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Abstract. Supraglacial
:::::
Water

::::::
depths

:::
of

::::::::::
supraglacial

:
lakes on the ice sheets

:::
are

:::::::
difficult

::
to

:::::::
monitor

::::::::::::
continuously,

::::
due

:::
the

:::::
lakes’

:::::::::
ephemeral

::::::
nature

:::
and

:::::::::::
inaccessible

::::::::
locations.

:::::::::::
Supraglacial

:::::
lakes have been linked to ice shelf collapse in Antarctica

and accelerated flow of grounded ice in Greenland. However, it is difficult to quantify the impact of supraglacial lakes on ice

dynamics
:::
has

:::
not

:::::
been

::::::::
quantified

:
accurately enough to predict their contribution to future mass loss and sea level rise. This

is largely because ice-sheet-wide assessments of meltwater volumes rely on models that are poorly constrained due to a lack5

of accurate depth measurements. Various recent case studies have demonstrated that accurate supraglacial lake depths can

be obtained from ICESat-2’s ATL03 photon-level data product. ATL03 comprises hundreds of terabytes of unstructured point

cloud data, which has made it challenging to use this bathymetric capability at scale. Here, we present two new algorithms – Flat

Lake and Underlying Ice Detection (FLUID) and Surface Removal and Robust Fit (SuRFF
::::::
SuRRF) – which together provide a

fully automated and scalable method for lake detection and
:::::::::
along-track depth determination from ATL03 data, and establish a10

framework for its large-scale implementation using distributed high-throughput computing. We report FLUID/SuRFF
::::::
SuRRF

algorithm performance over two regions known to have significant surface melt – Central West Greenland and Amery Ice Shelf

catchment in East Antarctica – during two melt seasons. FLUID/SuRFF
::::::
SuRRF

:
reveals a total of 1249 lakes

::::::::
ICESat-2

::::
lake

:::::::
segments

:
up to 25m deep, with more water during higher melt years. In absence of ground truth data, manual annotation of

test data suggests that our method reliably detects melt lakes whenever a bathymetric signal is discernible
::::
along

::::::::::
ICESat-2’s15

::::::
ground

:::::
tracks

::::::::
whenever

:::
the

:::::::
lakebed

::
is
::::::
visible

:::
or

:::::::
partially

::::::
visible, and estimates water depths with a mean absolute error of

0.28m
::::::::
< 0.27m. These results imply that our proposed framework has the potential to generate a comprehensive data product

of accurate meltwater depths across both ice sheets.

1 Introduction

Earth is warming and both of its ice sheets (Greenland and Antarctica) are losing mass to the ocean at increasing rates (Rignot20

et al., 2011; Smith et al., 2020), leading to sea level rise. There is growing evidence that some of this retreat is irreversible,

thus committing coastal communities to embrace costly sea level rise adaptation strategies for decades and centuries to come

(DeConto et al., 2021; Garbe et al., 2020; Gregory et al., 2020; Nordhaus, 2019). To address the resulting societal challenges,

policy makers and coastal planners require accurate and actionable sea level rise projections (Moon et al., 2020). However,
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the projected contribution from the ice sheets is highly uncertain, to the point that the Sixth Assessment Report of the United25

Nations Intergovernmental Panel on Climate Change designated it as “deep uncertainty” (IPCC AR6; Fox-Kemper, 2021).

Building confidence in projections of the ice sheets’ contribution to future sea level rise requires better mechanistic understand-

ing of relevant mass balance processes for inclusion in ice sheet models (Golledge, 2020; Aschwanden et al., 2021). However,

ice sheet wide details of many of these processes are poorly known because they have been under observed in both space and

time.30

Supraglacial melting on the ice sheets is one example of a process which has a potentially important contribution to future

sea level rise projections, yet has been under observed so is poorly understood. In a warming climate, supraglacial lakes have

the potential to trigger positive feedback loops and catastrophic collapse (Hill et al., 2024)
::::::::::::::::::::
(Gilbert and Kittel, 2021), yet the

underlying mechanisms and associated likelihoods are vaguely defined due to a lack of high-quality observations (Arthur et al.,

2020a). In particular, models that attempt to capture the influence of supraglacial hydrology on ice sheet behavior require35

accurate estimates of volumes of pooled surface meltwater as input (Zwally et al., 2002; Parizek and Alley, 2004; Krawczynski

et al., 2009; Robel and Banwell, 2019). However, there are few direct
:
in

:::
situ observations of supraglacial lake depths ,

:::::
(none

::
in

:::::::::
Antarctica,

:::
and

:::
ten

::::
lakes

:::
up

::
to

::::::
11.5m

::::
deep

::
in

::::::::::
Greenland), which leads to errors in total water volume estimates. This introduces

biases into model inputs for meltwater flow, impacting projections of future ice sheet evolution (Melling et al., 2024). To ensure

that coupled hydrological-dynamical models accurately represent the underlying physics, it is important to find a method to40

acquire lake depths that are accurate, and also spatially and temporally and continuous.

Recently
::::::::
Launched

::
in

:::::
2018, NASA’s Ice, Cloud and land Elevation Satellite (ICESat-2) laser altimeter has made it possible

to directly obtain
::::::
became

:::
the

:::
first

:::::
(and

::::
thus

::
far

:::::
only)

:::::::
satellite

:::::::
capable

::
of

:::::::
making

:::::
direct,

:
accurate water depth measurements

::::
from

:::::
space,

:
due to its green light being able to penetrate water, which allows its sensor to register the elevation of photons

that were reflected from both the lake surface and the lakebed (Fig. 1; e.g., Fair et al., 2020; Fricker et al., 2021; Xiao et al.,45

2023). However,
:::
This

::::::
allows ICESat-2 ’s photon-level data product (ATL03)is

::
to

:::::::
measure

:::::
water

:::::
depths

:::
up

::
to

::::
41m

:::::
under

:::::
ideal

::::::::
conditions

:::::
(very

::::
clear

:::::
water

::::
and

::::
high

::::::
bottom

::::::::::
reflectivity),

::::
with

::::::
typical

:::::::::
accuracies

::
of

:::::
about

:::::
0.5m

:::::::::::::::::
(Dietrich et al., 2024)

:
.

:::::
While

:::::::
ICESat-2

::::
has

:::
the

::::::
unique

:::::::::
capability

::
to

:::::
make

:::::
direct

::::
and

:::::::
accurate

::::::::::::
measurements

:::
of

:::::
water

:::::
depth

:::::
from

:::::
space,

:::
its

:::::::::::
fundamental

::::::::
limitation

::
is

:::::
spatial

::::::::
coverage.

::::::::
ICESat-2

::::
data

:::
are

:
limited to discrete, one-dimensional ground tracks that are coarsely spaced on

the ground and have
::::::
Earth’s

::::::
surface

:::::::::
(∼ 9.9km

:::::::
between

:::::::::::
neighboring

::::::::
reference

:::::
tracks

:::
and

:::::::::
∼ 3.3km

:::::::
between

::
all

:::::::::::
neighboring50

::::
beam

::::
pair

:::::
tracks

::
at

::::::::
70◦N/S)

::::
with a relatively long repeat period

:::::
revisit

::::
time

:
of three months. While this means that

:::
This

::::::
means

:::
that

:::
no

::::::::::
supraglacial

::::
lake

:::::
depth

:::
data

:::::::
product

::::::
derived

:::::
from ICESat-2

:::::
alone

::
is

::::
able

::
to

::::::
provide

:::::::
samples

::
of

:::
all

:::
(or

::::
even

::::::
nearly

:::
all)

::::::::::
supraglacial

::::
lakes

:::
on

:::
the

:::
ice

::::::
sheets:

:::::::::
ICESat-2’s

::::
track

:::::::
spacing

::::::
means

:::
that

:::
the

:::::::
majority

::
of
:::::
lakes

::::
form

:::
in

:::::::
locations

::::
that

::::::::
ICESat-2

::::::
ground

:::::
tracks

:::::
never

:::::::
sample,

:::
and

:::
the

::::::::::
three-month

::::::
return

:::::
period

::::::
means

:::
that

:::
for

::
a

::::::::
significant

:::::::
number

::
of

::::::
ground

::::::
tracks

::::::::
ICESat-2

::::
never

::::::
passes

::::
over

::
at

:::
the

::::
time

::
at

::::::
which

::::
melt

::::
lakes

:::
are

:::::::
visible.

::::::::
ICESat-2

::
is

::::
also

:::::
unable

:::
to

:::::::
penetrate

::::::::
optically

:::::
thick

::::::
clouds,

::::
thus55

:::::
further

:::::::
limiting

:::
the

:::::::
amount

::
of

::::
data

:::::::
available

:::
for

:::::
water

:::::
depth

::::::::::::
measurements.

:

:::::
While

::::::::
ICESat-2 data alone cannot be used to

:::::::::::
continuously monitor melt lake volumes, several case studies have shown that

ICESat-2 depth measurements can be used to constrain parameters in models that estimate lake volumes from satellite im-

agery (Datta and Wouters, 2021; Leeuwen, 2023). This implies
::::::::::::::::::::::::::::::::::::::::::::::::
(Datta and Wouters, 2021; Leeuwen, 2023; Lutz et al., 2024)

:
.
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Figure 1.
::
An

:::::::
ICESat-2

::::::
ATL03

:::
data

:::::::
segment

::::
over

:
a
:::::::::
supraglacial

::::
lake,

:::::::
showing

:
a
:::::::::
particularly

:::::
strong

:::::::::
bathymetric

:::::
return

::::
from

:::
the

:::::::
lakebed.

::::
(Data

::::
from

:::::::
ICESat-2

:::::
Track

:::
406

::
on

::
20

::::
July

::::
2021;

:::::::
granule:

::::::::::::::::::::::::::::::::::::
ATL03_20210720053125_04061205_006_01.h5.

:::
The

::::::
imagery

::
in
:::
the

:::
left

::::
panel

::
is

:
a
::::::::
Sentinel-2

::::
scene

::::
from

:::
the

::::
same

:::
day:

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
S2B_MSIL2A_20210720T151809_N0301_R068_T27XVG_20210720T175839.)

:::
For

::::::::
instance,

::::::::::::::::
Datta and Wouters

::::::::::
demonstrated

::::
that

::
it
::
is
::::::::

possible
::
to

:::::::::
accurately

::::::::::
extrapolate

::::::
depths

:::::
along

:::::::::
ICESat-2’s

:::::::
ground60

::::
track

::::::::
segments

::
to

:::
the

::::
full

::::
lake

::::::
basins

:::
that

:::::
these

::::::::
segments

::::::::
intersect.

:::
To

::
be

::::
able

:::
to

:::
use

::::::::
ICESat-2

::
to

:::::::
improve

::::::
depth

::::::::
estimates

::
of

::::::::::
supraglacial

:::::
lakes

::
in

::::::::
locations

::::::
where

::::
(and

::
at
:::::

times
::::::

when)
::::::::
ICESat-2

:::::::::::::
measurements

:::
are

:::
not

:::::::
directly

::::::::
available,

::
it
::::
will

:::
be

::::::::
necessary

::
to

:::
rely

:::
on

::::::::
statistical

:::::::
methods

:::
that

::::
can

::::::::
generalize

:::
the

::::::::::
relationship

:::::::
between

:::::
water

:::::
depth

:::
and

:::::::::
reflectance

:::
for

::
a

::::::::
particular

::::::
passive

::::::
optical

::::::
sensor

:::::
under

:
a
:::::
wide

::::::
variety

::
of

:::::::::
conditions

:::
and

::::::::::::
independently

:::
of

:::
the

:::::::::
availability

:::::::
training

::::
data

:::
that

:::
are

::::::::
close-by

::
in

:::::
space

:::
and

::::
time

:::::::::::::::::
(Hastie et al., 2009)

:
.
:::
For

::::
this

::
to

:::::
work

:::::::::
effectively,

:::
the

::::
data

::::
that

::
is

::::
used

::
to
:::::

train
::::::::
statistical

:::::::
learning

:::::::
models65

::::::
capable

::
of

::::::::
multiple

::::::::
non-linear

:::::::::
regression

:::
for

:::::::::::
representing

:
a
::::::::
complex

::::::::::::::
depth-reflectance

::::::::::
relationship

::::
need

::
to
::::::::::

adequately
:::::
cover

::
the

:::::::::
parameter

:::::
space

::::::
defined

:::
by

:::
the

::::::::::
combination

::
of

:::::::::
predictors

:::
that

:::
are

:::::::
included

:::::::::::::::::::::::::::::::::::::::
(Markham and Rakes, 1998; Wang et al., 2022)

:
.
:::::
Since

::::::::
ICESat-2

::::::::::
observations

:::
of

::::
melt

::::
lakes

::::
are

::::::::
relatively

::::::
sparse,

:
it
::

is
::::::::

therefore
::::::
crucial

::
to
:::

to
:::::
obtain

:::
as

:::::
many

::::::::
ICESat-2

:::::
depth

:::::::
estimates

:::
as

:::::::
possible

::::
from

:::::::
different

::::::::
locations

:::
and

:::::
times

::::
(and

::::
thus

:::::
under

::
a

::::
wide

::::::
variety

::
of

::::::::::::
environmental

:::::::::
conditions)

:::
to

::
be

::::
able

::
to

:::::::::
effectively

:::
use

::::::::
ICESat-2

::
to

:::::::
improve

::::::::::
monitoring

::
of

:::::::::
meltwater

:::::::
volumes

:::::
across

:::
the

:::
ice

::::::
sheets.

:::::
This

:::::::
suggests

:
that large-scale70

extraction of
:::::::
accurate

:
supraglacial lake depths from

:
a
::::
wide

:::::
range

::
of

:
ICESat-2 photon-level data in combination with concurrent

optical satellite imagery would make it possible to use statistical learning methods to generate
::
can

:::::::
provide

::
a

::::::
labeled

:::::::
training

:::
data

:::
set

:::::::
enabling

:::
the

::::::::::
application

::
of

:::::::
machine

:::::::
learning

::::::::
methods

::::::::::::::::::
(e.g., Leeuwen, 2023)

::::::
capable

:::
of

::::::::
generating

:
a well-constrained

data-driven model for ice-sheet-wide lake volume estimation (Melling et al., 2024). Previous
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:::::
While

:::::::::
automated

:::
and

:::::::
scalable

:::::::::
algorithms

:::
for

::::
lake

::::::::
detection

::::
and

:::::
depth

:::::::
retrieval

::
in

::::::
ATL03

::::::
photon

::::
data

::::
have

:::::
been

::::::::
proposed75

:::::::::::::::::::::::::::::::::::::::
(e.g., Datta and Wouters, 2021; Xiao et al., 2023)

:
,
::
in

:::::::
practice

:::
no

::::::::
previous

:
ICESat-2 studies have been limited to applying

::::::
applied

::::::::::
supraglacial

::::
lake

:
depth estimation methods to

::::
more

::::
than

:
a handful of manually picked lakes

:::
lake

::::::::
segments

:
or data

granules, with no clear
:
or

:::::::::
presented

:
a
:::::::::::::
straightforward pathway to large-scale computational implementation across the ATL03

data catalog, which comprises hundreds of terabytes of unstructured point cloud data (Neumann et al., 2023b). To address

this challenge, we have created a
::::::
present

:
a
::::::::::

framework
:::
for

::::::::::::
ice-sheet-wide

::::::::::::::
implementation

::
of

:::
our

:::::
own fully automated and80

scalable algorithm for lake
:::::::::
along-track

::::
lake

:::::::
segment

:
detection and depth determination from ICESat-2 data. Here, we present

this algorithm, demonstrate its performance in both
:::::
apply

::
it

::
to

:::
two

:::::
entire

::::::::
drainage

::::::
basins

::
in Greenland and Antarctica , and

provide a framework for its large-scale implementation
:::::
(Sect.

:::
3.5,

::::
Fig.

::
2)

:
using distributed high-throughput computing. ,

::::
and

::::::::::
demonstrate

::
its

:::::::::::
performance

:::
for

:::
two

:::
full

::::
melt

::::::::
seasons.

2 Background85

2.1 How supraglacial lakes affect ice sheet mass loss

Supraglacial water has different roles in Greenland and Antarctic ice sheet mass loss processes, largely because of its different

spatial extent on each ice sheet. Across most of the Greenland Ice Sheet
:
’s

:::::::
ablation

::::
zone, meltwater pools in supraglacial lakes

that extend from the ice margins up to about 2000m on the plateau, and are forming further inland as temperatures increase

(Leeson et al., 2015; Tedstone and Machguth, 2022). On the Antarctic Ice Sheet, pooling of surface meltwater in lakes is90

not as pervasive and is mostly observed
::
on

:::
the

:::::::
floating

:::
ice

::::::
shelves

::::
and at low elevations near the grounding lines of the ice

shelves (Stokes et al., 2019)
:::
their

:::::::::
grounding

:::::
zones

:::::::::::::::::::::::::::::::
(Stokes et al., 2019; Corr et al., 2022), with large regional and interannual

variability (Arthur et al., 2022). Pooling and storage of meltwater in supraglacial lakes can affect ice sheet mass loss directly

or indirectly in four ways:

1. Surface runoff: Supraglacial lake drainage and transport of water off the ice sheet through surface streams or englacial95

pathways contributes to mass loss directly as surface runoff. This is already a significant component of the Greenland Ice

Sheet surface mass balance (The IMBIE Team, 2020), but has also been observed on the Antarctic Ice Sheet (Bell et al.,

2017; Warner et al., 2021; Trusel et al., 2022) and could become more significant in the
:
a
::::::::
warming

:
future (Kingslake

et al., 2017; Bell et al., 2017). Such runoff also results in surface elevation lowering, which further increases meltwater

production by exposing the ice sheet surface to the higher temperatures found at lower elevations (Levermann and100

Winkelmann, 2016; Bell et al., 2018).

2. Surface albedo lowering: Supraglacial lakes lower the surface albedo, which can further accelerate melting and result in

a temperature increase in the adjacent ice
::::::
column

:
(Tedesco et al., 2012; Ryan et al., 2017; Stokes et al., 2019).

3. Bedrock lubrication: On grounded ice, rapid drainage of surface lakes by hydrofracture delivers pulses of meltwa-

ter to the base of the ice sheet, which lubricates the bedrock and causes
:::
has

:::
the

::::::::
potential

::
to
::::::::

lubricate
:::

the
::::::::

bedrock105
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Figure 2. ICESat-2 ATL03 data over
::::
Study

::::::
regions

:::
for

:::::
testing

:::
the

::::::::::::
FLUID/SuRRF

:::::::::
framework. asupraglacial lake, showing a particularly

strong bathymetric signal
:
)
:::
and

::
b)

:::::
Maps

::
of

::
the

:::
two

::::::
regions

::::::
chosen

::
for

:::
this

:::::
study. (Data from ICESat-2 Track 406 on 20 July 2021; granule:

ATL03_20210720053125_04061205_006_01.h5. The imagery in
::::
black

:::::::
outlines

::::
show the left panel is a Sentinel-2 scene from

::::::::
boundaries

::
of

the same day: S2B_MSIL2A_20210720T151809_N0301_R068_T27XVG_20210720T175839.
:::::
regions

:::::
which

::::
were

::::::
obtained

::
by

::::::::::
thresholding

::
the

:::::::::::
corresponding

::
ice

::::
sheet

:::::::
drainage

:::::
basins

::
(c

:::
and

:
d)

::
by

::
the

::::::::
elevations

:::::
shown

::
in

::
the

:::::::
legends.

:::
The

::::
green

::::
lines

::::
show

:::::::
ICESat-2

:::::::
reference

::::::
ground

::::
track

:::::::
coverage.
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:::
and

:::::
cause

:
acceleration of ice flow due to enhanced basal sliding. This is a well-studied phenomenon in Greenland

(e.g., Das et al., 2008; Bartholomew et al., 2010; Tedesco et al., 2013; Maier et al., 2023) but has recently also been observed

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Das et al., 2008; Bartholomew et al., 2010; Tedesco et al., 2013; Davison et al., 2019; Maier et al., 2023)

:::
but

:::::
recent

::::::::::
observations

:::::::
suggest

:::
that

::::
this

::::::::::
mechanism

::
is

:::
also

:::::::
driving

:::
ice

::::
flow

::::::::
speed-ups

:
on the Antarctic Ice Sheet (Tuckett et al.,

2019), where it could become an increasingly important mechanism as future warming will cause its hydrology to be-110

come more similar to Greenland’s current ablation zone (Bell et al., 2018).

4. Ice shelf collapse: In Antarctica, the ponding and draining of supraglacial lakes can weaken and fracture the floating ice

shelves (Munneke et al., 2014; Banwell and Macayeal, 2015; Banwell et al., 2019; Lai et al., 2020), which, in extreme

cases, has been linked to their collapse by hydrofracture (MacAyeal et al., 2003; Scambos et al., 2004; Banwell et al.,

2013). The resulting loss of buttressing back-stresses leads to accelerated discharge of upstream grounded ice into the115

ocean, which causes sea level rise (De Angelis and Skvarca, 2003; Scambos et al., 2004; Rignot et al., 2004; Rott et al.,

2018). It has been hypothesized that these melt-driven hydrofracture processes could expose marine ice cliffs that are

sufficiently tall and weakened to be prone to mechanical failure, which would trigger buoyancy-driven calving and could

therefore lead to sustained, rapid ice sheet collapse, referred to as the Marine Ice Cliff Instability (MICI; Bassis and

Walker, 2012; Pollard et al., 2015; DeConto and Pollard, 2016; Bassis et al., 2021, 2024).120

Incorporating those processes through which surface meltwater ponding affects ice dynamics into ice sheet models can dras-

tically increase projected future sea level rise (Martin et al., 2019; Edwards et al., 2021), yet they currently rely on poorly

constrained parametrizations, making projections highly uncertain (Robel et al., 2019; Pattyn and Morlighem, 2020). This

means that there is an urgent need to improve our understanding of the key underlying physical processes based on accurate

observations (Hanna et al., 2024).125

2.2 Observations of supraglacial lake depths

In-situ
::
In

:::
situ observations of melt lake depths are scarce (e.g., Tedesco and Steiner, 2011) due to the challenging logistics

and planning required to collect such data. Supraglacial hydrological systems on ice sheets form seasonally in some of Earth’s

most remote and inaccessible locations, and they can rapidly evolve in complex and unpredictable patterns (Dirscherl et al.,

2020; Gantayat et al., 2023), making survey planning difficult. Therefore, to obtain ice-sheet-wide estimates
::::::::::
observations

:
of130

meltwater lake depths for each melt season, it is necessary to rely on satellite remote sensing techniques (Moussavi et al.,

2016; Melling et al., 2024). Besides ICESat-2’s novel capability to directly observe water depths from photon refraction,

various methods have been used to indirectly estimate lake depths from satellite data, which all have different advantages and

disadvantages.

One such method is to apply a radiative transfer equation (RTE, Philpot, 1987, 1989) to estimate lake depth from optical135

imagery (Sneed and Hamilton, 2007; Moussavi et al., 2020; Leeson et al., 2020). This approach has been widely used since

optical imagery provides continuous spatial coverage at short temporal intervals and because it is assumed that its physics-

based principles hold everywhere, which makes it possible to apply it at scale. However, the RTE approach relies on poorly

6



constrained choices of water attenuation coefficients and lakebed albedo, and makes simplifying assumptions such as: no

suspended particulate matter; a homogeneous lakebed albedo; no surface disturbances caused by wind; and the water column140

has vertically homogeneous optical properties (Brodskỳ et al., 2022). As a result, it has been found
:::::
shown that the RTE approach

can significantly over- or underestimate lake depths (Fricker et al., 2021; Melling et al., 2024)
::
in

:::::::
different

::::::::::::
environments:

:::
in

::::::::::::::::
Fricker et al. (2021)

:::
the

::::
RTE

:::::::
method

::::::::::::
underestimated

::::::
depths

:::
by

::
30

::
to

:::::
70%

::
on

::::::
Amery

:::
Ice

:::::
Shelf

::
in

::::
East

::::::::::
Antarctica,

:::::::
whereas

::
in

:::::::::::::::::
Melling et al. (2024)

:
it
::::::::::::
overestimated

::::::
depths

::
by

:::
up

::
to

:::::
153%

::
in

:::::::::
Southwest

:::::::::
Greenland.

Another approach to estimating lake depths is using empirical models derived from regression of in-situ
::
in

:::
situ depth mea-145

surements with optical imagery (Tedesco and Steiner, 2011; Legleiter et al., 2014; Pope et al., 2016)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Tedesco and Steiner, 2011; Legleiter et al., 2014; Pope et al., 2016)

. However, the
::
in

:::
situ

:::::::::::
measurements

::
of

::::::::::
supraglacial

::::
lake

::::::
depths

:::
are

::::
very

::::::
sparse,

::::
with

:::
(to

:::
the

::::
best

::
of

:::
our

:::::::::
knowledge

::::
and

::
at

:::
the

::::
time

::
of

:::::::
writing)

::
no

::::
such

::::
data

::::::::
available

::
for

::::::::::
Antarctica,

:::
and

::::
data

::::::::
available

::
for

::::
only

:::
ten

:::::
lakes

::
up

::
to

::::::
11.5m

:::::
deep

::
on

:::
the

:::::::::
Greenland

::
Ice

::::::
Sheet

:::::::
between

:::::
2005

:::
and

:::::
2024:

:::::::::::::::::
Box and Ski (2007)

:::::::
sampled

::::
two

::::
lakes

:::
on

::::::::::
Jakobshavn

:::::
Isbræ

::::
and

:::::::
Sermeq

:::::::::
Avannarleq

:::
in

:::::
2005,

:::::::::::::::::::::::
Sneed and Hamilton (2007)

::::::
sampled

::::
one

:::
lake

:::
on

:::::::
Helheim

::::::
Glacier

::
in

:::::
2008,

:::::::::::::::::::::::
Tedesco and Steiner (2011)

:::::::
sampled

:::
one

::::
lake150

::
in

::::::
Central

:::::
West

:::::::::
Greenland

::
in

:::::::::::::::::::
Legleiter et al. (2014)

::::::
sampled

:::::
three

::::::::::
supraglacial

:::::
water

::::::
bodies

:::
on

:::::::::
Isunnguata

:::::::
Sermia,

:::::::
Russell

::::::
Glacier

::
in

::::
2012

::::
and

:::::::::::::::
Lutz et al. (2024)

::::::
sampled

:::::
three

::::
lakes

:::
on

::::::::
Zachariæ

::::::
Isstrøm

::
in

:::::
2022.

::::
This

::::::
makes

:::
the

::::::::::
observations

::::::::
provided

::
by

:::::::::
Lutz et al.

::
the

:::::
only

::
in

:::
situ

:::::
depth

::::
data

::
of

::::::::::
supraglacial

:::::
lakes

:::
that

:::::::
overlap

::::
with

:::
the

::::::
Landsat

::
8
:::
and

:::::::::
Sentinel-2

::::::::
missions.

:::::::
Further,

:
it
:::
has

:::::
been

::::::
shown

:::
that

:::
the

::::::::::
relationship

::::::::
between

:::::
water

:::::
depth

:::
and

::::::::::
reflectance

:::::
values

::
in
:::::::

optical
:::::::
imagery

:::
can

::::
vary

:::::::::::
significantly

::
by

:::::::::::
geographical

:::::
region

:::::::::::::::
(Lutz et al., 2024)

:
.
:::::
Thus,

:::
the regression coefficients of these

::::::::
empirical models are limited to the spatial155

area of the original in-situ
::
in

:::
situ measurements, making them impractical for application on a larger, ice-sheet-wide scale.

A third approach is to use digital elevation models (DEMs) of a lake’s bed topography that were acquired before it filled

or after it drained, and then to determine its fill level from imagery (Moussavi et al., 2016; Yang et al., 2019b). While this

has the advantage of being independent of the optical properties of the water column, currently available DEM acquisitions

are sporadic and the method cannot account for changes in the lakebed topography between acquisitions, due to, for example,160

bottom ablation (Tedesco et al., 2012). Because this approach requires acquisitions from before a lake fills or after it drains,

it is not suitable for perennial lakes that freeze over and are buried in winter without draining (Koenig et al., 2015; Schröder

et al., 2020; Leppäranta et al., 2013), and it cannot be directly applied to lakes on floating ice shelves, where any filling and

draining events result in a hydrostatic adjustment that bends the ice surface (Scambos et al., 2009; Warner et al., 2021).

3 Data and methods165

We use individual photon data from the ICESat-2 instrument, provided in a data product known as Global Geolocated Photons

(ATL03; Sect. 3.1). Our method to extract water depths consists of two algorithms that are run consecutively on ATL03 data:

(1) Flat Lake and Underlying Ice Detection (FLUID, Sect. 3.2) automatically detects the locations of supraglacial lakes
::::::
visible

in the point cloud data; (2) Surface Removal and Robust Fit (SuRRF, Sect. 3.3) determines the along-track depth of
::
for

:
each

detected lake
:::::::
segment. To automatically compute results for large numbers of ATL03 data files over extensive geographical170

regions, we use the Open Science Grid’s (OSG) Open Science Pool for distributed High-Throughput Computing (Sect. 3.4;
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OSG, 2006; Pordes et al., 2007). Figure 3 summarizes the various steps of this method in a flowchart, and we describe each of

them in more detail below.

3.1 ICESat-2

ICESat-2 was launched in September 2018 and carries the Advanced Topographic Laser Altimeter System (ATLAS) instru-175

ment, a photon-counting green light (532nm) laser altimeter operating at a frequency of 10kHz, which results in a 0.7m

along-track resolution (Markus et al., 2017). ATLAS divides the laser pulse it emits into six beams, forming three beam pairs,

each of which consist of a weak and a strong beam. The footprint of each beam is about 11m in diameter on the ground

(Magruder et al., 2021a). The six resulting ground tracks (GTNXs) are referred to as GT1L, GT1R, GT2L, GT2R, GT3L and

GT3R, where the number N refers to the beam pair from left to right in direction of flight, and the X refers to the left (“L”) or180

right (“R”) track within each pair (Neumann et al., 2022). The three track pairs are separated 3.3km on the ground, and the two

tracks within a pair are separated by 90m each. The ICESat-2 spacecraft can fly in either forward or backward orientation, and

flips between the two approximately twice a year (Neumann et al., 2019; Smith et al., 2019). In forward orientation, ATLAS’s

strong beams – numbered 1, 3 and 5 – are on the right side of each beam pair in the direction of flight and point to GTs 3R,

2R and 1R, respectively. Similarly, after a yaw flip to the backward orientation, the strong beams are on the left side of each185

beam pair and point to GTs 1L, 2L and 3L. This means that the data acquired along a particular GTNX can be associated with

a strong or a weak beam, depending on the spacecraft orientation at the time of data acquisition. The ATLAS receiver uses

photomultiplier tubes (PMTs) designed to detect individual reflected photons, with 16 independent timing channels for each

strong beam and four for each weak beam (Yang et al., 2019a). The strong beams have four times more energy than the weak

beams, resulting in a correspondingly higher count of laser photons returned per shot.190

ICESat-2 repeats its orbit every 91 days, after completing 1,387 distinct reference ground tracks (RGTs). Over land ice,

ATLAS routinely points to these RGTs near its nadir to acquire repeat measurements (Magruder et al., 2021b). The satellite

began targeting the planned RGTs in late March 2019, once the on-orbit pointing calibrations were finalized and updated in

the onboard pointing control systems (Martino et al., 2019). Consequently, any observations during the 2018-19 Antarctic melt

season do not align with the planned repeat tracks. ICESat-2 was in “safe-hold” from 26 June through 9 July 2019, which195

means that no data was collected during this 14-day period coinciding with the 2019 Greenland melt season.

Over shallow (< 30m
::::::
< 41m) and non-turbid water bodies, ATLAS’s green light is able to pass through the water column,

which means that signal photons can be reflected from both the flat open-water surface and the lakebed (Fair et al., 2020;

Fricker et al., 2021). Most land ice applications use the ATL06 data product designed for glacier and ice sheet surfaces (Smith

et al., 2019). However, the ATL06 algorithm provides only one surface and thus cannot be used to extract meltwater depths.200

Also, over melt lakes ATL06 inconsistently tracks
:::::::
segments

::::::::::::
inconsistently

:::::
track either the water surface or the lakebed, so

the results are ambiguous (Fricker et al., 2021). To overcome this limitation and track both surfaces, our technique relies on

the elevations of individual photons, which are distributed in the Global Geolocated Photons (ATL03) data product (Neumann

et al., 2023b). To keep the size of each individual ATL03 data file (or “granule”) manageable, each RGT orbit of ICESat-2 data

is divided into 14 granule regions (Neumann et al., 2023a). This means that each granule is limited to approximately 30min205

8



Figure 3. Flowchart of the FLUID/SuRRF framework for detecting and determining the depths of supraglacial melt lakes in ICESat-2 data

for any melt season over any drainage basin of the Antarctic or Greenland ice sheets. All modules in the blue box can be parallelized for large

amounts of input data granules, as a batch of compute jobs on a
:::::::
computer

:::::
cluster

::
or

:
a
:
platform for distributed High-Throughput Computing,

such as the OSG Open Science Pool.
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of along-track data and rarely exceeds 10GB in size. ATL03 reports geolocated photon attributes such as longitude, latitude,

along-track distance and height for each individual photon detection event, thus providing an along-track point cloud of photon

locations. Geophysical corrections (such as geoid height) are reported at a 20m along-track segment rate, and parameters

related to on-board data processing (such as telemetry window ranges) are reported at the 50Hz (≈ 140m along-track) “major

frame” rate (Martino et al., 2022b). In an ATL03 point cloud, signal photons being reflected both from a lake’s water surface210

and its lakebed results in characteristic double returns, which are used by FLUID to detect
:::::::::
along-track

::::
data

::::::::
segments

:::::::::
containing

supraglacial lakes and by SuRRF to generate along-track lake depth estimates
::::
depth

::::::::
estimates

:::
for

:::::
those

::::
lake

::::::::
segments. While

the strong beam data have a higher signal to noise ratio, we have designed our FLUID/SuRRF method to work well with both

strong and weak beams whenever a bathymetric return from the lakebed is discernible
:
,
:::
i.e.

:::
for

::::
lakes

:::::
with

:
a
::::::
visible

::
or

::::::
partly

:::::
visible

:::::::
lakebed.215

3.2 Supraglacial lake detection in ATL03: the FLUID algorithm

The Flat Lake and Underlying Ice Detection (FLUID) algorithm takes an ATL03 granule as input, searches for locations that

contain potential supraglacial lakes with a bathymetric signal
:
, and then returns along-track segments of the data across those

lakes
::
for

:::
all

:::::::::
detections. FLUID exploits two unique characteristics of supraglacial lakes

:::
lake

::::::::
segments

:
in ATL03 data:

1. photons which are reflected back from an open water surface cluster around a flat line (Sect. 3.2.1, Fig. 4) and220

2. a bathymetric return signal must present as a secondary peak in photon density below such a flat surface (Sect. 3.2.4,

Fig. 7).

To search for supraglacial lakes
:::
lake

::::::::
segments

:
in ATL03, FLUID divides the photon data into 140m along-track segments

aligning with ICESat-2’s “major frames” and selects those that satisfy both of the above requirements. Then, adjacent major

frames are iteratively clustered into larger along-track data segments that likely represent
::
all

::::::::
available

::::::
ATL03

::::
data

::
for

:
an entire225

supraglacial lake each (Sect. 3.2.5).

3.2.1 FLUID step 1: identification of flat water surfaces

This step uses the fact that the surface slope of a stationary body of open water is close to zero in geopotential coordinates

(i.e. relative to the geoid
::::
using

::::::::::
orthometric

::::::
photon

::::::
heights), in contrast to the surrounding ice sheet or ice shelf which mostly

have slopes greater than 0.01° (Shen et al., 2022; Fan et al., 2022). This simple property enables a computationally inexpensive230

calculation (a “flatness check”) to be applied to geoid-corrected ATL03 height data to check for possible candidate lakes
::::
lake

:::::::
segments.

To perform this flatness check, we apply the ATL03-provided geoid correction to photon heights, and divide the data of each

of ICESat-2’s six ground tracks into approximately 140m along-track segments aligning with ICESat-2’s major frames. For

each major frame, we bin photon elevations in 0.01m intervals and smooth the resulting histogram using a gaussian filter with235

a standard deviation of 0.05m, then normalize it by dividing by its largest value. If the smoothed histogram has a single peak,

we record the elevation of this peak hpeak as the surface elevation at which a flat surface reflector would be located. In the
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case of a melt lake
:::::::
segment

:
with a bathymetric return signal, it is possible that the return from the lakebed is stronger than the

surface return. Therefore, if the smoothed histogram has multiple peaks with prominence > 0.1, we choose hpeak from the two

most prominent peaks, and set it to the elevation of the one located at a higher elevation.240

The flatness check is based on ratios between photon densities di that we calculate for various elevation bands around hpeak

(Appendix A). As illustrated in the lower panels of Fig. 4, d0 is the photon density within an elevation band of ±wpeak = 0.1m

around the photon density peak. If a major frame contains the flat surface of a lake, then most of the surface signal photons

should be contained in this “lake surface elevation band”, making d0 significantly larger than the photon density in surrounding

elevation bands (see Fig. 4, panel b). d1 and d2 are the photon densities within elevation bands of width wbuffer = 0.35m just245

below and above the lake surface elevation band, respectively. Due to multiple scattering in the water column of a lake, we

expect that over supraglacial lakes
:::
lake

::::::::
segments

:
the photon density just below the surface (d1) can take on larger values than

the photon density just above the surface (d2). d3 is the photon density within the entire telemetry window except for the lake

surface elevation band, and d4 is the photon density between the top of the lake surface elevation band and the top of the

telemetry window. Over a lake
:::::::
segment, most of the telemetry window outside the lake surface elevation band contains only250

background noise photons, so we expect that the photon densities d3 and d4 need to be significantly smaller than the surface

photon density (d0) if the major frame contains a flat lake surface. Since d3 can still contain photons below the lake surface

due to multiple scattering and a bathymetric signal, we expect that over supraglacial lakes
::::
lake

::::::::
segments d3 can take on larger

values than d4. Based on these assumptions, and empirical observations of the relative photon densities in the above-described

elevation bands in a variety of ATL03 granules over melt lakes and their surroundings
:::::
using

:
a
::::::::::::
trial-and-error

::::::::
approach, we255

defined the following thresholds on the density ratios that need to hold for a major frame to pass the flatness check: d0/d1 ≥ 2,

d0/d2 ≥ 5, d0/d3 ≥ 10 and d0/d4 ≥ 100.
:::
As

:::
part

::
of

::::
this

:::::::::::
trial-and-error

:::::::::
approach,

::
we

::::::::
manually

:::::::
assessed

:::
the

::::::
effects

::
of

::::::::
tweaking

::
the

::::::
above

:::::::::
thresholds

::
on

::
a
:::::::
number

::
of

::::::::::
hand-picked

::::::::
granules,

::::::
which

:::
we

::::::
judged

::
to

:::
be

:::::
likely

::::::::::::
representative

::
of

:::::::
various

:::::::
possible

:::::::::::
environments,

:::
to

:::::
ensure

::::::::
adequate

:::::::::::
performance

::::
(i.e.

:::::::
granules

:::::::
without

::::::
surface

:::::
melt

:::
vs.

::::::::
pervasive

::::::
surface

:::::
melt,

:::::::
granules

:::::
with

::::::
smooth

:::
vs.

:::::
rough

::::::::::
background

::::::::::
topography,

:::::::
granules

:::::::::
containing

:::::::::
ice-covered

::::
and

:::::::
partially

::::::::::
ice-covered

:::::
lakes,

:::::::
granules

:::::::::
containing260

::::
slush

:::::
areas,

::::::::
granules

:::::::::
containing

:::::::
exposed

::::::::
bedrock,

:::::::
partially

::::::
cloudy

::::::::
granules,

:::::
weak

:::
vs.

::::::
strong

:::::
beam

::::
data,

::::::
night-

:::
vs.

:::::::
daytime

::::::::::
acquisitions,

:::::
etc.).

:
Panels a and b of Fig. 4 illustrate the outcome of the flatness check for all the major frames within a

short along-track segment of ATL03 data that contains
:::::
crosses

:
a partially ice-covered supraglacial lake. Panels b and c show

examples of major frames that pass the flatness check and fail the flatness check, respectively, and illustrate the elevation bands

that were used to calculate photon density ratios.265

::::
Since

:::::::
FLUID

:::::::
assesses

:::
the

:::::::
flatness

::
of

:::
the

::::::
surface

:::
of

:::
full

:::::
major

:::::::
frames

:::
that

:::::
cover

:::
an

:::::::::
along-track

::::::::
distance

::
of

::::::::
∼ 140m,

::::
lake

:::::::
segments

:::::
with

::::::
shorter

::::::::::
open-water

:::::::
surfaces

:::
are

:::
not

::::::::::
guaranteed

::
to

:::
be

:::::::
detected

:::
by

:::::::
FLUID.

:::::::::
However,

::::
lake

::::::::
segments

::::
that

:::
are

::::::::::
significantly

::::::
shorter

::::
than

:::::
140m

:::
are

::::::::
regularly

:::::::
detected

:::
by

::::::
FLUID

::
in
::::::::
practice.

::::
This

::
is

:::::::
because

:::
the

:::::
return

:::::
signal

:::::
from

:::
flat

:::::
water

:::::::
surfaces

:
is
::::::::
typically

:::::
much

:::::::
stronger

::::
than

:::
the

:::::
return

:::::
signal

:::::
from

:::
the

::::::::::
surrounding

:::
ice

:::::::
surfaces,

::::::
which

:::::
makes

:::::
even

::::
very

:::::
short,

:::
flat

::::
water

:::::::
surfaces

::::::::
dominate

:::
the

::::::
overall

::::::::::
distribution

::
of

::::::
photon

::::::::
elevations

::::::
within

:
a
:::::
major

::::::
frame. The presence of a flat surface within270

a major frame is a necessary condition for detecting supraglacial bathymetry data, but it is not sufficient. There are many types

of surfaces that would pass the flatness test but are not supraglacial lakes
:::
lake

::::::::
segments with a bathymetric signal. This includes
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Figure 4. FLUID “flatness check” applied to every ATL03 major frame for identifying potential supraglacial lakes
:::
lake

:::::::
segments. a) Ground

track of an along-track segment of ATL03 data over the Greenland Ice Sheet, with
::::::
crossing

:
a partially ice-covered supraglacial lake; b)

Corresponding along-track photon elevations, with major frame boundaries marked by vertical black lines and flatness check outcomes

shown in hatching; c) and d) Photon density ratios for a passing and a failing segment, respectively. (Data from ICESat-2 Track 216 GT1L

on 12 July 2019 and centered at 68.9370° N, 47.9657° W; granule: ATL03_20190712052659_02160403_006_02.h5, imagery: Sentinel-2 on

13 July 2019)

areas of slush, frozen-over supraglacial lakes covered in ice and snow, any areas of sea ice, ocean water or ice-marginal lakes

erroneously included in the ice mask used for subsetting data, and other short along-track sections over firn or glacial ice that

happen to be extremely flat by chance. For example, a lake may have partial ice cover, which prevents ICESat-2 from obtaining275

a bathymetric return (Fig. 4). However, since the ice cover here appears to be thin and flat, the corresponding major frames

still pass the flatness check despite the absence of any useful bathymetry data in those segments. This means that the flatness

check presented in this chapter serves as a preliminary screening method, helping to efficiently narrow down the number of

along-track segments that could potentially contain useful supraglacial bathymetry data. This process makes it computationally

feasible to determine whether a bathymetric signal is actually present by performing more complex operations on only the data280

that remain after checking for a sufficiently flat surface. The following sections describe these methods, which are at first only

applied to those major frames that passed the initial flatness check.
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3.2.2 FLUID step 2: removal of afterpulses

The second step removes artefacts in the ATL03 photon data known as "afterpulses", which appear as additional lines below

and parallel to the primary surface return, due to the specifics of the ATLAS sensor (Luthke, 2023; Lu et al., 2021; Martino285

et al., 2022a). Afterpulses only become noticeable when the sensor is nearly or fully saturated, which means they often ap-

pear in ATL03 data over supraglacial lakes because smooth open water surfaces
:::
(i.e.

:::
the

:::::::
surface

::
of

:::::::::
stationary

:::::
water

::::::
bodies

:::
that

:::
are

::::
not

:::::::
affected

:::
by

:::::
wind)

:
can result in specular reflection.

::::
This

:::::::
suggests

::::
that

:::
the

::::::::
presence

:::
of

::::
wind

:::::::
ripples

::::::::
increases

::
the

:::::::::
likelihood

::
of

::::::::
detecting

::
a
::::
lake

:::::::
segment

::::
with

:
a
:::::
clear

::::::::::
bathymetric

:::::
signal

::
in
:::::::
ATL03

::::
data

::
by

:::::::::
preventing

::::::
sensor

::::::::
saturation

::::
and

::::::::::
afterpulsing

:::::::::::::::::::::::::::::
(Lu et al., 2019; Tilling et al., 2020)

:::
and

::::
also

:::::::
explains

::::
why

::
we

:::::::
observe

::::::::::
afterpulsing

::::
more

:::::::::
frequently

::::
near

:::
the

:::::
(more290

::::::::::::
wind-shielded)

:::::::
margins

::
of

::::
melt

:::::
lakes

::::
than

::::
over

:::::
their

:::::
(more

:::::::::::::
wind-exposed)

::::::
interior.

:
Figure 5 (panels d-h) shows an example

of
::
an

:
ATL03 data

::::::
segment

:
over a supraglacial lake in which these afterpulses are clearly visible below the flat water surface.

There are three different mechanisms that can cause afterpulses:

1. Dead-time afterpulses appear in saturated pulses due to the ATLAS receiver channels only being able to register one

photon event roughly every 3ns. If the return signal is strong enough that all receiver channels register photon events295

during a time span shorter than this "dead-time", ATLAS cannot register any photons until the receiver channels have

recovered. This means that for saturated pulses, afterpulses can appear in intervals of about 3ns of photon flight time,

equivalent to ∼ 0.45m of elevation (Lu et al., 2021).

2. Internal reflection afterpulses are found in ATL03 data around 2.36m, 4.27m and 6.59m below the surface return

(Martino et al., 2022a). These are due to optical reflections internal to the ATLAS receiver.300

3. PMT ionization afterpulses appear as a broad peak ∼ 12–40m below the surface when pulses are strongly saturated and

cause ionization of the Photomultiplier Tubes (PMTs), which triggers false photon detection events.

Since all of these afterpulses present as secondary peaks in photon density below the primary surface return, they can be

mistaken for or obscure any real bathymetric signal returns. Therefore, they need to be removed before determining whether a

bathymetric signal is present in the data. ATL03 provides the parameter quality_ph that is designed to allow users to filter305

out afterpulses. However, this parameter does not remove most dead-time afterpulses and naively removes all data more than

2m below the surface for saturated returns (Neumann et al., 2022). This means that using the ATL03-provided quality_ph

flag is not appropriate when searching for sub-surface return signals in saturated pulses, as it would fail to remove dead-time

afterpulses that could be misidentified as bathymetric signals and could remove actual bathymetric signals at depths greater

than 2m (Fig. 5 panel e). Therefore, we developed an improved afterpulse removal routine that is tailored to bathymetric310

applications.

Afterpulse removal: We first estimate the saturation level of each pulse, based on the sensor dead-time tdead which is

provided for each beam in the ATL03 data product. Let nch be the number of receiver channels, i.e. nch = 4 for weak beams

and nch = 16 for strong beams. If the total number of photons in a pulse nph ≥ nch we can calculate the minimum vertical

distance spanned by any nch photons, and denote it by ∆h. We then estimate the sensor saturation ratio as rsat = tdeadc/(2∆h)315
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Figure 5. FLUID afterpulse removal. (a) to (c): Histogram of photon elevations in saturated pulses over
:::
from

::::::::
ICESat-2 melt lakes

:::
lake

:::::::
segments, relative to the elevation at which saturation occurred. The secondary peaks that appear below the saturated surface return are

afterpulses that are caused by (a) dead-time of the ATLAS sensor; (b) internal reflections in the instrument; and (c) PMT ionization. Note

that (a), (b) and (c) have different vertical scales. d) to h): Implementation of FLUID’s afterpulse removal for a short along-track segment

of ATL03 data that contains
::::::
crosses a supraglacial lake,

:
with sections of highly saturated (specular) pulses. Known locations of ATLAS

afterpulses (a) to (c) are used to remove likely afterpulse photons. (Data from ICESat-2 Track 1222 GT2L on 17 June 2019 and centered at

69.0189° N, 49.0444° W; granule: ATL03_20190617064249_12220303_006_02.h5)

if nph ≥ nch and zero otherwise
:
,
:::::
where

::
c
::
is

:::
the

:::::
speed

::
of

::::
light

::
in

::
a
:::::::
vacuum. This means that for saturated pulses (rsat ≥ 1), all

receiver channels registered a photon within a time frame of tdead/rsat. For all saturated pulses, we calculate the elevation of

the saturated return, hsat as the mean elevation of the nch photons that span ∆h.
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To determine the typical locations of afterpulses relative to hsat in saturated pulses, we compiled a data set of saturated pulses

over melt lakes
::::
from

::::
melt

::::
lake

::::::::
segments using an earlier version of FLUID (Arndt and Fricker, 2022), that

:::::
which did not include320

afterpulse removal. For each saturated pulse, we subtracted hsat from the photon elevations and created a histogram of photon

counts weighted by rsat (Fig. 5, panels a-c). The strong peaks in this histogram correspond to the elevations at which afterpulses

occur relative to the surface. We found that dead-time afterpulses occurred at four depths: AP (dead)
1 = 0.55m, AP (dead)

2 =

0.92m, AP (dead)
3 = 1.50m and AP (dead)

4 = 1.85m. Only the first two of the internal reflection afterpulses were strong enough

to significantly contaminate bathymetric data in saturated or near-saturated pulses, at AP (ir)
1 = 2.46m and AP (ir)

2 = 4.25m325

below the surface. While the third internal reflection afterpulse is also visible at AP (ir)
3 = 6.52m, it appears that this afterpulse

is not typically strong enough to be confused for a bathymetric return signal. The broad peak associated with PMT ionization

around AP (ion) ≈ 29± 15m only became noticeable at the typical length scales of melt lakes
:::::::
ICESat-2

:::::
melt

::::
lake

::::::::
segments

when rsat > 3.5. For such strongly saturated pulses, we simply discarded any photons > 12m below the surface.

With the locations of the main afterpulses known, we can use a simple empirical method to remove afterpulses from ATL03330

data for all major frames that passed the flatness check and for which at least 100 photons are attributed to saturated pulses.

For each major frame, we follow the above weighted histogramming procedure and examine the heights of the seven most

prominent peaks; if any of these peaks align with the relative elevations of the known afterpulses, we consider it evidence

for likely afterpulsing and remove any photons that belong to saturated pulses in that elevation band (Fig. 5, panel h).
:::::
Since

:::
this

::::::::
procedure

::::::::
removes

:::::::
photons

::
in

::::::::
saturated

:::::
pulses

:::::
only,

::::
true

::::::::::
bathymetric

::::::
signals

:::
that

:::::::
overlap

::::
with

:::
the

::::::::
elevation

::
of

::
a
::::::
known335

::::::::
afterpulse

:::
are

:::
still

:::::::
retained

::
as

::::
long

::
as

::::
they

::::::
appear

::
in

:::
any

::::::::::
unsaturated

::::::
pulses.

::::::::
However,

:
if
:::
all

:::::
pulses

::::::
within

::
an

::::::::::
along-track

::::::
section

::
of

:::
the

:::
data

:::
are

::::::::
saturated,

::::
any

:::
true

::::::::::
bathymetric

::::::
signals

::::
from

::
a
:::
flat

::::::
lakebed

::
at
:::
the

::::::::
elevation

::
of

:
a
::::::
known

::::::::
afterpulse

::::
will

::
be

::::::::
removed

::::
from

:::
the

::::
data

::::::
because

::::
they

:::
are

:::::::::
practically

::::::::::::::
indistinguishable

:::::
from

:::
the

:::::::::
afterpulses

:::
that

:::
we

::::::
expect

::
to

:::
see

::
in

:::
the

:::::
point

:::::
cloud

:::::
under

::::
such

:::::
highly

::::::::
saturated

:::::::::
conditions.

:

While more sophisticated approaches for afterpulse removal are certainly possible, we found that in practice our purely340

empirical approach strikes a good balance between effectively removing enough afterpulse photons to prevent bathymetric

surface fitting methods from considering afterpulses a signal, while also retaining enough photons to prevent removal of actual

signal returns whenever it is possible to discern the two.

3.2.3 FLUID step 3: photon signal confidence estimation

Once flat “candidate” segments have been identified and afterpulses have been removed, the next step is to assign a signal345

confidence score to the remaining photons. ATL03 contains many noise photons from various sources, such as solar background

noise, atmospheric backscatter, and multiple scattering in translucent media (Neumann et al., 2019; Yang et al., 2023). Release

006 of the ATL03 data product provides two measures that can help discriminate between signal and noise photons. Over the

ice sheets, the signal_conf_ph parameter gives an estimate of how likely it is that a photon is part of the land ice surface

signal, based on slant histogramming (Neumann et al., 2019). This parameter, however, does not consider the possibility of350

two distinct reflective surfaces that are both signal, and therefore often labels lakebed return photons over supraglacial lakes

as noise (Fig. 6, panel a). Since release 006, ATL03 also includes the weight_ph parameter, which provides a local metric

15



Figure 6. A comparison between existing photons
:::::
ATL03

::::::
photon

:
signal confidence estimates and our method for melt lakes

:::
lake

:::::::
segments

:
in FLUID. (Data from ICESat-2 Track 81 GT2L on 2 January 2019 and centered at 72.8859° S, 67.3082° E; granule:

ATL03_20190102184312_00810210_006_02.h5)

for relative photon density based on the Yet Another Photon Classifier method (YAPC; Neumann et al., 2022; Sutterley and

Gibbons., 2021). For each target photon, the YAPC weight calculation is based on a rectangular window ±3m in elevation

around the photon location. This can result in sharp photon weight discontinuities 3m above and below highly reflective flat355

surfaces, which are inconsistent with relative local photon density (Fig. 6, panel b). Due to these drawbacks of the ATL03-

provided parameters, we developed a new density-based method for photon signal confidence estimation that is more accurate

over melt lakes
::
for

:::::::::
ICESat-2

::::
melt

::::
lake

::::::::
segments

:
(Fig. 6, panel c). This method is based on the inverse euclidean distances

between a photon and its k-nearest neighbors within a search radius that depends on the background noise rate (Appendix B).

In FLUID, we implement this photon signal probability estimation using a KD-tree approach for querying nearest neighbors360

of photons, applied to individual major frames. To calculate photon densities within a major frame, we consider additional

photons within a sufficiently wide buffer in along-track distance to avoid penalizing photons that are near the major frame

margins by not taking into account all their nearest neighbors. Panel c) of Fig. 6 shows the resulting density-based photon

signal probabilities for a supraglacial melt lake
:::::::
segment on Amery Ice Shelf.

3.2.4 FLUID step 4: secondary bathymetry peak detection365

To determine which major frames amongst the ones that pass the flatness check are likely to provide useful bathymetry data,

FLUID checks for secondary peaks in photon density below the flat surface return. To do so, we divide each major frame into 10

along-track sub-segments of equal length (i.e. about 14m per sub-segment). For each sub-segment we use the FLUID photon-

level signal probabilities to calculate photon signal confidence as an empirical smooth function of elevation. To determine

whether a potential bathymetric signal is present below the lake surface, we determine the elevation of the most prominent370

below-surface peak in this function for every sub-segment. Based on the along-track locations, elevations and prominences

of all peaks that were identified in a given major frame, we define four quality heuristics qi for different components that we

found to affect the overall quality of the bathymetric return (Appendix C). The qi all take on values between zero and one,

with higher values implying a “better” bathymetric signal. We designed the expressions for the quality heuristics such that q1
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penalizes major frames with smaller numbers of detected subsurface peaks, q2 penalizes major frames with less prominent375

peaks, q3 penalizes major frames with a very large overall spread of peak elevations, and q4 penalizes major frames with peak

elevations that do not align along a smooth surface. We then define the overall bathymetric quality summary qs of a major

frame as the product of the four qi. We consider the secondary bathymetric peak in photon density strong and coherent enough

to pass the bathymetric signal check for any major frames with qs ≥ 0.1.

We illustrate this procedure for an along-track segment over Central West Greenland that contains
::::::
crosses

:
a supraglacial380

lake with a bathymetric return signal that varies in strength along the ground track (Fig. 7). In this example, most of the major

frames that belong to
:::::
cover the supraglacial lake

:
’s

::::::
interior

:
pass the bathymetric signal check, with bathymetric photon density

peaks smoothly tracing the apparent lakebed. However, two of the major frames within the lake
:
’s
:::::::
interior do not have a strong-

enough signal of photons reflected from the lakebed to be passing the bathymetric signal check during this step, in which

FLUID initially considers each major frame in isolation.
::::
These

::::
two

:::::
major

::::::
frames

::::::
visibly

:::::::
overlap

::::
with

:::
the

:::::::
location

::
of
::

a
::::
thin385

:::::
partial

:::
ice

:::::
cover

::::
near

:::
the

:::::
lake’s

::::::::
northern

::::
shore

:::::
(Fig.

::
7,

:::::
panel

:::
a),

:::::
which

:::::::
explains

::::
why

:::::
some

::
of

:::
the

:::::::
lakebed

::
is

::::::::
occluded.

::::::
While

::::
such

:::::
areas,

:::::
where

::::
part

::
of

:::
the

:::::::
lakebed

::
is

::::::::
occluded,

::::
may

:::
not

::::
pass

:::
the

::::::::::
bathymetry

::::::
check,

::::
they

:::
are

::::
later

:::::::
included

::
in

:::
the

::::
data

::::
that

::::
make

:::
up

:
a
:::
full

::::::::
ICESat-2

::::
lake

::::::::
segment,

::
as

::::::::
explained

::
in

:::
the

::::
next

:::::::
section.

3.2.5 FLUID step 5: along-track aggregation of lake segments

Given the collection of major frames that individually pass the bathymetric signal check along a ground track, FLUID ag-390

gregates major frames into clustersthat likely represent
:
,
::::
each

::
of
::::::

which
:::::
likely

:::::::::
represents

:
a transect of an entire supraglacial

lakeeach. To achieve this, we use an agglomerative clustering scheme based on two simple assumptions: (i) the water surface

elevation within a single lake
:::::::
ICESat-2

::::
lake

:::::::
segment

:
should be nearly constant along the ground track, and (ii) the along-track

extent of supraglacial lakes does not exceed a few kilometers
:
a
::::::
ground

::::
track

:::::
rarely

::::::
crosses

:::
the

:::::
same

:::
lake

::
in
::::
two

::::::
distinct

::::::::
locations

:::
that

:::
are

::::::::
separated

:::
by

:::::
more

::::
than

:::::
about

::::::
1.5km. At the start of the clustering process, each major frame that passed the initial395

bathymetric return check is considered a singleton cluster with a water surface elevation hsurf equal to the single major frame’s

surface photon density peak hpeak, and major frame start and end IDs mstart =mend that are both equal to the single major

frame’s ID. This means that a cluster can be expressed as

C(i) =
{
h
(i)
surf, m

(i)
start, m

(i)
end

}
(1)

where the index i ∈ 1,2, . . . ,nclusters is assigned to the ith cluster when sorting all nclusters clusters by their respective values of400

mstart. Since major frame IDs are numbers that strictly increase with along-track distance, this means that m(i)
end <m

(i+1)
start for

all clusters. Now, clusters that are adjacent to each other in along-track coordinates are compared in a pairwise fashion. For all

uneven numbers i < nclusters − 1, if
:::::::::
i < nclusters,::

if
:∣∣∣h(i)

surf −h
(i+1)
surf

∣∣∣≤∆hmax = 0.1m (2)

and405

h
(i)
surf −hsurfmstart

::::

(i+1)−m
(i)
end

:::::
≤∆mmax = 10.10,

::
(3)
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Figure 7. FLUID’s bathymetric signal check run on every ATL03 major frame that has passed the flatness check. a) Ground track for

an along-track segment of ATL03 data over the GrIS, which contains
:::::
crosses

:
a supraglacial lake that has a thin partial ice cover near its

northern shore. b) Corresponding along-track photon elevations, and locations of detected bathymetric photon density peaks. The vertical

black lines are the major frame boundaries, and hatching indicates whether major frames passed the bathymetric signal check or not. c)

and d) Bathymetric peak-finding procedure from photon density and associated values of the bathymetric return quality heuristics defined

:::::::
described in the text

::
and

::::::
defined

::
in

::::::::
Appendix

:
C, for a passing and a failing major frame, respectively. (Data from ICESat-2 Track 277 GT3R

on 16 July 2019 and centered at 68.9062° N, 48.5689° W; granule: ATL03_20190716051841_02770403_006_02.h5, imagery: Sentinel-2 on

16 July 2019)

clusters C(i) and C(i+1) are merged into a new cluster

C(i′) =
{(

h
(i)
surf +h

(i+1)
surf

)
/2, m

(i)
start, m

(i+1)
end

}
. (4)

If this does
:::::::
Equation

::
2

:::::
states

:::
that

:::::::::::
neighboring

::::::
clusters

:::
are

:::::
only

::::::
merged

::
if

::::
their

:::::::::
respective

::::
lake

::::::
surface

:::::::::
elevations

:::
are

::::::
within

::::
0.1m

:::
of

::::
each

::::::
other,

:::
and

::::
Eq.

:
3
::::::

states
:::
that

:::::::::::
neighboring

::::::
clusters

::::
are

::::::
further

::::
only

:::::::
merged

::
if

::::
they

:::
are

::::::::
separated

:::
by

:::
ten

::::::
major410

:::::
frames

::::
that

:::
did

:::
not

::::
pass

:::
the

::::::::::
bathymetry

::::::
check,

::
or

::::
less

:::::
(about

::::::::
1.5km).

::::
This

:::::
means

::::
that

::
if

::::::
FLUID

:::::::::
encounters

::::
the

:::::::
unlikely

:::
but

:::::::
possible

:::::::
scenario

::
in

:::::
which

::
a
::::::
ground

:::::
track

::::::
crosses

::::
two

::::
arms

::
of

:::
the

:::::
same

:::::
lake,

:::::
which

:::
are

::::::::
separated

::
in

::::::::::
along-track

:::::::
distance

:::
by

::::
more

::::
than

:::
10

:::::
major

::::::
frames,

::::
then

:::::
these

:::
two

::::::::
crossings

:::
are

:::::::::
considered

::
to

:::
be

:::::::
separate

::::
lake

:::::::
segments

::::
and

:::::::
returned

::
as

::::
two

:::::::
separate
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:::
files

::
in
::::

the
:::::
output

::::
data

:::::
rather

:::::
than

:::::
being

::::::
merged

:::::::
together

::::
into

:::
one

::::
lake

::::::::
segment.

::
If

:::::
these

:::
two

:::::::::
conditions

:::
do

:
not result in any

two clusters being merged, then the same pairwise comparison is carried out for all even numbers i < nclusters − 1
::::::::
i < nclusters.415

After an iteration of merging clusters, the indices of the remaining n′
clusters clusters are re-set to 1,2, . . . ,n′

clusters, and the same

procedure is repeated until no more clusters can be merged based on the conditions above.

The resulting final clustering is now considered the set of supraglacial lakes
::::::::
ICESat-2

::::::::::
supraglacial

::::
lake

::::::::
segments that have

been found on each ground track. Note that for simplicity we here consider an “ICESat-2 lake” to be just an along-track

segment of a single ICESat-2 ground track which contains data over a melt
:::
use

:::
the

::::
term

:::::::::
“ICESat-2

::::
lake

::::::::
segment”

:::
(or

::::::
simply420

::::
“lake

:::::::::
segment”)

:::
to

::::
refer

::
to

::::
any

::::::::::::::::
single-ground-track

::::::::
segment

::
of

::::::
ATL03

::::
data

::::
with

::::::
visible

::::::::::
bathymetry

:::::
from

:::
one

:::::::::::
supraglacial

lake. If multiple ICESat-2 ground tracks contain data over the same body of surface water
::::
from

:::
the

::::
same

::::::::::
supraglacial

::::
lake, the

distinct ground track segments are still considered different “ICESat-2 lakes
::::
lake

::::::::
segments” for the purpose of this algorithm.

For example, the two ATL03 profiles acquired by the two neighboring ground tracks of the center beam pair shown in Fig

1 would be considered two distinct “ICESat-2 lakes” here
::::
lake

:::::::::
segments” despite ICESat-2 having acquired their underlying425

data during the same overpass over the same body of water.
:::
and

::::
from

:::
the

:::::
same

::::::::::
supraglacial

::::
lake.

:::::
Since

:::::::
multiple

::::::::
ICESat-2

::::
lake

:::::::
segments

::::
can

::
be

:::::::::
associated

::::
with

::
the

:::::
same

::::::::::
supraglacial

::::
lake,

:::
the

::::
total

:::::::
number

::
of

::::::
unique

::::::::::
supraglacial

::::
lakes

:::::::
sampled

:::
by

::::::::
ICESat-2

:
is
:::::::
smaller

::::
than

:::
the

::::
total

::::::
number

::
of

:::::::::::
supraglacial

:::
lake

::::::::
segments

:::::::
reported

:::
by

:::::::::::::
FLUID-SuRRF

:::::
(Sect.

::::
4.1,

::::
Table

:::
1).

:

Since every lake
:::::::
segment that was detected this way is characterized by an along-track range of major frame IDs [mstart,mend]:::::::::::

[mstart, mend],

FLUID extends these ranges outwards to make sure that no
:::::::::
bathymetry

:
data were missed near the edges of any lake

::::::
segment.430

To do so, each lake
:::::::
segment’s range is extended to include any major frames for which |hpeak −hsurf|< 0.2m as long as such

major frames exist within three major frames of the lake
::::::
segment’s range. At the end of this process we add another four

major frames as a buffer, two to each side of the lake
::::::
segment. Since this expansion of the along-track ranges of the lakes

can create lakes
::::
lake

::::::::
segments

:::
can

::::::
create

:::
lake

::::::::
segments

:
that overlap, the set of buffered lakes

:::
lake

::::::::
segments

:
is corrected by

separating partially overlapping lakes
:::
lake

::::::::
segments

:
at the midpoint of their along-track overlap and removing any lakes that435

fully overlap with another lake
::::
lake

::::::::
segments

:::
that

:::
are

::::
fully

:::::::::
contained

:::::
within

:::::::
another

::::
lake

:::::::
segment. We apply FLUID steps 2,

3 and 4 (afterpulse removal, signal confidence estimation and bathymetric return check) to all major frames in the buffer (i.e.

now included in the along-track range of a lake
:::::::
segment but had not initially passed the flatness check). The resulting final set

of lakes
:::
lake

::::::::
segments across all ground tracks in the input granule is the output of FLUID.

3.3 Supraglacial lake depth determination: the SuRRF algorithm440

To estimate the along-track depth of
:::
for each detected lake

:::::::
segment, we developed the Surface Removal and Robust Fit

(SuRRF) algorithm, updated from Fricker et al. (2021). The central idea of SuRRF is to use a robust fitting procedure (Sect.

3.3.1) to first fit a smooth line to all photons returned from the lake surface and the surrounding topography (Sect. 3.3.2), then

remove all photons that are part of the water surface and fit another smooth line to the remaining photons to determine the

location of the lakebed (Sect. 3.3.3). The along-track water depth estimate is the elevation difference between the fits to the445

water surface and the lakebed, corrected for the refractive index for the speed of light in water (Sect. ??
::::
3.3.5). In Fig. 8, we
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Figure 8. SuRRF algorithm for determining supraglacial lake depth from an along-track segment of ATL03 data that was de-

tected by FLUID. (Data from ICESat-2 Track 277 GT2L on 13 July 2020 and centered at 68.1923° N, 48.5134° W; granule:

ATL03_20200713115804_02770803_006_01.h5

illustrate the main steps of SuRRF using an example of an ATL03 along track segment that
::::
data,

:::::
which

:
was determined to be

a supraglacial lake
:::::::
segment by FLUID. We summarize the main steps of SuRRF in the following sections.

3.3.1 SuRRF Robust Fit

In SuRRF steps 1 and 2 (Sect. 3.3.2 and 3.3.3), we use a tailored robust nonparametric regression method to locate the lake450

surface and lakebed. The SuRRF Robust Fit is based on Locally Weighted Regression and Smoothing Scatterplots (LOWESS,

Cleveland, 1979), which is applied to the data iteratively, while removing outliers during each iteration to converge to an

along-track fit that smoothly tracks the elevation of highest photon density. For each evaluation location xfit in along-track

coordinates, we fit a locally weighted nth-degree polynomial regression to the photons that are at a distance of at most xmax

in along-track coordinates. The value of xmax is the minimum distance from xfit within which there are nph photons i with a455

nonzero FLUID-derived signal confidence pi, or a minimum along-track fitting window length of xmin, whichever is larger.

To achieve smooth local weighting, the along-track weight of a photon i at location xi is calculated using the tri-cube weight

function w(x)
i =

(
1− |(xi −xfit)/xmax|3

)3

. If the method is provided with an initial guess for the first iteration, we calculate the

residuals ei as the difference between each photon’s elevation and the linear interpolation of the initial guess elevations to each

photon’s along-track location. In this case, we consider only photons whose absolute residuals are at most hmax, and calculate460
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their residual-based weights as w(h)
i =

(
1− (|ei|/hmax)

3
)3

. In absence of an initial guess, we set w(h)
i = 1 for all photons in

the first iteration. The photon weights that are used for the regression are wi = piw
(x)
i w(h)

i . We evaluate the resulting regression

model at each fit location xfit to obtain an along-track estimate of the fit to the photon heights. For each consecutive iteration,

we calculate the residuals ei as the difference between each photon’s elevation and the elevation of the linearly interpolated

elevation fit of the previous iteration. Let σ be the standard deviation of residuals, weighted by the previous iteration’s weights.465

To achieve a robust fit, we now consider only photons whose absolute residuals are at most nstd standard deviations, and

calculate the residual-based weights w(h)
i as defined above, using hmax = nstdσ. We run this nonparametric weighted regression

for a number of niter iterations to obtain a smooth fit that tracks the along-track elevation of highest photon density.

3.3.2 SuRRF step 1: fitting the lake surface
::
fit

To fit an elevation profile to just the surface of a lake
:::::::
segment

:
detected with FLUID, we calculate the along-track extent of470

photons that belong to the flat lake surface, remove all photons below the lake surface, and then apply the SuRRF Robust

Fit to the remaining photons (Fig. 8, panel c). We determine the extent of the open water surface by calculating the photon

density within an elevation band of ±0.225m around the lake’s surface elevation at 1m along-track resolution, as well as the

corresponding photon densities within the remaining telemetry window and within 2m above the surface elevation band. We

smooth all photon densities using an along-track gaussian window with a 15m standard deviation. We then consider a location475

along the ground track to contain a water surface if the photon density within the surface elevation band is at least ten times

as large as the other photon densities for any continuous along-track section of at least 100m in length. Within the resulting

estimate of along-track lake
:::::
water extent, we remove all photons that are more than 0.4m below the lake’s surface elevation

from the surface fit by setting their signal confidence pi = 0.

To obtain an along-track fit to the lake’s surface and its surrounding topography, we apply the SuRRF Robust Fit (Sect. 3.3.1)480

to all remaining photons with a signal confidence > 0.5 at evenly spaced locations xfit along the ground track, at 5m resolution.

In this step, we use a linear regression (n= 1) and run it for niter = 10 iterations, with no initial guess. We here choose

xmin = 20m and let nph decrease linearly from n(start)
ph = 300 in the first iteration to n(end)

ph = 100 in the last iteration. Similarly,

we choose n(start)
std = 10 and n(end)

std = 4. We illustrate this surface-fitting procedure by showing an example of a supraglacial lake

:::::::
segment in ATL03 with photons color-coded by their surface fit weights pi, along with the detected along-track water surface485

extent and the final smooth photon fit to the lake
::::::
surface and surrounding topography (Fig. 8, panel c).

3.3.3 SuRRF step 2: fitting the lakebed
::
fit

To fit an elevation profile to just the lakebed, we remove all photons that belong to the lake’s water surface, and then again

apply the SuRRF Robust Fit to the remaining photons (Fig. 8, panel d). In this case, we remove all photons that fall within

the along-track water surface extent that was determined in the previous step, and are located at an elevation of 0.35m below490

the lake’s surface or higher.
::::
Note

::::
that

::::
this

:::::::
imposes

:
a
::::::::::

theoretical
::::::::
minimum

:::::
depth

::::::::
threshold

:::
for

::::::::
detection

:::
on

::::
lake

:::::::::
segments:

::::::
ATL03

::::::::
segments

::::
need

::
to

::::::
exhibit

:
a
::::::
bottom

:::::
return

::::::
signal

::
at

::::
least

::::::
0.35m

:::::
below

:::
the

::::
lake

::::::
surface

::
(or

::::::
0.26m

::
in
:::::::::::::::::
refraction-corrected
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::::
water

::::::
depth)

::
at

::::
their

:::::::
deepest

::::::::::
along-track

::::
point

::
to

:::
be

:::::::::
considered

::
by

:::::::
SuRRF.

::::::::
However,

:::
in

:::::::
practice,

::::
such

:::::::
shallow

::::
lake

::::::::
segments

::
do

:::
not

:::::
have

:
a
::::::::::
discernible

::::::::::
bathymetric

:::::
signal

:::::
since

::::::
typical

:::::
depth

:::::::
retrieval

:::::::::
accuracies

:::
for

:::::::::
ICESat-2

:::
are

::
on

:::
the

:::::
order

:::
of

:::::
0.5m

:::::::::::::::::
(Dietrich et al., 2024)

:
. To provide the SuRRF Robust Fit with an initial guess, we combine the locations of the bathymetric495

peaks found by FLUID that have a peak prominence value of at least 0.5 and fall within the lake’s along-track surface
:::::
water

extent with those locations of the smooth surface fit from Sect. 3.3.2 that fall outside of the lake’s along-track surface
:::::
water

extent. We then smooth the values of the initial guess using a running mean with a window of five data points to decrease

the influence of any potential outliers. To decrease the influence of near-surface photons from multiple scattering, we further

reduce the signal confidence values pi of any photons that are between a lower bound of one meter above the initial guess500

and an upper bound of the lake surface elevation by multiplying them by a factor that linearly decreases from one to zero

between the lower and the upper bound. To fit the lakebed, we apply the SuRRF Robust Fit (Sect. 3.3.1) to the same evaluation

locations xfit that were used to fit the lake surface. We here use a third-degree polynomial regression (n= 3) and SuRRF

Robust Fit parameters niter = 20, xmin = 100m, n(start)
std = 10, n(end)

std = 3, and hmax = 10m in the first iteration. In this step we

choose different values for
(
n(start)

ph ,n(end)
ph

)
:::::::::::::

(
n(start)

ph , n(end)
ph

)
:
depending on ATLAS beam strength: (200,100)

:::::::::
(200, 100) for505

strong beam data and (100,50)
::::::::
(100, 50)

:
for weak beam data. We illustrate this lakebed-fitting procedure by showing photons

color-coded by their lakebed fit weights pi, along with the initial guess and the final smooth photon fit to the lakebed (Fig. 8,

panel d).

:::::::
Previous

::::::
studies

::::
have

:::::::::::
hypothesized

::::
that

:::::::::::::
ICESat-2-based

:::::
depth

:::::::
retrieval

:::::::::
algorithms

::::::
placing

:::
the

:::::::
lakebed

::
fit

::
at

:::
the

::::::::::
along-track

:::::::
elevation

::
of

:::::::
highest

:::::::::
subsurface

:::::
photon

:::::::
density

::::
may

::
be

:::::
biased

:::::::
towards

:::::::
slightly

::::::::::::
overestimating

::::
total

:::::
water

:::::
depths

::::
due

::
to

:::::::
multiple510

::::::::
scattering

:::::
within

:::
the

:::::
water

:::::::
column

:::::::::::::::::::::::::::::::
(Fricker et al., 2021; Xiao et al., 2023)

:
.
::
To

:::::::
address

::::
this,

:::
we

::::::
provide

:::
an

:::::::
optional

:::::::::
correction,

:::::
which

::::::
places

:::
the

:::::::
lakebed

::
fit

::
at
::

a
::::::
higher

::::::::
elevation

:::::
where

::::
the

:::::
initial

:::::::
SuRRF

:::::::
lakebed

::
fit

::::::::
included

:::::::
photons

::::::
further

::::::
below

:::
the

:::::
initial

::::::
lakebed

:::
fit

:::
than

::::::
would

::
be

::::::::
expected

::::
from

::::::::::
bathymetric

::::::
signal

:::::::
photons.

:::
To

::::::
achieve

::::
this,

:::
we

::::::
remove

::::
any

::::::
photons

:::::::
located

::
at

:
a
:::::::
vertical

:::::::
distance

:::::
below

:::
the

::::::
initial

::::::
SuRRF

:::::::
lakebed

::
fit

:::
by

:::::
more

::::
than

:::
the

::::
sum

::
of

:::
(1)

::::::::::
ICESat-2’s

:::::::::::
single-photon

::::::::::::
time-of-flight

:::::::
precision

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(∼ 12cm in ATL03 photon heights or 800ps; Markus et al., 2017)

:
,
:::
and

::::
(2)

:::
the

::::::::
elevation

:::::
range

::::::
within

::::::::::
ICESat-2’s515

:::::::
footprint

:::::::
diameter

:::::::::::::::::::::::::::
(∼ 11m Magruder et al., 2021a)

:::::::
obtained

::
by

:::::::::
projecting

:::
the

:::::::
footprint

::::
onto

:::
the

:::::::::
along-track

:::::::
lakebed

:::::::::
topography

::::::::
estimated

::
by

:::
the

:::::
initial

:::::::
SuRRF

::::::
lakebed

:::
fit.

:::
We

::::
then

:::::::
reapply

::
the

:::::::
lakebed

::
fit

::
to
:::
the

:::::::::
remaining

:::::::
photons

::
as

::::::::
described

::::::
above,

:::::
while

::::::::
supplying

:::
the

::::::
SuRRF

:::::::
Robust

::
Fit

:::::
(Sect.

::::::
3.3.1)

::::
with

:::
the

::::::::::
uncorrected

::::::
SuRRF

:::::::
lakebed

::
fit

::
as

:::
the

::::::
initial

:::::
guess.

:::::
Since

:::
the

::::::::
presence

::
or

:::::::::
magnitude

::
of

:::
this

:::::::::::
hypothesized

:::::::::::::
overestimation

::
of

:::::
water

::::::
depths

::::::
cannot

::
be

::::::::::
established

::::::
without

::::
any

::::::
ground

::::
truth

::
in
::::
situ

::::
data

:::::::
available

:::::
along

:::
any

::::::::
ICESat-2

::::
lake

:::::::::
segments,

::
we

:::::::
provide

:::
this

:::::::::
scattering

::::::::
correction

:::
for

::::::::
reference

::::
only,

::::
and

::
do

:::
not

:::::
apply

::
it

::
to

:::
the520

::::
water

::::::
depths

:::::::::
presented

::
in

:::
this

:::::
study.

::
If
:::::
such

::::::::
validation

::::
data

::::::::
becomes

:::::::
available

:::
in

:::
the

::::::
future,

:::
our

::::::::
scattering

:::::::::
correction

:::
can

:::
be

::::
tuned

:::
to
::::::

better
:::::
match

:::::::::::
observations,

:::
and

::::
can

::
be

::::::
readily

::::::
applied

:::
to

::::::::::::
FLUID-SuRRF

::::::
output

::::
data.

:

3.3.4 SuRRF step 3: bathymetry signal confidence estimation

To estimate the signal confidence of the fit to the lakebed, we calculate the photon density ratio between the lower half of the

interior of the lake and the elevation band within ±n(end)
std σ of the last iteration of the lakebed fit for each fit location xfit ± 5m525

along the ground track. Here, we consider the interior of the lake to be the elevation range between the top of the elevation
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band of the lakebed fit and the surface elevation of the lake. For any along-track points for which there are no lakebed photons

or for which the elevation band of the lakebed fit includes the lake surface, we set the ratio to 1. We then set the bathymetry

confidence to one minus the density ratio, clip it to the range [0,1], set it equal to one wherever the lakebed fit is at a higher

elevation than the lake surface elevation (i.e. wherever the estimated water depth is zero), and smooth it using an along track530

gaussian filter with a standard deviation of 10m. Wherever the elevation range of the interior of the lake is less than the width of

the elevation band of the lakebed fit, we further decrease the confidence by multiplying it by the ratio between the two elevation

ranges. We illustrate this bathymetry signal confidence estimation procedure by visualizing both the elevation band of the final

lakebed fit and the interior of the lake, and showing the resulting along-track confidence estimates for the bathymetric return

(Fig. 8, panel e).535

3.3.5 SuRRF step 4: water depth calculationand lake quality

To determine the along-track water depth, we take the difference between the lake’s surface elevation and the fit to the lakebed,

and divide it by the refractive index for the speed of 532nm light in 0 °C freshwater (≈ 1.336; Mobley, 1995). For any locations

along the lake segment where the final lakebed fit (Sect. 3.3.3) returns a higher elevation than the surface elevation of the lake,

we record a water depth of zero meters (i.e. no water is present). We do not correct water depths for the effect of lakebed return540

geolocation errors caused by refraction, since ICESat-2 is nadir-pointing to its reference ground tracks over land ice, making

the water depth correction due to the angle of refraction negligibly small (≈ 0.003 of the total water depth for the slightly off-

nadir-pointing outer beam pairs, which is about 9cm for a water depth of 30m; Parrish et al., 2019). Final along-track water

depths can be selected by applying a threshold to the bathymetry signal confidence (Sect. 3.3.4). Here, we select a confidence

threshold of 0.5. For the
:::
lake

::::::::
segment example shown, this results in a maximum lake

:::::::::
along-track depth of 6.0m and gaps in545

along-track depth data in locations where no bathymetric return is evident (Fig. 8, panel f).

To give a lake-by-lake

3.3.6
::::::
SuRRF

::::
step

::
5:

::::
lake

::::::::
segment

::::::
quality

::::::::
estimate

::
To

:::::::
provide

:
a
::::::
relative

:
indication of data quality, we provide an estimate for a summarized quality measure for each lake

::::::
segment.

Let h(surf)
x and h(bed)

x be the surface and bed fits at along-track measurement location x. For all x where ∆hx = h(surf)
x −h(bed)

x > 0,550

we calculate a histogram of photon counts within a 5m along-track window for 300 elevation bins that are evenly spaced

between h(bed)
x −∆hx and h(surf)

x +∆hx. We then normalize the associated bin elevations h̃ such that h(bed)
x corresponds to h̃= 0

and h(surf)
x corresponds to h̃= 1, and take the per-bin sum across all x. We smooth the resulting elevation-normalized histogram

using a gaussian filter with a standard deviation of three bins, and calculate the quality ratio rq as the ratio between the value

at h̃= 0 and the mean of the first quartile of the lowest values in 0> h̃ > 1.555

The “quality ratio” can be considered an along-track average estimate for the photon density ratio between the lakebed and

the lowest-photon-density part of the interior of the lake. We classify lakes
:::
lake

::::::::
segments with rq ≤ 2 as “zero quality” lakes

::::
lake

:::::::
segments. Similarly, we classify lakes

:::
lake

::::::::
segments with rq > 2 as “high quality” lakes

:::
lake

::::::::
segments, for which we report the

lake
::::::
segment

:
quality score as rq−2. This means that a lake

:::::::
segment is assigned a non-zero quality by SuRRF if the along-track
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averaged strength of the return signal from the lakebed is at least twice as large as the along-track averaged background noise560

rate within the interior of the lake. While “zero quality” lakes
:::
lake

::::::::
segments

:
might still include a clear bathymetric return

along a small part of their associated along-track segments
:::::
extent, a quality score of zero is meant to indicate that there may

be significant issues with data quality. In the example shown, this results in SuRRF classifying the given lake
::::::
segment

:
as high

quality, with a score of 9.0 (Fig. 8, panel f). We show more examples of FLUID/SuRRF output lakes
:::
lake

::::::::
segments

:
and their

associated quality scores in a range from 0.2 to 115.5 in Figs. 9 and 10 (Sect. 4.1).565

3.4 Computational implementation of FLUID/SuRRF

To facilitate large-scale use of FLUID/SuRRF, we implemented the algorithms as a Python routine that can be run on any

ATL03 data granule, and developed a framework that allows for estimating all ICESat-2 lake depths for a given region of

interest and time span. Given a polygonal region of interest (e.g.; a particular glacier, ice shelf, drainage basin, or other study

region) and time span (e.g.; a typical melt season), we use the National Snow and Ice Data Center’s Data Access and Service570

API (NSIDC API; NSIDC, 2021)
:::::::
(NSIDC

:::::
API)

:::::::::::::
(NSIDC, 2021) to query for a list of all available ATL03 data granules that

satisfy the spatio-temporal search parameters. To obtain all desired ICESat-2 lake depths, we can subset these ATL03 granules

to the region of interest, run FLUID/SuRRF on each subsetted granule individually, and collect all melt lake depth output

:::::
output

::::
melt

::::
lake

:::::::
segment

::::
and

::::
their

::::::::
associated

::::::::::
along-track

:::::
depth data. This allows for parallel processing of data granules.

To apply FLUID/SuRRF to all identified granules in an efficient, cost-effective and reproducible manner, we use the Open575

Science Grid (OSG )
::::
OSG Open Science Pool for distributed High-Throughput Computing (dHTC; OSG, 2006; Pordes et al., 2007)

::::::
(dHTC)

::::::::::::::::::::::::::::
(OSG, 2006; Pordes et al., 2007) Since batches of OSG compute jobs run on heterogeneous hardware, we run all jobs

in a Singularity container (Kurtzer et al., 2017) that we designed for use with FLUID/SuRRF. We run one OSG compute job

per ATL03 granule, where each job receives as input the producer ID of the granule and a shapefile of the corresponding region

of interest. Each job makes a request to the NSIDC API to subset the specified granule to the given shapefile, and downloads580

the subsetted granule. The job then runs FLUID/SuRRF on the downloaded granule for each of ICESat-2’s six ground tracks,

and sends back individual HDF5 files of output water depths for each lake
::::::
segment

:
that was detected by FLUID.

Each output file reports water depth estimates at a 5m along-track resolution with associated values for longitude, latitude,

along-track distance, bathymetry signal confidence and elevations of the lakebed and surface fit to the photon data. We also

include lake
::::::
segment

:
properties such as: surface elevation, SuRRF quality score, and various metadata such as the granule585

name, beam, time of data acquisition, center longitude/latitude. For reference, we add the underlying ATL03 photon heights and

locations with FLUID estimates of photon signal probability, saturation level and afterpulse probability, as well as calculated

FLUID parameters at the major frame rate. In addition to each lake
::::::
segment’s data file, we also create an associated “quick look”

plot of the photon data with surface and lakebed fits and the ground track shown over the closest available cloud-free Landsat

8/9 or Sentinel-2 imagery (e.g.; Fig. 9, a-j and 10, a-j). The availability of these for all returned lakes
:::
lake

::::::::
segments

:
makes it590

possible to add a final manual quality control step to our method, based on visual inspection of the plots
::
in

:
a
::::::::::::
custom-made

:::::::
streamlit

:::
app. We use this to remove clear false positives from the output data.
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3.5 Study regions and time span

To evaluate the performance of our method, specifically whether it is able to capture spatial and temporal variability while

reliably extracting supraglacial lake depths at scale, we focus on one drainage basin on each of the ice sheets and compare a595

high-melt with a low-melt season for each. For both the Greenland and Antarctic ice sheets, we define our study regions using

the Ice sheet Mass Balance Inter-comparison Exercise (IMBIE) drainage basins (Fig. 2, Mouginot et al., 2017; Mouginot and

Rignot, 2019). Since we do not expect significant surface meltwater pooling beyond a certain elevation, we apply elevation

thresholds to the drainage basins prior to running FLUID/SuRRF.

Study regions for testing the FLUID/SuRFF framework. a) and b) Maps of the two regions chosen for this study. The black600

outlines show the boundaries of the regions which were obtained by thresholding the corresponding ice sheet drainage basins

(c and d) by the elevations shown in the legends. The green lines show ICESat-2 reference ground track coverage.

In Greenland, we focus on the Central West (CW) drainage basin, and compare ICESat-2 lake depths between the excep-

tionally warm 2019 melt season (Tedesco and Fettweis, 2020) and the 2020 melt season, which experienced comparatively

little surface melt and runoff (Druckenmiller et al., 2021). During these two summers, Central West Greenland experienced605

a particularly stark contrast in observed surface runoff elevation limits, with surface runoff extending to significantly higher

elevations in 2019 than in 2020 (Tedstone and Machguth, 2022). For Central West Greenland, we use an elevation threshold

of 2000m based on Zhang et al. (2023), who reported a mean elevation limit of surface water of 1609m above sea level in

this region during the anomalously warm 2019 melt season. We apply this threshold based on the ArcticDEM digital elevation

model (Morin et al., 2016).610

In Antarctica, we focus on the B-C drainage basin, including Amery Ice Shelf and its surrounding grounded ice catchment,

which on average experiences more meltwater pooling than any other Antarctic ice shelf. We compare the 2018-19 and 2020-

21 melt seasons, which exhibit positive and negative anomalies in terms of open-water melt extent, respectively (Tuckett et al.,

2022). For the Amery catchment, we use an elevation threshold of 1000m, based on Tuckett et al. (2021), who reported > 95%

of lakes at elevations below 500m in the 2004–20 time period, and only a handful of small lakes above 1000m even during615

high-melt summers. We apply this threshold based on the Reference Elevation Model of Antarctica (REMA) digital elevation

model (Howat et al., 2019).

Our two study areas cover latitudes from 68.2° N to 72.1° N in Greenland and latitudes from 68.4° S to 74.0° S in Antarctica,

meaning that ICESat-2 track spacing is very similar over the two regions:
::
in
:::::::
Central

::::
West

:::::::::
Greenland

:::::
RGT

::::::
spacing

:::::
varies

:::::
from

::::::::
∼ 8.8km

::
in

:::
the

::::
north

:::
to

:::::::::
∼ 10.8km

::
in

:::
the

:::::
south;

::::
over

:::
the

::::::
Amery

::::::::::
Catchment

::::
RGT

:::::::
spacing

:::::
varies

:::::
from

::::::::
∼ 7.9km

::
in

:::
the

:::::
south620

::
to

:::::::::
∼ 10.7km

::
in

:::
the

::::
north. The total area of the Central West Greenland study region is about 650,000km2 with a coverage of

50 distinct ICESat-2 reference ground tracks, and the area of the Amery catchment study region is about 3.5 million km2 with

a coverage of 74 distinct ICESat-2 reference ground tracks.

For Greenland, we consider the annual melt season to be the 5-month period between the first day of May and the last day

of September of a given year. Similarly, for Antarctica, we define the melt season to be the 5-month period between the first625

day of November and the last day of March of the following year. Based on these spatiotemporal parameters, we processed

25



Table 1. Summary statistics for the ICESat-2 lakes
:::
lake

:::::::
segments

:
extracted by FLUID/SuRRF for our regions and melt seasons of interest.

Amery catchment (B-C) Central West Greenland (CW)

surface melt season 2018-19 2020-21 2019 2020

melt amount
:::::

amount
::
of

::::::
surface

:::
melt

:
high

:::
very low high low

total lakes
:::
area

::
of
:::::::
Landsat

:
8
::::::::
maximum

:::
melt

:::::
extent

: :::::::
1872km2

: :::::::
100km2

:::::::
1127km2

: ::::::
431km2

::::::
number

::
of

:::
total

::::::::
ICESat-2

:::
lake

:::::::
segments

:
721 28 325 175

high-quality lakes
:::::
number

::
of

::::::
unique

::::
lakes

::::::
sampled

: :::
385

: ::
25

:::
198

: :::
114

:

:::::
number

::
of
::::::::::
high-quality

:::
lake

:::::::
segments

:
165 5 196 109

percent high quality
::::::::
percentage

::
of

:::::::::
high-quality

:::::::
segments

:
23% 18% 60% 62%

median lake
::::::
segment

:
depth 1.85m 1.48m 2.77m 3.43m

maximum lake
::::::
segment

:
depth 10.4m 17.3m 25.8m 15.1m

a total of 447 ATL03 granules with a total size of 1.15TB, amounting to a total along-track distance about 760,000 km and

comprising nine billion individual photon locations.

4 Results and discussion

Using FLUID, we identified a total of 1249 supraglacial lakes
::::
lake

::::::::
segments over our two study areas in the available ATL03630

data during the four melt seasons we considered (Table 1). We found that FLUID reliably detects potential supraglacial

lakes
:::
lake

::::::::
segments, with the number of detected lakes

:::
lake

::::::::
segments

:
varying with the strength of the melt season and their

locations aligning well with imagery-derived melt extents (Sect. 4.1). Along-track lake depths determined by SuRRF agree

well with manually annotated data, with deeper lakes in Central West Greenland than in the Amery catchment (Sect. 4.2). Our

method is effective for detection and depth determination of supraglacial lakes over the ice sheets; however, it is not designed635

for ICESat-2 bathymetry over other targets, for which different methods have been developed (Sect. 4.3). Applying our method

at an ice-sheet-wide scale and combining the results with satellite imagery would make it possible to develop data-driven

models for accurate estimation of the volume of pooled surface meltwater across the ice sheets at high resolution and spatial

coverage (Sect. 4.4).

4.1 FLUID lake detection and accuracy640

4.1.1 FLUID lake
:::::::
segment detection

Out of the 1249 supraglacial lakes
::::
lake

::::::::
segments that we detected in total

::
the

::::::::
ICESat-2

::::
data

::::::::
analyzed

::
in

:::
this

:::::
study, 500 were

located in Central West Greenland and 749 in the Amery catchment. The number of lakes
::::
lake

::::::::
segments that we detected

using FLUID varied with strength of the melt season (Figs. 9 and 10). Over Central West Greenland, we identified 325 lakes
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:::
lake

::::::::
segments

:
during the high-melt 2019 boreal summer versus only 175 during the low-melt 2020 boreal summer. Over645

the Amery catchment, we identified 721 lakes
:::
lake

::::::::
segments

:
during the high-melt 2018-19 austral summer versus only 28

during the
:::::
(very) low-melt 2020-21 austral summer.

::
To

:::::::
estimate

::::
how

:::::
many

::::::
unique

::::::::::
supraglacial

:::::
lakes

::::
were

:::::::
sampled

:::
by

:::::
these

:::::::
detected

::::::::
ICESat-2

::::
lake

::::::::
segments

:::::
during

:::::
each

::::
melt

::::::
season,

:::
we

:::::::::
calculated

:::
the

:::::::::
maximum

::::::
surface

:::::::::
meltwater

:::::
extent

:::
for

::::
each

:::
of

::
the

:::::
melt

::::::
seasons

::::::::::::
independently

:::::
using

:::::::
Landsat

:
8
::::::::
imagery,

:::::
based

:::
on

:::
the

:::::::
methods

:::::::
detailed

::
in

:::::::::::::::::
Tuckett et al. (2021)

::::
(blue

:::::::
regions

::
in

:::
Fig.

::
9
:::
and

::::
10).

:::
We

::::
then

::::::::
matched

::::
each

:::::::
detected

::::::::
ICESat-2

::::
lake

:::::::
segment

::
to

::
a

::::
lake

::::
basin

::
in
:::::
these

::::::::::::
imagery-based

:::::
melt

::::::
extents650

:::
and

:::::::
counted

:::
the

:::::::
number

::
of

::::
total

::::::
basins

::::
that

::::
were

::::::::
sampled

::
by

:::
at

::::
least

::::
one

::::::::
ICESat-2

::::
lake

:::::::
segment

::::
(see

:::::::::::
supplemental

::::::
maps;

::::::::::::::::::::
Arndt and Fricker 2024c

:
).

::::
Over

:::::::
Central

::::
West

::::::::::
Greenland,

:::
this

:::::::
resulted

::
in

::::
196

::::::
unique

::::::::::
supraglacial

:::::
lakes

:::::
being

:::::::
sampled

::
by

::::
our

:::
data

::
in
:::::
2019,

::::
and

:::
109

:::::
lakes

::
in

:::::
2020.

:::::
Over

:::
the

::::::
Amery

:::::::::
Catchment,

:::::::::::::
FLUID-SuRRF

::::::::
segments

:::::::
sampled

::::
165

::::::
unique

::::
melt

:::::
lakes

::
in

:::::::
2018-19

:::
and

:::
25

::::
lakes

::
in

::::::::
2020-21.

Across all the data that we analyzed, FLUID and SuRRF determined on average 0.12% of total distance along the ICESat-655

2 ground tracks to be meltwater surfaces. During the high-melt summers this number was 0.22% and 0.21% for Central

West Greenland and the Amery catchment, respectively. The corresponding numbers for low-melt summers were 0.088% and

0.0057%. SuRRF assigned a non-zero quality score to 475 of these lakes
:::
lake

::::::::
segments, indicating that they likely contain

high-quality bathymetric measurements. The fraction of non-zero quality lakes
:::
lake

::::::::
segments

:
was significantly higher for

Central West Greenland (61%) than for the Amery catchment (22.7%). This is likely because the locations of supraglacial660

lake basins on Greenland’s grounded ice are primarily controlled by bedrock topography (Lampkin and VanderBerg, 2011),

which allows for well-defined lake basins to develop in the same locations every year. In contrast, lake basins on Antarctica’s

floating ice shelves are more difficult to distinguish from their much flatter surrounding topography, on which they usually

form sporadically and in different locations each year (Arthur et al., 2022) .
::::
with

:::::::
existing

:::::
basins

::::::::
typically

:::::
being

::::::::
advected

::
to

:::::::
locations

:::::::::::
significantly

:::::
further

:::::::::::
downstream

::::
from

:::
one

::::
melt

::::::
season

::
to

:::
the

::::
next

:::::::::::::::::
(Arthur et al., 2020b)

:
.
:::::::::::
Furthermore,

::
an

::::::::::
appreciable665

::::::
portion

::
of

::::::::
meltwater

::::::
across

::::::::
Antarctic

:::
ice

::::::
shelves

::
is

:::::
stored

::
as

:::::
slush

:::::::::::::::
(Dell et al., 2024),

:::::
which

:::::
often

:::::::
appears

::
in

::::::
ATL03

::::
data

::::
with

:
a
::::::
surface

::::::
return

:::
that

::
is
:::
flat

:::::::
enough

::
to

::::
look

:::::::
similar

::
to

:
a
:::::::::::
supraglacial

::::
lake,

::::
with

:::::
large

:::::::
amounts

::
of
::::::::

scattered
:::::::
photons

::::::
below

:::
the

::::::
surface

:::
that

::::
can

::
be

::::::::
mistaken

::
for

::
a
::::::::::
bathymetric

::::::
signal.

4.1.2 Accuracy of FLUID lake
:::::::
segment detection

To validate
::
the

::::::
spatial

::::::
extents

:::
of ICESat-2-derived supraglacial lake extents, we calculated the

::::::::
segments,

:::
we

::::
also

:::::
used

:::
the670

:::::::::::::
Landsat-8-based

:
maximum surface meltwater extent

::::::
extents

:
for each of the melt seasons independently using Landsat 8

imagery, based on the methods detailed in Tuckett et al. (2021) (blue regions in Fig. 9 and 10). We found a high correspon-

dence between these estimates: For Central West Greenland, the ground tracks of 97.0% of high-quality ICESat-2 lakes
::::
lake

:::::::
segments

:
coincided with the Landsat-8-derived maximum seasonal melt extent. The corresponding percentage for the Amery

catchment was 95.8%.675

Since there are no ground truth data of water depths available for any ICESat-2 data over supraglacial lakes, it is necessary

to evaluate the performance of our method by manually examining the data in representative granules. We report results for

ICESat-2 track 81, GT2L on 2 January 2019 over the Amery catchment, which was also studied in Fricker et al. (2021) and
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Figure 9. Center maps: FLUID/SURFF
:::::

SuRRF algorithm testing in Greenland. Locations of melt lakes
:::
lake

::::::::
segments detected in ATL03

data for the Greenland Ice Sheet’s Central West drainage basin for melt seasons 2019 and 2020, mapped over the corresponding seasons’

maximum meltwater extent from Landsat 8. Panels a-j: Examples showing the underlying ATL03 photon clouds and water depths calculated

by SuRRF, for some of the lakes
:::
lake

:::::::
segments

:
shown on the maps. Numbers in lower right of panels are SuRFF

::::::
SuRRF lake

::::::
segment

:
quality

scores.

Xiao et al. (2023). To evaluate whether FLUID detects all supraglacial lakes
:::
lake

::::::::
segments

:
that have bathymetric data in this

ATL03 ground track, we manually inspected the
::::::
ATL03 data for any evidence of meltwater and determined whether any such680

along-track contained a clearly discernible return
::::
return

::::::
signal from a lakebed. Out of 25 along-track segments with meltwater,

we judged that only eight were supraglacial lakes with a clear
:::
lake

::::::::
segments

::::
with

::
a

:::::::::
discernible bathymetric signal.

:::
We

::::::
further

::::::::
evaluated

:::::::
whether

:::
the

::::::
ATL03

::::::
photon

:::::
cloud

::::::
misses

::::
any

::::::::::
supraglacial

:::::
lakes

:::
that

:::::
track

:::
81

:::::
GT2L

:::::::
crosses,

:::
by

:::::::
mapping

::
it
::::
over

::
a

::::::
mosaic

::
of

:::::::::
Sentinel-2

:::::
scenes

:::::
from

:::
the

::::
same

::::
day

:::::
(same

::
as

::::
used

::
in

:::::::::::::::
Fricker et al. 2021

:
).
::::::
Based

::
on

::::::
visual

:::::::::
inspection,

:::
the

::::::::
ICESat-2

::::::
ground

::::
track

:::::::
crossed

::::::::::
supraglacial

:::::
lakes

:::
that

:::::
were

::::::
clearly

::::::::::::
distinguishable

:::
in

:::
the

:::::::
imagery

::::
only

::
in

:::
the

:::::
same

::::
eight

::::::::
locations

::::
that685
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Figure 10. Center maps: FLUID/SuRFF
::::::
SuRRF algorithm testing in Antarctica. Locations of melt lakes

:::
lake

:::::::
segments

:
that FLUID detected

in ATL03 data for the Antarctic Ice Sheet’s B-C drainage basin for melt seasons 2019-20 and 2020-21, mapped over the corresponding

seasons’ maximum meltwater extent from Landsat 8. Panels a-j: Examples showing the underlying ATL03 photon clouds and water depths

calculated by SuRRF, for some of the lakes
:::

lake
:::::::
segments shown on the maps. Numbers in lower right of panels are SuRFF

:::::
SuRRF

:
lake

::::::
segment quality scores.

::
we

::::
had

::::
also

::::::
judged

::
to

::
be

::::
lake

::::::::
segments

:::
in

:::
the

::::::
ATL03

::::
data.

:::::
Most

:::::
other

::::::::
ICESat-2

::::::::
segments

::::
that

::::::
showed

::::::::
evidence

::
of

:::::::
surface

::::
water

::
in
:::::::
ATL03

:::
also

:::::::
showed

:::::
some

:::::::
evidence

::
of

:::::::::
meltwater

::
in

:::
the

:::::::
imagery,

:::
and

:::::
were

:::::::::
associated

::::
with

:::::::
ice-filled

:::::::::
crevasses,

::::::
narrow

::::
melt

::::::::
channels,

:::::
likely

:::::
areas

::
of

:::::
slush,

::
or

:::::
melt

::::
lakes

::::
with

:::
an

::::::
opaque

:::
ice

:::::
cover

::::
(for

:::::
which

::::::
depth

:::::::::::
determination

::
is
:::
not

:::::::::
possible).

FLUID found 16 potential melt lakes
:::
lake

::::::::
segments

:
within the same ground track, which all showed evidence of meltwater,

but only the eight that we had also manually picked were classified as high-quality lakes
:::
lake

::::::::
segments.690

Out of all lakes
:::
lake

::::::::
segments

:
that FLUID detected, we deemed 308 to be false positives, many of which showed evidence

of surface water but no clearly distinguishable bathymetric return. However, we found that lakes
:::
lake

::::::::
segments

:
classified by
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SuRRF as “high quality” contain few false positives, with only 15 such lakes
:::::::
segments

:
that we manually removed from the

data. The majority (11) of these were due to our study region erroneously extending past the calving front of the Amery Ice

Shelf in Antarctica or marine-terminating outlet glaciers in Greenland, or due to ice-marginal lakes being included in the study695

region. Of the remaining four false positives, three were likely due to random noise and one showed a supraglacial lake but the

data seemed to be affected by a “Did Not Finish Major Frame” data transfer error in the ATLAS Photon Counting Electronics

(Magruder et al., 2024). While testing our algorithm, we found that false positives may also arise when ICESat-2’s footprint

includes two surfaces at different elevations for a substantial along-track distance, which is possible when the ground track

passes over a flat calving front or crevasses with a bottom return at an acute angle. Where the study region extends past an ice700

shelf calving front, FLUID/SuRRF can also falsely classify the bathymetric return of a submerged “bench” as a supraglacial

lake
::::::
segment

:
(Buck, 2024).

4.2 SuRFF
::::::
SuRRF

:
depth retrieval and accuracy

4.2.1 SuRFF
::::::
SuRRF: meltwater depths

The meltwater depths determined by SuRRF suggest that supraglacial lakes in Central West Greenland are generally deeper705

than those in the Amery catchment: The median of along-track maximum water depths of lakes
::::
lake

::::::::
segments in Greenland

was 3.09m versus only 1.84m in Antarctica. Median lake
:::::::
segment depth in the Amery catchment was greater during the

high-melt season (1.85m
:
) than it was during the low-melt season (1.48m). In contrast, median lake

::::::
segment

:
depth in Central

West Greenland was less during the high-melt season (2.77m) than it was during the low melt season (3.43m) (Fig. 11, a). We

hypothesize that this opposite behavior is due to different relationships between lake elevations and depths in these regions.710

A linear regression of lake
:::::::
segment

:
depth on surface elevation in our data suggests that lake depth decreases with elevation

in Central West Greenland (p= 0.12), while it increases with elevation in the Amery catchment (p= 0.093) (Fig. 11, b). In

Greenland, where supraglacial lake basin locations are controlled by bedrock topography, lakes in a low-melt season are more

likely to form at lower elevations, where repeated filling, bottom ablation and draining during most prior melt seasons has re-

sulted in well-defined, deep lake basins
::::::::::::::::::::::::::::::::::::::::::::
(Lampkin and VanderBerg, 2011; Tedesco et al., 2012). In a high-melt season, surface715

melt extends further upwards above the ablation zone, where lake basins are less well-defined, forming
::::::
smaller, shallower lakes

and slush areas
:::::::::::::::
(Glen et al., 2024). On an Antarctic ice shelf, lakes in a low-melt season are more likely to form at lower eleva-

tions, where the ice is floating and the surface topography is very flat, resulting in mostly shallow lakes
:::::::::::::::::
(Banwell et al., 2014).

In a high-melt season, melt extends further upward of the grounding line where lakes form in deeper basins that are controlled

by the bedrock topography (similar to lakes in Greenland)
::::::::::::::::::::::::::::::::::::::
(similar to lakes in Greenland; Bell et al., 2018), thus resulting in720

deeper lakes.

4.2.2 Accuracy of SuRFF
:::::::
SuRRF depth retrievals

:::
and

:::::::::::
comparison

::::
with

::::::::::
alternative

::::::::
methods

For the 16 potential melt lakes
:::
lake

::::::::
segments

:
that FLUID identified in ICESat-2 track 81, GT2L on Jan 2nd, 2019 over

the Amery catchment (Sect. 4.1.2 Fricker et al., 2021), SuRRF assigned a nonzero lake quality score only to the eight data
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Figure 11. SuRRF lake
::::::
segment

:
depth statistics for two study regions in high and low melt years. a): Density of maximum lake depth

distributions. The numbers shown are median lake
::::::
segment depths during the corresponding melt season and study region. b): Elevation-

binned means of maximum lake
::::::
segment depths for each season and study region. The dotted lines are the linear fit to all data for the

corresponding study region.

segments which we had manually determined to be supraglacial lakes with a clear
:::
lake

::::::::
segments

::::
with

::
a

:::::::::
discernible bathymetric725

signal. For four of the lakes
:::
lake

::::::::
segments

:
identified in this granule, Fricker et al. (2021) established manually annotated

baseline depth estimates, which were used to assess the performance of automated algorithms in the absence of any ground

truth data. In addition to these four lakes
::::
lake

::::::::
segments, Melling et al. (2024) used a similar method to establish manual

estimates for five more lakes
:::::::
segments

:
in Southwest Greenland.

:::
We

:::
here

:::
use

:::
the

:::::::
manual

:::::::::
annotations

:::::
from

::::
both

::
of

::::
these

:::::::
method

:::::::::
comparison

:::::::
studies

::
to

:::::::
evaluate

::::::::
SuRRF’s

:::::
depth

::::::::::
estimation

::::::::::
performance

:::
for

:::
all

::::
nine

::::
lake

:::::::::
segments,

::::
and

::
to

::::::
briefly

::::::::
compare730

::::::
SuRRF

::
to

:::::
other

:::::::
methods

::::::
whose

::::::
results

::::
were

::::::::
included

::
in

:::::
these

:::
two

:::::::::::
comparative

::::::
studies

::::
(Fig.

::::
12).

:::
For

::
a
:::::::
detailed

::::::::::
comparison

:::::::
between

::::::
various

::::::::
ICESat-2

::::
lake

::::
depth

:::::::::
algorithms

:::::::::
(including

::
an

::::::
earlier

::::::
version

::
of

:::::::
SuRRF)

:::
and

::::::::::::
RTE-methods,

:::
we

::::
refer

:::
the

::::::
reader

::
to

::::::::::::::::
Fricker et al. (2021)

:
.
:::
For

:::::::
in-depth

::::::::::
discussions

:::::::::
comparing

::::::::
manually

::::::
picked

::::::::
ICESat-2

::::::
depths

::
to

:::::
RTE

:::::::
methods,

:::::::::::
DEM-based

:::::::::
approaches

::
as

::::
well

::
as

::::::::
empirical

::::::::
methods

::::
using

::
in
::::
situ

::::
data,

:::
we

::::
refer

:::
the

::::::
reader

::
to

:::::::::::::::::
Melling et al. (2024)

:::
and

:::::::::::::::
Lutz et al. (2024).

:

When run on the corresponding ATL03 granules, FLUID automatically detects all these lakes
::::
nine

::::
lake

::::::::
segments, and the735

SuRRF depth estimates track the general shape of the manually outlined lakebeds well (Fig. 12). This is also demonstrated

by an average Pearson’s correlation coefficient of R= 0.991
:::::::::
R= 0.992 for the nine lakes

:::
lake

::::::::
segments examined here, with

averages of R= 0.987 for the lakes
::::::::
R= 0.989

:::
for

:::
the

::::::::
segments on Amery catchment and R= 0.994 for the lakes

::::::::
segments in

Southwest Greenland. SuRRF depth estimates show an average bias of 0.27m
:::::
0.26m

:
deeper than the manually picked values,

with a mean absolute error (MAE) of 0.28m. For the lakes
::::::
0.27m.

::::
This

:::::
results

::
in
:::::::
SuRRF

::::::::
reporting

:
a
::::
total

::::::
amount

::
of

:::::
water

::::
that740

:
is
:::::
10%

:::::
larger

::::
than

:::
the

:::::::
estimate

:::::
given

:::
by

:::
the

::::::
manual

::::::::
baseline.

:::
For

:::
the

::::
lake

::::::::
segments

:
on Amery Ice Shelf, the average bias is

0.33m
:::::
0.29m

:
and the MAE is 0.33m

:::::
0.29m. For the lakes

:::
lake

::::::::
segments

:
in Southwest Greenland, the average bias is 0.24m

31



Figure 12.
::::::::

Comparison
:::::::

between
::::::
SuRRF

::::
water

:::::
depth

::::::::
estimates,

:::::::
manually

::::::::
annotated

:::::::
ICESat-2

:::::
depths

::::
and

:::::
results

::::
from

::::
other

:::::::
methods

:::
for

:::::::
meltwater

:::::
depth

::::::::
estimation

::
for

:::::
lakes

:
in
::::::::

Antarctica
::::

and
::::::::
Greenland.

:::::
a)-d):

:::::::
ICESat-2

::::
melt

:::
lake

:::::::
segments

:::
on

::
the

::::::
Amery

::
Ice

:::::
Shelf,

:::::::::
Antarctica,

:::
with

::::::
manual

:::::::::
annotations

:::::
from

:::::::::::::::
Fricker et al. (2021).

:::::
Other

::::::::
meltwater

:::::
depth

:::::::
estimates

:::
that

:::::
were

::::::
reported

:::
by

::::::::::
Fricker et al.

::
are

::::::
shown

:::
for

::
the

:::::
Watta

::::::::
algorithm

:::::::::::::::::::::::::::::::::::
(based on ICESat-2; Datta and Wouters, 2021)

::
and

:::
for

:::
the

::::
RTE

::::::
method

::::::
applied

:::
to

:::
the

::::::
average

::
of

:::::::
Landsat

:::
8’s

:::
red

:::
and

::::::::::
panchromatic

:::::
bands

::::::::::::::::
(Spergel et al., 2021)

:::
and

::
to
::::::::::

Sentinel-2’s
:::
red

::::
band

:::::::::::::::::
(Moussavi et al., 2020)

:
.
::::
e)-i):

::::::::
ICESat-2

::::
melt

:::
lake

::::::::
segments

:
in
:::::::::

Southwest
::::::::
Greenland

::::
with

::::::
manual

:::::::::
annotations

:::::
from

::::::::::::::::
Melling et al. (2024).

:::::
Other

::::::::
meltwater

:::::
depth

:::::::
estimates

::::
that

::::
were

:::::::
reported

:::
by

::::::::::
Melling et al.

::
are

::::::
shown

:::
for

::
the

::::
RTE

:::::::
method

:::::::::
individually

::::::
applied

::
to

::::
both

:::::::::
Sentinel-2’s

:::
red

::::
and

::::
green

::::::
bands,

::
as

::::
well

::
as

:::::::
estimates

:::::
from

::::::::::
post-drainage

::::::
lakebed

::::::::
topography

::
in

:::::::::
ArcticDEM

:::::
(based

::
on

:::::::::::::::
Bowling et al. 2019

:
).

:::::
SuRRF

:::::
depth

:::::::
estimates

::
are

::::::
shown

:::
only

:::::
where

::
the

::::::::
estimated

:::::::::
bathymetric

::::
signal

:::::::::
confidence

::::::
exceeds

:::
0.5.

::
To

::::
align

:::::::::
along-track

:::::
depths

::::
with

::
the

::::::
ATL03

::::::
photons

::::
(gray

:::::
dots),

::
the

::::::::
elevations

::
of

::::::
photons

:::::
below

::
the

:::::
water

:::::
surface

:::::::
elevation

::
of

::::
each

::::
lake

::::
(black

:::::
dotted

:::::
lines)

::::
were

:::::::
corrected

::
by

:::::::
dividing

::::
their

:::::
vertical

:::::::
distance

::::
from

::
the

:::::
lake’s

::::::
surface

::
by

:::
the

:::::::
refractive

::::
index

:::
for

::
the

:::::
speed

::
of

::::
light

::
in

::::
water.
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:::::
0.23m

:
and the MAE is 0.25m.

:::::
0.24m.

::::::
When

::::::::
applying

:::
the

::::::::
correction

:::
for

::::::::
multiple

::::::::
scattering

:::::
(Sect.

::::::
3.3.3)

::
to

:::::::
SuRRF

:::::
depth

::::::::
estimates,

:::
the

:::::::
average

:::
bias

::
is

:::::::
reduced

::
to

::::::
0.07m

::::::
deeper

::::
than

:::
the

::::::::
manually

:::::
picked

::::::
values,

:::::
with

:
a
:::::
mean

:::::::
absolute

::::
error

:::::::
(MAE)

::
of

:::::
0.15m

::::
and

:
a
::::::::
Pearson’s

:::::::::
correlation

:::::::::
coefficient

::
of

::::::::::
R= 0.993.

::::
This

:::::
results

::
in

:::
the

::::::::::::::::
scattering-corrected

:::::::
version

::
of

::::::
SuRRF

::::::::
reporting745

:
a
::::
total

::::::
amount

:::
of

:::::
water

:::
that

::
is

:::
3%

:::::
larger

::::
than

:::
the

:::::::
estimate

:::::
given

:::
by

:::
the

::::::
manual

::::::::
baseline.

Comparison between SuRRF water depth estimates and the manually annotated ICESat-2 depths. a)-d): melt lakes on the

Amery Ice Shelf with manual annotations from Fricker et al. (2021). e)-i): melt lakes in Southwest Greenland with manual

annotations from Melling et al. (2024). SuRRF depth estimates are shown only where the estimated bathymetric signal confidence

exceeds 0.5. To align along-track depths with the ATL03 photons (gray dots), water depth estimates were multiplied by the750

refractive index for the speed of light in water and subtracted from the surface elevation of each lake (black dotted lines).

Based on the nine lakes
::::
lake

::::::::
segments that were used to assess the accuracy of depth estimates, most algorithms (including

SuRRF) seem to estimate slightly greater depths than the manually picked values (Xiao et al., 2023). When the bathymetric

returns in the ATL03 point cloud are “fuzzy” the difference between the manual baseline and SuRRF water depth estimates

tends to become larger. The majority of algorithms for lake depth retrieval from ATL03 operate on the assumption that the755

elevation with the locally highest photon density corresponds to the elevation of the ice-water interface at the lakebed, yet most

altimetry experts placed the secondary return signal higher up in the point cloud, where the photon density first significantly

increases below the water surface (Fricker et al., 2021). We agree that the true location of the lakebed is likely at a higher

elevation than the along-track elevation of highest photon density, since multiple scattering increases the photon density below

the elevation of the lakebed. However, the elevation at which the photon density first significantly increases represents the760

highest point within ICESat-2’s 11m footprint and furthermore tracks the upper bound of ATLAS’s single-photon time-of-

flight uncertainty of 800ps (Markus et al., 2017), which corresponds to about 12cm in photon height uncertainty. We therefore

believe that the true water depth falls somewhere in between our (deeper) SuRRF estimates
:::
and

:
the (more shallow) manual

baseline estimates from Fricker et al. (2021) and Melling et al. (2024). This disparity in depth estimatesdemonstrates the

need for in-situ
:::
Our

:::::::::
scattering

:::::::::
correction

::
to

::::::
SuRRF

:::::
depth

:::::::::
estimates

::
is

::
an

:::::::
attempt

::
to

::::::::
reconcile

::::
this

:::::::
disparity

::::::::
between

:::::
depth765

::::::::
estimates.

::::::::
However,

::
in

:::
the

:::::::
absence

::
of

::::::
ground

::::
truth

::
in

::::
situ

::::::::
validation

::::
data

:::
for

::::::::
ICESat-2

:::
lake

:::::::::
segments,

:::
the

::::::
correct

:::::::::
magnitude

::
of

:::
this

::::::::
correction

:::::::
remains

:::::::::
unknown.

::::
This

:::::::::::
demonstrates

::
an

:::::
urgent

:::::
need

:::
for

::
in

:::
situ meltwater depth data that can be used to reliably

validate the accuracy of ICESat-2 estimates.

::::
Since

::::::
many

::::
lakes

:::
on

:::
the

:::::::::
Greenland

::::
Ice

:::::
Sheet

:::
are

::::::::
transient

:::
and

:::::
drain

::::
late

::
in

::::::
season

::::::::::::::::::::
(Johansson et al., 2013),

::
it
:::::
could

:::
be

:::::::
possible

:
to
::::::
obtain

::::::::::
independent

:::::::::::::
ICESat-2-based

::::::::
meltwater

:::::
depth

::::::::
estimates

::
by

:::::::::
comparing

::::
“full

:::
vs

::::::
empty”

::::::::::
repeat-track

::::::::::::
measurements770

::::
along

:::::::::
ICESat-2

::::
lake

::::::::
segments

::::::
before

:::
and

::::
after

::::
the

::::::::
drainage.

::::::::
However,

::::
this

::::::::
approach

:::::
would

::::::
suffer

::::
from

:::::
many

:::
of

:::
the

:::::
same

:::::::::
drawbacks

:::
that

:::::
affect

:::::
depth

:::::::::
estimation

:::::
from

:::::
DEMs

:::
of

:
a
:::::
lake’s

::::
bed

:::::::::
topography

::::
that

::::
were

::::::::
acquired

::::
after

::
it

::::::
drained

:::::
(Sect.

:::::
2.2),

::
for

::::::::
example:

::::::
effects

::
of

:::::::::::
lake-bottom

:::::::
ablation,

::::::
surface

::::::::
elevation

::::::
change

:::::
from

:::::::::::
precipitation

:::
and

:::::::
blowing

:::::
snow

:::::::
deposits,

:::
as

::::
well

::
as

::::::::::
across-track

::::::::
advection

:::
of

::::::
surface

::::::::::::
topographical

:::::::
features.

:::::::::::
Furthermore,

::::
this

::::::::
approach

:::::
would

::::
not

::
be

:::::::
feasible

::
in

::::::::::
Antarctica,

:::::
where

::::
lake

:::::::
drainage

::
is

::::
very

::::
rare,

::
in

::::::::
particular

::
on

::::::::
grounded

::::
ice.

::
In

::::
cases

::::::
where

::::
melt

:::
lake

::::::::
drainage

:
is
::::::::
observed

:::
on

::
the

:::::::
floating

:::
ice775

::::::
shelves,

:::::::::
obtaining

:::::
water

:::::
depth

::::
from

::::::::::
repeat-track

::::::::
elevation

::::::
change

::
is
:::
not

:::::::
possible

::::
due

::
to

:::
the

::::::::
advection

:::
of

::::::
surface

::::::::::
topography
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::::
with

:::
the

:::
ice

::::
flow

:::
and

::::::::::::
post-drainage

:::::::
flexural

:::::::
rebound

:::::::::::::::::
(Warner et al., 2021)

:
.
::::
Due

::
to

:::::
these

:::::::::::
complexities,

:::
we

:::
do

:::
not

:::::::
attempt

::
to

::::::
validate

::::::::
ICESat-2

::::
lake

:::::
depth

::::::::::::
measurements

:::::
using

:::
this

:::::::
method.

:

::
In

:::::::
addition

::
to

:::::::
SuRRF

:::
and

:::::::
manual

:::::
depth

:::::::::
estimates,

:::::
panels

:::::
a)-d)

::
of

::::
Fig.

:::
12

:::::
show

:::::
depth

::::::::
estimates

:::
for

::::::::
Antarctic

:::::
lakes

::::
that

::::
were

:::::::
reported

::
in

:::::::::::::::::
Fricker et al. (2021),

:::
for

:::
the

:::::
Watta

:::::::::
algorithm

::::::::::::::::::::::::::::::::::::::
(based on ICESat-2; Datta and Wouters, 2021)

:::
and

:::
for

:::
the

::::
RTE780

::::::
method

::::::
applied

:::
to

:::
the

::::::
average

:::
of

:::::::
Landsat

:::
8’s

:::
red

:::
and

::::::::::::
panchromatic

:::::
bands

::::::::::::::::::
(Spergel et al., 2021)

:::
and

::
to

::::::::::
Sentinel-2’s

:::
red

:::::
band

::::::::::::::::::
(Moussavi et al., 2020)

:
.
:::::
Both

::::::
SuRRF

::::
and

::::::
Watta

:::::
track

:::
the

:::::::
general

:::::
shape

:::
of

:::::::
lakebed

::::::
returns

::
in
::::

the
::::::
ATL03

:::::::
photon

::::::
clouds

:::
well

:::::::::
(Pearson’s

::::::::::
correlation

:::::::::
coefficients

:::
of

::::::::
R= 0.99

:::
and

:::::
0.94,

:::::::::::
respectively),

::::
and

:::
and

::::::
largely

:::::
agree

::::
with

::::::::
manually

::::::::::
determined

:::::::::
along-track

:::::
water

::::::
depths

::::::
(MAEs

::
of

::::::
0.29m

::::
and

::::::
0.30m,

::::::::::::
respectively).

::
In

:::::::
contrast

::
to

::::::
SuRRF,

::::::
Watta

::::::
appears

::
to

:::::
have

:
a
::::::::
tendency

::
to

:::::
overfit

::::::
where

::::::
photon

::::::
density

::::
near

:::
the

:::::::
lakebed

::
is

::::
high

::::
with

::
a
::::
large

::::::::
elevation

::::::
spread,

::::::::
resulting

::
in

:::
an

:::::::::::
unreasonably

::::::::
“wiggly”785

::::::
lakebed

:::
fit

::::
(e.g.,

::::::::
Antarctic

::::
lake

:::
1,

::::::::::
500-800m).

::::::::
SuRRF’s

::::::::
smoother

::
fit

::::::
under

::::
these

:::::::::
conditions

::
is
::::::

likely
:::
due

::
to
::::

the
:::
fact

::::
that

::
it

::::::
utilizes

::
an

:::::::
adaptive

::::::
kernel

:::
for

::
its

::::::
robust

:::
fit,

:::::
whose

:::::
width

::::::::
increases

:::
as

:::
the

::::::
number

::
of
:::::::

photons
::::
that

::::::::
narrowly

::::::
cluster

::::::
around

:::
the

:::::::
previous

::::::::
iteration’s

:::
fit

::::::::
decreases

:::::
(Sect.

::::::
3.3.1).

:::
In

:::::::
contrast

::
to

:::::::
SuRRF,

:::::
Watta

::::
also

:::::::
attempts

::
to
:::

fit
:::
the

:::::::
lakebed

:::::
across

::::
the

:::::
entire

:::
lake

::::::
basin,

::::
even

::::::
where

:::
the

:::::::
lakebed

::
is

:::
not

::::::
visible

:::
or

::::::::::::::
indistinguishable

:::::
from

:::::
noise,

::::::
which

:::
can

:::::::::
sometimes

:::::
result

:::
in

::::::::
arbitrary,

::::::::
unrealistic

:::::
depth

:::::::::
estimates

::::
(e.g.,

:::::::::
Antarctic

::::
lake

::
1,

::::::
around

:::::::
450m).

::::::
Under

::::
such

:::::::::
conditions

:::::::
SuRRF

::::::
assigns

::
a

:::
low

::::::::::
confidence790

::::
score

::
to

:::
the

:::::::
lakebed

::
fit

:::
and

:::::::
discards

:::::::::
associated

:::::
depth

::::::::
estimates

::
to

::::::
prevent

::::::::
arbitrary

::::::
results.

::::::::
However,

::
in

:::::
some

:::::
cases

:::
this

::::::
results

::
in

::::::
SuRRF

:::::::::
discarding

::::
depth

::::::::
estimates

::::::
where

:::::
Watta

::::::
appears

::
to

::
fit

:::
the

:::::::
lakebed

:::::::::
reasonably

::::
well

::::
(e.g.,

::::::::
Antarctic

::::
lake

::
3,

::::::::::
250-300m).

:::
The

::::
RTE

::::::::
approach

:::::
based

:::
on

::::::
Landsat

:::
8’s

:::::::::::::::
red/panchromatic

::::
band

:::::::
average

::::::::::
consistently

::::::::::::
underestimates

:::::
water

:::::::
depths,

:::::::
reporting

::
a

::::
total

::::::
amount

::
of

:::::
water

::::
that

::
is

::::::
∼ 73%

:::::
lower

::::
than

::::
the

::::::
manual

::::::::
baseline.

:::
The

:::::
RTE

:::::::
approach

::::::
based

::
on

::::::::::
Sentinel-2’s

:::
red

:::::
band

::::
also

::::::::::::
underestimates

:::::
water

::::::
depths,

::::
and

::::::
reports

:
a
::::
total

:::::::
amount

::
of

:::::
water

:::
that

::
is

::::
34%

:::::
lower

::::
than

:::
the

:::::::
manual

:::::::
baseline.

:
795

:::::
Panels

::::
e)-i)

::
of

::::
Fig.

::
12

::::
also

::::
show

::::::::::::
non-ICESat-2

::::
depth

::::::::
estimates

:::
for

:::::::::
Greenland

::::
lakes

::::
that

::::
were

:::::::
reported

::
in

:::::::::::::::::
Melling et al. (2024)

:
,
::
for

:::
the

:::::
RTE

::::::
method

:::::::::::
individually

::::::
applied

::
to

::::
both

:::::::::::
Sentinel-2’s

:::
red

:::
and

:::::
green

::::::
bands,

::
as

::::
well

:::
as

::::::::
estimates

::::
from

::::::::::::
post-drainage

::::::
lakebed

::::::::::
topography

::
in

::::::::::
ArcticDEM

:::::
(based

:::
on

::::::::::::::::
Bowling et al. 2019

:
).

:::
The

::::
RTE

::::::::
approach

:::::
based

:::
on

::::::::::
Sentinel-2’s

:::
red

::::
band

::::::::
generally

::::::::::::
underestimates

::::::
depths

:::
and

::::::
reports

:
a
::::
total

:::::::
amount

::
of

:::::
water

:::
that

::
is
:::::
42%

:::::
lower

::::
than

::
the

:::::::
manual

:::::::
baseline

:::::::
(similar

::
to

:::
this

::::::::
method’s

::::::::::
performance

::::
over

::::::::
Antarctic

::::::
lakes).

:::
In

:::::::
contrast,

:::
the

::::
RTE

::::::::
approach

::::::
based

::
on

::::::::::
Sentinel-2’s

::::::
green

::::
band

::::::::
generally

::::::::::::
overestimates800

:::::
depths

::::
and

::::::
reports

:
a
::::
total

:::::::
amount

::
of

:::::
water

::::
that

:
is
:::::
34%

:::::
larger

::::
than

:::
the

::::::
manual

::::::::
baseline.

::::::::
However,

::::::::::::
Melling et al.

:::
also

::::
note

::::
that

::::
when

:::::
using

:::::
values

:::
of

:::::::
tuneable

:::::::::
parameters

:::
that

::::
have

::::
been

:::::::::
commonly

::::
used

::
in
:::
the

::::::::
literature

::
in

:::
the

:::
past

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Sneed and Hamilton, 2007; Georgiou et al., 2009; Pope et al., 2016)

:
,
::
the

:::::
RTE

:::::::
approach

:::
for

::::::::::
Sentinel-2’s

:::::
green

:::::
band

:::::::::::
overestimates

::::
lake

::::::
depths

::::
even

:::::
more,

:::::
which

::::::
results

::
in

::::::::
reporting

:
a
::::
total

:::::::
amount

::
of

:::::
water

:::
that

::
is

::::
84%

::::::
larger

:::
the

::::::
manual

::::::::
baseline,

::::
with

::::::::
individual

::::::
depths

:::::
being

::::::::::::
overestimated

::
by

:::
up

::
to

::::::
153%.

::::
This

::::::
implies

::::
that

:::::::::
RTE-based

::::::::
methods,

:::::
while

:::::
being

:::::::
popular

:::
for

::::
their

:::::::::
simplicity,

::::
can

:::::::::
potentially

:::::
result

:::
in

:::::
highly

:::::::::
inaccurate

:::::::::
meltwater

:::::::
volume805

::::::::
estimates.

::::
The

:::::
depth

::::::::
estimates

::::::
derived

:::::
from

::::::
DEMs

::
of

:::::::
emptied

::::
lake

::::::
basins

:::::
match

::::
the

::::::::
ICESat-2

::::::
manual

:::::::
baseline

::::::::::
reasonably

::::
well,

:::
and

:::::
when

:::::::::
compared

::::
with

:
it
::::::::::::

underestimate
:::
the

::::
total

:::::::
amount

::
of

:::::
water

:::
by

:::
6%

::::
with

::
a

:::::
MAE

::
of

::::::
0.34m.

:::::
Since

::::
this

::::::::
method’s

::::::::::
performance

::
is

::::::::::
comparable

::
to

:::
that

::
of

:::::::::::::
ICESat-2-based

::::::::
methods,

:::
this

::::::
implies

::::
that

::::::::::
DEM-based

:::::::
methods

:::::
could

::
be

::::
used

::::::::::
supplement

:::::::
ICESat-2

:::::
depth

::::::::::::
measurements

:::
for

:::::::
labeling

:::::::::
reflectance

::
in

::::::
passive

::::::
optical

:::::::
imagery

::::
with

::::::::::
supraglacial

:::::
water

::::::
depths,

::
at
::::
least

:::
on

:::
the

::::::::
Greenland

:::
Ice

:::::
Sheet

::::::
where

::::
melt

::::
lakes

:::
on

::::::::
grounded

:::
ice

::::
drain

::::::::
regularly

:::::::::::::::::::
(Johansson et al., 2013)

:
.810
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4.3 ICESat-2 bathymetry over other targets

Beyond estimating the depth of supraglacial lakes, ICESat-2’s bathymetric capabilities have been used for various other appli-

cationssuch as
:
.
:::::
Many

:::::::::
algorithms

:::::::::
employed

:::
for

:::::
depth

:::::::
retrieval

:::::
from

::::::
ATL03

:::::
share

:::::::::
significant

::::::::::
similarities,

::::::::
enabling

:::::::
method

::::::::::
development

:::
for

:::::::::::::::
ICESat-2-derived

::::::::::
bathymetry

::
to
:::::::

benefit
::::
from

:::::::
broader

::::::::::::::
cross-discipline

:::::::::::
collaboration

:::::::::::::::::
(Parrish et al., 2022)

:
.

:::::::
Methods

::::::
similar

::
to

:::::::::::::
FLUID-SuRRF

::::
have

:::::
been

::::
used

:::
for satellite-derived nearshore ocean bathymetry (e.g.; Parrish et al., 2019;815

Ma et al., 2020; Thomas et al., 2021), estimating water depths of inland waters (e.g.; Li et al., 2019; Xu et al., 2020; Jasin-

ski et al., 2023) and tracking the evolution of melt pond depths on sea ice (e.g.; Farrell et al., 2020; Tilling et al., 2020;

Herzfeld et al., 2023; Buckley et al., 2023).
:::::::
However,

:::::
there

:::
are

::::
also

::::::
notable

::::::::::
differences

:::::::
between

::::::::::
bathymetric

::::::::::
applications

:::
of

:::::::
ICESat-2

::
in
::::::::
different

:::::::::::
environments

:::
that

::::
have

:::
led

::
to

:::
the

:::::::::::
development

::
of

:::::::::
specialized

::::::::::
approaches,

::
in

::::::::
particular

:::
for

::::
their

:::::::::
large-scale

:::::::::::::
implementation.

:
For nearshore and inland bathymetry applications, the locations of the desired bathymetry estimates are usu-820

ally known a priori and the bottom topography is often considered constant, so bathymetric measurements can be accumulated

over time and compared to non-concurrent validation data. In contrast, the ephemeral nature of supraglacial lakes on the ice

sheets and melt ponds on sea ice makes it necessary to automatically detect their locations directly from ATL03 and makes it

more difficult to reliably validate depth estimates. Our FLUID algorithm addresses this issue for supraglacial lakes on the ice

sheets: it automatically detects the locations of lakes by relying on the fact that the water surface reflection over open water825

presents as a flat line in geoid-corrected ICESat-2 elevation data, while the surrounding topography on the ice sheets is almost

always sloped. This makes our algorithm efficient over the ice sheets by discarding most non-lake photon segments in the first

“flatness check” step. However, it makes our algorithm less suited for detecting lakes on sea ice, where most segments over the

open ocean and thin sea ice would likely pass the flatness threshold.

4.4 Future studies830

Our ICESat-2-derived water depths are the first comprehensive dataset of supraglacial lake depths that were directly measured

from a satellite; however, they .
::::::::
However,

:::::
these

:::::::::
along-track

:::::::::::
observations

:::::
alone are too sparsely spaced in space and time to al-

low for the calculation of lake volumes or for the continuous tracking of meltwater throughout the progression of a melt season.

However, the
:::
The

:
large volume and wide variety of accurate water depth data that our method provides implies that the results

presented here
::::::
suggest

:::
that

::::::::::::::
ICESat-2-based

:::::
depth

::::::::::::
measurements

::::::::
obtained

::::
from

::::::::
applying

:::::::::::::
FLUID-SuRRF

::
at
:::::::::::::

ice-sheet-wide835

::::
scale could be used to better constrain parameters in existing methods which estimate meltwater volumes from high-resolution,

spatially continuous satellite imagery. Furthermore, our method could be used to extract pan-ice-sheet meltwater depths and

combine them with concurrent satellite imagery, thus providing a training data set that would enable the development of data-

driven models of the relationship between meltwater depth and satellite imagery reflectances, based on statistical learning

methods.
::::
Since

::
in

:::
the

:::::::
absence

::
of

::::::
ground

:::::
truth

::::::::
validation

::::
data

:::
our

:::::
depth

:::::::::
validation

:::::
efforts

:::::
were

:::::
based

::
on

:::::::
manual

:::::::::
annotation

::
of840

::
the

:::::
data,

:::
we

:::::::::::
acknowledge

:::
that

:::::
there

::::
may

::
be

::
a
:::::
small

:::
but

:::::::::
potentially

:::::::::
significant

::::
bias

::::::
towards

:::::::::::::
overestimating

:::::
water

::::::
depths

::::
with

:::::::::::::
FLUID-SuRRF.

::::
This

:::::::::
highlights

::
an

::::::
urgent

::::
need

:::
for

::::::
ground

:::::
truth

::
in

::::
situ

:::::
water

:::::
depth

::::::::::::
measurements

::
of

::::::::::
supraglacial

:::::
lakes

::::
that

:::::::
coincide

::::
with

::::::::
ICESat-2

:::::::::
overpasses,

::
to
::::::
enable

:::::::::
calibration

::::
and

::::::::
validation

::
of

:::::
depth

:::::::::
estimates.
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5 Summary

Supraglacial lakes form seasonally around most of the margins of the Greenland and Antarctic ice sheets. In a warming climate,845

these lakes have the potential to significantly impact the future stability of both ice sheets through processes that are not yet

understood well-enough
::::
well

::::::
enough

:
to be included into models. To confidently project future sea-level rise, better satellite

observations of surface meltwater are needed to enable science that produces a better mechanistic understanding of how ice

dynamics are impacted by the pooling of surface meltwater in lakes. Until recently, any available methods used to estimate

supraglacial lake depth from satellite data have been required to make strong assumptions and to use poorly constrained850

parameters, making it difficult to accurately assess the distribution of meltwater volumes across ice surfaces. Multiple case

studies have successfully demonstrated that supraglacial lake depths can now be directly measured from photon refraction in

ICESat-2’s laser altimetry data. However, ICESat-2 data had not previously been used at scale for this purpose because its

photon-level product comprises hundreds of terabytes of unstructured point cloud data along spatially discrete ground tracks,

which makes it difficult to integrate the data with spatially continuous data in existing workflows.855

To address this challenge, we have presented the fully automated, two-step FLUID/SuRRF algorithm for the detection and

depth determination of supraglacial lakes on the ice sheets in ICESat-2 photon data, and proposed a computational framework

that allows for its large-scale implementation across
:::::
users

::
to

:::::
detect

::::
lake

::::::::
segments

::::
and

:::::::::
determine

::::
their

:::::
water

::::::
depths

::::::
across

::
all

::::::::
available

::::::::
ICESat-2

::::
data

:::
for

:
any desired ice sheet drainage basins and melt seasons.

:::::
Using

:::::::::
distributed

::::::::::::::
high-throughput

:::::::::
computing,

::::
this

:::::::::
framework

:::::::
applies

:::
the

::::
fully

::::::::::
automated,

::::::::
two-step

:::::::::::::
FLUID/SuRRF

::::::::
algorithm

:::
to

::::
large

::::::::
numbers

:::
of

::::::::
ICESat-2860

::::::
ATL03

::::::
photon

::::
data

:::::::
granules

::
in

:::::::
parallel.

:
To test our method, we applied it

::::::::::::
FLUID-SuRRF

:
to all available ICESat-2 data over

two drainage basins, one on the Antarctic Ice Sheet and one on the Greenland Ice Sheet, for a high-melt and a low-melt

summereach. We have demonstrated the following for our method:

1. It reliably detects supraglacial lakes
:::
lake

::::::::
segments based on the flatness of their surface and the presence of a lakebed

return.865

2. There is a potential for false positives, but their impact can be effectively mitigated by filtering for the strength of the

bathymetric signal.

3. Water depth estimates are accurate based on manual validation of the data, however, there is an urgent need for in-situ
::
in

:::
situ data for definitive ground truthing.

4. It can be applied at scale by leveraging distributed high-throughput computing.870

5. The resulting data effectively capture spatial and temporal variability in meltwater extent and depth.

Our framework can be used to generate a comprehensive data product of supraglacial lake depths for Greenland and Antarc-

tica since the launch of ICESat-2, which would enable the development of data-driven models of meltwater volumes in satellite

imagery.
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Code and data availability. The FLUID/SuRRF source code is freely available at https://doi.org/10.5281/zenodo.10905941 (Arndt and875

Fricker, 2024a). To execute this code, users need to create a free NASA Earthdata login for ICESat-2 data access. The source code con-

tains a singularity container in which this version of FLUID/SuRRF can be executed. The main Python script detect_lakes.py can

be run either locally on any individual ATL03 granule, or on many granules in parallel on any computing cluster that supports the specified

computing environment or the use of singularity containers. In this study we present our implementation of FLUID/SuRRF on the OSG Open

Science Pool because it provided us with free computational infrastructure. Due to funding mandates, free access to the OSG Open Science880

Pool is limited to researchers contributing to a US-based project at an academic, government, or non-profit organization, or researchers

affiliated with any project or institution that operates its own local access point. This means that to implement FLUID/SuRRF on the OSG

Open Science Pool as described here, you need to have at least one collaborator on your team to whom these criteria apply. This collaborator

can register your project with OSG on the Open Science Pool. Then, anyone contributing to the project can register for an account on OSG

Connect to gain access to the Open Science Pool. For more information, see https://osg-htc.org/services/open_science_pool.html and https:885

//osg-htc.org/about/organization/. More information is also included in the README file. The supraglacial meltwater depth estimates and as-

sociated “quicklook” plots for all 1249 lake segments identified in this study are available at https://zenodo.org/doi/10.5281/zenodo.10901737

(Arndt and Fricker, 2024b). All data and code needed to reproduce the figures in this study, as well as supplementary figures, are avail-

able at https://doi.org/10.5281/zenodo.10901826 (Arndt and Fricker, 2024c). ICESat-2 ATL03 data is available at NSIDC (Neumann et al.,

2023b). Sentinel-2 and Landsat imagery were accessed via Google Earth Engine (Gorelick et al., 2017). Drainage basins for Greenland890

are available at DRYAD (Mouginot and Rignot, 2019). Drainage basins for Antarctica are available at NSIDC (Mouginot et al., 2017).

ArcticDEM mosaics for elevation thresholding are available at https://www.pgc.umn.edu/data/arcticdem/ (Porter et al., 2023) and REMA

DEM mosaics are available at https://www.pgc.umn.edu/data/rema/ (Howat et al., 2022). ICESat-2 ground track KML files are available at

https://icesat-2.gsfc.nasa.gov/science/specs.

Appendix A: Calculation of photon density ratios in FLUID flatness check895

For a given major frame, let lmframe ≈ 140m be the along-track length of the major frame, and let P be the set of photons with

hi denoting the geoid-corrected height of photon i ∈ P . We calculate the five photon densities used in the flatness check as:

d0 =

∑
i∈P [|hi −hpeak| ≤ wpeak]

2wpeaklmframe
(A1)

d1 =

∑
i∈P [0< hi −hpeak −wpeak ≤ wbuffer]

wbufferlmframe
(A2)

d2 =

∑
i∈P [−wbuffer ≤ hi −hpeak +wpeak < 0]

wbufferlmframe
(A3)900

d3 =

∑
i∈P [|hi −hpeak|>wpeak]

(hmax −hmin − 2wpeak) lmframe
(A4)

d4 =

∑
i∈P [hi −hpeak >wpeak]

(hmax −hpeak −wpeak) lmframe
(A5)

where wpeak = 0.1m is the width of the density peak, wbuffer = 0.35m is the width of the buffer around the peak, and hmin and

hmax are the bottom and the top of the telemetry window, respectively. Here [·] are Iverson brackets, which evaluate to 1 if the

condition inside the brackets is true, and to 0 otherwise.905
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Appendix B: Calculation of photon signal confidences in FLUID

Let P be the set of photons within an along-track segment (e.g., a major frame), and for each photon i ∈ P , let xi and hi be

the along-track distance and elevation, respectively. To give appropriate relative weights to the two spatial dimensions when

calculating photon densities, we need to adjust along-track distance by an aspect ratio parameter ra. We found that for typical

supraglacial lakes
::::
lake

::::::::
segments, a value of ra = 30 works well. Denote by x̃= x/ra the aspect-ratio-adjusted along-track910

distance. We now want to express a photon’s signal confidence as the average of the inverse euclidean distances between the

photon and up to kmax nearest neighbors within a search radius of rs, where distances are normalized and clamped to this

search radius. Let Ki be the set of photons including i and its kmax nearest neighbors, i.e. Ki ⊆ P s.t. |Ki|= kmax +1 and

di,j ≥ max
n∈Ki

di,n ∀j ∈ P \Ki (B1)

where915

di,j =

√
(x̃j − x̃i)

2
+(hj −hi)2 (B2)

is the aspect-ratio-adjusted euclidean distance between photons i and j. Then, the signal probability of photon i is estimated as

pi =
1

kmax

kmax −
∑
j∈Ki

(
min(di,j , rs)

rs

)
+1

 . (B3)

Note that this implies pi ∈ [0,1]. In particular, pi = 0 if photon i does not have any neighbors within a radius of rs, and920

pi would be equal to 1 only for a “perfect photon”, whose location coincides exactly with that of kmax other photons. To

effectively discriminate between signal and noise, we need to choose kmax and rs in a way such that typical background noise

photons are assigned a small target value, which we set to pnoise = 0.05.

Assuming that a major frame contains only noise photons and a flat surface with a signal photon spread of wsignal = 0.3m,

we can estimate the aspect-ratio-adjusted mean area per background photon (i.e. the inverse photon density) as925

a=
(hmax −hmin − 2wsignal) lmframe

ra
∑

i∈P [|hi −hpeak|>wsignal]
. (B4)

If background noise photons follow a random uniform distribution, this means that to find an expected k neighbors around a

typical background photon, one would have to search within a radius of r(k) =
√

a(k+1)/π around that photon. Using the

fact that the average inverse distance of a point in a circle with radius R to it’s
::
its origin is R/3 (Stone, 1991), we can set

rs =
√
3pnoiser(kmax) =

√
3apnoise(kmax +1)

π
(B5)930

to ensure that pi ≤ pnoise for typical background noise photons. We found that setting kmax = 15 strikes a good balance between

being sensitive enough to small-scale signals, and being too sensitive to small amounts of noise photons clustering together by

random chance.
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Appendix C: Calculation of quality heuristics in FLUID bathymetry check

To detect any potential bathymetric returns in a major frame, we divide it into nseg = 10 along-track sub-segments of equal935

length. For each sub-segment, we calculate the median of the FLUID photon-level signal probability pi for photons i within

0.1m elevation bins, assigning a value of zero whenever there are no photons within any bin. This results in an empirical

function that relates signal probability to elevation h, which we here denote by p(h). In addition, we calculate the analogous

function of photon density d(h) as a simple histogram for 0.01m elevation bins. Let d′(h) = d(h) ∀h : |h−hpeak|>wsignal and

zero otherwise. Denote by ·|l a smoothing operator using a gaussian window with standard deviation of l. Now calculate signal940

confidence as a function of h as

c(h) = p(h)|lmin

(
d(h)|l

maxh d′(h)|l
,1

)
, (C1)

where p(h) is linearly interpolated to match the domain of d(h). Note that this implies p(h) ∈ [0,1] ∀h in the telemetry window.

To determine whether a potential bathymetric signal peak is present, we find peaks in c(h). If there are at least two peaks with

prominence ρ≥ 0.1, and the elevation of the peak closest to hpeak is found within an elevation difference of wsignal, then out of945

the peaks whose elevation is below hpeak −wsignal the peak with the highest prominence is considered a potential bathymetric

peak. Denote by npeaks the number of potential bathymetry peaks found in the major frame, and let hi be the elevation and

ρi the prominence of peak i ∈ [1,2, . . . ,npeaks]. We only consider the major frame to be potentially part of a lake
:::::::
segment

:
if

npeaks ≥ 3. In this case, we define the following heuristics for different components that affect the quality of the bathymetric

return within the major frame.950

q1 = f3/2 (C2)

q2 =min

(∑
i ρi

npeaks
2(min({2f,1})− 1)+1,1

)
(C3)

q3 =min

(
1

log5 (max(∆h,1.1))
,1

)
(C4)

q4 =
1

1+ dh

max(∆h,0.5nseg)

(C5)

where f = npeaks/nseg is the fraction of sub-segments for which a potential bathymetric peak was detected, ∆h=maxihi −955

minihi is the elevation spread of the detected peaks, and

dh =−
nseg−1∑
i=2

|hi −hi−1|+ |hi+1 −hi|
2

max(sgn(hi −hi−1)sgn(hi+1 −hi),0) . (C6)

Note that the quality heuristics qi ∈ [0,1]∀i, with higher values implying a “better” bathymetric signal. The expressions used

here were derived by trial-and-error and designed such that q1 penalizes major frames with smaller numbers of detected

bathymetry peaks, q2 penalizes major frames with less prominent peaks, q3 penalizes major frames with a very large overall960

spread of peak elevations, and q4 penalizes major frames with peak elevations that do not align along a smooth surface. Based

on these quality heuristics for the major frame, we calculate a quality summary qs =
∏4

i=1 qi for each major frame.
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:::::
While

:::
the

::::::
quality

:::::::::
heuristics

::
qi:::::

were
:::::::
obtained

:::
by

:::::::::::::
trial-and-error,

:::
the

::::::
starting

::::::
points

:::
for

::::
this

::::::::
approach

:::::
were

:::::
based

:::
on

:::
the

::::::::
following

::::::::::
assumptions

::::
and

:::::::::::
observations:

–
:::
The

:::::::
starting

::::
point

:::
for

:::
q1::::

was
:::
the

::::
idea

:::
that

::::::
major

::::::
frames

::::
with

:
a
:::::::
smaller

:::::::
number

::
of

:::::::
detected

::::::::::
bathymetry

:::::
peaks

:::
are

::::
less965

:::::
likely

::
to

::::
have

::
a

::::::::
consistent

::::::
signal

::::
from

::
a
:::::::
lakebed.

::::
The

::::
way

:::
the

::::::::
equation

:::
for

::
q1::

is
::::::::
designed,

::::::
major

::::::
frames

::::
with

::
a

::::
very

::::
small

:::::::
fraction

:::
of

:::::::
detected

::::::::::
bathymetry

:::::
peaks

:::::::::
(0 to 30%

::
of

::::::::::::
sub-segments)

:::
are

::::::::::::::::
disproportionately

:::::::::
penalized,

::::
since

:::::
such

::::
small

::::::::
numbers

::
of

:::::
peaks

:::
are

:::::
much

::::
more

:::::
likely

:::
to

::
be

:::::
noise.

:

–
:::
The

:::::::
starting

::::
point

:::
for

::
q2::::

was
:::
the

::::
idea

:::
that

::::::
major

::::::
frames

::::
with

:::
less

:::::::::
prominent

:::::
peaks

::::::::
represent

:::::
either

:
a
::::::
weak,

::::::::::
inconsistent

::::::::::
bathymetric

:::::
signal

::
or

:::::
noise.

:::::
Here,

::
q2::

is
:::::
equal

::
to

:::
the

::::
mean

::::::::::
prominence

:::
of

:::::
peaks

::::
when

:::
the

:::::::
fraction

::
of

:::::::
detected

::::::::::
bathymetry970

:::::
peaks

:::::::
f ≤ 0.5.

::::::::
However,

:::
for

:::::::
fractions

:::::
larger

::::
than

::::
0.5,

:::
the

:::::::::
assumption

::
is
::::
that

:::
the

::::::::::
bathymetric

:::::
signal

::
is

::::::::
consistent

:::::::
enough

:::
that

::::
even

:::::::
smaller

::::
mean

:::::
peak

::::::::::
prominence

:::::::
suggests

:::
that

:::
the

::::::::::
bathymetric

::::::
signal

::
is

:::::
clearly

:::::::
visible.

–
:::
The

:::::::
starting

::::
point

:::
for

:::
q3::::

was
:::
the

::::::::::
observation

:::
that

::
in
:::::

most
:::::
cases

::::::::::
supraglacial

::::
lake

::::::::
segments

::::
with

::
a
::::::
usable

::::::::::
bathymetric

:::::
signal

::::
have

:::::
fairly

:::::
small

::::::
lakebed

::::::
slopes.

:::::::::
Therefore,

:::
we

:::
do

:::
not

:::::
expect

:::
the

:::::::
lakebed

::::::::
elevation

::
of

:
a
::::::
major

:::::
frame

::::
with

:
a
:::::
good

:::::
signal

::
to

::::
span

::
a
::::
large

::::::::
elevation

::::::
range.

::
In

::::::::
contrast,

:::
we

:::::::
observed

::::
that

:::::
major

::::::
frames

:::::
with

:::::::
detected

::::::::
potential

::::::::::
bathymetric975

:::::
peaks

:::
that

::::
span

::
a
::::
very

::::
large

::::::::
elevation

:::::
range

:::
are

:::::
often

:::
due

::
to
:::::

noise
::
in

:::
the

:::::
data.

:::::
Based

:::
on

::::
this,

:::
we

:::::::
designed

:::
the

::::::::
equation

::
for

:::
q3 ::::

such
::::
that

::
its

:::::
value

:::::
drops

:::
off

::::
once

:::
the

::::
total

::::::::
elevation

:::::
range

::
of

::::::::
detected

:::::::::
bathymetry

:::::
peaks

::::::
within

:::
the

:::::
major

::::::
frame

::
(of

::::::
length

::::::::
≈ 140m)

:::::::
exceeds

:::
5m.

::::::
There

:::
are,

::::::::
however,

::::
some

::::
lake

::::::::
segments

::::
with

:
a
:::::
clear

::::::::::
bathymetric

:::::
signal

:::
that

:::
do

::::::
exhibit

:
a
::::
large

:::::
range

:::
of

::::::
lakebed

:::::::::
elevations

:::::
(often

::::
due

::
to

:
a
:::::
single

:::::
burst

::
of

:::::
noise

:::::
being

:::::::
detected

::
as

::
a

:::::::
potential

::::::::::
bathymetric

::::::
peak).

::::::::
Therefore,

:::
we

:::::
made

::::
sure

:::
that

:::
the

:::::
value

:::
for

::
q3::

is
:::::
large

::::::
enough

:::
for

:::::
major

::::::
frames

::
to

::::
still

::::
pass

:::
the

:::::::::
bathymetry

::::::
check

:
if
::::
∆h980

:
is
::::
very

:::::
large

:::
but

::
its

:::::
other

::::::
quality

::::::::
heuristics

::
qi:::

are
:::::
closer

::
to
::
1.
:

–
:::
The

:::::::
starting

::::
point

:::
for

:::
q4 :::

was
:::
the

::::
idea

::::
that

::
in

:::::
most

::::
cases

::::::::::
bathymetry

::::
peak

:::::::::
elevations

::::
will

::::
align

:::::
along

::
a
::::::
smooth

:::::::
surface

::
in

:::
the

::::::::::
along-track

:::::::
distance

::::::::
direction

:::::
rather

:::::
than

::::::::
randomly

::::::::
fluctuate

::::::
(which

::
is
:::::::
usually

:::
the

::::
case

:::
for

::::::
noise).

::::::
Here,

:::
we

:::::::
penalize

::::
every

:::::::::
“direction

:::::::
change”

::::
(i.e.,

::::::::
wherever

:
a
::::
peak

::::
has

:::
two

::::::::
neighbors

::::
and

::
its

::::::::
elevation

:::::::::
constitutes

:
a
::::
local

:::::::::
minimum

::
or

::::::::::
maximum).

:::
We

:::::
allow

:::
for

:::::::
random

::::::::::
fluctuations

::
of

:::
up

::
to

:::::
0.5m

:::
per

:::::
peak

::::::::
detection

:::::::
without

:
a
:::::

large
:::::::
penalty,

:::::
since

:::
we985

:::::::
observed

::::
that

:
a
::::::
vertical

::::::
photon

::::::
spread

::
of

:::
up

::
to

:::::
about

:::
this

:::::
value

::
is

::::
quite

:::::::
possible

::::
even

:::
for

::::
lake

::::::::
segments

::::
with

:
a
:::::::::
somewhat

:::::::
“fuzzy”,

:::
yet

::::::
clearly

::::::::::::
distinguishable

:::::
return

::::::
signal

::::
from

:::
the

:::::::
lakebed.

:

:
A
::::::

figure
:::
that

:::::::::
illustrates

:::::
these

::::::
quality

::::::::
heuristics

::
is
::::::::
available

::
in

:::
the

::::::::::
supporting

::::::::::
information

::
at

:
https://doi.org/10.5281/zenodo.

10901826
:::::::::::::::::::::

(Arndt and Fricker, 2024c)
:
.
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