 algorithm provides only one surface and thus cannot be used to extract meltwater depths. Also,

over melt lakes ATL06 segments inconsistently track either the water surface or the lakebed, so the results are ambiguous

(Fricker et al., 2021). To overcome this limitation and track both surfaces, our technique relies on the elevations of individual195

photons, which are distributed in the Global Geolocated Photons (ATL03) data product (Neumann et al., 2023b). To keep the

size of each individual ATL03 data file (or “granule”) manageable, each RGT orbit of ICESat-2 data is divided into 14 granule

regions (Neumann et al., 2023a). This means that each granule is limited to approximately 30min of along-track data and

rarely exceeds 10GB in size. ATL03 reports geolocated photon attributes such as longitude, latitude, along-track distance and

height for each individual photon detection event, thus providing an along-track point cloud of photon locations. Geophysical200

corrections (such as geoid height) are reported at a 20m along-track segment rate, and parameters related to on-board data

processing (such as telemetry window ranges) are reported at the 50Hz (≈ 140m along-track) “major frame” rate (Martino

et al., 2022b). In an ATL03 point cloud, signal photons being reflected both from a lake’s water surface and its lakebed results

in characteristic double returns, which are used by FLUID to detect along-track data segments containing supraglacial lakes

and by SuRRF to generate depth estimates for those lake segments. While the strong beam data have a higher signal to noise205

ratio, we have designed our FLUID/SuRRF method to work well with both strong and weak beams whenever a bathymetric

return from the lakebed is discernible, i.e. for lakes with a visible or partly visible lakebed.

3.2 Supraglacial lake detection in ATL03: the FLUID algorithm

The Flat Lake and Underlying Ice Detection (FLUID) algorithm takes an ATL03 granule as input, searches for locations

that contain potential supraglacial lakes with a bathymetric signal, and then returns along-track segments of the data for all210

detections. FLUID exploits two unique characteristics of supraglacial lake segments in ATL03 data:

1. photons which are reflected back from an open water surface cluster around a flat line (Sect. 3.2.1, Fig. 4) and

2. a bathymetric return signal must present as a secondary peak in photon density below such a flat surface (Sect. 3.2.4,

Fig. 7).

To search for supraglacial lake segments in ATL03, FLUID divides the photon data into 140m along-track segments aligning215

with ICESat-2’s “major frames” and selects those that satisfy both of the above requirements. Then, adjacent major frames
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are iteratively clustered into larger along-track data segments that likely represent all available ATL03 data for an entire

supraglacial lake (Sect. 3.2.5).

3.2.1 FLUID step 1: identification of flat water surfaces

This step uses the fact that the surface slope of a stationary body of open water is close to zero in geopotential coordinates (i.e.220

using orthometric photon heights), in contrast to the surrounding ice sheet or ice shelf which mostly have slopes greater than

0.01° (Shen et al., 2022; Fan et al., 2022). This simple property enables a computationally inexpensive calculation (a “flatness

check”) to be applied to geoid-corrected ATL03 height data to check for possible candidate lake segments.

To perform this flatness check, we apply the ATL03-provided geoid correction to photon heights, and divide the data of each

of ICESat-2’s six ground tracks into approximately 140m along-track segments aligning with ICESat-2’s major frames. For225

each major frame, we bin photon elevations in 0.01m intervals and smooth the resulting histogram using a gaussian filter with

a standard deviation of 0.05m, then normalize it by dividing by its largest value. If the smoothed histogram has a single peak,

we record the elevation of this peak hpeak as the surface elevation at which a flat surface reflector would be located. In the

case of a melt lake segment with a bathymetric return signal, it is possible that the return from the lakebed is stronger than the

surface return. Therefore, if the smoothed histogram has multiple peaks with prominence > 0.1, we choose hpeak from the two230

most prominent peaks, and set it to the elevation of the one located at a higher elevation.

The flatness check is based on ratios between photon densities di that we calculate for various elevation bands around hpeak

(Appendix A). As illustrated in the lower panels of Fig. 4, d0 is the photon density within an elevation band of ±wpeak = 0.1m

around the photon density peak. If a major frame contains the flat surface of a lake, then most of the surface signal photons

should be contained in this “lake surface elevation band”, making d0 significantly larger than the photon density in surrounding235

elevation bands (see Fig. 4, panel b). d1 and d2 are the photon densities within elevation bands of width wbuffer = 0.35m just

below and above the lake surface elevation band, respectively. Due to multiple scattering in the water column of a lake, we

expect that over supraglacial lake segments the photon density just below the surface (d1) can take on larger values than the

photon density just above the surface (d2). d3 is the photon density within the entire telemetry window except for the lake

surface elevation band, and d4 is the photon density between the top of the lake surface elevation band and the top of the240

telemetry window. Over a lake segment, most of the telemetry window outside the lake surface elevation band contains only

background noise photons, so we expect that the photon densities d3 and d4 need to be significantly smaller than the surface

photon density (d0) if the major frame contains a flat lake surface. Since d3 can still contain photons below the lake surface due

to multiple scattering and a bathymetric signal, we expect that over supraglacial lake segments d3 can take on larger values than

d4. Based on these assumptions, and using a trial-and-error approach, we defined the following thresholds on the density ratios245

that need to hold for a major frame to pass the flatness check: d0/d1 ≥ 2, d0/d2 ≥ 5, d0/d3 ≥ 10 and d0/d4 ≥ 100. As part of

this trial-and-error approach, we manually assessed the effects of tweaking the above thresholds on a number of hand-picked

granules, which we judged to be likely representative of various possible environments, to ensure adequate performance (i.e.

granules without surface melt vs. pervasive surface melt, granules with smooth vs. rough background topography, granules

containing ice-covered and partially ice-covered lakes, granules containing slush areas, granules containing exposed bedrock,250
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Figure 4. FLUID “flatness check” applied to every ATL03 major frame for identifying potential supraglacial lake segments. a) Ground track

of an along-track segment of ATL03 data over the Greenland Ice Sheet, crossing a partially ice-covered supraglacial lake; b) Corresponding

along-track photon elevations, with major frame boundaries marked by vertical black lines and flatness check outcomes shown in hatching;

c) and d) Photon density ratios for a passing and a failing segment, respectively. (Data from ICESat-2 Track 216 GT1L on 12 July 2019 and

centered at 68.9370° N, 47.9657° W; granule: ATL03_20190712052659_02160403_006_02.h5, imagery: Sentinel-2 on 13 July 2019)

partially cloudy granules, weak vs. strong beam data, night- vs. daytime acquisitions, etc.). Panels a and b of Fig. 4 illustrate

the outcome of the flatness check for all the major frames within a short along-track segment of ATL03 data that crosses a

partially ice-covered supraglacial lake. Panels b and c show examples of major frames that pass the flatness check and fail the

flatness check, respectively, and illustrate the elevation bands that were used to calculate photon density ratios.

Since FLUID assesses the flatness of the surface of full major frames that cover an along-track distance of ∼ 140m, lake255

segments with shorter open-water surfaces are not guaranteed to be detected by FLUID. However, lake segments that are

significantly shorter than 140m are regularly detected by FLUID in practice. This is because the return signal from flat water

surfaces is typically much stronger than the return signal from the surrounding ice surfaces, which makes even very short, flat

water surfaces dominate the overall distribution of photon elevations within a major frame. The presence of a flat surface within

a major frame is a necessary condition for detecting supraglacial bathymetry data, but it is not sufficient. There are many types260
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of surfaces that would pass the flatness test but are not supraglacial lake segments with a bathymetric signal. This includes

areas of slush, frozen-over supraglacial lakes covered in ice and snow, any areas of sea ice, ocean water or ice-marginal lakes

erroneously included in the ice mask used for subsetting data, and other short along-track sections over firn or glacial ice that

happen to be extremely flat by chance. For example, a lake may have partial ice cover, which prevents ICESat-2 from obtaining

a bathymetric return (Fig. 4). However, since the ice cover here appears to be thin and flat, the corresponding major frames265

still pass the flatness check despite the absence of any useful bathymetry data in those segments. This means that the flatness

check presented in this chapter serves as a preliminary screening method, helping to efficiently narrow down the number of

along-track segments that could potentially contain useful supraglacial bathymetry data. This process makes it computationally

feasible to determine whether a bathymetric signal is actually present by performing more complex operations on only the data

that remain after checking for a sufficiently flat surface. The following sections describe these methods, which are at first only270

applied to those major frames that passed the initial flatness check.

3.2.2 FLUID step 2: removal of afterpulses

The second step removes artefacts in the ATL03 photon data known as "afterpulses", which appear as additional lines below

and parallel to the primary surface return, due to the specifics of the ATLAS sensor (Luthke, 2023; Lu et al., 2021; Martino

et al., 2022a). Afterpulses only become noticeable when the sensor is nearly or fully saturated, which means they often appear275

in ATL03 data over supraglacial lakes because smooth open water surfaces (i.e. the surface of stationary water bodies that are

not affected by wind) can result in specular reflection. This suggests that the presence of wind ripples increases the likelihood

of detecting a lake segment with a clear bathymetric signal in ATL03 data by preventing sensor saturation and afterpulsing (Lu

et al., 2019; Tilling et al., 2020) and also explains why we observe afterpulsing more frequently near the (more wind-shielded)

margins of melt lakes than over their (more wind-exposed) interior. Figure 5 (panels d-h) shows an example of an ATL03 data280

segment over a supraglacial lake in which these afterpulses are clearly visible below the flat water surface. There are three

different mechanisms that can cause afterpulses:

1. Dead-time afterpulses appear in saturated pulses due to the ATLAS receiver channels only being able to register one

photon event roughly every 3ns. If the return signal is strong enough that all receiver channels register photon events

during a time span shorter than this "dead-time", ATLAS cannot register any photons until the receiver channels have285

recovered. This means that for saturated pulses, afterpulses can appear in intervals of about 3ns of photon flight time,

equivalent to ∼ 0.45m of elevation (Lu et al., 2021).

2. Internal reflection afterpulses are found in ATL03 data around 2.36m, 4.27m and 6.59m below the surface return

(Martino et al., 2022a). These are due to optical reflections internal to the ATLAS receiver.

3. PMT ionization afterpulses appear as a broad peak ∼ 12–40m below the surface when pulses are strongly saturated and290

cause ionization of the Photomultiplier Tubes (PMTs), which triggers false photon detection events.

Since all of these afterpulses present as secondary peaks in photon density below the primary surface return, they can be

mistaken for or obscure any real bathymetric signal returns. Therefore, they need to be removed before determining whether a
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bathymetric signal is present in the data. ATL03 provides the parameter quality_ph that is designed to allow users to filter

out afterpulses. However, this parameter does not remove most dead-time afterpulses and naively removes all data more than295

2m below the surface for saturated returns (Neumann et al., 2022). This means that using the ATL03-provided quality_ph

flag is not appropriate when searching for sub-surface return signals in saturated pulses, as it would fail to remove dead-time

afterpulses that could be misidentified as bathymetric signals and could remove actual bathymetric signals at depths greater

than 2m (Fig. 5 panel e). Therefore, we developed an improved afterpulse removal routine that is tailored to bathymetric

applications.300

Afterpulse removal: We first estimate the saturation level of each pulse, based on the sensor dead-time tdead which is

provided for each beam in the ATL03 data product. Let nch be the number of receiver channels, i.e. nch = 4 for weak beams

and nch = 16 for strong beams. If the total number of photons in a pulse nph ≥ nch we can calculate the minimum vertical

distance spanned by any nch photons, and denote it by ∆h. We then estimate the sensor saturation ratio as rsat = tdeadc/(2∆h)

if nph ≥ nch and zero otherwise, where c is the speed of light in a vacuum. This means that for saturated pulses (rsat ≥ 1), all305

receiver channels registered a photon within a time frame of tdead/rsat. For all saturated pulses, we calculate the elevation of

the saturated return, hsat as the mean elevation of the nch photons that span ∆h.

To determine the typical locations of afterpulses relative to hsat in saturated pulses, we compiled a data set of saturated pulses

from melt lake segments using an earlier version of FLUID (Arndt and Fricker, 2022), which did not include afterpulse removal.

For each saturated pulse, we subtracted hsat from the photon elevations and created a histogram of photon counts weighted by310

rsat (Fig. 5, panels a-c). The strong peaks in this histogram correspond to the elevations at which afterpulses occur relative to the

surface. We found that dead-time afterpulses occurred at four depths: AP (dead)
1 = 0.55m, AP (dead)

2 = 0.92m, AP (dead)
3 = 1.50m

and AP (dead)
4 = 1.85m. Only the first two of the internal reflection afterpulses were strong enough to significantly contaminate

bathymetric data in saturated or near-saturated pulses, at AP (ir)
1 = 2.46m and AP (ir)

2 = 4.25m below the surface. While the

third internal reflection afterpulse is also visible at AP (ir)
3 = 6.52m, it appears that this afterpulse is not typically strong enough315

to be confused for a bathymetric return signal. The broad peak associated with PMT ionization around AP (ion) ≈ 29± 15m

only became noticeable at the typical length scales of ICESat-2 melt lake segments when rsat > 3.5. For such strongly saturated

pulses, we simply discarded any photons > 12m below the surface.

With the locations of the main afterpulses known, we can use a simple empirical method to remove afterpulses from ATL03

data for all major frames that passed the flatness check and for which at least 100 photons are attributed to saturated pulses.320

For each major frame, we follow the above weighted histogramming procedure and examine the heights of the seven most

prominent peaks; if any of these peaks align with the relative elevations of the known afterpulses, we consider it evidence

for likely afterpulsing and remove any photons that belong to saturated pulses in that elevation band (Fig. 5, panel h). Since

this procedure removes photons in saturated pulses only, true bathymetric signals that overlap with the elevation of a known

afterpulse are still retained as long as they appear in any unsaturated pulses. However, if all pulses within an along-track section325

of the data are saturated, any true bathymetric signals from a flat lakebed at the elevation of a known afterpulse will be removed

from the data because they are practically indistinguishable from the afterpulses that we expect to see in the point cloud under

such highly saturated conditions.
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Figure 5. FLUID afterpulse removal. (a) to (c): Histogram of photon elevations in saturated pulses from ICESat-2 melt lake segments,

relative to the elevation at which saturation occurred. The secondary peaks that appear below the saturated surface return are afterpulses that

are caused by (a) dead-time of the ATLAS sensor; (b) internal reflections in the instrument; and (c) PMT ionization. Note that (a), (b) and

(c) have different vertical scales. d) to h): Implementation of FLUID’s afterpulse removal for a short along-track segment of ATL03 data

that crosses a supraglacial lake, with sections of highly saturated (specular) pulses. Known locations of ATLAS afterpulses (a) to (c) are

used to remove likely afterpulse photons. (Data from ICESat-2 Track 1222 GT2L on 17 June 2019 and centered at 69.0189° N, 49.0444° W;

granule: ATL03_20190617064249_12220303_006_02.h5)

While more sophisticated approaches for afterpulse removal are certainly possible, we found that in practice our purely

empirical approach strikes a good balance between effectively removing enough afterpulse photons to prevent bathymetric330

surface fitting methods from considering afterpulses a signal, while also retaining enough photons to prevent removal of actual

signal returns whenever it is possible to discern the two.
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Figure 6. A comparison between existing ATL03 photon signal confidence estimates and our method for melt lake seg-

ments in FLUID. (Data from ICESat-2 Track 81 GT2L on 2 January 2019 and centered at 72.8859° S, 67.3082° E; granule:

ATL03_20190102184312_00810210_006_02.h5)

3.2.3 FLUID step 3: photon signal confidence estimation

Once flat “candidate” segments have been identified and afterpulses have been removed, the next step is to assign a signal

confidence score to the remaining photons. ATL03 contains many noise photons from various sources, such as solar background335

noise, atmospheric backscatter, and multiple scattering in translucent media (Neumann et al., 2019; Yang et al., 2023). Release

006 of the ATL03 data product provides two measures that can help discriminate between signal and noise photons. Over the

ice sheets, the signal_conf_ph parameter gives an estimate of how likely it is that a photon is part of the land ice surface

signal, based on slant histogramming (Neumann et al., 2019). This parameter, however, does not consider the possibility of

two distinct reflective surfaces that are both signal, and therefore often labels lakebed return photons over supraglacial lakes340

as noise (Fig. 6, panel a). Since release 006, ATL03 also includes the weight_ph parameter, which provides a local metric

for relative photon density based on the Yet Another Photon Classifier method (YAPC; Neumann et al., 2022; Sutterley and

Gibbons., 2021). For each target photon, the YAPC weight calculation is based on a rectangular window ±3m in elevation

around the photon location. This can result in sharp photon weight discontinuities 3m above and below highly reflective flat

surfaces, which are inconsistent with relative local photon density (Fig. 6, panel b). Due to these drawbacks of the ATL03-345

provided parameters, we developed a new density-based method for photon signal confidence estimation that is more accurate

for ICESat-2 melt lake segments (Fig. 6, panel c). This method is based on the inverse euclidean distances between a photon

and its k-nearest neighbors within a search radius that depends on the background noise rate (Appendix B).

In FLUID, we implement this photon signal probability estimation using a KD-tree approach for querying nearest neighbors

of photons, applied to individual major frames. To calculate photon densities within a major frame, we consider additional350

photons within a sufficiently wide buffer in along-track distance to avoid penalizing photons that are near the major frame

margins by not taking into account all their nearest neighbors. Panel c) of Fig. 6 shows the resulting density-based photon

signal probabilities for a supraglacial melt lake segment on Amery Ice Shelf.
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3.2.4 FLUID step 4: secondary bathymetry peak detection

To determine which major frames amongst the ones that pass the flatness check are likely to provide useful bathymetry data,355

FLUID checks for secondary peaks in photon density below the flat surface return. To do so, we divide each major frame into 10

along-track sub-segments of equal length (i.e. about 14m per sub-segment). For each sub-segment we use the FLUID photon-

level signal probabilities to calculate photon signal confidence as an empirical smooth function of elevation. To determine

whether a potential bathymetric signal is present below the lake surface, we determine the elevation of the most prominent

below-surface peak in this function for every sub-segment. Based on the along-track locations, elevations and prominences360

of all peaks that were identified in a given major frame, we define four quality heuristics qi for different components that we

found to affect the overall quality of the bathymetric return (Appendix C). The qi all take on values between zero and one,

with higher values implying a “better” bathymetric signal. We designed the expressions for the quality heuristics such that q1

penalizes major frames with smaller numbers of detected subsurface peaks, q2 penalizes major frames with less prominent

peaks, q3 penalizes major frames with a very large overall spread of peak elevations, and q4 penalizes major frames with peak365

elevations that do not align along a smooth surface. We then define the overall bathymetric quality summary qs of a major

frame as the product of the four qi. We consider the secondary bathymetric peak in photon density strong and coherent enough

to pass the bathymetric signal check for any major frames with qs ≥ 0.1.

We illustrate this procedure for an along-track segment over Central West Greenland that crosses a supraglacial lake with

a bathymetric return signal that varies in strength along the ground track (Fig. 7). In this example, most of the major frames370

that cover the supraglacial lake’s interior pass the bathymetric signal check, with bathymetric photon density peaks smoothly

tracing the apparent lakebed. However, two of the major frames within the lake’s interior do not have a strong-enough signal

of photons reflected from the lakebed to be passing the bathymetric signal check during this step, in which FLUID initially

considers each major frame in isolation. These two major frames visibly overlap with the location of a thin partial ice cover

near the lake’s northern shore (Fig. 7, panel a), which explains why some of the lakebed is occluded. While such areas, where375

part of the lakebed is occluded, may not pass the bathymetry check, they are later included in the data that make up a full

ICESat-2 lake segment, as explained in the next section.

3.2.5 FLUID step 5: along-track aggregation of lake segments

Given the collection of major frames that individually pass the bathymetric signal check along a ground track, FLUID ag-

gregates major frames into clusters, each of which likely represents a transect of an entire supraglacial lake. To achieve this,380

we use an agglomerative clustering scheme based on two simple assumptions: (i) the water surface elevation within a single

ICESat-2 lake segment should be nearly constant along the ground track, and (ii) a ground track rarely crosses the same lake

in two distinct locations that are separated by more than about 1.5km. At the start of the clustering process, each major frame

that passed the initial bathymetric return check is considered a singleton cluster with a water surface elevation hsurf equal to the

single major frame’s surface photon density peak hpeak, and major frame start and end IDs mstart =mend that are both equal to385
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Figure 7. FLUID’s bathymetric signal check run on every ATL03 major frame that has passed the flatness check. a) Ground track for an

along-track segment of ATL03 data over the GrIS, which crosses a supraglacial lake that has a thin partial ice cover near its northern shore.

b) Corresponding along-track photon elevations, and locations of detected bathymetric photon density peaks. The vertical black lines are the

major frame boundaries, and hatching indicates whether major frames passed the bathymetric signal check or not. c) and d) Bathymetric

peak-finding procedure from photon density and associated values of the bathymetric return quality heuristics described in the text and

defined in Appendix C, for a passing and a failing major frame, respectively. (Data from ICESat-2 Track 277 GT3R on 16 July 2019 and

centered at 68.9062° N, 48.5689° W; granule: ATL03_20190716051841_02770403_006_02.h5, imagery: Sentinel-2 on 16 July 2019)

the single major frame’s ID. This means that a cluster can be expressed as

C(i) =
{
h
(i)
surf, m

(i)
start, m

(i)
end

}
(1)

where the index i ∈ 1,2, . . . ,nclusters is assigned to the ith cluster when sorting all nclusters clusters by their respective values of

mstart. Since major frame IDs are numbers that strictly increase with along-track distance, this means that m(i)
end <m

(i+1)
start for

all clusters. Now, clusters that are adjacent to each other in along-track coordinates are compared in a pairwise fashion. For all390

uneven numbers i < nclusters, if∣∣∣h(i)
surf −h

(i+1)
surf

∣∣∣≤∆hmax = 0.1m (2)
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and

m
(i+1)
start −m

(i)
end ≤∆mmax = 10, (3)

clusters C(i) and C(i+1) are merged into a new cluster395

C(i′) =
{(

h
(i)
surf +h

(i+1)
surf

)
/2, m

(i)
start, m

(i+1)
end

}
. (4)

Equation 2 states that neighboring clusters are only merged if their respective lake surface elevations are within 0.1m of each

other, and Eq. 3 states that neighboring clusters are further only merged if they are separated by ten major frames that did not

pass the bathymetry check, or less (about 1.5km). This means that if FLUID encounters the unlikely but possible scenario

in which a ground track crosses two arms of the same lake, which are separated in along-track distance by more than 10400

major frames, then these two crossings are considered to be separate lake segments and returned as two separate files in the

output data rather than being merged together into one lake segment. If these two conditions do not result in any two clusters

being merged, then the same pairwise comparison is carried out for all even numbers i < nclusters. After an iteration of merging

clusters, the indices of the remaining n′
clusters clusters are re-set to 1,2, . . . ,n′

clusters, and the same procedure is repeated until no

more clusters can be merged based on the conditions above.405

The resulting final clustering is now considered the set of ICESat-2 supraglacial lake segments that have been found on each

ground track. Note that for simplicity we here use the term “ICESat-2 lake segment” (or simply “lake segment”) to refer to any

single-ground-track segment of ATL03 data with visible bathymetry from one supraglacial lake. If multiple ICESat-2 ground

tracks contain data from the same supraglacial lake, the distinct ground track segments are still considered different “ICESat-2

lake segments” for the purpose of this algorithm. For example, the two ATL03 profiles acquired by the two neighboring ground410

tracks of the center beam pair shown in Fig 1 would be considered two distinct “lake segments” despite ICESat-2 having

acquired their underlying data during the same overpass and from the same supraglacial lake. Since multiple ICESat-2 lake

segments can be associated with the same supraglacial lake, the total number of unique supraglacial lakes sampled by ICESat-2

is smaller than the total number of supraglacial lake segments reported by FLUID-SuRRF (Sect. 4.1, Table 1).

Since every lake segment that was detected this way is characterized by an along-track range of major frame IDs [mstart, mend],415

FLUID extends these ranges outwards to make sure that no bathymetry data were missed near the edges of any lake segment.

To do so, each lake segment’s range is extended to include any major frames for which |hpeak −hsurf|< 0.2m as long as such

major frames exist within three major frames of the lake segment’s range. At the end of this process we add another four major

frames as a buffer, two to each side of the lake segment. Since this expansion of the along-track ranges of lake segments can

create lake segments that overlap, the set of buffered lake segments is corrected by separating partially overlapping lake seg-420

ments at the midpoint of their along-track overlap and removing any lake segments that are fully contained within another lake

segment. We apply FLUID steps 2, 3 and 4 (afterpulse removal, signal confidence estimation and bathymetric return check)

to all major frames in the buffer (i.e. now included in the along-track range of a lake segment but had not initially passed the

flatness check). The resulting final set of lake segments across all ground tracks in the input granule is the output of FLUID.
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Figure 8. SuRRF algorithm for determining supraglacial lake depth from an along-track segment of ATL03 data that was de-

tected by FLUID. (Data from ICESat-2 Track 277 GT2L on 13 July 2020 and centered at 68.1923° N, 48.5134° W; granule:

ATL03_20200713115804_02770803_006_01.h5

3.3 Supraglacial lake depth determination: the SuRRF algorithm425

To estimate the along-track depth for each detected lake segment, we developed the Surface Removal and Robust Fit (SuRRF)

algorithm, updated from Fricker et al. (2021). The central idea of SuRRF is to use a robust fitting procedure (Sect. 3.3.1) to first

fit a smooth line to all photons returned from the lake surface and the surrounding topography (Sect. 3.3.2), then remove all

photons that are part of the water surface and fit another smooth line to the remaining photons to determine the location of the

lakebed (Sect. 3.3.3). The along-track water depth estimate is the elevation difference between the fits to the water surface and430

the lakebed, corrected for the refractive index for the speed of light in water (Sect. 3.3.5). In Fig. 8, we illustrate the main steps

of SuRRF using an example of ATL03 along track data, which was determined to be a supraglacial lake segment by FLUID.

We summarize the main steps of SuRRF in the following sections.

3.3.1 SuRRF Robust Fit

In SuRRF steps 1 and 2 (Sect. 3.3.2 and 3.3.3), we use a tailored robust nonparametric regression method to locate the lake435

surface and lakebed. The SuRRF Robust Fit is based on Locally Weighted Regression and Smoothing Scatterplots (LOWESS,

Cleveland, 1979), which is applied to the data iteratively, while removing outliers during each iteration to converge to an

along-track fit that smoothly tracks the elevation of highest photon density. For each evaluation location xfit in along-track
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coordinates, we fit a locally weighted nth-degree polynomial regression to the photons that are at a distance of at most xmax

in along-track coordinates. The value of xmax is the minimum distance from xfit within which there are nph photons i with a440

nonzero FLUID-derived signal confidence pi, or a minimum along-track fitting window length of xmin, whichever is larger.

To achieve smooth local weighting, the along-track weight of a photon i at location xi is calculated using the tri-cube weight

function w(x)
i =

(
1− |(xi −xfit)/xmax|3

)3

. If the method is provided with an initial guess for the first iteration, we calculate the

residuals ei as the difference between each photon’s elevation and the linear interpolation of the initial guess elevations to each

photon’s along-track location. In this case, we consider only photons whose absolute residuals are at most hmax, and calculate445

their residual-based weights as w(h)
i =

(
1− (|ei|/hmax)

3
)3

. In absence of an initial guess, we set w(h)
i = 1 for all photons in

the first iteration. The photon weights that are used for the regression are wi = piw
(x)
i w(h)

i . We evaluate the resulting regression

model at each fit location xfit to obtain an along-track estimate of the fit to the photon heights. For each consecutive iteration,

we calculate the residuals ei as the difference between each photon’s elevation and the elevation of the linearly interpolated

elevation fit of the previous iteration. Let σ be the standard deviation of residuals, weighted by the previous iteration’s weights.450

To achieve a robust fit, we now consider only photons whose absolute residuals are at most nstd standard deviations, and

calculate the residual-based weights w(h)
i as defined above, using hmax = nstdσ. We run this nonparametric weighted regression

for a number of niter iterations to obtain a smooth fit that tracks the along-track elevation of highest photon density.

3.3.2 SuRRF step 1: lake surface fit

To fit an elevation profile to just the surface of a lake segment detected with FLUID, we calculate the along-track extent of455

photons that belong to the flat lake surface, remove all photons below the lake surface, and then apply the SuRRF Robust

Fit to the remaining photons (Fig. 8, panel c). We determine the extent of the open water surface by calculating the photon

density within an elevation band of ±0.225m around the lake’s surface elevation at 1m along-track resolution, as well as the

corresponding photon densities within the remaining telemetry window and within 2m above the surface elevation band. We

smooth all photon densities using an along-track gaussian window with a 15m standard deviation. We then consider a location460

along the ground track to contain a water surface if the photon density within the surface elevation band is at least ten times

as large as the other photon densities for any continuous along-track section of at least 100m in length. Within the resulting

estimate of along-track water extent, we remove all photons that are more than 0.4m below the lake’s surface elevation from

the surface fit by setting their signal confidence pi = 0.

To obtain an along-track fit to the lake’s surface and its surrounding topography, we apply the SuRRF Robust Fit (Sect. 3.3.1)465

to all remaining photons with a signal confidence > 0.5 at evenly spaced locations xfit along the ground track, at 5m resolution.

In this step, we use a linear regression (n= 1) and run it for niter = 10 iterations, with no initial guess. We here choose

xmin = 20m and let nph decrease linearly from n(start)
ph = 300 in the first iteration to n(end)

ph = 100 in the last iteration. Similarly,

we choose n(start)
std = 10 and n(end)

std = 4. We illustrate this surface-fitting procedure by showing an example of a supraglacial lake

segment in ATL03 with photons color-coded by their surface fit weights pi, along with the detected along-track water surface470

extent and the final smooth photon fit to the lake surface and surrounding topography (Fig. 8, panel c).
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3.3.3 SuRRF step 2: lakebed fit

To fit an elevation profile to just the lakebed, we remove all photons that belong to the lake’s water surface, and then again

apply the SuRRF Robust Fit to the remaining photons (Fig. 8, panel d). In this case, we remove all photons that fall within

the along-track water surface extent that was determined in the previous step, and are located at an elevation of 0.35m below475

the lake’s surface or higher. Note that this imposes a theoretical minimum depth threshold for detection on lake segments:

ATL03 segments need to exhibit a bottom return signal at least 0.35m below the lake surface (or 0.26m in refraction-corrected

water depth) at their deepest along-track point to be considered by SuRRF. However, in practice, such shallow lake segments

do not have a discernible bathymetric signal since typical depth retrieval accuracies for ICESat-2 are on the order of 0.5m

(Dietrich et al., 2024). To provide the SuRRF Robust Fit with an initial guess, we combine the locations of the bathymetric480

peaks found by FLUID that have a peak prominence value of at least 0.5 and fall within the lake’s along-track water extent

with those locations of the smooth surface fit from Sect. 3.3.2 that fall outside of the lake’s along-track water extent. We then

smooth the values of the initial guess using a running mean with a window of five data points to decrease the influence of

any potential outliers. To decrease the influence of near-surface photons from multiple scattering, we further reduce the signal

confidence values pi of any photons that are between a lower bound of one meter above the initial guess and an upper bound485

of the lake surface elevation by multiplying them by a factor that linearly decreases from one to zero between the lower and

the upper bound. To fit the lakebed, we apply the SuRRF Robust Fit (Sect. 3.3.1) to the same evaluation locations xfit that

were used to fit the lake surface. We here use a third-degree polynomial regression (n= 3) and SuRRF Robust Fit parameters

niter = 20, xmin = 100m, n(start)
std = 10, n(end)

std = 3, and hmax = 10m in the first iteration. In this step we choose different values

for
(
n(start)

ph , n(end)
ph

)
depending on ATLAS beam strength: (200, 100) for strong beam data and (100, 50) for weak beam data.490

We illustrate this lakebed-fitting procedure by showing photons color-coded by their lakebed fit weights pi, along with the

initial guess and the final smooth photon fit to the lakebed (Fig. 8, panel d).

Previous studies have hypothesized that ICESat-2-based depth retrieval algorithms placing the lakebed fit at the along-track

elevation of highest subsurface photon density may be biased towards slightly overestimating total water depths due to multiple

scattering within the water column (Fricker et al., 2021; Xiao et al., 2023). To address this, we provide an optional correction,495

which places the lakebed fit at a higher elevation where the initial SuRRF lakebed fit included photons further below the

initial lakebed fit than would be expected from bathymetric signal photons. To achieve this, we remove any photons located

at a vertical distance below the initial SuRRF lakebed fit by more than the sum of (1) ICESat-2’s single-photon time-of-flight

precision (∼ 12cm in ATL03 photon heights or 800ps; Markus et al., 2017), and (2) the elevation range within ICESat-

2’s footprint diameter (∼ 11m Magruder et al., 2021a) obtained by projecting the footprint onto the along-track lakebed500

topography estimated by the initial SuRRF lakebed fit. We then reapply the lakebed fit to the remaining photons as described

above, while supplying the SuRRF Robust Fit (Sect. 3.3.1) with the uncorrected SuRRF lakebed fit as the initial guess. Since

the presence or magnitude of this hypothesized overestimation of water depths cannot be established without any ground truth

in situ data available along any ICESat-2 lake segments, we provide this scattering correction for reference only, and do not
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apply it to the water depths presented in this study. If such validation data becomes available in the future, our scattering505

correction can be tuned to better match observations, and can be readily applied to FLUID-SuRRF output data.

3.3.4 SuRRF step 3: bathymetry signal confidence estimation

To estimate the signal confidence of the fit to the lakebed, we calculate the photon density ratio between the lower half of the

interior of the lake and the elevation band within ±n(end)
std σ of the last iteration of the lakebed fit for each fit location xfit ± 5m

along the ground track. Here, we consider the interior of the lake to be the elevation range between the top of the elevation510

band of the lakebed fit and the surface elevation of the lake. For any along-track points for which there are no lakebed photons

or for which the elevation band of the lakebed fit includes the lake surface, we set the ratio to 1. We then set the bathymetry

confidence to one minus the density ratio, clip it to the range [0,1], set it equal to one wherever the lakebed fit is at a higher

elevation than the lake surface elevation (i.e. wherever the estimated water depth is zero), and smooth it using an along track

gaussian filter with a standard deviation of 10m. Wherever the elevation range of the interior of the lake is less than the width of515

the elevation band of the lakebed fit, we further decrease the confidence by multiplying it by the ratio between the two elevation

ranges. We illustrate this bathymetry signal confidence estimation procedure by visualizing both the elevation band of the final

lakebed fit and the interior of the lake, and showing the resulting along-track confidence estimates for the bathymetric return

(Fig. 8, panel e).

3.3.5 SuRRF step 4: water depth calculation520

To determine the along-track water depth, we take the difference between the lake’s surface elevation and the fit to the lakebed,

and divide it by the refractive index for the speed of 532nm light in 0 °C freshwater (≈ 1.336; Mobley, 1995). For any locations

along the lake segment where the final lakebed fit (Sect. 3.3.3) returns a higher elevation than the surface elevation of the lake,

we record a water depth of zero meters (i.e. no water is present). We do not correct water depths for the effect of lakebed

return geolocation errors caused by refraction, since ICESat-2 is nadir-pointing to its reference ground tracks over land ice,525

making the water depth correction due to the angle of refraction negligibly small (≈ 0.003 of the total water depth for the

slightly off-nadir-pointing outer beam pairs, which is about 9cm for a water depth of 30m; Parrish et al., 2019). Final along-

track water depths can be selected by applying a threshold to the bathymetry signal confidence (Sect. 3.3.4). Here, we select a

confidence threshold of 0.5. For the lake segment example shown, this results in a maximum along-track depth of 6.0m and

gaps in along-track depth data in locations where no bathymetric return is evident (Fig. 8, panel f).530

3.3.6 SuRRF step 5: lake segment quality estimate

To provide a relative indication of data quality, we provide an estimate for a summarized quality measure for each lake segment.

Let h(surf)
x and h(bed)

x be the surface and bed fits at along-track measurement location x. For all x where ∆hx = h(surf)
x −h(bed)

x > 0,

we calculate a histogram of photon counts within a 5m along-track window for 300 elevation bins that are evenly spaced

between h(bed)
x −∆hx and h(surf)

x +∆hx. We then normalize the associated bin elevations h̃ such that h(bed)
x corresponds to h̃= 0535
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and h(surf)
x corresponds to h̃= 1, and take the per-bin sum across all x. We smooth the resulting elevation-normalized histogram

using a gaussian filter with a standard deviation of three bins, and calculate the quality ratio rq as the ratio between the value

at h̃= 0 and the mean of the first quartile of the lowest values in 0> h̃ > 1.

The “quality ratio” can be considered an along-track average estimate for the photon density ratio between the lakebed and

the lowest-photon-density part of the interior of the lake. We classify lake segments with rq ≤ 2 as “zero quality” lake segments.540

Similarly, we classify lake segments with rq > 2 as “high quality” lake segments, for which we report the lake segment quality

score as rq − 2. This means that a lake segment is assigned a non-zero quality by SuRRF if the along-track averaged strength

of the return signal from the lakebed is at least twice as large as the along-track averaged background noise rate within the

interior of the lake. While “zero quality” lake segments might still include a clear bathymetric return along a small part of their

associated along-track extent, a quality score of zero is meant to indicate that there may be significant issues with data quality.545

In the example shown, this results in SuRRF classifying the given lake segment as high quality, with a score of 9.0 (Fig. 8,

panel f). We show more examples of FLUID/SuRRF output lake segments and their associated quality scores in a range from

0.2 to 115.5 in Figs. 9 and 10 (Sect. 4.1).

3.4 Computational implementation of FLUID/SuRRF

To facilitate large-scale use of FLUID/SuRRF, we implemented the algorithms as a Python routine that can be run on any550

ATL03 data granule, and developed a framework that allows for estimating all ICESat-2 lake depths for a given region of

interest and time span. Given a polygonal region of interest (e.g.; a particular glacier, ice shelf, drainage basin, or other study

region) and time span (e.g.; a typical melt season), we use the National Snow and Ice Data Center’s Data Access and Service

API (NSIDC API) (NSIDC, 2021) to query for a list of all available ATL03 data granules that satisfy the spatio-temporal

search parameters. To obtain all desired ICESat-2 lake depths, we can subset these ATL03 granules to the region of interest,555

run FLUID/SuRRF on each subsetted granule individually, and collect all output melt lake segment and their associated along-

track depth data. This allows for parallel processing of data granules.

To apply FLUID/SuRRF to all identified granules in an efficient, cost-effective and reproducible manner, we use the OSG

Open Science Pool for distributed High-Throughput Computing (dHTC) (OSG, 2006; Pordes et al., 2007) Since batches of

OSG compute jobs run on heterogeneous hardware, we run all jobs in a Singularity container (Kurtzer et al., 2017) that we560

designed for use with FLUID/SuRRF. We run one OSG compute job per ATL03 granule, where each job receives as input the

producer ID of the granule and a shapefile of the corresponding region of interest. Each job makes a request to the NSIDC API

to subset the specified granule to the given shapefile, and downloads the subsetted granule. The job then runs FLUID/SuRRF

on the downloaded granule for each of ICESat-2’s six ground tracks, and sends back individual HDF5 files of output water

depths for each lake segment that was detected by FLUID.565

Each output file reports water depth estimates at a 5m along-track resolution with associated values for longitude, latitude,

along-track distance, bathymetry signal confidence and elevations of the lakebed and surface fit to the photon data. We also

include lake segment properties such as: surface elevation, SuRRF quality score, and various metadata such as the granule

name, beam, time of data acquisition, center longitude/latitude. For reference, we add the underlying ATL03 photon heights and
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locations with FLUID estimates of photon signal probability, saturation level and afterpulse probability, as well as calculated570

FLUID parameters at the major frame rate. In addition to each lake segment’s data file, we also create an associated “quick

look” plot of the photon data with surface and lakebed fits and the ground track shown over the closest available cloud-free

Landsat 8/9 or Sentinel-2 imagery (e.g.; Fig. 9, a-j and 10, a-j). The availability of these for all returned lake segments makes

it possible to add a final manual quality control step to our method, based on visual inspection of the plots in a custom-made

streamlit app. We use this to remove clear false positives from the output data.575

3.5 Study regions and time span

To evaluate the performance of our method, specifically whether it is able to capture spatial and temporal variability while

reliably extracting supraglacial lake depths at scale, we focus on one drainage basin on each of the ice sheets and compare a

high-melt with a low-melt season for each. For both the Greenland and Antarctic ice sheets, we define our study regions using

the Ice sheet Mass Balance Inter-comparison Exercise (IMBIE) drainage basins (Fig. 2, Mouginot et al., 2017; Mouginot and580

Rignot, 2019). Since we do not expect significant surface meltwater pooling beyond a certain elevation, we apply elevation

thresholds to the drainage basins prior to running FLUID/SuRRF.

In Greenland, we focus on the Central West (CW) drainage basin, and compare ICESat-2 lake depths between the excep-

tionally warm 2019 melt season (Tedesco and Fettweis, 2020) and the 2020 melt season, which experienced comparatively

little surface melt and runoff (Druckenmiller et al., 2021). During these two summers, Central West Greenland experienced585

a particularly stark contrast in observed surface runoff elevation limits, with surface runoff extending to significantly higher

elevations in 2019 than in 2020 (Tedstone and Machguth, 2022). For Central West Greenland, we use an elevation threshold

of 2000m based on Zhang et al. (2023), who reported a mean elevation limit of surface water of 1609m above sea level in

this region during the anomalously warm 2019 melt season. We apply this threshold based on the ArcticDEM digital elevation

model (Morin et al., 2016).590

In Antarctica, we focus on the B-C drainage basin, including Amery Ice Shelf and its surrounding grounded ice catchment,

which on average experiences more meltwater pooling than any other Antarctic ice shelf. We compare the 2018-19 and 2020-

21 melt seasons, which exhibit positive and negative anomalies in terms of open-water melt extent, respectively (Tuckett et al.,

2022). For the Amery catchment, we use an elevation threshold of 1000m, based on Tuckett et al. (2021), who reported > 95%

of lakes at elevations below 500m in the 2004–20 time period, and only a handful of small lakes above 1000m even during595

high-melt summers. We apply this threshold based on the Reference Elevation Model of Antarctica (REMA) digital elevation

model (Howat et al., 2019).

Our two study areas cover latitudes from 68.2° N to 72.1° N in Greenland and latitudes from 68.4° S to 74.0° S in Antarctica,

meaning that ICESat-2 track spacing is similar over the two regions: in Central West Greenland RGT spacing varies from

∼ 8.8km in the north to ∼ 10.8km in the south; over the Amery Catchment RGT spacing varies from ∼ 7.9km in the south600

to ∼ 10.7km in the north. The total area of the Central West Greenland study region is about 650,000km2 with a coverage of

50 distinct ICESat-2 reference ground tracks, and the area of the Amery catchment study region is about 3.5 million km2 with

a coverage of 74 distinct ICESat-2 reference ground tracks.
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Table 1. Summary statistics for the ICESat-2 lake segments extracted by FLUID/SuRRF for our regions and melt seasons of interest.

Amery catchment (B-C) Central West Greenland (CW)

melt season 2018-19 2020-21 2019 2020

amount of surface melt high very low high low

area of Landsat 8 maximum melt extent 1872km2 100km2 1127km2 431km2

number of total ICESat-2 lake segments 721 28 325 175

number of unique lakes sampled 385 25 198 114

number of high-quality lake segments 165 5 196 109

percentage of high-quality segments 23% 18% 60% 62%

median lake segment depth 1.85m 1.48m 2.77m 3.43m

maximum lake segment depth 10.4m 17.3m 25.8m 15.1m

For Greenland, we consider the annual melt season to be the 5-month period between the first day of May and the last day

of September of a given year. Similarly, for Antarctica, we define the melt season to be the 5-month period between the first605

day of November and the last day of March of the following year. Based on these spatiotemporal parameters, we processed

a total of 447 ATL03 granules with a total size of 1.15TB, amounting to a total along-track distance about 760,000 km and

comprising nine billion individual photon locations.

4 Results and discussion

Using FLUID, we identified a total of 1249 supraglacial lake segments over our two study areas in the available ATL03 data610

during the four melt seasons we considered (Table 1). We found that FLUID reliably detects potential supraglacial lake seg-

ments, with the number of detected lake segments varying with the strength of the melt season and their locations aligning well

with imagery-derived melt extents (Sect. 4.1). Along-track lake depths determined by SuRRF agree well with manually anno-

tated data, with deeper lakes in Central West Greenland than in the Amery catchment (Sect. 4.2). Our method is effective for

detection and depth determination of supraglacial lakes over the ice sheets; however, it is not designed for ICESat-2 bathymetry615

over other targets, for which different methods have been developed (Sect. 4.3). Applying our method at an ice-sheet-wide scale

and combining the results with satellite imagery would make it possible to develop data-driven models for accurate estimation

of the volume of pooled surface meltwater across the ice sheets at high resolution and spatial coverage (Sect. 4.4).
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4.1 FLUID lake detection and accuracy

4.1.1 FLUID lake segment detection620

Out of the 1249 supraglacial lake segments that we detected in the ICESat-2 data analyzed in this study, 500 were located

in Central West Greenland and 749 in the Amery catchment. The number of lake segments that we detected using FLUID

varied with strength of the melt season (Figs. 9 and 10). Over Central West Greenland, we identified 325 lake segments during

the high-melt 2019 boreal summer versus only 175 during the low-melt 2020 boreal summer. Over the Amery catchment, we

identified 721 lake segments during the high-melt 2018-19 austral summer versus only 28 during the (very) low-melt 2020-625

21 austral summer. To estimate how many unique supraglacial lakes were sampled by these detected ICESat-2 lake segments

during each melt season, we calculated the maximum surface meltwater extent for each of the melt seasons independently using

Landsat 8 imagery, based on the methods detailed in Tuckett et al. (2021) (blue regions in Fig. 9 and 10). We then matched each

detected ICESat-2 lake segment to a lake basin in these imagery-based melt extents and counted the number of total basins that

were sampled by at least one ICESat-2 lake segment (see supplemental maps; Arndt and Fricker 2024c). Over Central West630

Greenland, this resulted in 196 unique supraglacial lakes being sampled by our data in 2019, and 109 lakes in 2020. Over the

Amery Catchment, FLUID-SuRRF segments sampled 165 unique melt lakes in 2018-19 and 25 lakes in 2020-21.

Across all the data that we analyzed, FLUID and SuRRF determined on average 0.12% of total distance along the ICESat-

2 ground tracks to be meltwater surfaces. During the high-melt summers this number was 0.22% and 0.21% for Central

West Greenland and the Amery catchment, respectively. The corresponding numbers for low-melt summers were 0.088% and635

0.0057%. SuRRF assigned a non-zero quality score to 475 of these lake segments, indicating that they likely contain high-

quality bathymetric measurements. The fraction of non-zero quality lake segments was significantly higher for Central West

Greenland (61%) than for the Amery catchment (22.7%). This is likely because the locations of supraglacial lake basins on

Greenland’s grounded ice are primarily controlled by bedrock topography (Lampkin and VanderBerg, 2011), which allows for

well-defined lake basins to develop in the same locations every year. In contrast, lake basins on Antarctica’s floating ice shelves640

are more difficult to distinguish from their much flatter surrounding topography, on which they usually form sporadically and

in different locations each year (Arthur et al., 2022) with existing basins typically being advected to locations significantly

further downstream from one melt season to the next (Arthur et al., 2020b). Furthermore, an appreciable portion of meltwater

across Antarctic ice shelves is stored as slush (Dell et al., 2024), which often appears in ATL03 data with a surface return that

is flat enough to look similar to a supraglacial lake, with large amounts of scattered photons below the surface that can be645

mistaken for a bathymetric signal.

4.1.2 Accuracy of FLUID lake segment detection

To validate the spatial extents of ICESat-2-derived supraglacial lake segments, we also used the Landsat-8-based maximum

surface meltwater extents for each of the melt seasons (blue regions in Fig. 9 and 10). We found a high correspondence

between these estimates: For Central West Greenland, the ground tracks of 97.0% of high-quality ICESat-2 lake segments650
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Figure 9. Center maps: FLUID/SuRRF algorithm testing in Greenland. Locations of melt lake segments detected in ATL03 data for the

Greenland Ice Sheet’s Central West drainage basin for melt seasons 2019 and 2020, mapped over the corresponding seasons’ maximum

meltwater extent from Landsat 8. Panels a-j: Examples showing the underlying ATL03 photon clouds and water depths calculated by SuRRF,

for some of the lake segments shown on the maps. Numbers in lower right of panels are SuRRF lake segment quality scores.

coincided with the Landsat-8-derived maximum seasonal melt extent. The corresponding percentage for the Amery catchment

was 95.8%.

Since there are no ground truth data of water depths available for any ICESat-2 data over supraglacial lakes, it is necessary

to evaluate the performance of our method by manually examining the data in representative granules. We report results for

ICESat-2 track 81, GT2L on 2 January 2019 over the Amery catchment, which was also studied in Fricker et al. (2021) and655

Xiao et al. (2023). To evaluate whether FLUID detects all supraglacial lake segments that have bathymetric data in this ATL03

ground track, we manually inspected the ATL03 data for any evidence of meltwater and determined whether any such along-

track contained a return signal from a lakebed. Out of 25 along-track segments with meltwater, we judged that only eight
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Figure 10. Center maps: FLUID/SuRRF algorithm testing in Antarctica. Locations of melt lake segments that FLUID detected in ATL03 data

for the Antarctic Ice Sheet’s B-C drainage basin for melt seasons 2019-20 and 2020-21, mapped over the corresponding seasons’ maximum

meltwater extent from Landsat 8. Panels a-j: Examples showing the underlying ATL03 photon clouds and water depths calculated by SuRRF,

for some of the lake segments shown on the maps. Numbers in lower right of panels are SuRRF lake segment quality scores.

were supraglacial lake segments with a discernible bathymetric signal. We further evaluated whether the ATL03 photon cloud

misses any supraglacial lakes that track 81 GT2L crosses, by mapping it over a mosaic of Sentinel-2 scenes from the same day660

(same as used in Fricker et al. 2021). Based on visual inspection, the ICESat-2 ground track crossed supraglacial lakes that

were clearly distinguishable in the imagery only in the same eight locations that we had also judged to be lake segments in

the ATL03 data. Most other ICESat-2 segments that showed evidence of surface water in ATL03 also showed some evidence

of meltwater in the imagery, and were associated with ice-filled crevasses, narrow melt channels, likely areas of slush, or melt

lakes with an opaque ice cover (for which depth determination is not possible). FLUID found 16 potential melt lake segments665
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within the same ground track, which all showed evidence of meltwater, but only the eight that we had also manually picked

were classified as high-quality lake segments.

Out of all lake segments that FLUID detected, we deemed 308 to be false positives, many of which showed evidence of

surface water but no distinguishable bathymetric return. However, we found that lake segments classified by SuRRF as “high

quality” contain few false positives, with only 15 such segments that we manually removed from the data. The majority (11) of670

these were due to our study region erroneously extending past the calving front of the Amery Ice Shelf in Antarctica or marine-

terminating outlet glaciers in Greenland, or due to ice-marginal lakes being included in the study region. Of the remaining four

false positives, three were likely due to random noise and one showed a supraglacial lake but the data seemed to be affected by

a “Did Not Finish Major Frame” data transfer error in the ATLAS Photon Counting Electronics (Magruder et al., 2024). While

testing our algorithm, we found that false positives may also arise when ICESat-2’s footprint includes two surfaces at different675

elevations for a substantial along-track distance, which is possible when the ground track passes over a flat calving front or

crevasses with a bottom return at an acute angle. Where the study region extends past an ice shelf calving front, FLUID/SuRRF

can also falsely classify the bathymetric return of a submerged “bench” as a supraglacial lake segment (Buck, 2024).

4.2 SuRRF depth retrieval and accuracy

4.2.1 SuRRF: meltwater depths680

The meltwater depths determined by SuRRF suggest that supraglacial lakes in Central West Greenland are generally deeper

than those in the Amery catchment: The median of along-track maximum water depths of lake segments in Greenland was

3.09m versus only 1.84m in Antarctica. Median lake segment depth in the Amery catchment was greater during the high-

melt season (1.85m) than it was during the low-melt season (1.48m). In contrast, median lake segment depth in Central West

Greenland was less during the high-melt season (2.77m) than it was during the low melt season (3.43m) (Fig. 11, a). We685

hypothesize that this opposite behavior is due to different relationships between lake elevations and depths in these regions.

A linear regression of lake segment depth on surface elevation in our data suggests that lake depth decreases with elevation

in Central West Greenland (p= 0.12), while it increases with elevation in the Amery catchment (p= 0.093) (Fig. 11, b).

In Greenland, where supraglacial lake basin locations are controlled by bedrock topography, lakes in a low-melt season are

more likely to form at lower elevations, where repeated filling, bottom ablation and draining during most prior melt seasons has690

resulted in well-defined, deep lake basins (Lampkin and VanderBerg, 2011; Tedesco et al., 2012). In a high-melt season, surface

melt extends further upwards above the ablation zone, where lake basins are less well-defined, forming smaller, shallower

lakes and slush areas (Glen et al., 2024). On an Antarctic ice shelf, lakes in a low-melt season are more likely to form at lower

elevations, where the ice is floating and the surface topography is very flat, resulting in mostly shallow lakes (Banwell et al.,

2014). In a high-melt season, melt extends further upward of the grounding line where lakes form in deeper basins that are695

controlled by the bedrock topography (similar to lakes in Greenland; Bell et al., 2018), thus resulting in deeper lakes.
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Figure 11. SuRRF lake segment depth statistics for two study regions in high and low melt years. a): Density of maximum lake depth

distributions. The numbers shown are median lake segment depths during the corresponding melt season and study region. b): Elevation-

binned means of maximum lake segment depths for each season and study region. The dotted lines are the linear fit to all data for the

corresponding study region.

4.2.2 Accuracy of SuRRF depth retrievals and comparison with alternative methods

For the 16 potential melt lake segments that FLUID identified in ICESat-2 track 81, GT2L on Jan 2nd, 2019 over the Amery

catchment (Sect. 4.1.2 Fricker et al., 2021), SuRRF assigned a nonzero quality score only to the eight data segments which we

had manually determined to be supraglacial lake segments with a discernible bathymetric signal. For four of the lake segments700

identified in this granule, Fricker et al. (2021) established manually annotated baseline depth estimates, which were used to

assess the performance of automated algorithms in the absence of any ground truth data. In addition to these four lake segments,

Melling et al. (2024) used a similar method to establish manual estimates for five more segments in Southwest Greenland.

We here use the manual annotations from both of these method comparison studies to evaluate SuRRF’s depth estimation

performance for all nine lake segments, and to briefly compare SuRRF to other methods whose results were included in these705

two comparative studies (Fig. 12). For a detailed comparison between various ICESat-2 lake depth algorithms (including an

earlier version of SuRRF) and RTE-methods, we refer the reader to Fricker et al. (2021). For in-depth discussions comparing

manually picked ICESat-2 depths to RTE methods, DEM-based approaches as well as empirical methods using in situ data,

we refer the reader to Melling et al. (2024) and Lutz et al. (2024).

When run on the corresponding ATL03 granules, FLUID automatically detects all nine lake segments, and the SuRRF depth710

estimates track the general shape of the manually outlined lakebeds well (Fig. 12). This is also demonstrated by an average

Pearson’s correlation coefficient of R= 0.992 for the nine lake segments examined here, with averages of R= 0.989 for the

segments on Amery catchment and R= 0.994 for the segments in Southwest Greenland. SuRRF depth estimates show an
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Figure 12. Comparison between SuRRF water depth estimates, manually annotated ICESat-2 depths and results from other methods for

meltwater depth estimation for lakes in Antarctica and Greenland. a)-d): ICESat-2 melt lake segments on the Amery Ice Shelf, Antarctica,

with manual annotations from Fricker et al. (2021). Other meltwater depth estimates that were reported by Fricker et al. are shown for

the Watta algorithm (based on ICESat-2; Datta and Wouters, 2021) and for the RTE method applied to the average of Landsat 8’s red

and panchromatic bands (Spergel et al., 2021) and to Sentinel-2’s red band (Moussavi et al., 2020). e)-i): ICESat-2 melt lake segments in

Southwest Greenland with manual annotations from Melling et al. (2024). Other meltwater depth estimates that were reported by Melling

et al. are shown for the RTE method individually applied to both Sentinel-2’s red and green bands, as well as estimates from post-drainage

lakebed topography in ArcticDEM (based on Bowling et al. 2019). SuRRF depth estimates are shown only where the estimated bathymetric

signal confidence exceeds 0.5. To align along-track depths with the ATL03 photons (gray dots), the elevations of photons below the water

surface elevation of each lake (black dotted lines) were corrected by dividing their vertical distance from the lake’s surface by the refractive

index for the speed of light in water.

31



average bias of 0.26m deeper than the manually picked values, with a mean absolute error (MAE) of 0.27m. This results

in SuRRF reporting a total amount of water that is 10% larger than the estimate given by the manual baseline. For the lake715

segments on Amery Ice Shelf, the average bias is 0.29m and the MAE is 0.29m. For the lake segments in Southwest Greenland,

the average bias is 0.23m and the MAE is 0.24m. When applying the correction for multiple scattering (Sect. 3.3.3) to SuRRF

depth estimates, the average bias is reduced to 0.07m deeper than the manually picked values, with a mean absolute error

(MAE) of 0.15m and a Pearson’s correlation coefficient of R= 0.993. This results in the scattering-corrected version of

SuRRF reporting a total amount of water that is 3% larger than the estimate given by the manual baseline.720

Based on the nine lake segments that were used to assess the accuracy of depth estimates, most algorithms (including

SuRRF) seem to estimate slightly greater depths than the manually picked values (Xiao et al., 2023). When the bathymetric

returns in the ATL03 point cloud are “fuzzy” the difference between the manual baseline and SuRRF water depth estimates

tends to become larger. The majority of algorithms for lake depth retrieval from ATL03 operate on the assumption that the

elevation with the locally highest photon density corresponds to the elevation of the ice-water interface at the lakebed, yet most725

altimetry experts placed the secondary return signal higher up in the point cloud, where the photon density first significantly

increases below the water surface (Fricker et al., 2021). We agree that the true location of the lakebed is likely at a higher

elevation than the along-track elevation of highest photon density, since multiple scattering increases the photon density below

the elevation of the lakebed. However, the elevation at which the photon density first significantly increases represents the

highest point within ICESat-2’s 11m footprint and furthermore tracks the upper bound of ATLAS’s single-photon time-of-730

flight uncertainty of 800ps (Markus et al., 2017), which corresponds to about 12cm in photon height uncertainty. We therefore

believe that the true water depth falls somewhere in between our (deeper) SuRRF estimates and the (more shallow) manual

baseline estimates from Fricker et al. (2021) and Melling et al. (2024). Our scattering correction to SuRRF depth estimates is

an attempt to reconcile this disparity between depth estimates. However, in the absence of ground truth in situ validation data

for ICESat-2 lake segments, the correct magnitude of this correction remains unknown. This demonstrates an urgent need for735

in situ meltwater depth data that can be used to reliably validate the accuracy of ICESat-2 estimates.

Since many lakes on the Greenland Ice Sheet are transient and drain late in season (Johansson et al., 2013), it could be possi-

ble to obtain independent ICESat-2-based meltwater depth estimates by comparing “full vs empty” repeat-track measurements

along ICESat-2 lake segments before and after the drainage. However, this approach would suffer from many of the same

drawbacks that affect depth estimation from DEMs of a lake’s bed topography that were acquired after it drained (Sect. 2.2),740

for example: effects of lake-bottom ablation, surface elevation change from precipitation and blowing snow deposits, as well

as across-track advection of surface topographical features. Furthermore, this approach would not be feasible in Antarctica,

where lake drainage is very rare, in particular on grounded ice. In cases where melt lake drainage is observed on the floating ice

shelves, obtaining water depth from repeat-track elevation change is not possible due to the advection of surface topography

with the ice flow and post-drainage flexural rebound (Warner et al., 2021). Due to these complexities, we do not attempt to745

validate ICESat-2 lake depth measurements using this method.

In addition to SuRRF and manual depth estimates, panels a)-d) of Fig. 12 show depth estimates for Antarctic lakes that were

reported in Fricker et al. (2021), for the Watta algorithm (based on ICESat-2; Datta and Wouters, 2021) and for the RTE method
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applied to the average of Landsat 8’s red and panchromatic bands (Spergel et al., 2021) and to Sentinel-2’s red band (Moussavi

et al., 2020). Both SuRRF and Watta track the general shape of lakebed returns in the ATL03 photon clouds well (Pearson’s750

correlation coefficients of R= 0.99 and 0.94, respectively), and and largely agree with manually determined along-track water

depths (MAEs of 0.29m and 0.30m, respectively). In contrast to SuRRF, Watta appears to have a tendency to overfit where

photon density near the lakebed is high with a large elevation spread, resulting in an unreasonably “wiggly” lakebed fit (e.g.,

Antarctic lake 1, 500-800m). SuRRF’s smoother fit under these conditions is likely due to the fact that it utilizes an adaptive

kernel for its robust fit, whose width increases as the number of photons that narrowly cluster around the previous iteration’s755

fit decreases (Sect. 3.3.1). In contrast to SuRRF, Watta also attempts to fit the lakebed across the entire lake basin, even where

the lakebed is not visible or indistinguishable from noise, which can sometimes result in arbitrary, unrealistic depth estimates

(e.g., Antarctic lake 1, around 450m). Under such conditions SuRRF assigns a low confidence score to the lakebed fit and

discards associated depth estimates to prevent arbitrary results. However, in some cases this results in SuRRF discarding depth

estimates where Watta appears to fit the lakebed reasonably well (e.g., Antarctic lake 3, 250-300m). The RTE approach based760

on Landsat 8’s red/panchromatic band average consistently underestimates water depths, reporting a total amount of water that

is ∼ 73% lower than the manual baseline. The RTE approach based on Sentinel-2’s red band also underestimates water depths,

and reports a total amount of water that is 34% lower than the manual baseline.

Panels e)-i) of Fig. 12 also show non-ICESat-2 depth estimates for Greenland lakes that were reported in Melling et al.

(2024), for the RTE method individually applied to both Sentinel-2’s red and green bands, as well as estimates from post-765

drainage lakebed topography in ArcticDEM (based on Bowling et al. 2019). The RTE approach based on Sentinel-2’s red band

generally underestimates depths and reports a total amount of water that is 42% lower than the manual baseline (similar to

this method’s performance over Antarctic lakes). In contrast, the RTE approach based on Sentinel-2’s green band generally

overestimates depths and reports a total amount of water that is 34% larger than the manual baseline. However, Melling et al.

also note that when using values of tuneable parameters that have been commonly used in the literature in the past (Sneed and770

Hamilton, 2007; Georgiou et al., 2009; Pope et al., 2016), the RTE approach for Sentinel-2’s green band overestimates lake

depths even more, which results in reporting a total amount of water that is 84% larger the manual baseline, with individual

depths being overestimated by up to 153%. This implies that RTE-based methods, while being popular for their simplicity, can

potentially result in highly inaccurate meltwater volume estimates. The depth estimates derived from DEMs of emptied lake

basins match the ICESat-2 manual baseline reasonably well, and when compared with it underestimate the total amount of775

water by 6% with a MAE of 0.34m. Since this method’s performance is comparable to that of ICESat-2-based methods, this

implies that DEM-based methods could be used supplement ICESat-2 depth measurements for labeling reflectance in passive

optical imagery with supraglacial water depths, at least on the Greenland Ice Sheet where melt lakes on grounded ice drain

regularly (Johansson et al., 2013).

4.3 ICESat-2 bathymetry over other targets780

Beyond estimating the depth of supraglacial lakes, ICESat-2’s bathymetric capabilities have been used for various other appli-

cations. Many algorithms employed for depth retrieval from ATL03 share significant similarities, enabling method development
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for ICESat-2-derived bathymetry to benefit from broader cross-discipline collaboration (Parrish et al., 2022). Methods similar

to FLUID-SuRRF have been used for satellite-derived nearshore ocean bathymetry (e.g.; Parrish et al., 2019; Ma et al., 2020;

Thomas et al., 2021), estimating water depths of inland waters (e.g.; Li et al., 2019; Xu et al., 2020; Jasinski et al., 2023)785

and tracking the evolution of melt pond depths on sea ice (e.g.; Farrell et al., 2020; Tilling et al., 2020; Herzfeld et al., 2023;

Buckley et al., 2023). However, there are also notable differences between bathymetric applications of ICESat-2 in different

environments that have led to the development of specialized approaches, in particular for their large-scale implementation. For

nearshore and inland bathymetry applications, the locations of the desired bathymetry estimates are usually known a priori and

the bottom topography is often considered constant, so bathymetric measurements can be accumulated over time and compared790

to non-concurrent validation data. In contrast, the ephemeral nature of supraglacial lakes on the ice sheets and melt ponds on

sea ice makes it necessary to automatically detect their locations directly from ATL03 and makes it more difficult to reliably

validate depth estimates. Our FLUID algorithm addresses this issue for supraglacial lakes on the ice sheets: it automatically

detects the locations of lakes by relying on the fact that the water surface reflection over open water presents as a flat line

in geoid-corrected ICESat-2 elevation data, while the surrounding topography on the ice sheets is almost always sloped. This795

makes our algorithm efficient over the ice sheets by discarding most non-lake photon segments in the first “flatness check”

step. However, it makes our algorithm less suited for detecting lakes on sea ice, where most segments over the open ocean and

thin sea ice would likely pass the flatness threshold.

4.4 Future studies

Our ICESat-2-derived water depths are the first comprehensive dataset of supraglacial lake depths directly measured from a800

satellite. However, these along-track observations alone are too sparsely spaced in space and time to allow for the calculation of

lake volumes or the continuous tracking of meltwater throughout the progression of a melt season. The large volume and wide

variety of data that our method provides suggest that ICESat-2-based depth measurements obtained from applying FLUID-

SuRRF at ice-sheet-wide scale could be used to better constrain parameters in existing methods which estimate meltwater

volumes from high-resolution, spatially continuous satellite imagery. Furthermore, our method could be used to extract pan-805

ice-sheet meltwater depths and combine them with concurrent satellite imagery, thus providing a training data set that would

enable the development of data-driven models of the relationship between meltwater depth and satellite imagery reflectances,

based on statistical learning methods. Since in the absence of ground truth validation data our depth validation efforts were

based on manual annotation of the data, we acknowledge that there may be a small but potentially significant bias towards over-

estimating water depths with FLUID-SuRRF. This highlights an urgent need for ground truth in situ water depth measurements810

of supraglacial lakes that coincide with ICESat-2 overpasses, to enable calibration and validation of depth estimates.

5 Summary

Supraglacial lakes form seasonally around most of the margins of the Greenland and Antarctic ice sheets. In a warming

climate, these lakes have the potential to significantly impact the future stability of both ice sheets through processes that
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are not yet understood well enough to be included into models. To confidently project future sea-level rise, better satellite815

observations of surface meltwater are needed to enable science that produces a better mechanistic understanding of how ice

dynamics are impacted by the pooling of surface meltwater in lakes. Until recently, any available methods used to estimate

supraglacial lake depth from satellite data have been required to make strong assumptions and to use poorly constrained

parameters, making it difficult to accurately assess the distribution of meltwater volumes across ice surfaces. Multiple case

studies have successfully demonstrated that supraglacial lake depths can now be directly measured from photon refraction in820

ICESat-2’s laser altimetry data. However, ICESat-2 data had not previously been used at scale for this purpose because its

photon-level product comprises hundreds of terabytes of unstructured point cloud data along spatially discrete ground tracks,

which makes it difficult to integrate the data with spatially continuous data in existing workflows.

To address this challenge, we have proposed a computational framework that allows users to detect lake segments and

determine their water depths across all available ICESat-2 data for any desired ice sheet drainage basins and melt seasons.825

Using distributed high-throughput computing, this framework applies the fully automated, two-step FLUID/SuRRF algorithm

to large numbers of ICESat-2 ATL03 photon data granules in parallel. To test our method, we applied FLUID-SuRRF to all

available ICESat-2 data over two drainage basins, one on the Antarctic Ice Sheet and one on the Greenland Ice Sheet, for a

high-melt and a low-melt summer. We have demonstrated the following for our method:

1. It reliably detects supraglacial lake segments based on the flatness of their surface and the presence of a lakebed return.830

2. There is a potential for false positives, but their impact can be effectively mitigated by filtering for the strength of the

bathymetric signal.

3. Water depth estimates are accurate based on manual validation of the data, however, there is an urgent need for in situ

data for definitive ground truthing.

4. It can be applied at scale by leveraging distributed high-throughput computing.835

5. The resulting data effectively capture spatial and temporal variability in meltwater extent and depth.

Our framework can be used to generate a comprehensive data product of supraglacial lake depths for Greenland and Antarc-

tica since the launch of ICESat-2, which would enable the development of data-driven models of meltwater volumes in satellite

imagery.

Code and data availability. The FLUID/SuRRF source code is freely available at https://doi.org/10.5281/zenodo.10905941 (Arndt and840

Fricker, 2024a). To execute this code, users need to create a free NASA Earthdata login for ICESat-2 data access. The source code con-

tains a singularity container in which this version of FLUID/SuRRF can be executed. The main Python script detect_lakes.py can

be run either locally on any individual ATL03 granule, or on many granules in parallel on any computing cluster that supports the specified

computing environment or the use of singularity containers. In this study we present our implementation of FLUID/SuRRF on the OSG Open

Science Pool because it provided us with free computational infrastructure. Due to funding mandates, free access to the OSG Open Science845
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Pool is limited to researchers contributing to a US-based project at an academic, government, or non-profit organization, or researchers

affiliated with any project or institution that operates its own local access point. This means that to implement FLUID/SuRRF on the OSG

Open Science Pool as described here, you need to have at least one collaborator on your team to whom these criteria apply. This collaborator

can register your project with OSG on the Open Science Pool. Then, anyone contributing to the project can register for an account on OSG

Connect to gain access to the Open Science Pool. For more information, see https://osg-htc.org/services/open_science_pool.html and https:850

//osg-htc.org/about/organization/. More information is also included in the README file. The supraglacial meltwater depth estimates and as-

sociated “quicklook” plots for all 1249 lake segments identified in this study are available at https://zenodo.org/doi/10.5281/zenodo.10901737

(Arndt and Fricker, 2024b). All data and code needed to reproduce the figures in this study, as well as supplementary figures, are avail-

able at https://doi.org/10.5281/zenodo.10901826 (Arndt and Fricker, 2024c). ICESat-2 ATL03 data is available at NSIDC (Neumann et al.,

2023b). Sentinel-2 and Landsat imagery were accessed via Google Earth Engine (Gorelick et al., 2017). Drainage basins for Greenland855

are available at DRYAD (Mouginot and Rignot, 2019). Drainage basins for Antarctica are available at NSIDC (Mouginot et al., 2017).

ArcticDEM mosaics for elevation thresholding are available at https://www.pgc.umn.edu/data/arcticdem/ (Porter et al., 2023) and REMA

DEM mosaics are available at https://www.pgc.umn.edu/data/rema/ (Howat et al., 2022). ICESat-2 ground track KML files are available at

https://icesat-2.gsfc.nasa.gov/science/specs.

Appendix A: Calculation of photon density ratios in FLUID flatness check860

For a given major frame, let lmframe ≈ 140m be the along-track length of the major frame, and let P be the set of photons with

hi denoting the geoid-corrected height of photon i ∈ P . We calculate the five photon densities used in the flatness check as:

d0 =

∑
i∈P [|hi −hpeak| ≤ wpeak]

2wpeaklmframe
(A1)

d1 =

∑
i∈P [0< hi −hpeak −wpeak ≤ wbuffer]

wbufferlmframe
(A2)

d2 =

∑
i∈P [−wbuffer ≤ hi −hpeak +wpeak < 0]

wbufferlmframe
(A3)865

d3 =

∑
i∈P [|hi −hpeak|>wpeak]

(hmax −hmin − 2wpeak) lmframe
(A4)

d4 =

∑
i∈P [hi −hpeak >wpeak]

(hmax −hpeak −wpeak) lmframe
(A5)

where wpeak = 0.1m is the width of the density peak, wbuffer = 0.35m is the width of the buffer around the peak, and hmin and

hmax are the bottom and the top of the telemetry window, respectively. Here [·] are Iverson brackets, which evaluate to 1 if the

condition inside the brackets is true, and to 0 otherwise.870

Appendix B: Calculation of photon signal confidences in FLUID

Let P be the set of photons within an along-track segment (e.g., a major frame), and for each photon i ∈ P , let xi and hi be

the along-track distance and elevation, respectively. To give appropriate relative weights to the two spatial dimensions when

calculating photon densities, we need to adjust along-track distance by an aspect ratio parameter ra. We found that for typical
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supraglacial lake segments, a value of ra = 30 works well. Denote by x̃= x/ra the aspect-ratio-adjusted along-track distance.875

We now want to express a photon’s signal confidence as the average of the inverse euclidean distances between the photon and

up to kmax nearest neighbors within a search radius of rs, where distances are normalized and clamped to this search radius.

Let Ki be the set of photons including i and its kmax nearest neighbors, i.e. Ki ⊆ P s.t. |Ki|= kmax +1 and

di,j ≥ max
n∈Ki

di,n ∀j ∈ P \Ki (B1)

where880

di,j =

√
(x̃j − x̃i)

2
+(hj −hi)2 (B2)

is the aspect-ratio-adjusted euclidean distance between photons i and j. Then, the signal probability of photon i is estimated as

pi =
1

kmax

kmax −
∑
j∈Ki

(
min(di,j , rs)

rs

)
+1

 . (B3)

Note that this implies pi ∈ [0,1]. In particular, pi = 0 if photon i does not have any neighbors within a radius of rs, and885

pi would be equal to 1 only for a “perfect photon”, whose location coincides exactly with that of kmax other photons. To

effectively discriminate between signal and noise, we need to choose kmax and rs in a way such that typical background noise

photons are assigned a small target value, which we set to pnoise = 0.05.

Assuming that a major frame contains only noise photons and a flat surface with a signal photon spread of wsignal = 0.3m,

we can estimate the aspect-ratio-adjusted mean area per background photon (i.e. the inverse photon density) as890

a=
(hmax −hmin − 2wsignal) lmframe

ra
∑

i∈P [|hi −hpeak|>wsignal]
. (B4)

If background noise photons follow a random uniform distribution, this means that to find an expected k neighbors around a

typical background photon, one would have to search within a radius of r(k) =
√

a(k+1)/π around that photon. Using the

fact that the average inverse distance of a point in a circle with radius R to its origin is R/3 (Stone, 1991), we can set

rs =
√
3pnoiser(kmax) =

√
3apnoise(kmax +1)

π
(B5)895

to ensure that pi ≤ pnoise for typical background noise photons. We found that setting kmax = 15 strikes a good balance between

being sensitive enough to small-scale signals, and being too sensitive to small amounts of noise photons clustering together by

random chance.

Appendix C: Calculation of quality heuristics in FLUID bathymetry check

To detect any potential bathymetric returns in a major frame, we divide it into nseg = 10 along-track sub-segments of equal900

length. For each sub-segment, we calculate the median of the FLUID photon-level signal probability pi for photons i within
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0.1m elevation bins, assigning a value of zero whenever there are no photons within any bin. This results in an empirical

function that relates signal probability to elevation h, which we here denote by p(h). In addition, we calculate the analogous

function of photon density d(h) as a simple histogram for 0.01m elevation bins. Let d′(h) = d(h) ∀h : |h−hpeak|>wsignal and

zero otherwise. Denote by ·|l a smoothing operator using a gaussian window with standard deviation of l. Now calculate signal905

confidence as a function of h as

c(h) = p(h)|lmin

(
d(h)|l

maxh d′(h)|l
,1

)
, (C1)

where p(h) is linearly interpolated to match the domain of d(h). Note that this implies p(h) ∈ [0,1] ∀h in the telemetry window.

To determine whether a potential bathymetric signal peak is present, we find peaks in c(h). If there are at least two peaks with

prominence ρ≥ 0.1, and the elevation of the peak closest to hpeak is found within an elevation difference of wsignal, then out of910

the peaks whose elevation is below hpeak −wsignal the peak with the highest prominence is considered a potential bathymetric

peak. Denote by npeaks the number of potential bathymetry peaks found in the major frame, and let hi be the elevation and

ρi the prominence of peak i ∈ [1,2, . . . ,npeaks]. We only consider the major frame to be potentially part of a lake segment if

npeaks ≥ 3. In this case, we define the following heuristics for different components that affect the quality of the bathymetric

return within the major frame.915

q1 = f3/2 (C2)

q2 =min

(∑
i ρi

npeaks
2(min({2f,1})− 1)+1,1

)
(C3)

q3 =min

(
1

log5 (max(∆h,1.1))
,1

)
(C4)

q4 =
1

1+ dh

max(∆h,0.5nseg)

(C5)

where f = npeaks/nseg is the fraction of sub-segments for which a potential bathymetric peak was detected, ∆h=maxihi −920

minihi is the elevation spread of the detected peaks, and

dh =−
nseg−1∑
i=2

|hi −hi−1|+ |hi+1 −hi|
2

max(sgn(hi −hi−1)sgn(hi+1 −hi),0) . (C6)

Note that the quality heuristics qi ∈ [0,1]∀i, with higher values implying a “better” bathymetric signal. The expressions used

here were derived by trial-and-error and designed such that q1 penalizes major frames with smaller numbers of detected

bathymetry peaks, q2 penalizes major frames with less prominent peaks, q3 penalizes major frames with a very large overall925

spread of peak elevations, and q4 penalizes major frames with peak elevations that do not align along a smooth surface. Based

on these quality heuristics for the major frame, we calculate a quality summary qs =
∏4

i=1 qi for each major frame.

While the quality heuristics qi were obtained by trial-and-error, the starting points for this approach were based on the

following assumptions and observations:

– The starting point for q1 was the idea that major frames with a smaller number of detected bathymetry peaks are less930

likely to have a consistent signal from a lakebed. The way the equation for q1 is designed, major frames with a very
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small fraction of detected bathymetry peaks (0 to 30% of sub-segments) are disproportionately penalized, since such

small numbers of peaks are much more likely to be noise.

– The starting point for q2 was the idea that major frames with less prominent peaks represent either a weak, inconsistent

bathymetric signal or noise. Here, q2 is equal to the mean prominence of peaks when the fraction of detected bathymetry935

peaks f ≤ 0.5. However, for fractions larger than 0.5, the assumption is that the bathymetric signal is consistent enough

that even smaller mean peak prominence suggests that the bathymetric signal is clearly visible.

– The starting point for q3 was the observation that in most cases supraglacial lake segments with a usable bathymetric

signal have fairly small lakebed slopes. Therefore, we do not expect the lakebed elevation of a major frame with a good

signal to span a large elevation range. In contrast, we observed that major frames with detected potential bathymetric940

peaks that span a very large elevation range are often due to noise in the data. Based on this, we designed the equation

for q3 such that its value drops off once the total elevation range of detected bathymetry peaks within the major frame

(of length ≈ 140m) exceeds 5m. There are, however, some lake segments with a clear bathymetric signal that do exhibit

a large range of lakebed elevations (often due to a single burst of noise being detected as a potential bathymetric peak).

Therefore, we made sure that the value for q3 is large enough for major frames to still pass the bathymetry check if ∆h945

is very large but its other quality heuristics qi are closer to 1.

– The starting point for q4 was the idea that in most cases bathymetry peak elevations will align along a smooth surface

in the along-track distance direction rather than randomly fluctuate (which is usually the case for noise). Here, we

penalize every “direction change” (i.e., wherever a peak has two neighbors and its elevation constitutes a local minimum

or maximum). We allow for random fluctuations of up to 0.5m per peak detection without a large penalty, since we950

observed that a vertical photon spread of up to about this value is quite possible even for lake segments with a somewhat

“fuzzy”, yet clearly distinguishable return signal from the lakebed.

A figure that illustrates these quality heuristics is available in the supporting information at https://doi.org/10.5281/zenodo.

10901826 (Arndt and Fricker, 2024c).
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