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Summary
This manuscript uses ICESat-2’s ATL03 altimetry product to develop two new algorithms which together
provide a scalable framework for supraglacial lake detection and depth determination from ATL03 data.
Surface melt is an important, yet poorly constrained, component of ice-sheet surface mass balance, leading to
surface meltwater accumulating as lakes on ice-shelf surfaces and on grounded ice. In Antarctica, this has
been linked to the process of meltwater-driven hydrofracture, which can trigger rapid ice-shelf collapse.
Accurately measuring supraglacial lake meltwater depths from satellite data is important due to the challenges
in obtaining in situ measurements and is needed for modelling meltwater interactions with ice sheet dynamics.
However, few studies have developed automated lake depth estimation methods that are scalable beyond
small data subsets, and previous studies rely on methods with poorly constrained parameters and a lack of in
situ measurements.
The authors apply their algorithm framework to two regions that experience high surface melt (central west
Greenland and the Amery Ice Shelf) and are able to reliably detect lakes where lake bathymetry is visible. The
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methodology appears robust, and the algorithm performs well even for more complex lakes (especially in
Antarctica), including thin, elongated lakes and those with patchy ice cover. The authors found 1249 lakes with
their algorithm during four melt seasons and conclude that lake depths agree well with manually-picked
lakebeds in ICESat-2 along-track segments.
Overall, it is my view that this study is of broad interest to the cryospheric community as it builds upon previous
work focused on supraglacial lake depths on both ice sheets, especially in the context of ice-shelf surface
hydrology and dynamics, by paving the way for developing pan-ice sheet supraglacial lake depth and volume
products. I think the surface hydrology and ice shelf communities would be very interested to see this algorithm
applied at an ice-sheet scale in future.
In general, this is a very well-written manuscript with detailed methods, clear figures and most of my comments
are relatively minor. Once the authors address these, I can therefore recommend that this manuscript is
suitable for publication in The Cryosphere.
Please see the attached for specific comments.

Thank you so much Jenny for taking the time to read and review our manuscript, and for your positive,
thoughtful and constructive comments. In particular, we believe that your comments were instrumental in better
presenting this manuscript within the context of the broader research community’s efforts to characterize
surface hydrological processes and quantify meltwater on the ice sheets.

General points
1. The manuscript could elaborate in a bit more depth about how this algorithm framework approach

differs from previous algorithms that have been developed for supraglacial lake depth/bed detection
with the same ICESat-2 product (e.g. Datta and Wouters, 2021, who use ICESat-2 ATL03 to derive lake
depths and constrain empirically-derived depths from Landsat 8, Sentinel-2, PlanetScope and SkySat
imagery). It is clear to me that previous approaches have been tested on small subsets and so are not
as scalable as the approach presented here, but I think more detail could be provided for readers.

For a detailed discussion of this, as well as various explicit proposed changes, please see our response
to CC1. We will make it clear in the introduction that:

● The main “selling point” of our study is that we present a method allowing users to implement
supraglacial lake depth estimation from ICESat-2 at scale, and that we took on the task to
demonstrate that this works in practice.

● The motivation behind large-scale implementation are promising case study results (e.g., Datta
and Wouters, 2021; Leeuwen, 2023) suggesting that statistically learning the relationship
between reflectance in imagery and water depth using ICESat-2 data has great potential to
improve imagery-based approaches for continuously monitoring meltwater depths and volumes.
For such statistical models to be able to perform well and generalize, we need as much
ICESat-2-labeled training data (from a variety of locations, times and environmental conditions)
as possible.

● The fact that FLUID-SuRRF is automated and scalable is not a unique selling point for our
study. Other algorithms that claim automation and scalability have been published (e.g. Datta
and Wouters, 2021; Xiao et al., 2023). What makes our study unique is the fact that we actually
scale it up across two large domains.

We will also add a comparison of actual depth retrievals between SuRRF, Watta, RTE and a
DEM-based method to Section 4.2.2 by including them in Fig. 12 and giving a short
description/explanation in the text. We will, however, not go into much detail about this, and instead
refer the reader to the method comparison studies of Fricker et al. (2021) and Melling et al. (2024).



Fricker et al. includes an earlier version of SuRRF, and all other depth estimates shown in Fig. 12 are
reproduced from the two studies mentioned above. For more details on this, see our response to
general point 3.

2. ‘Lakes with a bathymetric signal’ is referred to often throughout the manuscript, and I suggest perhaps
the first time this is mentioned adding for clarity: ‘lakes with a bathymetric signal, i.e lakes with a visible
or partly-visible lakebed’.

Thank you for the suggestion. We agree that adding this phrase will make it easier for the reader to
understand what is meant. We will make the following clarifying changes: (1) change “a bathymetric
signal is discernible” to “the lakebed is visible or partially visible” in the abstract, (2) change “signal” to
“return from the lakebed” in the caption of Fig. 1, and (3) add “, i.e. for lakes with a visible or partly visible
lakebed” to the last sentence of section 3.1.

3. Performance of the SuRRF algorithm is compared to manual baseline estimates in Section 4.2.2, but I
think this could be interesting to elaborate briefly on how the depth estimates are different from results
that derive depths using the Radiative Transfer Equation (given that this is a commonly-applied
method). For example, does SuRRF tend to detect deeper lakes, implying previous methods
underestimate lake depths?

This is a good point, and we should have made this more clear. We will clarify in Sect. 2.2 (where the
RTE approach is introduced) by changing the last sentence from “As a result, it has been found that
the RTE approach can significantly over- or underestimate lake depths (Fricker et al, 2021;
Melling et. al, 2024).” to “As a result, it has been shown that the RTE approach can significantly over- or
underestimate lake depths in different environments: in Fricker et al. (2021) the method underestimated depths by
30 to 70 % on Amery Ice Shelf in East Antarctica, while in Melling et al. (2024) it overestimated depths by up to
153 % in Southwest Greenland.”
As suggested, we will further add a comparison of actual depth retrievals between SuRRF, Watta, RTE
methods and a DEM-based method to Section 4.2.2 by including them in Fig. 12 (see below) and giving
a short description/explanation in the text. To reflect this, we will rename Section 4.2.2 to “Accuracy of
SuRRF depth retrievals and comparison with alternative methods”



Figure 12. Comparison between SuRRF water depth estimates, manually annotated ICESat-2 depths and results
from other methods for meltwater depth estimation. a)-d): ICESat-2 melt lake segments on the Amery Ice Shelf
with manual annotations from Fricker et al. (2021). Other meltwater depth estimates that were reported by Fricker
et al. are shown for the Watta algorithm (based on ICESat-2; Datta and Wouters, 2021), for the RTE method
applied to the average of Landsat 8's red and panchromatic bands (Spergel et al., 2021) and to Sentinel-2's red
band (Moussavi et al., 2020). e)-i): ICESat-2 melt lake segments in Southwest Greenland with manual annotations
from Melling et al. (2024). Other meltwater depth estimates that were reported by Melling et al. are shown for the
RTE method individually applied to both Sentinel-2's red and green bands, as well as estimates from
post-drainage lakebed topography in ArcticDEM (based on Bowling et al., 2019).

We will, however, not go into much detail in the text beyond briefly describing what is shown on the
figure, and instead refer the reader to the method comparison studies of Fricker et al. (2021), Melling et
al. (2024) and Lutz et al. (2024). Fricker et al. includes an earlier version of SuRRF, and all other depth
estimates shown in Fig. 12 are reproduced from either Fricker et al. or Melling et al.

On line 592, we will specify that we are showing results from other methods, but that for in-depth
comparisons, we refer the reader to the relevant studies:
“We here use the manual annotations from both of these method comparison studies to evaluate SuRRF's depth
estimation performance for all nine lake segments, and to briefly compare SuRRF to other methods whose results
were included in previous comparisons (Fig. 12). For a detailed comparison between various ICESat-2 lake depth
algorithms (including an earlier version of SuRRF) and RTE-methods, we refer the reader to Fricker et al. (2021).
For in-depth discussions comparing manually picked ICESat-2 depths to RTE methods, DEM-based approaches
as well as empirical methods using in-situ data, we refer the reader to Melling et al. (2024) and Lutz et al. (2024).”



We will add the following comparison between SuRRF and alternative methods to the end of section
4.2.2 (line 612):
In addition to SuRRF and manual depth estimates, panels a)-d) of Fig. 12 show depth estimates for Antarctic lakes
that were reported in Fricker et al. (2021), for the Watta algorithm (based on ICESat-2; Datta and Wouters, 2021)
and for the RTE method applied to the average of Landsat 8’s red and panchromatic bands (Spergel et al., 2021)
and to Sentinel-2’s red band (Moussavi et al., 2020). Both SuRRF and Watta track the general shape of lakebed
returns in the ATL03 photon clouds well (Pearson’s correlation coefficients of R = 0.99 and 0.94, respectively),
and and largely agree with manually determined along-track water depths (MAEs of 0.29 m and 0.30 m,
respectively). In contrast to SuRRF, Watta appears to have a tendency to overfit where photon density near the
lakebed is high with a large elevation spread, resulting in an unreasonably “wiggly” lakebed fit (e.g., Antarctic
lake 1, 500-800 m). SuRRF’s smoother fit under these conditions is likely due to the fact that it utilizes an
adaptive kernel for its robust fit, whose width increases as the number of photons that narrowly cluster around the
previous iteration’s fit decreases (Sect. 3.3.1). In contrast to SuRRF, Watta also attempts to fit the lakebed across
the entire lake basin, even where the lakebed is not visible or indistinguishable from noise, which can sometimes
result in arbitrary, unrealistic depth estimates (e.g., Antarctic lake 1, around 450 m). Under such conditions
SuRRF assigns a low confidence score to the lakebed fit and discards associated depth estimates to prevent
arbitrary results. However, in some cases this results in SuRRF discarding depth estimates where Watta appears to
fit the lakebed reasonably well (e.g., Antarctic lake 3, 250-300 m). The RTE approach based on Landsat 8’s
red/panchromatic band average consistently underestimates water depths, reporting a total amount of water that is
∼ 73 % lower than the manual baseline. The RTE approach based on Sentinel-2’s red band also underestimates
water depths, and reports a total amount of water that is 34 % lower than the manual baseline.

Panels e)-i) of Fig. 12 also show non-ICESat-2 depth estimates for Greenland lakes that were reported in Melling
et al. (2024), for the RTE method individually applied to both Sentinel-2’s red and green bands, as well as
estimates from post-drainage lakebed topography in ArcticDEM (based on Bowling et al. 2019). The RTE
approach based on Sentinel-2’s red band generally underestimates depths and reports a total amount of water that
is 42 % lower than the manual baseline (similar to this method’s performance over Antarctic lakes). In contrast,
the RTE approach based on Sentinel-2’s green band generally overestimates depths and reports a total amount of
water that is 34 % larger than the manual baseline. However, Melling et al. also note that when using values of
tuneable parameters that have been commonly used in the literature (Sneed and Hamilton, 2007; Georgiou et al.,
2009; Pope et al., 2016), the RTE approach for Sentinel-2’s green band overestimates lake depths even more,
which results in reporting a total amount of water that is 84 % larger the manual baseline, with individual depths
being overestimated by up to 153 %. This implies that RTE-based methods, while being popular for their
simplicity, can potentially result in highly inaccurate meltwater volume estimates. The depth estimates derived
from DEMs of emptied lake basins match the ICESat-2 manual baseline reasonably well, and when compared
with it underestimate the total amount of water by 6 % with a MAE of 0.34 m. Since this method’s performance is
comparable to that of ICESat-2-based methods, this implies that DEM-based methods could be used supplement
ICESat-2 depth measurements for labeling reflectance in passive optical imagery with supraglacial water depths,
at least on the Greenland Ice Sheet where melt lakes on grounded ice drain regularly (Johansson et al., 2013).

4. For those who are less familiar with distributed High-Throughput Computing, how widely useable is this
algorithm for others to whom the OSG Open Science Pool is not accessible, aka. non-US-based
researchers?

Our Python code works without the need for using any OSG services: it can be run on a local computer
or on any computing cluster (locally or in the cloud) in the provided singularity container. We used the
OSG Open Science Pool because it provided us with free computational infrastructure. We do not have
the resources to scale this method up to ice-sheet-wide implementation on commercial cloud



computing platforms at a feasible price point, and during initial development PA had no access to
NASA-provided computational resources due to the COVID19 pandemic preventing in-person
fingerprinting of non-US citizens. We believe that the OSG Open Science Pool is the most accessible
option for large-scale implementation, but there are unfortunately some limitations to who can use it. As
a non US-based researcher, one could gain access to the OSG Open Science Pool if collaborating with
a US-based researcher or an institution that operates its own access point. Since we want our methods
and data to be accessible and encourage others to use it in their own research, we will explain this in
more detail in the Code and data availability section:

“The FLUID/SuRRF source code is freely available at https://doi.org/10.5281/zenodo.10905941 (Arndt and
Fricker, 2024a). To execute this code, users need to create a free NASA Earthdata login for ICESat-2 data access.
The source code contains a singularity container in which this version of FLUID/SuRRF can be executed. The
main Python script detect_lakes.py can be run either locally on any individual ATL03 granule, or on many
granules in parallel on any computing cluster that supports the specified computing environment or the use of
singularity containers. In this study we present our implementation of FLUID/SuRRF on the OSG Open Science
Pool because it provided us with free computational infrastructure. Due to funding mandates, free access to the
OSG Open Science Pool is limited to researchers contributing to a US-based project at an academic, government,
or non-profit organization, or researchers affiliated with any project or institution that operates its own local
access point. This means that to implement FLUID/SuRRF on the OSG Open Science Pool as described here, you
need to have at least one collaborator on your team to whom the above criteria apply. This collaborator can
register your project with OSG on the Open Science Pool. Then, anyone contributing to the project can register
for an account on OSG Connect to gain access to the Open Science Pool. For more information, see
https://osg-htc.org/services/open_science_pool.html and https://osg-htc.org/about/organization. More information
is also included in the README file.”

Specific comments
● L30: I would cite something more relevant than this EGU abstract here, e.g. Gilbert and Kittel (2024),

https://doi.org/10.1029/2020GL091733.
We will replace the citation with the suggested one.

● L34: Perhaps add a sentence or two here about what direct observations of supraglacial lake depths do
exist, particularly in Antarctica (to highlight the paucity of observations).
This is a good suggestion, and we will briefly mention this here:
“However, there are few direct in-situ observations of supraglacial lake depths (none in Antarctica, and ten lakes
up to 11.5 m deep in Greenland), which leads to errors in total water volume estimates.”
We will elaborate on this further in Sect. 2.2, where we introduce empirical models derived from
regression of in-situ depth measurements with optical imagery (L109, see comment below).

● L109: add where these in situ measurements were collected (west Greenland).
We include a description of where the in-situ measurements were collected, as suggested. This does
not only include West Greenland, but also South-East and North-East Greenland. Based on the
previous comment, we also reiterate that no observations are available for Antarctica. See the updated
paragraph below:
“Another approach to estimating lake depths is using empirical models derived from regression of in-situ depth
measurements with optical imagery (Tedesco and Steiner, 2011; Legleiter et al., 2014; Pope et al., 2016; Lutz et
al., 2024). However, in-situ measurements of supraglacial lake depths are very sparse, with – to the best of our
knowledge and at the time of writing – no such data is available for Antarctica, and data available for only ten
lakes up to 11.5 m deep on the Greenland Ice Sheet between 2005 and 2024: Box and Ski (2007) sampled two
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lakes on Jakobshavn Isbræ and Sermeq Avannarleq in 2005, Sneed and Hamilton (2007) sampled one lake on
Helheim Glacier in 2008, Tedesco and Steiner (2011) sampled one lake in Central West Greenland in 2010,
Legleiter et al. (2014) sampled three supraglacial water bodies on Isunnguata Sermia and Russell Glacier in 2012
and Lutz et al. (2024) sampled three lakes on Zachariæ Isstrøm in 2022. This makes the observations provided by
Lutz et al. the only in-situ depth data of supraglacial lakes that overlap with the Landsat 8 and Sentinel-2
missions. Further, it has been shown that the relationship between water depth and reflectance values in optical
imagery can vary significantly by geographical region (Lutz et al., 2024). Thus, the regression coefficients of
these empirical models are limited to the spatial area of the original in-situ measurements, making them
impractical for application on a larger, ice-sheet-wide scale.”

For reference, for a full list of in-situ measurements of supraglacial lake depth available in the literature,
see the table below:

source lon lat date
IMBIE_
basin IMBIE_name depth_min depth_max n_obs

accuracy
_m instrument

Box and Ski (2007) -49.1254 69.5345 2005-08-14 CW JAKOBSHAVN_ISBRAE 1.05 11.5 335 0.1 Garmin Fish Finder 100

Box and Ski (2007) -49.5345 69.4891 2005-08-15 CW SERMEQ_AVANNARLEQ 1.25 10 338 0.1 Garmin Fish Finder 100

Sneed and Hamilton
(2011) -38.45 66.46145 2008-07-11 SE HELHEIMGLETSCHER 0.7 3 21 0.03 Satlantic Profiler II

Tedesco and Steiner
(2011) -49.4944 69.60972

2010-07-02
to 05 CW CW_NONAME1 n/a 4.5 6000 0.25 HDS-5 Lowrance

Legleiter et al. (2014) -48.322 67.11825 2012-07-20 SW ISUNNGUATA-RUSSELL n/a 3.16 3264 0.025
Ohmex SonarMite
235KHz

Legleiter et al. (2014) -48.1008 66.9025 2012-07-21 SW

SAQQAP-MAJORQAQ-S
OUTHTERRUSSEL_SOU
THQUARUSSEL n/a 10.45 4383 0.025

Ohmex SonarMite
235KHz

Legleiter et al. (2014) -48.7649 67.18042 2012-07-23 SW ISUNNGUATA-RUSSELL n/a 1.66 1164 0.025
Ohmex SonarMite
235KHz

Lutz et al. (2024) -21.8182 78.92271 2022-07-09 NE ZACHARIAE_ISSTROM 0.41 8.21 2129 0.2 Lawrence Elite 7 FS

Lutz et al. (2024) -21.9217 78.90026 2022-07-03 NE ZACHARIAE_ISSTROM 0.46 6.78 981 0.2 Lawrence Elite 7 FS

Lutz et al. (2024) -21.9373 78.87014 2022-07-09 NE ZACHARIAE_ISSTROM 0.39 7.32 2991 0.2 Lawrence Elite 7 FS

(some of the information for Lutz et al. is from private communication, but we were told that their dataset should be up on PANGAEA soon)

● L484: I would rename the labels ‘CW < 200 m’ and ‘B-C < 1000 m’ to ‘Surface Elevation < 200 m’ and
‘Surface Elevation < 1000 m’ for clarity, or else clarify this in the figure caption.
We will follow this suggestion. See the updated figure below.



● L543: could also add here that lakes typically are advected downstream year-on-year (e.g. Arthur et al.,
2020).
We will follow this suggestion and add the following at the end of the sentence on L543: “, with existing
basins typically being advected to locations significantly further downstream from one melt season to the next
(Arthur et al., 2020).”

● L579-585: This explanation for differences in lake elevation-depth relationships could be better cited.
For example, Banwell and MacAyeal (2015) highlight lake deepening by lake-bottom ablation.
We agree that this section should have been better supported by existing literature. We will reference
Lampkin and VanderBerg (2011) and Tedesco et al., (2012) to support the claim that fixed lakebed
locations controlled by bedrock topography and lake bottom ablation cause deep lakes in Greenland.
We will reference Bell et al. (2018) as a reference for arguing that lakes on grounded ice in Antarctica
are more prevalent under warmer conditions and behave similarly to lakes on grounded ice in
Greenland. We will also add two new references:

○ Glen et al. (2024) as a reference supporting that there are more small, shallow and slushy lakes
in Greenland in warm summers than in cooler summers.

○ Banwell et al. (2014) as a reference supporting the claim that lakes which form on the fairly flat
topography of Antarctic ice shelves tend to be more shallow than those on grounded ice on the
Greenland Ice Sheet.

● L613: I’m not sure about the overall relevance of Section 4.3 and don’t think it adds substantially to the
manuscript, because the algorithm application to ocean bathymetry, inland waters or sea ice melt ponds
is less relevant in the context of this manuscript. I would suggest removing this section and moving the
content from ‘The ephemeral nature of supraglacial lakes…’ to further up in the introduction as
justification for your algorithm.
ICESat-2 is an interdisciplinary instrument where scientists from different fields have worked together to
improve algorithms that apply to 'cross-cutting' themes, such as bathymetry. In that spirit, we consider
the section to be highly relevant in the context of this largely methods-focused manuscript, because



method development for ICESat-2 water depth estimation benefits from cross-discipline collaboration
between scientists who work on using the satellite’s bathymetric capabilities in different environments
(Parrish et al., 2022). As such, Section 4.3 is meant to (1) give credit to some of the work that is not
directly concerned with supraglacial lakes but has inspired our own work and (2) encourage readers
with an interest in ICESat-2-specific methods for supraglacial lake depth estimation to draw inspiration
from the broader related literature themselves.

However, this comment has made us realize that we did not justify this well in Section 4.3, and
therefore suggest the following change:
“Beyond estimating the depth of supraglacial lakes, ICESat-2’s bathymetric capabilities have been used for
various other applications. Many algorithms employed for depth retrieval from ATL03 share significant
similarities, enabling method development for ICESat-2-derived bathymetry to benefit from broader
cross-discipline collaboration (Parrish et al., 2022). Methods similar to FLUID-SuRRF have been used for [...].
However, there are also notable differences between bathymetric applications of ICESat-2 in different
environments that have led to the development of specialized approaches, in particular for their large-scale
implementation. For nearshore and inland bathymetry applications [...]”

● L630: I don’t entirely agree with the part of this sentence that states the calculated water depths prevent
the calculation of lake volumes. Surely it would be possible to calculate lake volumes by combining the
ICESat-2 derived depths with lake extents derived from optical imagery (Landsat 8) as an initial
estimate? I do understand though that with the small dataset you present here it is not enough to track
the meltwater through the melt season.

Thank you for catching this! We meant to say that the ICESat-2 observations by themselves are not
enough to calculate lake volumes and therefore need to be combined with other types of data such as
imagery to achieve this goal. We will change the sentence to “Our ICESat-2-derived water depths are the
first comprehensive dataset of supraglacial lake depths that were directly measured from a satellite; however,
these along-track observations alone are too sparsely spaced…”. We will also add a reference to ICESat-2 in
the next sentence to make this more clear: “However, the large volume and wide variety of data that our
method provides implies that the ICESat-2 based depth measurements presented here could be used to…”

Technical/minor corrections
● In some places the Surface Removal and Robust Fit algorithm is referred to as SuRRF and in others as

SuRFF, so check throughout for consistency.
Thank you for catching that! We will replace 14 instances where we accidentally used the abbreviation
“SuRFF” with “SuRRF”.

● L178: delete ‘each’ (same on L653).
We will delete “each” in both instances, as suggested.

● L611: Is a word missing here? ‘.. in between our (deeper) SuRRF estimates and the (more shallow)
manual baseline estimates’.
Yes, thanks for catching that. We will add “and”, as suggested.

● L640: don’t hyphenate ‘well-enough’.
We will remove the hyphen, as suggested.



● L710: it’s origin → its origin
We will remove the apostrophe.

Referee Comment 2 (Ian Brown)
RC2: 'Comment on egusphere-2024-1156', Ian Brown, 17 Jun 2024
Citation: https://doi.org/10.5194/egusphere-2024-1156-RC2

Summary
This is an important contribution to our ability to monitor the supra-glacial hydrology of the ice sheets. It is a
very well executed investigation and a well written manuscript. I have some small concerns regarding
validation and some suggestions for minor edits.

Thank you so much Ian for taking the time to read and review our manuscript, and for your positive, thoughtful
and constructive comments. In particular, we believe that your suggestions regarding a clearer distinction
between ICESat-2 lake segments and unique “real” supraglacial lakes have helped to make the manuscript
more clear, especially to readers who are not already very familiar with ICESat-2 data.

Specific comments
● The first sentence sets the tone so it is a little odd to address ice shelf collapse when that is not the

focus of the article. Consider refocusing the opening sentence.
We propose adding an opening that specifically addresses the difficulty of monitoring the water depths
of supraglacial lakes on the ice sheets, then continue with arguing why knowing water depths is
important: “Water depths of supraglacial lakes on the ice sheets are difficult to monitor continuously due the
lakes' ephemeral nature and inaccessible locations. Supraglacial lakes have been linked to ice shelf collapse in
Antarctica and accelerated flow of grounded ice in Greenland. However, the impact of supraglacial lakes on ice
dynamics has not been quantified accurately enough to predict their contribution to future mass loss and sea level
rise. This is largely because ice-sheet-wide assessments of meltwater volumes rely on models that are poorly
constrained due to a lack of accurate depth measurements.”

● Line 38. "Recently" is relative. ICESAT-2 has been in orbit for 5 years and readers may access the
article in a decade meaning "recently" is not appropriate. Delete the word.
Good point, and in fact it is now nearly 6 years. We will change this to: “Launched in 2018, NASA's Ice,
Cloud and land Elevation Satellite (ICESat-2)...”

● Line 205-206. Can you describe in more detail the empirical observations: how many were used to
establish the thresholds?
We admit that the phrasing of this was confusing in the submitted manuscript. What we meant to
convey is that we established these thresholds based on trial-and-error testing on a number of
hand-picked granules that we judged to be likely representative of various possible environments. For
clarification, we propose to change this part to the following:
“Based on these assumptions, and using a trial-and-error approach, we defined the following thresholds on the
density ratios that need to hold for a major frame to pass the flatness check: , ,

and . As part of this trial-and-error approach, we manually assessed the effects of
tweaking the above thresholds on a number of hand-picked granules, which we judged to be likely representative
of various possible environments, to ensure adequate performance (i.e. granules without surface melt vs.
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pervasive surface melt, granules with smooth vs. rough background topography, granules containing ice-covered
and partially ice-covered lakes, granules containing slush areas, granules containing exposed bedrock, partially
cloudy granules, weak vs. strong beam data, night- vs. daytime acquisitions, etc.).”

● Line 227. Does FLUID work as well in the presence of wind roughened water surfaces: I assume it
does though perhaps fewer photons penetrate the surface. Please comment (as you specifically
address the impact of wind on optical estimates of water depth on line 105).
We propose to re-write this part to include a discussion of the effects of wind, as suggested:
“Afterpulses only become noticeable when the sensor is nearly or fully saturated, which means they often appear
in ATL03 data over supraglacial lakes because smooth open water surfaces (i.e. the surface of stationary water
bodies that are not affected by wind) can result in specular reflection. This suggests that the presence of wind
ripples increases the likelihood of detecting a lake with a clear bathymetric signal in ATL03 data by preventing
sensor saturation and afterpulsing (Lu et al., 2019; Tilling et al., 2020) and also explains why we observe
afterpulsing more frequently near the (more wind-shielded) margins of melt lakes than over their (more
wind-exposed) interior.”

● Line 251. c is presumably the speed of light in a vacuum or freshwater (line 434)? Please clarify.
Thanks for catching this! c is the speed of light in a vacuum, which is the value that is used to calculate
photon elevations from each photon’s time of flight. We will clarify this by adding the following to the
end of this sentence: “, where c is the speed of light in a vacuum.”

● Line 321. Define "a few".
We agree that we should be more specific here. The phrase “along-track extent” was poorly chosen.
The 10 in Eq. (3) is what describes this: the maximum separation between two clusters to be merged is
10 major frames, so clusters that are separated by more than 1.4-1.6 km are not merged. To clarify this
we propose to replace (ii) on line 321 with:
“(ii) a ground track rarely crosses the same lake in two distinct locations that are separated by more than about 1.5
km.”
We will further explain equations (2) and (3) in plain language after they are defined:
“Equation (2) states that neighboring clusters are only merged if their respective lake surface elevations are within
0.1 m of each other, and Eq. (3) further states that neighboring clusters are only merged if they are separated by
ten major frames that did not pass the bathymetry check, or less (about 1.5 km). This means that if FLUID
encounters the unlikely but possible scenario in which a ground track crosses two arms of the same lake, which
are separated in along-track distance by more than ten major frames, then these two crossings are considered to be
separate lake segments and returned as two separate files in the output data rather than being merged together into
one lake segment. If these two conditions do not result in…”

● Line 343-345. It would be useful to estimate the real number of lakes mapped if possible. If it is not
possible please discuss this in the appropriate section of the manuscript.
This is a great suggestion. We will add a row to Table 1 that shows the estimated number of unique,
contiguous melt lakes that are sampled by our ICESat-2 lake segments:



We describe this in the text at the end of the first paragraph of section 4.1.1 (Line 612-):
“To estimate how many unique supraglacial lakes were sampled by these detected ICESat-2 lake segments during
each melt season, we calculated the maximum surface meltwater extent for each of the melt seasons
independently using Landsat 8 imagery, based on the methods detailed in Tuckett et al. (2021) (blue regions in
Fig. 9 and 10). We then matched each detected ICESat-2 lake segment to a lake basin in these imagery-based melt
extents and counted the number of total basins that were sampled by at least one ICESat-2 lake segment (see
supplemental maps; Arndt and Fricker 2024c). Over Central West Greenland, this resulted in 196 unique
supraglacial lakes being sampled by our data in 2019, and 109 lakes in 2020. Over the Amery Catchment,
FLUID-SuRRF segments sampled 165 unique melt lakes in 2018-19 and 25 lakes in 2020-21.”

We further explain the difference between ICESat-2 lake segments and the individual “real” lakes that
they sample in Section 3.2.5 (FLUID step 5: along-track aggregation of lake segments), see our
comment about this section further below

● Figure 8., Line 483. Consider moving figure 8 to the front of the manuscript, for example, at the end of
the Introduction where you cite the study areas.
We will move the figure to the end of the introduction, as suggested. We will change the sentence in the
introduction that refers to the study regions to include a reference to the figure, and to the detailed
“Study regions and time span” section: “Here, we present this algorithm, demonstrate its performance over
two drainage basins in Greenland and Antarctica (Sect. 3.5, Fig. 2), and provide a framework for its large-scale
implementation using distributed high-throughput computing.”

● Section 4.1.1 (line 529-). The number of lakes detected over West Greenland is very small compared
with other studies. Especially considering you measure over a season. Also, it is odd that so few lakes
are detected in 2020-21 over the Amery ice shelf. The number of false negatives is presumably very
high (i.e. your detection rate is low). Presumably this is a function of the ground track spacing of
ICESAT-2. I think it is important to discuss this and the impact it would have on operational
implementation of your algorithm (or the limits to that).
It seems like there is some confusion about ICESat-2 data coverage here, likely because we have not
made it clear enough in our writing that ICESat-2 can by no means sample all of the supraglacial lakes
– or even close to all of them. There are other (image-based) methods out there that are much
better-suited at finding the locations of lakes and determining their horizontal extents. What makes
ICESat-2 unique is its capability to make direct and accurate measurements of water depth from space.
So we cannot find all supraglacial lakes with ICESat-2, but for the (comparatively few, but many more
than we could measure in-sit) that we do find with ICESat-2 we now have depth measurements.



The reason that there were so few lakes detected in 2020-21 over the Amery Ice Shelf is that there was
barely any surface melt in this region during that melt season (as shown in Fig. 10). We also included
the total area of Landsat 8-based melt entents to Table 1 (see above) to make this more clear, and will
change the description in the row titled “amount of surface melt” to “very low” for this melt season.

● We propose to rewrite part of the introduction, to make it clear that a data set based on
ICESat-2 alone cannot find all the supraglacial lakes, and that we don’t intend to claim that it
can: “While ICESat-2 has the unique capability to make direct and accurate measurements of water depth
from space, the coverage of the mission's photon-level data product (ATL03) is limited to discrete,
one-dimensional ground tracks that are coarsely spaced on the Earth's surface (~9.9 km between
neighboring reference tracks and ~3.3 km between all neighboring beam pair tracks at 70°N/S) and have a
relatively long repeat period of three months. This means that no supraglacial lake depth data product
derived from ICESat-2 alone is able to provide samples of all (or even nearly all) supraglacial lakes on the
ice sheets: ICESat-2's track spacing means that the majority of lakes form in locations that ICESat-2
ground tracks never sample, and the three-month return period means that for a significant number of
tracks ICESat-2 never passes over at the time at which melt lakes are visible. ICESat-2 is also unable to
penetrate optically thick clouds, thus further limiting the amount of data available for water depth
measurements. While ICESat-2 data alone cannot be used to continuously monitor melt lake volumes,...”

● We will replace “lake” with “lake segment” or similar, in all instances where we simply refer to a
single-ground-track segment of ATL03 data with visible supraglacial lake bathymetry. In
particular, we further clarify this in Sect. 3.2.5 (FLUID step 5: along-track aggregation of lake
segments): “The resulting final clustering is now considered the set of ICESat-2 supraglacial lake
segments that have been found on each ground track. Note that for simplicity we here use the term
“ICESat-2 lake segment'' (or simply “lake segment”) to refer to any single-ground-track segment of
ATL03 data with visible bathymetry from one supraglacial lake. If multiple ICESat-2 ground tracks
contain data from the same supraglacial lake, the distinct ground track segments are still considered
different “ICESat-2 lake segments” for the purpose of this algorithm. For example, the two ATL03
profiles acquired by the two neighboring ground tracks of the center beam pair shown in Fig. 1 would be
considered two distinct “lake segments” despite ICESat-2 having acquired their underlying data during
the same overpass and from the same supraglacial lake. Since multiple ICESat-2 lake segments can be
associated with the same supraglacial lake, this means that the total number of unique supraglacial lakes
sampled by ICESat-2 is smaller than the total number of supraglacial lake segments reported by
FLUID-SuRRF (Sect. 4.1, Table 1).”

● In line 529, we will also replace “Out of the 1249 supraglacial lakes that we detected in
total,” with “Out of the 1249 supraglacial lake segments that we detected in the ICESat-2 data analyzed
in this study,...” to emphasize that our results are valid only for lakes that are visible to ICESat-2.

● We will further emphasize track spacing in Sect. 3.5 (Study regions and time span) by adding
the following: “Our two study areas cover latitudes from 68.2°N to 72.1°N in Greenland and latitudes
from 68.4°S to 74.0°S in Antarctica, meaning that ICESat-2 track spacing is similar over the two regions:
in Central West Greenland RGT spacing varies from ~8.8 km in the north to ~10.8 km in the south; over
the Amery Catchment RGT spacing varies from ~7.9 km in the south to ~10.7 km in the north.”

● Line 550-551. Did you consider identifying lakes that have emptied. Johansson et al., (2013; J. Hydrol.
476) show that many lakes are transient and will empty late in season. This would allow you to evaluate
the accuracy of the estimate from filled-emptied conditions.



We did consider this, but came to the conclusion that due to the many complexities involved in
comparing repeat tracks before and after lake drainage this is outside the scope of this study. We
propose adding a short paragraph explaining this after L630 to the end of Sect. 4.2.2 (“Accuracy of
SuRRF depth retrievals''):

“Since many lakes on the Greenland Ice Sheet are transient and drain late in season (Johansson et al., 2013), it
could be possible to obtain independent ICESat-2-based meltwater depth estimates by comparing “full vs empty”
repeat-track measurements along ICESat-2 lake segments before and after the drainage. However, this approach
would suffer from many of the same drawbacks that affect depth estimation from DEMs of a lake’s bed
topography that were acquired after it drained (Sect. 2.2), for example: effects of lake-bottom ablation, surface
elevation change from precipitation and blowing snow deposits, as well as across-track advection of surface
topographical features. Furthermore, this approach would not be feasible in Antarctica, where lake drainage is
very rare, in particular on grounded ice. In cases where melt lake drainage is observed on the floating ice shelves,
obtaining water depth from repeat-track elevation change is not possible due to the advection of surface
topography with the ice flow and post-drainage flexural rebound (Warner et al., 2021). Due to these complexities,
we do not attempt to validate ICESat-2 lake depth measurements using this method.”

● Line 657. I think you need to mention there is a bias towards over-estimation.
This is a good call. We propose adding the following caveat to the end of this section, combined with
noting that ground truth observations are desperately needed to validate depth estimates and quantify
potential biases in the data:
“Since in the absence of ground truth validation data our depth validation efforts were based on manual annotation
of the data, we acknowledge that there may be a small but potentially significant bias towards overestimating
water depths with FLUID-SuRRF. This highlights an urgent need for ground truth in situ water depth
measurements of supraglacial lakes that coincide with ICESat-2 overpasses, to enable calibration and validation of
depth estimates.”
In addition, we add a description of a correction that can be applied to SuRRF depth estimates to
attempt correcting for the effects of multiple scattering in the water column (Sect. 3.3.3 “SuRRF step 2:
lakebed fit”, line 418):
“Previous studies have hypothesized that ICESat-2-based depth retrieval algorithms placing the lakebed fit at the
along-track elevation of highest subsurface photon density may be biased towards slightly overestimating total
water depths due to multiple scattering within the water column (Fricker et al., 2021; Xiao et al., 2023). To
address this, we provide an optional correction, which places the lakebed fit at a higher elevation where the initial
SuRRF lakebed fit included photons further below the initial lakebed fit than would be expected from bathymetric
signal photons. To achieve this, we remove any photons located at a vertical distance below the initial SuRRF
lakebed fit by more than the sum of (1) ICESat-2’s single-photon time-of-flight precision (∼ 12 cm in ATL03
photon heights or 800 ps; Markus et al., 2017), and (2) the elevation range within ICESat-2’s footprint diameter (∼
11 m Magruder et al., 2021a) obtained by projecting the footprint onto the along-track lakebed topography
estimated by the initial SuRRF lakebed fit. We then reapply the lakebed fit to the remaining photons as described
above, while supplying the SuRRF Robust Fit (Sect. 3.3.1) with the uncorrected SuRRF lakebed fit as the initial
guess. Since the presence or magnitude of this hypothesized overestimation of water depths cannot be established
without any ground truth in situ data available along any ICESat-2 lake segments, we provide this scattering
correction for reference only, and do not apply it to the water depths presented in this study. If such validation data
becomes available in the future, our scattering correction can be tuned to better match observations, and can be
readily applied to FLUID-SuRRF output data.”
We then further discuss how applying this correction would change water depth estimates, and how
they compare to the manually annotated baseline estimates for validation (4.2.2 Accuracy of SuRRF
depth retrievals and comparison with alternative methods, line 598):
“When applying the correction for multiple scattering (Sect. 3.3.3) to SuRRF depth estimates, the average bias is



reduced to 0.07 m deeper than the manually picked values, with a mean absolute error (MAE) of 0.15 m and a
Pearson’s correlation coefficient of R = 0.993. This results in the scattering-corrected version of720 SuRRF
reporting a total amount of water that is 3 % larger than the estimate given by the manual baseline.”
We then refer back to the scattering correction later in this section when discussion the disparity
between manual altimetry expert picks and algorithmic fits to the ICESat-2 data (line 611):
“We therefore believe that the true water depth falls somewhere in between our (deeper) SuRRF
estimates and the (more shallow) manual baseline estimates from Fricker et al. (2021) and
Melling et al. (2024). “Our scattering correction to SuRRF depth estimates is an attempt to reconcile this
disparity between depth estimates. However, in the absence of ground truth in situ validation data for ICESat-2
lake segments, the correct magnitude of this correction remains unknown.” This demonstrates an urgent
need for in situ meltwater depth data that can be used to reliably validate the accuracy of
ICESat-2 estimates.”

● Line 660. I do not think this is demonstrated given the very low numbers of detections and the fact that
you can't identify whether multiple measurement lines are from the same lake.
Given that past empirical models (e.g., Pope et al., 2016) were based on in-situ measurements of a
small portion of a single supraglacial lake, and that Datta et al. (2021) were quite successful at
empirically estimating lake depths from imagery using a much smaller amount of ICESat-2 data, we
believe that the general sentiment of this statement is justified. However, we acknowledge that our
claim was phrased quite strongly. In particular, we propose to replace “imply“ with “suggest” to
acknowledge that we have not directly demonstrated this. In addition, we propose changing “...that the
results presented here could be used to…” with “...that ICESat-2-based depth measurements obtained
from applying FLUID-SuRRF at ice-sheet-wide scale could be used to…”.

Referee Comment 3 (Sammie Buzzard)
RC3: 'Comment on egusphere-2024-1156', Sammie Buzzard, 08 Jul 2024
Citation: https://doi.org/10.5194/egusphere-2024-1156-RC3

Summary
This paper presents two algorithms that together allow the retrieval of supraglacial lake depths using ICESat-2.
This method is scalable beyond the case studies presented and therefore a useful contribution to the
community that I would strongly recommend for publication.
Understanding surface melt, and lake depths is key for predicting ice shelf stability, and datasets of lake depths
are limited. In situ data is scarce and remote sensing methods are necessary for providing validation and
calibration for models as well as understanding the development of these lakes so this work will clearly be of
use to the community.
While there are methods existing to determine lake depths remotely e.g. using Landsat-8, this to my
knowledge is one of only a small number using ICESat-2, the advantage of this particular method appears to
be scalability (although see my comments below on this).
The methodology and results presented are in my opinion sufficient for publication, and my recommendations
for changes to the manuscript are mostly minor.

Thank you so much Sammie for taking the time to read and review our manuscript, and for your positive,
thoughtful and constructive comments. In particular, we believe that your comments suggesting more detailed
comparisons to similar studies as well as better explanations of the limitations of our method have helped to
significantly improve the manuscript.

https://egusphere.copernicus.org/#RC3
https://doi.org/10.5194/egusphere-2024-1156-RC3


General Comments
1. It would be good to clarify the limitations of the algorithm e.g. max/min lake widths/ lengths/ depths

detected clearly early on in the paper (and state how this compares to other methods).
Based on this and some of the other referee comments we realize that we have not made it clear
enough early on in our writing that ICESat-2 data coverage is sparse. The most important limitation of
the algorithm that readers need to understand is that due to its coarse track spacing and 3-month return
period ICESat-2 cannot sample all supraglacial lakes on the ice sheets – or even close to all of them.
ICESat-2’s unique selling point is its ability to accurately and directly measure water depths from space,
but ICESat-2 does not provide a comprehensive map of the locations and spatial extents of melt lakes
(plus, there are image-based methods out there that are much better-suited).

● We propose to rewrite part of the introduction, to make it clear that the fundamental limitation of
this method is that a data set based on ICESat-2 alone cannot find all the supraglacial lakes,
and that we do not intend to claim that it can: “While ICESat-2 has the unique capability to make
direct and accurate measurements of water depth from space, its fundamental limitation is spatial
coverage. ICESat-2 data are limited to discrete, one-dimensional ground tracks that are coarsely spaced
on the Earth's surface (~9.9 km between neighboring reference tracks and ~3.3 km between all
neighboring beam pair tracks at 70°N/S) with a relatively long revisit time of three months. This means
that no supraglacial lake depth data product derived from ICESat-2 alone is able to provide samples of all
(or even nearly all) supraglacial lakes on the ice sheets: ICESat-2's track spacing means that the majority
of lakes form in locations that ICESat-2 ground tracks never sample, and the three-month return period
means that for a significant number of ground tracks ICESat-2 never passes over at the time at which melt
lakes are visible. ICESat-2 is also unable to penetrate optically thick clouds, thus further limiting the
amount of data available for water depth measurements. While ICESat-2 data alone cannot be used to
continuously monitor melt lake volumes,...”

● We will further emphasize track spacing in Sect. 3.5 (Study regions and time span) by adding
the following: “Our two study areas cover latitudes from 68.2°N to 72.1°N in Greenland and latitudes
from 68.4°S to 74.0°S in Antarctica, meaning that ICESat-2 track spacing is similar over the two regions:
in Central West Greenland RGT spacing varies from ~8.8 km in the north to ~10.8 km in the south; over
the Amery Catchment RGT spacing varies from ~7.9 km in the south to ~10.7 km in the north.”

The other limitations mentioned here (“max/min lake widths/ lengths/ depths”):
● widths/lengths are the same in ICESat-2, since the ground track is one-dimensional
● max depths: This is the limitation that everyone seems to be interested in. It is controlled by how

far ICESat-2’s green light can penetrate the water column under ideal conditions (very clear
water, high bottom reflectivity). To clarify this early on, we will add the following to the
introduction (line 41):
“This allows ICESat-2 to measure water depths up to 41 m under ideal conditions (very clear water and
high bottom reflectivity), with typical accuracies of about 0.5 m (Dietrich et al., 2024).”

● Min depths: This is indirectly answered by the above. Since typical accuracies are around 0.5
m, it is difficult to detect lakes shallower than that because the lakebed return is hardly
distinguishable from the lake surface return. As you noted, FLUID can not detect any ATL03
lake segments that are less than 0.35 m below the lake surface at their deepest along-track
location (which is about 26 cm in refraction-corrected water depth), since all photons from the
bottom return would be removed with the surface. However, in practice, we have not
encountered any examples where a lakebed <0.35 m would be discernible in the photon data.
Furthermore, such lake segments are often short and tend to be in locations with relatively flat
surrounding surface topography, which makes it also harder to detect them in the first place. We



will make a short note on this in the section where this is mentioned (3.3.3 SuRRF step 2: fitting
the lakebed, line 405):
“Note that this imposes a theoretical minimum depth threshold for detection on lake segments: ATL03
segments need to exhibit a bottom return signal at least 0.35 m below the lake surface (or 0.26 m in
refraction-corrected water depth) at their deepest along-track point to be considered by SuRRF. However,
in practice, such shallow lake segments do not have a discernible bathymetric signal since typical depth
retrieval accuracies for ICESat-2 are on the order of 0.5 m (Dietrich et al., 2024).”

● Min lengths: Since FLUID assesses the flatness of major frames (~ 140 m in length), lakes with
open-water surfaces of a shorter extent in along-track distance are not guaranteed to be
detected. However, in practice, significantly shorter lake segments are regularly detected by
FLUID. This is likely because the return signal from flat water surfaces tends to be much
stronger than the return signal from surrounding ice surfaces, which makes even short, flat
water surfaces dominate the overall distribution of photon elevations within a major frame. We
will make a note about this in the relevant section (3.2.1 FLUID step 1: identification of flat water
surfaces, line 210):
“Since FLUID assesses the flatness of the surface of full major frames that cover an along-track distance
of ~ 140 m, lake segments with shorter open-water surfaces are not guaranteed to be detected by FLUID.
However, lake segments that are significantly shorter than 140 m are regularly detected by FLUID in
practice. This is because the return signal from flat water surfaces is typically much stronger than the
return signal from the surrounding ice surfaces, which makes even very short, flat water surfaces
dominate the overall distribution of photon elevations within a major frame.”

● Max lengths: There is no limitation to this. (While we have not detected any supraglacial lake
segments with a water extent larger than 10 km, this is not a limitation of our algorithms.
Supraglacial lakes just typically aren’t that large. An exception is a large melt lake that
sometimes forms on Amery Ice Shelf and can get up to 70 km long, but ICESat-2 ground tracks
do not cross this lake at the right orientation for lake segments to become this long.)

● Comparison with other methods: Since we explain that in practice these limitations arise from
the ICESat-2 data themselves, there is no reason to compare these specific limitations with
regard to other ICESat-2-based methods.

2. This method appears to only be scalable if you live in the US based on the information in the paper.
Some comments on this would be useful e.g. can your methodology transfer to a reader’s local (i.e.
institutional) supercomputer or does it need to be a National level facility? How possible would it be to
do this?
Our Python code works without the need for using any OSG services: it can be run on a local computer
or on any computing cluster (locally or in the cloud) in the provided singularity container. We used the
OSG Open Science Pool because it provided us with free computational infrastructure. We do not have
the resources to scale this method up to ice-sheet-wide implementation on commercial cloud
computing platforms at a feasible price point, and during initial development PA had no access to
NASA-provided computational resources due to the COVID19 pandemic preventing in-person
fingerprinting of non-US citizens. We believe that the OSG Open Science Pool is the most accessible
option for large-scale implementation, but there are unfortunately some limitations to who can use it. As
a non US-based researcher, one could gain access to the OSG Open Science Pool if collaborating with
a US-based researcher or an institution that operates its own access point. Since we want our methods
and data to be accessible and encourage others to use it in their own research, we will explain this in
more detail in the Code and data availability section:

“The FLUID/SuRRF source code is freely available at https://doi.org/10.5281/zenodo.10905941 (Arndt and
Fricker, 2024a). To execute this code, users need to create a free NASA Earthdata login for ICESat-2 data access.

https://doi.org/10.5281/zenodo.10905941


The source code contains a singularity container in which this version of FLUID/SuRRF can be executed. The
main Python script detect_lakes.py can be run either locally on any individual ATL03 granule, or on many
granules in parallel on any computing cluster that supports the specified computing environment or the use of
singularity containers. In this study we present our implementation of FLUID/SuRRF on the OSG Open Science
Pool because it provided us with free computational infrastructure. Due to funding mandates, free access to the
OSG Open Science Pool is limited to researchers contributing to a US-based project at an academic, government,
or non-profit organization, or researchers affiliated with any project or institution that operates its own local
access point. This means that to implement FLUID/SuRRF on the OSG Open Science Pool as described here, you
need to have at least one collaborator on your team to whom the above criteria apply. This collaborator can
register your project with OSG on the Open Science Pool. Then, anyone contributing to the project can register
for an account on OSG Connect to gain access to the Open Science Pool. For more information, see
https://osg-htc.org/services/open_science_pool.html and https://osg-htc.org/about/organization. More information
is also included in the README file.”

Detailed Comments
● Line 44: It would be good to have a more detailed comparison with the Datta and Wouters and

Leeuwen methodologies to explain what the differences are here. Given the method presented here is
promoted as scalable would it be possible to do a direct comparison to their results?
Datta and Wouters (2021) and Leeuwen (2023) demonstrate that ICESat-2 data can be used to
improve depth extraction from imagery, which we use to motivate our study. To clarify this, and based
on other referee’s comments, we are adding the following to the introduction:
“While ICESat-2 data alone cannot be used to continuously monitor melt lake volumes, several case studies have
shown that ICESat-2 depth measurements can be used to constrain parameters in models that estimate lake
volumes from satellite imagery (Datta and Wouters, 2021; Leeuwen, 2023; Lutz et al., 2024). For instance, Datta
and Wouters demonstrated that it is possible to accurately extrapolate depths along ICESat-2's ground track
segments to the full lake basins that these segments intersect. To be able to use ICESat-2 to improve depth
estimates of supraglacial lakes in locations where (and at times when) ICESat-2 measurements are not directly
available, it will be necessary to rely on statistical methods that can generalize the relationship between water
depth and reflectance for a particular passive optical sensor under a wide variety of conditions and independently
of the availability training data that is close-by in space and time (Hastie et al., 2009). For this to work effectively,
the data that is used to train statistical learning models capable of multiple non-linear regression for representing a
complex depth-reflectance relationship need to adequately cover the parameter space defined by the combination
of predictors that are included (Markham and Rakes, 1998; Wang et al., 2022). Since ICESat-2 observations of
melt lakes are relatively sparse, it is therefore crucial to to obtain as many ICESat-2 depth estimates as possible
from different locations and times (and thus under a wide variety of environmental conditions) to be able to
effectively use ICESat-2 to improve monitoring of meltwater volumes across the ice sheets. This suggests that
large-scale extraction of accurate supraglacial lake depths from a wide range of ICESat-2 photon-level data in
combination with concurrent optical satellite imagery can provide a labeled training data set enabling the
application of machine learning methods (e.g., Leeuwen, 2023) capable of generating a well-constrained
data-driven model for ice-sheet-wide lake volume estimation (Melling et al., 2023).”

However, neither study published their depth estimates (Datta and Wouters published Matlab code,
Leeuwen did not publish any data or code with their Master’s thesis), so there is no easy way for us to
compare results. Fricker et al. (2021) is a great resource, which compares different algorithms for
supraglacial lake depth estimates from ICESat-2 including four estimates from Watta and an earlier
version of SuRRF. We will point the reader to this paper for depth estimate comparisons, and also
include the Watta results for the lakes shown in Fricker et al. (2021) in Fig. 12 (see below).

https://osg-htc.org/services/open_science_pool.html
https://osg-htc.org/about/organization/


We will add the following comparison between SuRRF and alternative methods to the end of section
4.2.2 (line 612):

Figure 12. Comparison between SuRRF water depth estimates, manually annotated ICESat-2 depths and results
from other methods for meltwater depth estimation. a)-d): ICESat-2 melt lake segments on the Amery Ice Shelf
with manual annotations from Fricker et al. (2021). Other meltwater depth estimates that were reported by Fricker
et al. are shown for the Watta algorithm (based on ICESat-2; Datta and Wouters, 2021), for the RTE method
applied to the average of Landsat 8's red and panchromatic bands (Spergel et al., 2021) and to Sentinel-2's red
band (Moussavi et al., 2020). e)-i): ICESat-2 melt lake segments in Southwest Greenland with manual annotations
from Melling et al. (2024). Other meltwater depth estimates that were reported by Melling et al. are shown for the
RTE method individually applied to both Sentinel-2's red and green bands, as well as estimates from
post-drainage lakebed topography in ArcticDEM (based on Bowling et al., 2019).

“In addition to SuRRF and manual depth estimates, panels a)-d) of Fig. 12 show depth estimates for Antarctic
lakes that were reported in Fricker et al. (2021), for the Watta algorithm (based on ICESat-2; Datta and Wouters,
2021) and for the RTE method applied to the average of Landsat 8’s red and panchromatic bands (Spergel et al.,
2021) and to Sentinel-2’s red band (Moussavi et al., 2020). Both SuRRF and Watta track the general shape of
lakebed returns in the ATL03 photon clouds well (Pearson’s correlation coefficients of R = 0.99 and 0.94,
respectively), and and largely agree with manually determined along-track water depths (MAEs of 0.29 m and
0.30 m, respectively). In contrast to SuRRF, Watta appears to have a tendency to overfit where photon density
near the lakebed is high with a large elevation spread, resulting in an unreasonably “wiggly” lakebed fit (e.g.,



Antarctic lake 1, 500-800 m). SuRRF’s smoother fit under these conditions is likely due to the fact that it utilizes
an adaptive kernel for its robust fit, whose width increases as the number of photons that narrowly cluster around
the previous iteration’s fit decreases (Sect. 3.3.1). In contrast to SuRRF, Watta also attempts to fit the lakebed
across the entire lake basin, even where the lakebed is not visible or indistinguishable from noise, which can
sometimes result in arbitrary, unrealistic depth estimates (e.g., Antarctic lake 1, around 450 m). Under such
conditions SuRRF assigns a low confidence score to the lakebed fit and discards associated depth estimates to
prevent arbitrary results. However, in some cases this results in SuRRF discarding depth estimates where Watta
appears to fit the lakebed reasonably well (e.g., Antarctic lake 3, 250-300 m). The RTE approach based on
Landsat 8’s red/panchromatic band average consistently underestimates water depths, reporting a total amount of
water that is ∼ 73 % lower than the manual baseline. The RTE approach based on Sentinel-2’s red band also
underestimates water depths, and reports a total amount of water that is 34 % lower than the manual baseline.

Panels e)-i) of Fig. 12 also show non-ICESat-2 depth estimates for Greenland lakes that were reported in Melling
et al. (2024), for the RTE method individually applied to both Sentinel-2’s red and green bands, as well as
estimates from post-drainage lakebed topography in ArcticDEM (based on Bowling et al. 2019). The RTE
approach based on Sentinel-2’s red band generally underestimates depths and reports a total amount of water that
is 42 % lower than the manual baseline (similar to this method’s performance over Antarctic lakes). In contrast,
the RTE approach based on Sentinel-2’s green band generally overestimates depths and reports a total amount of
water that is 34 % larger than the manual baseline. However, Melling et al. also note that when using values of
tuneable parameters that have been commonly used in the literature (Sneed and Hamilton, 2007; Georgiou et al.,
2009; Pope et al., 2016), the RTE approach for Sentinel-2’s green band overestimates lake depths even more,
which results in reporting a total amount of water that is 84 % larger the manual baseline, with individual depths
being overestimated by up to 153 %. This implies that RTE-based methods, while being popular for their
simplicity, can potentially result in highly inaccurate meltwater volume estimates. The depth estimates derived
from DEMs of emptied lake basins match the ICESat-2 manual baseline reasonably well, and when compared
with it underestimate the total amount of water by 6 % with a MAE of 0.34 m. Since this method’s performance is
comparable to that of ICESat-2-based methods, this implies that DEM-based methods could be used supplement
ICESat-2 depth measurements for labeling reflectance in passive optical imagery with supraglacial water depths,
at least on the Greenland Ice Sheet where melt lakes on grounded ice drain regularly (Johansson et al., 2013).”

● Line 57: Most of the Greenland ablation zone rather than most of Greenland?
We will include this, as suggested: “Across most of the Greenland Ice Sheet's ablation zone, ...”

● Line 60: There are enough notable examples of melt away from the grounding zone (over the ice
shelves of Larsen B, George VI) or on grounded ice (e.g. Corr et al. found more than a quarter or
meltwater features on grounded ice https://essd.copernicus.org/articles/14/209/2022/) that maybe
‘mostly’ could be changed?
Thanks for pointing out ice shelves that have meltwater features away from the grounding zone (such
as Larsen B and George VI). We will change our statement to include these examples. Besides this, we
believe that our statement is quite accurate. While Corr et al. found more than a quarter of meltwater
features on grounded ice, the vast majority of these were indeed located at low elevations near the
grounding zones of ice shelves. Corr et al. actually is a great reference for this, so we will include a
citation to their study. We will also change the terminology from “grounding lines” to “grounding zones”,
as suggested. Given the above, we propose to change our statement to: “...is mostly observed on the
floating ice shelves and at low elevations near their grounding zones (Stokes et al. 2019; Corr et al., 2022).”

● Line 73: Acceleration isn’t always the case. Some of these references are fairly old, Davison et al. have
a nice review (https://doi.org/10.3389/feart.2019.00010), although there may be updated literature.
To reflect this, we will change the phrasing to: “..., which has the potential to lubricate the bedrock and cause



acceleration of ice flow due to enhanced basal sliding.” Davison et al. (2019) is a great reference for this and
they explain very nicely how rapid lake drainage usually results in transient ice speed-up and net
acceleration, so we will include a citation to this review.

● Line 75: I’m not sure this is strictly true it’s been observed, more than it’s been suggested as a possible
mechanism.
To reflect this, we will change the phrasing to: “... but recent observations suggest that this mechanism is also
driving ice flow speed-ups on the Antarctic Ice Sheet.”

● Line 97: If we’re providing estimates we can also model this (e.g.
https://tc.copernicus.org/articles/12/3565/2018/tc-12-3565-2018.html for individual lakes) but remote
sensing is quicker/ more scalable but it’s not technically true we have to rely on it.
We will change “estimates” to “observations” to fix this, and simultaneously remind the reader that this
section is about observations of supraglacial lakes.

● Line 152: Is it a good assumption that lakes are non-turbid? Certainly for sea ice ponds we can assume
they are turbulent (of course they are shallower) but I wonder if e.g. it’s a very windy day when the
measurements are taken how much this impacts the flatness.
The statement that we make is simply saying that the lakebed can be visible to ICESat-2 when water is
non-turbid. If the water is too turbid, then ICESat-2 will not see a bathymetric signal. We are not making
the assumption or claiming that all or most lakes are non-turbid. We would like to argue that windy
days, lake flatness and turbulence are outside of the scope of an introductory sentence, which tells the
reader that “if water is clear, ICESat-2 can look through it”. (and we admit that we also don’t quite
understand ourselves how all these factors are related within the scope of line 152)
To attempt to broadly answer the questions brought up here: it seems like most supraglacial lakes are
sufficiently non-turbid for ICESat-2 to obtain a bathymetric signal, which makes sense because there
are less sediments on the ice sheets than there are around inland water bodies, and algal growth in
meltwater lakes seems to be fairly limited. The fact that ICESat-2 does not obtain a lakebed signal
whenever turbidity is too high is actually helpful, since in this case the optical methods based on
imagery that are commonly used will usually result in wrong depth estimates (e.g., Lutz et al., 2024).
To discuss the effects of wind (also requested by RC2), we propose to re-write the part starting on line
227:
“Afterpulses only become noticeable when the sensor is nearly or fully saturated, which means they often appear
in ATL03 data over supraglacial lakes because smooth open water surfaces (i.e. the surface of stationary water
bodies that are not affected by wind) can result in specular reflection. This suggests that the presence of wind
ripples increases the likelihood of detecting a lake with a clear bathymetric signal in ATL03 data by preventing
sensor saturation and afterpulsing (Lu et al., 2019; Tilling et al., 2020) and also explains why we observe
afterpulsing more frequently near the (more wind-shielded) margins of melt lakes than over their (more
wind-exposed) interior.”

● Line 207: How were these numbers determined (empirical observation is a little broad e.g. how many
lakes were examined?)
We agree that “empirical observations” is a bit too unspecific. We used a trial-and-error approach based
on a number of different hand-picked granules that featured a broad range of surface conditions,
including some that contained many lakes and some that did not contain any lakes. For clarification, we
propose to change this part to the following:
“Based on these assumptions, and using a trial-and-error approach, we defined the following thresholds on the
density ratios that need to hold for a major frame to pass the flatness check: , ,

and . As part of this trial-and-error approach, we manually assessed the effects of

https://www.codecogs.com/eqnedit.php?latex=d_0%20%2F%20d_1%20%5Cgeq%202#0
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tweaking the above thresholds on a number of hand-picked granules, which we judged to be likely representative
of various possible environments, to ensure adequate performance (i.e. granules without surface melt vs.
pervasive surface melt, granules with smooth vs. rough background topography, granules containing ice-covered
and partially ice-covered lakes, granules containing slush areas, granules containing exposed bedrock, partially
cloudy granules, weak vs. strong beam data, night- vs. daytime acquisitions, etc.).”

● Line 259 onwards: What if the lake is e.g. 0.92m deep, would the bathymetric signal still get picked up?
I think this is what you are saying in line 273 but you could clarify how you might discern the two, or if it
is likely to be possible.
We agree that we did not describe this clearly enough. Since we remove afterpulses in saturated pulses
only, bathymetric signals will be preserved in unsaturated pulses – unless if all the pulses are saturated,
in which case an actual flat bathymetric signal is practically indistinguishable from an afterpulse in the
point cloud data. To clarify this, we propose to add the following to the end of the paragraph that starts
on line 259:
“Since this procedure removes photons in saturated pulses only, true bathymetric signals that overlap with the
elevation of a known afterpulse are still retained as long as they appear in any unsaturated pulses. However, if all
pulses within an along-track section of the data are saturated, any true bathymetric signals from a flat lakebed at
the elevation of a known afterpulse will be removed from the data because they are practically indistinguishable
from the afterpulses that we expect to see in the point cloud under such highly saturated conditions.”

● Line 314: Can you determine why there is no signal from the lake bed here? Is it in the ice covered lake
areas?
It appears we did not include this in the text, but these two major frames overlap exactly with the
partially ice-covered area. Thanks for catching that. We will add the following to the end of the
paragraph:
“These two major frames visibly overlap with the location of a thin partial ice cover near the lake's northern shore
(Fig. 7, panel a), which explains why some of the lakebed is occluded in the photon cloud. While such areas,
where part of the lakebed is occluded, may not pass the bathymetry check, they are later included in the data that
make up a full ICESat-2 lake segment, as explained in the next section.”

● Line 319: Not sure if the word ‘each’ here is a typo?
We will delete “each”.

● Line 321: See my general comment about lake sizes, what does a ‘few’ mean here, please be more
specific. Is this related to the 10 in equation 3? (Or if not where does that come from?)
We agree that we should be more specific here. The phrase “along-track extent” was poorly chosen.
The 10 in equation 3 is indeed what describes this: the maximum separation between two clusters to be
merged is 10 major frames, so clusters that are separated by more than 1.4-1.6 km are not merged. To
clarify this we propose to replace (ii) on line 321 with:
“(ii) a ground track rarely crosses the same lake in two distinct locations that are separated by more than about 1.5
km.”
We will further explain equations (2) and (3) in plain language after they are defined:
“Equation (2) states that neighboring clusters are only merged if their respective lake surface elevations are within
0.1 m of each other, and Eq. (3) further states that neighboring clusters are only merged if they are separated by
ten major frames that did not pass the bathymetry check, or less (about 1.5 km). This means that if FLUID
encounters the unlikely but possible scenario in which a ground track crosses two arms of the same lake, which
are separated in along-track distance by more than ten major frames, then these two crossings are considered to be
separate lake segments and returned as two separate files in the output data rather than being merged together into



one lake segment. If these two conditions do not result in…”

● Line 350: I’m not sure what you mean here by ‘removing any lakes that fully overlap with another lake’.
Does that not just make them the same lake (and is some information about that lake then lost)?
We agree that “fully overlap” sounds confusing. We propose to change this to:
“Since this expansion of the along-track ranges of lake segments can create lake segments that overlap, the set of
buffered lake segments is corrected by separating partially overlapping lake segments at the midpoint of their
along-track overlap and removing any lake segments that are fully contained within another lake segment.”
[Explanation: Note that a lake segment being fully contained within another one means that if we
remove it no information is lost, we just remove information that was duplicated. This does not happen
often in practice, but imagine a large lake that has a physically thin but optically thick ice cover that
stretches for more than 1.5 km. If ICESat-2 obtains a bathymetric signal on both sides of the ice cover,
then FLUID will consider those two stretches of signal to be two separate lake segments (Eq. 2 above),
but since the ice cover is physically thin (and therefore flat and very close in elevation to the water
surface), FLUID will also expand the along-track ranges of both segments across the entire lake,
including its ice cover. In this situation, there will be two lake segments that both have data for the
entire lake, so one of them is a duplicate and needs to be removed. → We consider this to be such a
fringe case that we do not think it needs to be explained in full in the manuscript.]

● Line 405: So is this a limitation on minimum lake depths that can be detected?
Yes, 0.35 m is a theoretical minimum, but in practice lakes < 0.5 m deep are not very reliably detected
due to noise in the data, and the fact that such lake segments are often short and tend to be in
locations with relatively flat surrounding surface topography. See our answer to the first general
comment.

● Line 435: What is the situation where this could happen? Does this suggest a lack of confidence in
surface retrievals or is the algorithm picking up something else (an ice lens?).
This happens anywhere where the fit to the photons that remain after removing the ones reflected from
the water surface is above the water level of the lake. The most frequent example for this is the surface
of the ice that surrounds a lake (e.g., Fig 7, panel d: in about the first and last 200 m in along-track
distance, the red line is clearly above the elevation of the water surface), but it can also happen when
there is a thick ice cover on a lake. SuRRF is usually quite confident in the fit in these situations,
because surface returns above water tend to be much stronger than bathymetric returns. Either way,
SuRRF is fitting something that is at an elevation higher than the surface of the water, so we can be
generally confident that water depth is zero there.

● Section 4.1.2: Could you compare with the Moussavi et al dataset? That goes up to 2020 according to
the data description: https://www.usap-dc.org/view/dataset/601401
The Moussavi et al. (2020) dataset includes only one of the four melt seasons considered in this
manuscript. Furthermore, it is >70GB in size and has to be downloaded as a single file by contacting
the data center and making an individualized manual request. As such, it is not very accessible and not
very practical to use. While this dataset includes estimates of lake depths, in Section 4.1.2 we assess
FLUID lake detection only (FLUID itself does not provide lake depths). This means we are concerned
with whether the locations of detected lakes overlap with the locations detected in imagery. For this
purpose, the Moussavi dataset would be overkill, and only give us information about one out of four
melt seasons. Mapping the spatial extent of melt lakes based on imagery is quite simple, and Tuckett et
al. (2021) made it even easier by sharing their methods. Due to all the reasons above, we believe that it
makes much more sense in the context of this section to simply map the extent of supraglacial lakes
using Google Earth Engine and compare their extents to the locations of FLUID lake segments.



To make this more intuitive to the invested reader, we will include high-resolution maps of the Landsat 8
lake extents and ICESat-2 lake segments for all the melt seasons included in the paper in the updated
release of the supplementary material at https://zenodo.org/doi/10.5281/zenodo.10901826 (see also
attached to the end of this document).
To compare our SuRRF depth estimates to RTE-based depth estimates from imagery that are similar to
the Moussavi et al. (2020) dataset, we will include the RTE depth estimated reported in the papers that
we use to assess depth estimation accuracy in section 4.2.2 (Fricker et al., 2021 and Melling et al,
2024). The Sentinel-2 based depth estimates in Fricker et al. (2021) were contributed by M. Moussavi
based on the dataset that you mentioned. We also include Antarctic lake depth estimates based on
Landsat 8 (contributed to Fricker et al. 2021 by J. Spergel and J. Kingslake and based on Spergel et al.
2021) and Greenland lake depths based on Sentinel-2 from Melling et al. 2024. (see comment above
about comparison to alternative methods)

● Section 4.2.2: How many lakes are there actually in track 81? Is this something that could be
determined manually to get an idea of false positives/ negatives from SuRFF?
There are eight lakes in track 81 GT2L. We described this in section 4.1.2:
“To evaluate whether FLUID detects all supraglacial lakes that have bathymetric data in this
ATL03 ground track, we manually inspected the data for any evidence of meltwater and
determined whether any such along-track contained a clearly discernible return from a lakebed.
Out of 25 along-track segments with meltwater, we judged that only eight were supraglacial
lakes with a clear bathymetric signal.”
We did further examine same-day Sentinel-2 imagery to visually verify that ICESat-2’s ground track
does not overlap with any melt lakes that are not captured in the ATL03 data in track 81 GT2L. We did
not mention this in the submitted manuscript, so we will add this to the revised manuscript:
”We further evaluated whether the ATL03 photon cloud misses any supraglacial lakes that track 81 GT2L crosses,
by mapping it over a mosaic of Sentinel-2 scenes from the same day (same as used in Fricker et al. 2021). Based
on visual inspection, the ICESat-2 ground track crossed supraglacial lakes that were clearly distinguishable in the
imagery only in the same eight locations that we had also judged to be lake segments in the ATL03 data. Most
other ICESat-2 segments that showed evidence of surface water in ATL03 also showed some evidence of
meltwater in the imagery, and were associated with ice-filled crevasses, narrow melt channels, likely areas of
slush, or melt lakes with an opaque ice cover (for which depth determination is not possible).”
In Section 4.2.2, we refer back to section 4.1.2 where it was explained.
“For the 16 potential melt lakes that FLUID identified in ICESat-2 track 81, GT2L on Jan 2nd,
2019 over the Amery catchment (Sect. 4.1.2 Fricker et al., 2021), SuRRF assigned a nonzero lake
quality score only to the eight data segments which we had manually determined to be
supraglacial lakes with a clear bathymetric signal.”
To clarify that the eight lake segments mentioned in these sections are the only ones present in track
81, we will replace “clear” with “discernible” (because “clear” leaves it open to interpretation whether
there could still be lakes segments with bathymetric signals in the track, whose bathymetric signals just
aren’t super obvious).

● Line 630: ‘this’ satellite rather than ‘a’ satellite. Datasets exist for other satellites.
ICESat-2 is the only satellite (to date, and likely for a while into the future) that can directly measure
lake depths from space, so “a satellite” is correct. However, we never stated this explicitly in the
manuscript, and should absolutely do so. To make this evident to the reader, we will state this early on
in the introduction (line 37): “Launched in 2018, NASA's Ice, Cloud and land Elevation Satellite (ICESat-2)
laser altimeter became the first (and thus far only) satellite capable of making direct, accurate water depth
measurements from space, …”

https://zenodo.org/doi/10.5281/zenodo.10901826


● Line 740: What were these equations based on? I understand you used trial and error but they are
complex equations that must have had a starting point.
We propose to add the following to the end of Appendix C to illustrate our thought process:
“While the quality heuristics q_i were obtained by trial-and-error, the starting points for this approach were based
on the following assumptions and observations:

- The starting point for q_1 was the idea that major frames with a smaller number of detected bathymetry
peaks are less likely to have a consistent signal from a lakebed. The way the equation for q_1 is designed,
major frames with a very small fraction of detected bathymetry peaks (0-30% of sub-segments) are
disproportionately penalized, since such small numbers of peaks are much more likely to be noise.

- The starting point for q_2 was the idea that major frames with less prominent peaks represent either a
weak, inconsistent bathymetric signal or noise. Here, q_2 is equal to the mean prominence of peaks when
the fraction of detected bathymetry peaks f < 0.5. However, for fractions larger than 0.5, the assumption
is that the bathymetric signal is consistent enough that even smaller mean peak prominence suggests that
the bathymetric signal is clearly visible.

- The starting point for q_3 was the observation that in most cases supraglacial lake segments with a usable
bathymetric signal have fairly small lakebed slopes. Therefore, we do not expect the lakebed elevation of
a major frame with a good signal to span a large elevation range. In contrast, we observed that major
frames with detected potential bathymetric peaks that span a very large elevation range are often due to
noise in the data. Based on this, we designed the equation for q_3 such that its value drops off once the
total elevation range of detected bathymetry peaks within the major frame (of length ~140 m) exceeds 5
m. There are, however, some lake segments with a clear bathymetric signal that do exhibit a large range of
lakebed elevations (often due to a single burst of noise being detected as a potential bathymetric peak).
Therefore, we made sure that the value for q_3 is large enough for major frames to still pass the
bathymetry check if \Delta h is very large but its other quality heuristics q_i are closer to 1.

- The starting point for q_4 was the idea that in most cases bathymetry peak elevations will align along a
smooth surface in the along-track distance direction rather than randomly fluctuate (which is usually the
case for noise). Here, we penalize every “direction change” (i.e., wherever a peak has two neighbors and
its elevation constitutes a local minimum or maximum). We allow for random fluctuations of up to 0.5 m
per peak detection without a large penalty, since we observed that a vertical photon spread of up to about
this value is quite possible even for lake segments with a somewhat “fuzzy”, yet clearly distinguishable
return signal from the lakebed.

A figure that illustrates these quality heuristics is available in the supporting information at
https://doi.org/10.5281/zenodo.10901826 (Arndt and Fricker, 2024c). (and shown below for convenience)



Community Comment 1 (Bert Wouters)
CC1: 'Comment on egusphere-2024-1156', Bert Wouters, 26 Jun 2024
Citation: https://doi.org/10.5194/egusphere-2024-1156-CC1

Notes:
- B. Wouters, H.A. Fricker and P. Arndt are all co-authors of Fricker et al. (2021);
- P. Arndt was a referee for Datta and Wouters (2021).

I agree with the two other reviewers that this is a well-written and important contribution, presenting an elegant
method to derive supraglacial lake bathymetry. Nevertheless, I would like to comment on the two statements
below, in the Introduction and Summary sections:
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● L47-53: Previous ICESat-2 studies have been limited to applying depth estimation methods to a handful
of manually picked lakes or data granules, with no clear pathway to large-scale computational
implementation across the ATL03 data catalog, which comprises hundreds of terabytes of unstructured
point cloud data (Neumann et al., 2023b). To address this challenge, we have created a fully automated
and scalable algorithm for lake detection and depth determination from ICESat-2 data.

● L646-651: ICESat-2 data had not previously been used at scale for this purpose because its
photon-level product comprises hundreds of terabytes of unstructured point cloud data along spatially
discrete ground tracks, which makes it difficult to integrate the data with spatially continuous data in
existing workflows. To address this challenge, we have presented the fully automated, two-step
FLUID/SuRRF algorithm for the detection and depth determination of supraglacial lakes on the ice
sheets in ICESat-2 photon data, and proposed a computational framework that allows for its large-scale
implementation across any desired ice sheet drainage basins and melt seasons.

Whereas it is true that other methods have not been used at such a large scale as in the manuscript, the Watta
algorithm (Datta and Wouters, 2021) is fully automated (i.e. it detects potential lake locations based on a
flatness criterion and then estimates the bathymetry, similar to the framework presented in this manuscript) and
it is designed to be run in parallel, allowing large-scale application at any location or time period. The reason
Watta hasn’t been applied at large scale is a lack of computational infrastructure.

It would be nice to acknowledge that the automated and scalable nature of the method, while advantageous, is
not a unique selling point. This doesn’t take away that there is plenty of novelty in the manuscript to merit
publication. Emphasizing these specific innovations would strengthen the manuscript, in my view.

Thanks very much Bert for your positive and constructive comment, and for bringing this particular issue to our
attention. First off, we would like to express our appreciation for the scientific contributions that you made in
Datta and Wouters (2021) and acknowledge that the results you published had a large impact on motivating
our own study and informing our opinion that it is crucial to retrieve and publicly share as many ICESat-2 water
depth estimates as possible, to improve our ability to continuously monitor supraglacial meltwater volumes
across the ice sheets. We explain this in the later paragraphs.

Thank you for pointing out that automation and scalability are selling points that are not unique to our
algorithm. We agree that this should be pointed out in the manuscript. We will explain that other automated and
scalable algorithms exist for this purpose, and that the new contribution of our study is the fact that in addition
to developing another such algorithm, we also propose a computational framework for applying it at
ice-sheet-wide scale and then demonstrate that it works in practice.

For completeness, we would like to note here that in our own experience, the task of computationally scaling
up FLUID-SuRRF was hugely more time- and work-intensive than developing the initial algorithm. At the time,
we already considered it to be automated because it ran smoothly on a few dozen granules that we had used
to develop empirical thresholds and tune parameters. It is amazing that multiple automated and scalable
algorithms have been proposed for this purpose, and in Fricker et al. (2021) we pointed out that ensemble
estimates from various different algorithms outperformed any single algorithm on the small number of lakes
presented in that case study. However, just because such automated and theoretically scalable algorithms
exist, does not mean that it is easy at all to use them to generate large, comprehensive data products. This is
why we spent three years since the initial algorithm was presented in Fricker et al. (2021) working on actually
implementing FLUID-SuRRF at scale.

We would like to make it clear we are in no way trying to diminish the scientific significance of Watta. In Datta
and Wouters (2021) you are showing many other significant and very impressive scientific results that go well



beyond what we are presenting in our manuscript. In fact, our own study is largely motivated by the fact that
you successfully demonstrated that depths and volumes of supraglacial lakes can be accurately estimated by
combining along-track depth measurements from Watta/ICESat-2 with concurrent imagery from various
passive optical sensors. As we explain in the manuscript, this is absolutely necessary for using ICESat-2 to
improve estimates for continuously monitoring melt lake volumes through space and time. In Datta and
Wouters (2021), you use imagery to extrapolate depths along ICESat-2 segments to the full lake basins that
these segments intersect. You convincingly showed that this indeed works very well, and these results inspired
us to attempt to go one step further: To be able to use ICESat-2 to empirically estimate depths/volumes of
supraglacial lakes in locations and at times where/when ICESat-2 measurements are not directly available, it is
necessary to rely on statistical methods that can generalize the depth-reflectance relationship for a particular
passive optical sensor independently of the availability training data that is closeby in space and time. For this
to work, the data that are used to train statistical learning models capable of multiple non-linear regression for
representing this depth-reflectance relationship need to adequately cover the parameter space defined by the
combination of predictors that are included.

If instead we attempted to train a model to learn the relationship between Sentinel-2 reflectance and water
depth from the lake segments provided in Datta and Wouters (2021), the training data would be limited to
estimates based on five ICESat-2 tracks from five different dates, all of which cluster closely together near
Sermeq Kujalleq and Sarqardliup Sermia. This means that we would sample associated Sentinel-2 data from
only a handful of satellite overpasses, which would likely be acquired under similar conditions (e.g., sun
angles). If we now show the model unseen Sentinel-2 data that originated under different conditions and ask it
to estimate water depth, it will likely not be able to extrapolate well. Since ICESat-2 observations are
fundamentally quite sparse, we believe that it is necessary to obtain as many ICESat-2 depth estimates from
different locations and times to be able to effectively use ICESat-2 to improve monitoring of meltwater volumes
across the ice sheets: in this case, we argue that “more data is always better”. We hope that this explains why
we considered it to be so important to take on the task to scale up ICESat-2 lake detection on depth
determination algorithms, and to share the resulting data.

For reference, see Domingos (2012) for an explanation of how more data usually improves statistical / machine
learning models. This article also mentions the need for models to generalize, as well as the benefits of using
ensemble methods. While somewhat outdated for such a fast-moving field, the article does a great job at
explaining the fundamental principles.

We propose the following changes:

● It seems that we have not detailed our motivation for large-scale extraction of ICESat-2 melt lake
depths (based on promising recent results from combining ICESat-2 depths with imagery / fundamental
principles of statistical learning) clearly enough. We therefore propose to rewrite the corresponding
section in the introduction in its own paragraph:
“While ICESat-2 data alone cannot be used to continuously monitor melt lake volumes, several case studies have
shown that ICESat-2 depth measurements can be used to constrain parameters in models that estimate lake
volumes from satellite imagery (Datta and Wouters, 2021; Leeuwen, 2023; Lutz et al., 2024). For instance, Datta
and Wouters demonstrated that it is possible to accurately extrapolate depths along ICESat-2's ground track
segments to the full lake basins that these segments intersect. To be able to use ICESat-2 to improve depth
estimates of supraglacial lakes in locations where (and at times when) ICESat-2 measurements are not directly
available, it will be necessary to rely on statistical methods that can generalize the relationship between water
depth and reflectance for a particular passive optical sensor under a wide variety of conditions and independently
of the availability training data that is close-by in space and time (Hastie et al., 2009). For this to work effectively,
the data that are used to train statistical learning models capable of multiple non-linear regression for representing



a complex depth-reflectance relationship need to adequately cover the parameter space defined by the
combination of predictors that are included (Markham and Rakes, 1998; Wang et al., 2022). Since ICESat-2
observations of melt lakes are relatively sparse, it is therefore crucial to to obtain as many ICESat-2 depth
estimates as possible from different locations and times (and thus under a wide variety of environmental
conditions) to be able to effectively use ICESat-2 to improve monitoring of meltwater volumes across the ice
sheets. This suggests that large-scale extraction of accurate supraglacial lake depths from a wide range of
ICESat-2 photon-level data in combination with concurrent optical satellite imagery can provide a labeled training
data set enabling the application of machine learning methods (e.g., Leeuwen, 2023) capable of generating a
well-constrained data-driven model for ice-sheet-wide lake volume estimation (Melling et al., 2023).”

● L47-53: We had to restructure the entire paragraph to make sure we are not misleading the reader by
making it sound like automation and scalability are unique selling points of our algorithm. Here are our
proposed changes:
“While automated and scalable algorithms for lake detection and depth retrieval in ATL03 photon data have been
proposed (e.g., Datta and Wouters, 2021; Xiao et al., 2023), in practice no previous ICESat-2 studies have applied
supraglacial lake depth estimation methods to more than a handful of manually picked lake segments or data
granules, or presented a straightforward pathway to large-scale computational implementation across the ATL03
data catalog, which comprises hundreds of terabytes of unstructured point cloud data (Neumann et al., 2023b). To
address this challenge, we present a framework for ice-sheet-wide implementation of our own fully automated and
scalable algorithm for along-track lake segment detection and depth determination from ICESat-2 data. Here, we
present this algorithm, apply it to two entire drainage basins in Greenland and Antarctica (Sect. 3.5, Fig. 2) using
distributed high-throughput computing, and demonstrate its performance for two full melt seasons.”

● L646-651: We believe that by now it should be sufficiently clear to the reader that other automated and
scalable algorithms do exist, but have not been applied at scale. However, we propose to switch the
sentence structure to make it more clear that we are “addressing this challenge” primarily by taking on
the actual implementation rather than by proposing an additional automated algorithm:
“ICESat-2 data had not previously been used at scale for this purpose because its photon-level product comprises
hundreds of terabytes of unstructured point cloud data along spatially discrete ground tracks, which makes it
difficult to integrate the data with spatially continuous data in existing workflows. To address this challenge, we
have proposed a computational framework that allows users to detect lake segments and determine their water
depths across all available ICESat-2 data for any desired ice sheet drainage basins and melt seasons. Using
distributed high-throughput computing, this framework applies the fully automated, two-step FLUID/SuRRF
algorithm to large numbers of ICESat-2 ATL03 photon data granules in parallel. To test our method, we applied
FLUID-SuRRF to all available ICESat-2 data over two drainage basins, one on the Antarctic Ice Sheet and one on
the Greenland Ice Sheet, for a high-melt and a low-melt summer.”

Other changes
Note: Some minor changes that we made to the language in this manuscript are not listed here, but are shown
in the marked-up manuscript version highlighting all proposed changes. This will be attached to the combined
response to all reviewers, but not included in individual responses.

● L463-464: separate two acronyms (“NSIDC API” in the text, and “NSIDC” as the author in the citation)
to improve readability

● L468-469: the OSG acronym was defined a second time, deleted “Open Science Grid (...)”
● L469: separate two acronyms (“dHTC” in the text, and “OSG” as the author in the citation) to improve

readability



● L543: New insights on slush regions across Antarctic ice shelves in Dell et al. (2024) warrant an
additional sentence contributing to the explanation why supraglacial lakes are often more difficult to
detect in Antarctica. We propose to add the following at the end of section 4.1.1: “Furthermore, an
appreciable portion of meltwater across Antarctic ice shelves is stored as slush (Dell et al., 2024), which often
appears in ATL03 data with a surface return that is flat enough to look similar to a supraglacial lake, with large
amounts of scattered photons below the surface that can be mistaken for a bathymetric signal.”

● We found a minor bug in our code for calculating SuRRF performance statistics, handling a couple of
missing values incorrectly. This resulted in small changes to the numbers reported starting at line 594.
The updated version is this: “This is also demonstrated by an average Pearson’s correlation coefficient of R =
0.992 for the nine lake segments examined here, with averages of R = 0.989 for the segments on Amery
catchment and R = 0.994 for the segments in Southwest Greenland. SuRRF depth estimates show an average bias
of 0.26 m deeper than the manually picked values, with a mean absolute error (MAE) of 0.27 m. This results in
SuRRF reporting a total amount of water that is 10 % larger than the estimate given by the manual baseline. For
the lake segments on Amery Ice Shelf, the average bias is 0.29 m and the MAE is 0.29 m. For the lake segments
in Southwest Greenland, the average bias is 0.23 m and the MAE is 0.24 m”

● Fig. 12 (L613): While revising this figure, we decided to correct the elevations of photons below the
water surface by dividing their vertical distance from the lake surface by the refractive index for the
speed of light in water, rather than aligning depth estimates with non-corrected ATL03 heights. This
means the ranges of elevation fit values shown in the figure are actual depth estimates rather than
pseudo-depths that were scaled to fit the uncorrected ATL03 data. To explain this we will change the
last sentence in the caption from “To align along-track depths with the ATL03 photons (gray dots),
water depth estimates were multiplied by the refractive index for the speed of light in water and
subtracted from the surface elevation of each lake (black dotted lines).” to “To align along-track
depths with the ATL03 photons (gray dots), the elevations of photons below the water surface elevation of each
lake (black dotted lines) were corrected by dividing their vertical distance from the lake's surface by the refractive
index for the speed of light in water.”

New references to be included
● Banwell, A. F., Caballero, M., Arnold, N. S., Glasser, N. F., Mac Cathles, L., & MacAYEAL, D. R. (2014).

Supraglacial lakes on the Larsen B ice shelf, Antarctica, and at Paakitsoq, West Greenland: a comparative study.
Annals of Glaciology, 55(66), 1-8.

● Bowling, J. S., Livingstone, S. J., Sole, A. J., & Chu, W. (2019). Distribution and dynamics of Greenland
subglacial lakes. Nature communications, 10(1), 2810.

● Davison, B. J., Sole, A. J., Livingstone, S. J., Cowton, T. R., & Nienow, P. W. (2019). The influence of hydrology
on the dynamics of land-terminating sectors of the Greenland ice sheet. Frontiers in Earth Science, 7, 10.

● Dell, R. L., Willis, I. C., Arnold, N. S., Banwell, A. F., & de Roda Husman, S. (2024). Substantial contribution of
slush to meltwater area across Antarctic ice shelves. Nature Geoscience, 1-7.

● Dietrich, J. T., Rackley Reese, A., Gibbons, A., Magruder, L. A., & Parrish, C. E. (2024). Analysis of ICESat‐2
data acquisition algorithm parameter enhancements to improve worldwide bathymetric coverage. Earth and Space
Science, 11(2), e2023EA003270.



● Georgiou, S., Shepherd, A., McMillan, M., & Nienow, P. (2009). Seasonal evolution of supraglacial lake volume
from ASTER imagery. Annals of Glaciology, 50(52), 95-100.

● Glen, E., Leeson, A. A., Banwell, A. F., Maddalena, J., Corr, D., Noël, B., & McMillan, M. (2024). A comparison
of supraglacial meltwater features throughout contrasting melt seasons: Southwest Greenland. EGUsphere, 2024,
1-31.

● Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical learning: data mining, inference,
and prediction (Vol. 2, pp. 1-758). New York: springer.

● Johansson, A. M., Jansson, P., & Brown, I. A. (2013). Spatial and temporal variations in lakes on the Greenland
Ice Sheet. Journal of hydrology, 476, 314-320.

● Lu, X., Hu, Y., & Yang, Y. (2019, December). Ocean subsurface study from ICESat-2 mission. In 2019 photonics
& electromagnetics research symposium-fall (PIERS-fall) (pp. 910-918). IEEE.

● Lutz, K., Bever, L., Sommer, C., Humbert, A., Scheinert, M., & Braun, M. (2024). Assessing supraglacial lake
depth using ICESat-2, Sentinel-2, TanDEM-X, and in situ sonar measurements over Northeast Greenland.
EGUsphere, 2024, 1-25.

● Markham, I. S., & Rakes, T. R. (1998). The effect of sample size and variability of data on the comparative
performance of artificial neural networks and regression. Computers & operations research, 25(4), 251-263.

● Parrish, C. E., Magruder, L., Herzfeld, U., Thomas, N., Markel, J., Jasinski, M., ... & Caballero, I. (2022,
October). ICESat-2 bathymetry: Advances in methods and science. In OCEANS 2022, Hampton Roads (pp. 1-6).
IEEE.

● Wang, J., Lan, C., Liu, C., Ouyang, Y., Qin, T., Lu, W., ... & Philip, S. Y. (2022). Generalizing to unseen domains:
A survey on domain generalization. IEEE transactions on knowledge and data engineering, 35(8), 8052-8072.

New supplementary figures to be included

Maps of ICESat-2 lake segments and unique supraglacial lake extents
Reviewer comments about distinguishing “unique supraglacial lakes” from distinct “ICESat-2 melt lake
segments” prompted us to estimate which distinct melt lakes are sampled by FLUID lake segments more than
once. We report the number of unique supraglacial lakes in the text of the manuscript and Table 1, and explain
how we estimated the given numbers. In a new version of the supplement at
https://doi.org/10.5281/zenodo.10901826 (Arndt and Fricker, 2024c), we will additionally provide
high-resolution maps of the ground tracks of FLUID lake segments over Landsat 8 maximum melt extents, with
unique lakes identified by their borders. These maps can be used to better understand the spatial distribution
of FLUID melt lake segments and how they relate to the overall distribution of pooled meltwater over our study
regions. Due to their large scale, these maps cannot be reasonably included in the main manuscript.
Lower-resolution reproductions of these maps are shown on the following pages.

https://doi.org/10.5281/zenodo.10901826








Figure explaining bathymetry check quality heuristics
We will further add a supplementary figure that is meant to give the invested reader a better understanding of
the equations used to estimate bathymetric signal quality in the bathymetry check (defined in Appendix C). We
explain the thought process behind defining these empirical equations by trial-and-error in Appendix C, so this
supplementary figure does not provide any new insights that are not presented in the main manuscript. We will
therefore also provide it in a new version of the supplement at https://doi.org/10.5281/zenodo.10901826 (Arndt
and Fricker, 2024c).

https://doi.org/10.5281/zenodo.10901826


Map of the locations of in-situ supraglacial lake depth measurements


